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8.1.1 Lois de composition interne de R?

Exercices:
Exercice A.1.1

La nécessité d’étendre R résulte du fait que certaines équations algébriques n’ont pas de ra-
cine dans R, la plus célebre étant x? + 1 = 0. Mais il y a une différence fondamentale entre le
passage de Q@ a R et le passage de R a C. Dans le premier cas, il s’agit d'une extension destinée a
“remplir I'espace laissé vide entre les rationnels” , dans le deuxieme cas, il s’agit d’'une extension

“algébrique” : on va agrandir 'ensemble en lui rajoutant une composante, la partie imaginaire,
pour pouvoir résoudre des équations qui n’ont pas de racines dans R.

Définition 8.1.1. Sur E = R? on définit les deux lois de composition :
— laddition : (x,y) + (', y') = (x+ ¥/, y + ),
— la multiplication (x, y) x (x', y") = (xx' = yy', xy' + x'y).

Vous montrerez en exercice que 'addition donne a E une structure de groupe commutatif et que
la multiplication a les propriétés nécessaires pour que E ait une structure de corps commutatif. Ce
corps, noté C, est appelé le corps des nombres complexes. Un nombre complexe, i.e. un élément
de C, est donc un couple de réels, obéissant aux lois de composition précédentes.
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8.1.2 Parties réelle et imaginaire d’un nombre complexe

Exercices:
Exercice A.1.2
Exercice A.1.3

En utilisant les régles de I’addition et de la multiplication, on vérifie :

0,1) x(0,1) =(=1,0)

On identifie le nombre complexe (x,0) (dont la 2éme composante est nulle) au réel x.

2:

On note i le nombre complexe (0,1), on a donc i —1, c’est a dire i est une des racines de

'équation z? +1 = 0.

On a d’autre part :
(x, y) = (x,0) + (0, y) = (x,0) + (0,1) x (y,0).

On peut donc écrire un nombre complexe z = (x, y) sous la forme dite canonique : z=x+iy.
On dit que x est la partie réelle et y la partie imaginaire de z, et on les note respectivement Re z
etlmz:
z=x+iy(=Rez+ilmz).
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Proposition 8.1.1. Soient z et z' deux nombres complexes, alors on a Parties réelle
et imaginaire

(zZ' =0) & ((z=0) ou (z' =0)). d’un nombre

complexe

Démonstration - Limplication < est évidente. Réciproquement, supposons que zz' = 0.Alors, soit

1 1 1
z=0etCest terminé, soit zZ0etl’onaz =(=z)z' = =(zz')==0=0.
z z z

Cette propriété, qui est triviale dans R et dans C, n’est pas vraie dans certains ensembles. Par
exemple, vous verrez en MT23, que 'on peut avoir deux matrices non nulles dont le produit est
nul!
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8.1.3 Formule du binome de Newton

Exercices:
Exercice A.1.4

Proposition 8.1.2. Pour tous nombres complexes z et z' et pour tout entiern=2, on a

(z+2)'=2"+CLz" 2 +.. .+ Ckz Rz (8.1.1)

Démonstration - La formule se démontre par récurrence.
— Elle est vraie pour n = 2 puisque (z + z')? = 2% + 2z’ + 2" et que C} = 2.
— Supposans la vraie pour n — 1, c’est-a-dire supposons que
(z+2)"l=z"1+. . .+ Cg_lz”_l_pz’p +...+2" L

On en déduit que

Concepts

(z+2)" =(z+2)(z+2) "L =z(z+2)" 1+ 2 (z+ )L
=z .+ CE kR 44 Exemples
A Clijzn_l_(k_l)z/k_l i AL Exercices
=z"+...+(Ck sk hrkk g 4 2n, Documents



< précédent section A suivant »

Calculons, pour 1 <= k<n-1,lasomme: Formule du
= (n-1)! (n—-1)! binbme de
ck,+Ckl -
n=17Sn-i Hn-1-K!  k=Dl(n—-1—k+1)! Newton
=D sk =ck 8.1.2)
k! (n—k)! oo "
d’ott découle le résultat annoncé.
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8.1.4 Conjugué et module d’un nombre complexe

Exercices:
Exercice A.1.5

Définition 8.1.2. Soit z = x + iy un nombre complexe, alors
— le nombre complexe x — iy s'appelle le conjugué de z et se note z,
— le nombre réel \/ x> + y? sappelle le module de z et se note |z|.

Voici un résumé des principales propriétés des conjugués et des modules :

= - o 1 1
-zZ=z (z1+22)=21+22, 2122 = 2122, V2 #0, (;) =3
2 = = !/ ! 1
- |z|* = zz, |z| = |z|, |zz'| = |zl|Z|, |- | = —,
z| |zl
_1 = _1/,_5 n2 _ 2 ! 12
- Rez-z(z+z),ImZ—2i(z 2),lz+ 2| =|z|*+2Re(z2") + |Z'|°,
1 z
- z=0% |z|=0 etVz;éO,—:—z.
z |z

Démontrons quelques-unes de ces propriétés (vérifier les autres pour étre stir de bien les mani-

puler) :
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. ] 1) 1 Coni et
— Tout d’abord, pour z= x+ iy (#0), nous avons | — | = = : onjugue e
) 2 module d’un
1 1 xX—1y X .Y non;bre
—_= =] = =1 )
z x+iy (x+iyx-iy) x>+y>  x>+y? complexe
1 1 x+iy X iy y
= = = = 1 .
z x—iy (x+iy)(x—iy) x2+y2  x2+y?
1 1
— Deméme, si z#0,ona —‘ = ﬂ puisque
z
1 x )2+( y 2 1 t(l)z 1
— = = e _ = —
z X%+ y? X%+ y? x?+y? \lzl X%+ y?
— Ftenfin le calcul de |z + Z|? s’obtient par
lz+Z2P=(z+2)(z+2)=z2z+722+22 +2'2
Or,
7@ = Gl
d’ ot
Z'z+zz' =2Re(z72') Concepts
de plus
5 _ 2 121 1,112
zz=\z|°, zz' =1z, Exemples
de sorte que I'on a bien : Exercices
2 Documents

lz+ 21> = |z|® + 2Re(z2') + |Z'|°.
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8.1.5 Inégalité triangulaire

Exercices: Cours:
Exercice A.1.6 Nombre complexe - conjugué et
module

Proposition 8.1.3. Pour tous nombres complexes z et z', on a
— |Rez| = |z| et|Imz| <|z|,
— |z+Z'| < |z| +|2/| (inégalité triangulaire)
- llzl =12l =1z - Z'|.

suivant »

Démonstration - Cette démonstration utilise les points du paragraphe référencé.

- Siz=x+1iy, alors |z|2 = x2 +y2, |Rez|® = (Rez)? = x%2 et |Imz|?> = (Imz)% = yz, ce qui donne

le résultat puisque :

YaeR", VbeR', (a®><b? o (a<bh).

— De méme, I'inégalité triangulaire est équivalente a

12 I\2
lz+zZ'|" < (lz| +12'])°.

11
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Or

(lzl +12')? 1z + 2|

La derniere quantité est positive ou nulle d’apres les propriétés des complexes, d’ou le ré-

sultat.

— La troisieme est obtenue en appliquant I'inégalité triangulaire successivement a

section A suivant »

= |22 +2]zl|2| + 2|
—(|z]? + 2Re(z2") + |2/ |%)
=2(|z||Z'| - Re(z2)
=2(|zZ'| - Re(zz2")).

z=(z-2)+7 etz =z -2 +z

Elle vous est laissée a titre d’exercice.

12
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8.1.6 Argument d’un nombre complexe

Exercices:
Exercice A.1.7

Les propriétés des fonctions trigonométriques cosinus et sinus, nous permettent d’affirmer
que, étant donnés deux nombres réels a et b vérifiant a® + b® = 1, il existe un angle 6 tel que

cosf = aet sinf = b. (8.1.3)
Nous savons aussi que :
((cosf =cos¢) et (sinf =sing)) & (0 =¢+2km, ke 2),
on dit alors que 0 est congru a ¢ modulo 27 et on le note 0 = ¢ [27].
Autrement dit, 'angle 8 défini par les équations (8.1.3) n’est défini qua 2k pres.

Soit maintenant z = x + 7 y, un nombre complexe non nul, alors on peut I’écrire

X Concepts
z=lzl(= +i 2. P
lz| lzl
Il existe un 6 (défini a 2k pres) tel que : Exemples
X % \2 2 Exercices
cosf=— et sinO= Y puisque (—) + (l) =1l Documents
|zl |z| |z| |zl

13 [
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Ceci nous conduit a la définition

Définition 8.1.3. Pour tout nombre complexe z différent de 0 le nombre réel 0, défini a 2kn
pres, tel que z = |z|(cosO + i sin6) s‘appelle 'argument de z et se note argz.

Proposition 8.1.4. Pour tous nombres complexes z et z' non nuls on a

1
arg(zz’) =argz+ argz' [27] et arg(;) = —argz[2n].

Démonstration - Soient
z=|z|(cosO+isinf) et z’ = |z'|(cosO +isinf),

alors

zZ =|zZ'|(cosOcosO’ —sinfsinf’ + i(sinfcosO’ + cosOsinh’))

= |zZ'| (cos(8 +0") + i(sin(@ +6")).
d’ol1 la premiere relation.

La deuxieme relation est donnée en exercice.

Remarque 8.1.1. Il est parfois utile de choisir une détermination particuliére de 'argument. Cer-
tains auteurs choisissent 'unique 6 appartenant a I'intervalle [0, 27 [, d’autres celui de I'intervalle
] — m, +m]. Nous ferons le premier choix et noterons donc Argz (€ [0,27[) cette détermination de
I’'argument.

<<« 14
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8.1.7 Représentation graphique des hombres complexes

Exercices:
Exercice A.1.8

Nous avons identifié un nombre complexe z = x + iy a un élément (x, y) de R2, nous pouvons
donc représenter ce nombre complexe par un vecteur OM de composantes x et y dans un repere
orthonormé (O, ii, ). Le nombre z s’appelle I'affixe du point M. Puisque, dans le paragraphe pré-
cédent nous avons écrit z sous la forme trigonométrique z = |z|(cos@ + i sinf), les composantes
du vecteur OM sont donc |z|cos@ et |z|sinf, ce qui veut dire que |z| représente la longueur du
vecteur OM et I'argument 6 de z est une mesure de I’angle que fait OM avec le vecteur unitaire .
Il résulte des opérations quel I'on a construites sur R? et tque l’on a étendues a C que si z est associé
4 OM , si 2’ est associé 2 OM alors z + 7' est associé 2 OM + OM.

Concepts

Exemples
Exercices
Documents

15 [



< précédent section A suivant »

N ™
—
v
—
o) u =

FIGURE 8.1.1 — Représentation graphique d'un nombre complexe

<< 16
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8.1.8 La formule de De Moivre

Exercices:
Exercice A.1.9

Proposition 8.1.5. Pour tout nombre réel 0 et tout entier n €N, on a

(cosf +isin®)" = cos nb + i sin no.

Démonstration - Cette relation se démontre par récurrence.
— La formule est évidemment vraie pour n =0etn=1.
— Supposons la vraie pour n —1, c’est-a-dire :

(cosO +isinf)" ! = cos(n—1)0 + isin(n—1)6,

et démontrons la pour 7. Il vient :

(cos@ +isinH)" (cos@ + isinf)* ! (cosO + isinh)

= (cos(n—1)0+isin(n—1)0)(cosf + isinf)

= (cos(n—1)8cosO —sin(n—1)0sinh)
+i(cos(n—1)0sinf +sin(n—1)0 cosH)

= cosnf+isinnd.

17
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8.1.9 Le théoreme de d’Alembert - Gauss

Exercices:
Exercice A.1.10

Le théoréme suivant, de d’Alembert - Gauss, montre que C permet de résoudre certaines
équations algébriques :

Théoreéme 8.1.1. Toute équation algébrique dans C, c'est-a-dire toute équation de la forme

1

anz" +a,_1z2" " +... +ap=0, (8.1.4)

ott les coefficients a;, 0 < i < n sont des nombres complexes, n = 1 et a, # 0, admet au moins
une racine z dans C.

Corollaire 8.1.1. L'équation (8.1.4) admet exactement n racines dans C (en comptant chaque
racine multiple autant de fois que sa multiplicité).

La démonstration du théoreme sort du cadre de ce cours, par contre on verra (au chapitre sur les
polyndémes) que le corollaire est tout a fait accessible (sil’'on admet le théoreme, bien entendu).

18 [
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Par exemple, 'équation z?> +1 = 0 (z = (x,y) et 1 = (1,0)) admet pour racines les nombres
complexes z; =i et zp = —i.

Les paragraphes suivants permettent d’obtenir les racines dans certains cas particuliers.

<< 19
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8.1.10 Racines niemes de l'unité

Exercices :

Exercice A.1.11
Exercice A.1.12
Exercice A.1.13

Etant donné un nombre complexe a non nul, on va chercher tous les nombres complexes z
possibles vérifiant z"” = @. Ces nombres complexes seront appelés les racines niémes de a. On
émontre que tout nombre complexe non nul admet exactement 7 racines niemes.
d t tout b 1 l admet t t

Proposition 8.1.6. SoitneN tel quen =2 et a € C non nul. Alors

Arga 2km

Z"=a) |z|=\"/|a|etArgz=T+ oul0<k<n-1|.

n

Démonstration
Pour la notation Arg z, voir la remarque 8.1.1.

a/ (=) Si 2" = a, alors |z|" = |z"| = |al|, d’ol |z| = ¥/]a] et aussi Arg z" = Arg a, ce qui donne
(proposition 8.1.4) nArg z = Arg a [27]. 1l existe donc k € Z tel que nArg z = Arg a + 2kmn. Les in-
égalités

O0<Argz<2met0<Arga<2m,

20 [
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donnent aisément —1 < k < n, d’ou le résultat.
b/ (<) Supposons les relations de droite vérifiées, alors

cos(nArgz) = cosArga, sin(nArgz) = sinArga

et d’apres la formule de De Moivre, il vient

Z}’l

=|z|"(cosArgz+isinArgz)"
= |a|(cos nArg z + i sin nArg z)

= |al|(cosArga + isinArga) = a.

Un cas particulier important est celui des racines niemes de l'unité. Elles sont solution de z" =
1 et correspondent a @ = 1. On obtient donc |z| = 1 et Argz = % + %,0 < k< n-1, soit les racines

suivantes :
2km . 2km

Zj =C0S— +isin —, k=0,1,...,n-1.
n n
Les racines de I'unité étant de module 1 sont représentées graphiquement sur le cercle de rayon
1 et de centre O.

Remarque importante - La définition des racines d'un nombre complexe est une extension
stricte du cas réel. Si a € R est strictement positif, on appelle habituellement racine carrée de a
le nombre positif r tel que r? = a. En fait, si I'on note par y/a ce nombre r, le nombre r' = —\/a
a aussi son carré égal a a, donc est une racine de a au sens de la définition ci-dessus. C’est par
convention, que I'on dit que "dans R, le nombre positif /a est la racine de a", méme si, "dans C il
admet deux racines, les nombres /a et (—/a)", toutes deux réelles!

Si a € C (non réel), alors /a n'a pas de sens puisque le nombre complexe a a deux racines
carrées et qu’il n’existe pas dans ce cas de convention pour privilégier I'une ou I'autre.

<<« 21
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8.1.11 Racines d’une équation du second degré

Exercices:
Exercice A.1.14
Exercice A.1.15

Soient a, b, ¢ trois nombres complexes, on suppose a # 0, on recherche les nombres com-
plexes z qui vérifient az® + bz + ¢ = 0. Ceci va généraliser ce que I'on sait faire lorsque les coeffi-
cients a, b, c sont réels. On peut d’ailleurs faire un raisonnement semblable.

2 2
2 3 b b
az"+bz+c = alz+—| +c——
2a 4a
b\* b*-4ac
= allz+—| —————
2a 4q?

On définit le nombre complexe A = b? — 4ac.
SiA =0, alors

b 2
az2+bz+c=a(z+—)
2a

-b
ce qui implique que o est racine double de I'équation.
a

22 44
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] ) . . ro nn
Si A # 0, si on note rg et r; les deux racines carrées (complexes) de A, alors i, T sont les Racines d’une
; ) e b? —4ac g équation du
eux racines carrées de a2 onadonc: second degré

5 b\ A
az“+bz+c=0 & |z+—| =—
2a 4q2

o) =20 o (= 0)= )

o z+—|=— ou |[z+ —]|=—

2a 2 2a 2a

( -b+ry -b+rn
o |z= uz=
2a 2a

Montrer en exercice que dans le cas a, b, ¢ réels, on retrouve les formules que vous connaissez.
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8.1.12 Introduction a I’exponentielle complexe

Exercices:
Exercice A.1.16
Exercice A.1.17

Il est commode de poser

0

€'Y =cosf +isinf

Cette notation dite "exponentielle complexe", a priori curieuse, est justifiée par le fait qu’elle en-
traine les regles opératoires qui rappellent les fonctions de I'exponentielle réelle. En effet, vous
montrerez en exercice que

o . . 1 .
6161 eng — 61(01+62)’ elO =1, 16.

Remarquons que

e = (cosf + i sinf) = cosf — i sinf = cos(—0) + i sin(—=0) = e 0.
Cette notation permet d’écrire un nombre complexe donné par son module p et son argument 6
sous la forme simplifiée

z=pe'?.

24 44
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Ainsi la formule de De Moivre s’écrit Introduction a

; : I’exponentiell
Z”:(pe’g)":pneme, neN. SRl
complexe
Les formules d’Euler expriment cos6 et sinf a l’aide de ’exponentielle complexe :
10 —-i0 i0 —-i0
el +e el —e
cosf = ———, sinf = -
2 21
Attention! ¢ = %2 yimplique pas que 6, = 6, mais que 6, = 0, + 2k7, k € Z.
Concepts
Exemples
Exercices
Documents
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8.1.13 Application au calcul trigonométrique

Exercices : Cours:
Exercice A.1.18 Exponentielle complexe - définition

Lutilisation directe de la formule de De Moivre permet d’exprimer cos 16 et sin n6 en fonction
des puissances de cos@ et sinf, lorsque I'on utilise la formule du bin6me de Newton. Par exemple,
on a (cosO + i sinf)3 = cos36 + i sin 36, et la formule du binébme de Newton donne

(cos@ + isin@)3 =c0s° 0 +3icos®Osinb — 3 cosOsin®0 — i sin® 0,

c0s36 = cos®0 — 3 cosOsin?0
sin36 = 3cos?0sinf —sin3 0

Mais ce qui est le plus utile c’est de pouvoir exprimer les puissances de cos6 et sinf en expression
linéaire de cos k6 et sin k6, par exemple pour pouvoir les intégrer (voir chapitre sur les intégrales).
On peut alors utiliser I’exponentielle complexe (voir le paragraphe référencé). Ainsi
. ] 1 . .
e—le)n, sin™ 0 = : (eze_e lﬁ)n'
@2nn

1 .
cos 0 = — (' +
2n

On développe alors par le binome de Newton et on regroupe les termes e?<0 et e~k

26 [
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Ilustrons par un exemple. Choisissons 7 = 4 et appliquons la méthode précédente :

1 ) .
4 _ i0 —-i6\4
cos*0 = 2—4((e +e ")

1 . ) ) )
— E(6149 +46129+6+4e—129+e—146)

1 1 1 3
= —(2cos460 +8cos20 + 6) = —cos46 + —cos20 + —.
16 8 2 8

27
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8.2 Généralités sur les polynémes

8.2.1
8.2.2
8.2.3
8.2.4

Définition des polynémes a coefficients réels ou complexes
Somme, produit, conjugué de polyndémes
Division euclidienne
Division suivant les puissances croissantes

28
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8.2.1 Définition des polynémes a coefficients réels ou complexes

Exercices: Documents :
Exercice A.1.19 Document C.1.1

Définition 8.2.1. On appelle polyndme ou fonction polynomiale ¢ coefficients dans R (ou C)
une fonction A définie sur R (ou C), qui est soit nulle, soit de la forme

VxeR(0uC), AX)=dap+mx+ -+ ay1x™ '+ apx™ (8.2.1)

avec ay, # 0. Les éléments (a;)o<i=m € R (ou C) sont appelés coefficients du polynéme A. Len-
tier m s'appelle le degré de A et se note deg(A).
On appelle monéme tout polynéme de la forme

ax®, aeR(ouC), keN. (8.2.2)
R R Concepts
Un polynoéme est donc une somme de mondmes.
Lorsque I'on a besoin des coefficients de A pour des indices supérieurs a m on pose par = |
. xemples
convention Exercrces
Yi>m, a;=0. Documents
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Cette convention permet par exemple, de définir de maniére commode la somme de deux poly-
nodmes. Le degré du polynéme nul n’est pas défini, puisque tous les coefficients de ce polynome
sont nuls. Nous verrons que cela oblige dans beaucoup d’énoncés de théorémes, a distinguer les
cas polyndme nul ou non nul. Pour éviter cela, on peut convenir que le polynéme nul est de degré
—oo. Nous ne le ferons pas mais nous explicitons cette convention dans le document référencé.

11 est clair qu'une fonction polynomiale est parfaitement définie des que I'on connait ses co-
efficients. A un jeu de coefficients, (a;)o<i<m € R (ou C), correspond une et une seule fonction
polynomiale. La réciproque par contre n’'est pas évidente d’ou la définition suivante :

Définition 8.2.2. Deux polynomes A et B définis par
Ax) =ag+a1x+-+ ay_1x" 1+ apx™

Bx)=bo+b1x++bp_1x™ 1+ b,x"

sont égaux sia; = b; Vi eN.

Nous montrerons plus loin, que cette définition de 1'égalité des polyndmes est équivalente a
A(x) = B(x) Vx € R, qui est en fait égalité entre deux fonctions (polynomiales).

Notation 8.2.1. On désigne par X le mondme défini par X(x) = x et par « le polyné6me constant
A(x) = a ou a est un scalaire.

Le polynome A défini par (8.2.1) peut donc s’écrire :

A=ap X"+ am 1 X" L+ + a1 X + ap. (8.2.3)
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Sous cette forme, on peut dire que A est un "polynéme a une indéterminée X" (sa valeur en un
point x est obtenue en donnant a X la valeur x).

Définition des
polynémes a
coefficients
réels ou
complexes

Notation 8.2.2. Sil’on note Kle corps R (ou C), alors on notera K[ X] 'ensemble des polynémes a
coefficients dans K. On notera aussi K, [X] I'’ensemble des polynémes de degré inférieur ou égal
a n auquel on rajoute le polynéme nul.

Concepts

Exemples
Exercices
Documents
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8.2.2 Somme, produit, conjugué de polynémes

Exercices:

Exercice A.1.20
Exercice A.1.21
Exercice A.1.22
Exercice A.1.23

Nous allons définir sur 'ensemble des polynémes deux opérations ’addition et la multiplica-
tion. La définition sera simple. Elle se fera par restriction a I'ensemble des fonctions polynomiales,
de 'addition et de la multiplication des fonctions de R (ou de C) dans lui-méme. Rappelons ces
deux définitions (K=R ou C) :

vieK, (F+2@Efm+g®, (Fo@® 2L fxg®.

Soient deux polynomes A € K, [ X] et B € K;,[ X] définis par :

A = ap+a X+-+am 1 X" T +a, X", (8.2.4)
Concepts
B = by+b X+ +b, 1 X" ' +b, X" >
AR A , . Exemples
Définition 8.2.3. La somme A+ B est le polynéme C dont les coefficients sont donnés par cy = Exercices
ay + by pour k =0,..., max(m, n). Documents
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Cette définition entraine bien que (A+ B)(x) = A(x)+ B(x), quel que soit x. La proposition suivante
est fondamentale pour les applications. Vous verrez, dans le document référencé, I'utilisation pos-
sible de la convention du degré "—oo" du polynéme nul.

Proposition 8.2.1. Soient A et B deux polynomes non nuls de K[ X], tels que A+ B est non nul
alors
deg(A +B) < max(deg(A),deg(B)).

Démonstration - Supposons que m < n. Cela n'enléve rien a la généralité de la démonstration
puisque A et B jouent exactement le méme role. Il vient alors :
A+B=(ap+bo)+(a; +b) X+ + (@m+bp) X" + b1 X" + -+ b X"

Nous voyons qu’alors, deg(A + B) = n = max(deg(A), deg(B)).

Si maintenant m = n, il vient :
A+B=(ag+by) + (a1 +b)X+--+(a,+b)X".

Si, de plus, a, + b, =0, alors deg(A + B) < n de sorte que la proposition est bien démontrée.

Définition 8.2.4. Le produit d'un polynome par le polynome nul est nul. Si A et B sont non
nuls, le produit AB est le polynome C de coefficients cy, définis par : cx = Z;“:O a;by_;.
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Proposition 8.2.2. Soient A et B deux polynémes non nuls. Alors, le polynome produit AB Somme,
vérifie : produit,
deg(AB) = deg(A) + deg(B). conjugué de

polynémes

Démonstration - Effectuons le produit des deux polynémes A et B. Il vient :
AB = amanWHn + (am_lbn + ambn_l)Xm+”_1 qpocoqp (dobl alx albo)X alx (lobo.
On obtient bien ainsi un polynéme de degré m + n. En effet, le coefficient de plus haut degré, soit

amby,, est non nul puisque a,, et b, sont tous deux différents de 0.

Définition 8.2.5. Soit A € C[X], on appelle polynome conjugué de A et on note A le polynome
obtenu en conjuguant les coefficients de A.

Concepts

Exemples
Exercices
Documents
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8.2.3 Division euclidienne

Exercices : Exemples :
Exercice A.1.24 Exemple B.1.1
Exercice A.1.25

Exercice A.1.26

Définition 8.2.6. On dit que B € K,,[X] divise A € K,[X] (ou que A est divisible par B ou que
B est un diviseur de A) s'il existe Q € K, [ X] tel que A= BQ.

Regarder en exemple la division de 2X3 — X2 — X +2 par X2 — 1 qui vous permettra de comprendre
la justification théorique de la division de deux polynémes suivant les puissances décroissantes.

Théoreme 8.2.1. Soient A, B € K[X], B non nul, alors il existe un unique couple de polynémes
(Q,R) tel que Concepts

_ degR < degB,
A=BQ+R avec { OUR =0 (8.2.5)

Exemples
Exercices
Documents
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Démonstration - Notons Division

A=ay+a X+...+apX™, B=by+bX+...+b, X" euclidienne
1. Existence - La démonstration de I'’existence d’au moins une décomposition de ce type est construc-
tive. Le procédé de construction qui va étre décrit est I'algorithme d’Euclide (Comparer avec
I'exemple référencé).
= Etape 0.Si A=0, l'identité A =0 x B+ 0 convient. Si deg(A) < deg(B), 'identité A=0x B+
A, convient, le reste A étant alors effectivement de degré strictement inférieur a celui du
diviseur B. Nous pourrons donc supposer dorénavant que deg(A) = deg(B).
— Etape 1 - Elle consiste a trouver un mondme Q; tel que deg(A — BQ;)<degA. Pour ce faire,
on prend

Q= Z—mxm‘”, Ry = A-BQ,.
n

Alors, si Ry =0 ou sideg(R;) < deg(B), on pose Q = Q; et R = R; et c’est terminé. Sinon
— Etape 2 - on recommence I'étape 1 en remplagant A par R;. On obtient ainsi les polynomes
Q2 et R, tels que deg(R; — BQ»)<degR; et R, = R} — BQ» soit

Ry =A-BQ1—BQy=A-B(Q1+Q»).

Si R, = 0 ou deg(R,) < deg(B), on pose Q = Q; + Q» et R = Ry et 'algorithme est terminé,

sinon on recommence |'étape 2 en remplacant R; par R,. Comme on obtient un polynéme Concepts
Ry dont le degré décroit strictement, I'algorithme se termine en un nombre fini p d’étapes

quidonnent R=R, et Q=0Qq +...+ Qp.

2. Unicité - Supposons que I'on ait deux décompositions Exemples
Exercices

A A o D
A=BQ+R avec degR<degB, A=BQ+R avec degR <degB ocuments
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alors par différence on obtient
0=B(Q-Q)+R-R soit R—-R=B(O-0Q).

Si R = R alors puisque B est non nul,ona Q = Q (voir exercice A.1.21) et le résultat est établi. Si
R # R alors on a simultanément

deg(R - R) < max(degR,degR) < deg B

et
deg(R— R) = degB +deg(Q - Q) >degB

ce qui est impossible.
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8.2.4 Division suivant les puissances croissantes

Exercices : Exemples :
Exercice A.1.27 Exemple B.1.2

Regarder I'exemple qui va montrer la facon pratique de mener les calculs.

Théoreme 8.2.2. Soient A et B deux polynémes tels que A # 0 et tels que le terme constant de B
ne soit pas nul. Alors quel que soit Uentier k = 0, il existe un couple unique (Q, R) tel que

ou bien Q =0,

ou bien deg(Q) < k (8.2.6)

A=BQ+X"R, avec {

Démonstration - Elle repose sur la méme démarche que la division euclidienne. La principale
différence consiste a ranger les termes des polyndmes par ordre croissant de leurs degrés. L'algo-

rithme se termine lorsque le reste R; peut s’écrire R;(x) = x*1R(x).
Concepts

Exemples
Exercices
Documents
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8.3 Factorisation des polynémes

8.3.1 Polynémes irréductibles . . . . ... ............

8.3.2  Factorisation des polynémes de C[X]

8.3.4  Lien entre multiciplité des racines et dérivées

8.3.3 Factorisation des polynbmesde R[X] . . . ... ... ..

section suivante »

Lensemble des polyn6mes muni de I’addition, de la multiplication et de la division eucli-
dienne, possede les propriétés de structure de Z, muni de ses addition, multiplication et divi-
sion euclidienne. Plus précisément, on peut construire sur K[X] une arithmétique trés proche
de I'arithmétique usuelle des entiers. Les théorémes fondamentaux s’énoncent exactement de la

méme maniere.

La construction de cette arithmétique reléve d'un cours d’algebre. Nous nous contenterons
d’énoncer quelques définitions et de démontrer les théoréemes avec toujours en vue notre objec-

tif : apprendre a calculer des primitives de fractions rationnelles.
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8.3.1 Polynémes irréductibles

Exercices:
Exercice A.1.28

Définition 8.3.1. On dit qu'un polynéme P € K[X] est irréductible ou premier s’il admet
comme seuls diviseurs les polynémes constants ou proportionnels a P, cest-a-dire o et fP
@, BEK*).

Les polynomes irréductibles jouent le méme role que les nombres premiers en arithmétique d’ou
la dénomination de polynéme premier. Lirréductibilité dépend de K. Par exemple, dans R[X]

— le polynéme X2 —1n'est pas irréductible car X2-1=(X-1D(X+1),

— le polynome X2 + 1 est irréductible.
Dans C[X] le polynéme X?+1=(X+i)(X—-i1lnest pas irréductible.

Définition 8.3.2. Deux polynomes sont dits premiers entre eux s'ils admettent comme seuls
diviseurs communs les polynémes constants.

Par exemple, les polyndmes A = X +a et B = X + b sont premiers entre eux si a # b. Les polynomes
A= X +aet B=X?+1 sont premiers entre eux quel que soit le réel a.
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8.3.2 Factorisation des polynémes de C[X]

Exercices:
Exercice A.1.29
Exercice A.1.30

Proposition 8.3.1. A € K[X] est divisible par (X —r) si et seulement si r est un zéro du polynome
A clest-a-dire A(r) = 0.

Démonstration - D’apres le théoreme 8.2.1, on a :

deg(R) <deg(X-r)=1

3.1
ouR=0 (8.3.1)

A=(X-1r)Q+R avec {
et donc R est un polyndéme constant R = p tel que A(r) = R(r) = p. On obtient ainsi que

{A(r)=0} < {R=0}

ce qui est bien le résultat annoncé.

Le résultat fondamental suivant (non démontré) permettra de démontrer le théoreme, qui
suit, sur la factorisation dans C.
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Théoréme 8.3.1 (Théoreme de d’Alembert). Tout polynome de C[X], de degré supérieur ou
égal a un, a un zéro, au moins, dans C.

Théoreme 8.3.2. Tout polynome A € C[X] avec degA = n = 1 peut se mettre sous la forme
A=aX-2))X-22)...(X —zp) (8.3.2)

oua,z,...,z2, €C.

Démonstration - Sin =1, alors A= aX + f avec a # 0 puisque degA = 1 et donc

o)

La proposition est vraie pour n = 1, on va faire une démonstration par récurrence, supposons
donc le résultat vrai pour les polynomes de degré inférieur ou égal a n — 1.

Soit maintenant un polynéme A de degré n alors, d’apres le théoréeme de d’Alembert, A a au
moins un zéro z; € C et donc (X — z;) divise A d’apres la proposition 8.3.1, soit A = (X —z;) A; avec
degA; = n—1. On applique I'’hypothése de récurrence a A; : A} = a(X — 22)(X — z3)... (X — z,) et
onobtient A=a(X —z1) (X —23)...(X—z,)

La constante a est évidemment le coefficient du terme de degré n de A. Les nombres z; ne
sont pas tous distincts, on peut donc les regrouper pour obtenir :

A=(x(X—zl)"l(X—ZZ)nz...(X—zp)"” (8.3.3)
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expression dans laquelle les z; sont tous distincts et n; +...+ n, = n. On dit que les z; sont des
zéros d’ordre n;, c’est-a-dire des zéros tels que (X — z;)" divise A mais pas (X — z)u+l

Proposition 8.3.2.
— Les seuls polynémes premiers de C[X] sont les polynomes constants et les polynomes de
degré 1.
— Un polynome de degré n sur C admet exactement n zéros (a condition de compter chacun
d’eux autant de fois que sa multiplicité).
— Deux polynémes A et B sont égaux si et seulement si A(x) = B(x) VxeC

Démonstration - Le seul résultat a démontrer est le dernier.
A=B > A(x) =B(x) VxeC.

Réciproquement

A#B = A-B#0=>deg(A-B)=p

= A-—Badmetexactement p racinesdans C=3xeC, (A-B)(x) #0

Remarquons que cette derniere propriété montre bien I’équivalence sur R ou C, de la notion
de polynéme, congu comme suite de coefficients et de la notion de fonction polynomiale.
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8.3.3 Factorisation des polynémes de R[X]

Exercices : Cours:
Exercice A.1.31 Factorisation dans le corps des
Exercice A.1.32 complexes

Puisque R c C, un polyndme de R[X] peut toujours étre considéré comme un polynéme de
C[X] et donc tous les résultats du paragraphe référencé sont applicables. Le but de ce paragraphe
est de factoriser en restant dans R[X].

Proposition 8.3.3. Soit A € R[X], si A admet un zéro p non réel, de multiplicité m, il admet
aussi p comme zéro de méme multiplicité et est divisible par S = X> — X +y oit f = 2Rep et
y=Ipl*

Démonstration - Si A admet un zéro p non réel, de multiplicité m, alors

A=X-p)"QouQ(p) #0. Concepts

Prenons les conjugués des deux membres (le conjugué A de A s’obtient, par définition,en conju-
guant les coefficients de A qui sont réels donc A= A) Exemples
Exercices
AZAZ(X—[_))MQ_ avec Q_(ﬁ) :Q(p) #£0. Documents
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Ainsi p est aussi un zéro d’ordre m de A et d’apres (8.3.3)
S=X-p"X-p)"=(X>-pX+7)"

est un diviseur de A. Notons que S étant a coefficients réels le quotient de A par S est aussi a
coefficients réels.

Théoreme 8.3.3. Soit A € R[X], alors A peut se factoriser sous la forme
A=aX-r)™ . (X=1p)"" (X2 = BrX +y1)" .. (X2 = Bg X +yq)"™ (8.3.4)

oit les r; sont les racines réelles distinctes et out si l'on note (r]’c, r k) les couples distincts de racines

conjuguées complexes non réelles, X*> — B X +yj = (X — r,’c)(X— r'y). Onadonc B =2Re er,’C et
12

y=Ir e

Démonstration - Dans le paragraphe référencé, on a obtenu la factorisation dans C[X] suivante

A=aX-z)"(X-2)"...(X—zp)"".

Dans I'équation 8.3.4, les r; sont donc des zéros réels de A de multiplicité m; et les r,’c, 't des
zéros complexes non réels de multiplicité ny, par suite

my+...+mp+2(ny+...+n4) =n.
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Proposition 8.3.4. Les seuls polynomes irréductibles de R[X] sont les polynomes constants, les Factorisation
polynomes du premier degré et les polynomes de degré 2 n'ayant pas de racines réelles : a X? — des polynomes
BX +7v tels que B — 4ay < 0. de R[X]

La démonstration découle de maniére évidente du résultat précédent. Mais, attention, un poly-
ndme a coefficients réels peut avoir une décomposition dans R sans avoir de zéros réels.

X +4=(X?-2X+2)(X*+2X +2).

Concepts

Exemples
Exercices
Documents
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8.3.4 Lien entre multiciplité des racines et dérivées

Exercices : Cours:
Exercice A.1.33 Factorisation dans le corps des réels

Théoreéme 8.3.4. Soient A€ R[X] et m < deg(A). Alors, r € R est un zéro de multiplicité m de A
si et seulement si

A=A =A"rN=...=A" V) =0 et A" (r) #0. (8.3.5)

ot A® désigne la dérivée d'ordre k de la fonction polynome x — A(X).

Démonstration -
— Condition nécessaire. Par définition r € R est un zéro de A de multiplicité m est équivalent
aA=(X-r)"Q, avec Q(r) #0.
On va démontrer par récurrence que cette propriété implique (8.3.5) Concepts
Sim=1,A(r)=(r-rQ(r)=0, A/(x)=(x-rnNQ'(x)+Qx), A(r)=Q(r) #0
Supposons que

Exemples

— (v_ M Exercices

{ A==y A=A =...= A" V() =0et A" (r) #0 Documents
Q) #0

47 44



< précédent section A

On va montrer la propriété a l'ordre m + 1 :

{ A(x) =
Q) #0

(x—1r)"1Q(x) :'{ A(r)=0
Al(x)=(x—1r"Q;(x)

OnaQ;(x) = (m+1)Q(x)+(x—r)Q'(x) donc Q;(r) = (m+1)Q(r) # 0, on peut donc appliquer
I’hypothése de récurrence au polynéme A’, on obtient

A =...=A) " V() =0,4) " #£0

A =...= A" ) =0, A" V() £0,

ce qui termine la démonstration.
— Condition suffisante. Utilisons la formule de Taylor pour les polyndmes (vue au chapitre 6).
Alors si n estle degré de Aon a

A(x) = A(r) + (x— ) A'(r) + MA"U) oot (x;l—‘r)nA‘”)(r).
Puisque A(r) = A'(r) = A"(r)=...= A" V(r)=0,0na
Ax) = %A(m)(r)+---+ %A(m(r) (8.3.6)
= x-n" %A(m)(r)+---+%#")(r) (8.3.7)

On adonc A= (X-r)"Q, avec Q(r) = %A(m)(r) # 0, r est donc zéro de multiplicité m de

A.

<<
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8.4 Fractions rationnelles

8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6

Définition des fractions rationnelles . . . . . ... ... .. ...... 50
Partie entiére d’'une fraction rationnelle . . . . .. ... .. ...... 52
Décomposition en éléments simplesdans C(X) . ... ....... 54
Décomposition en éléments simplesdans R(X) . .......... 58

Calcul pratique de la décomposition en éléments simples dans R(X) 60
Calcul pratique de la décomposition en éléments simples dans C(X) 64
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8.4.1 Définition des fractions rationnelles

Exercices:
Exercice A.1.34

Les entiers naturels (sauf 0) n’ont pas d’opposé pour la loi d’addition. C’est ce qui a conduit a
la construction de Z, ensemble des entiers relatifs. Cet ensemble contient les entiers naturels 7 et
leurs opposés —n.

De méme les entiers relatifs (sauf 1) n'ont pas d’inverses pour la loi de multiplication. C’est
pour cela qu’ont été construits les nombres rationnels (Q). Tout entier m de Z a un inverse dans
Q, 1/m.

Pour les polyndmes, chaque polynéme P a un opposé —P, mais aucun d’eux, mis a part le
polyndéme 1, n’a d’inverse pour la multiplication des polyndmes. Les fractions rationnelles sont
construites afin que chaque polynéme P ait un inverse 1/P.

Notre objectif est de décomposer toute fraction rationnelle en une somme d’ éléments simples
dont on sait calculer les primitives, ce qui va utiliser la factorisation des polynémes. Mais avant
nous allons définir les fractions rationnelles. Concepts

Exemples
Exercices
Documents
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Définition 8.4.1. Soit P et Q deux fonctions polynomiales, on appelle fraction ou fonction Définition des
rationnelle, la fonction notée F dont le domaine de définition est {x € K|Q(x) # 0} qui est définie fractions
_ P& rationnelles
par F(x) = .
Qx)

On suppose que Q est non nul car, pour Q = 0, le domaine de définition de F est vide, ce qui
n’'a aucun intéreét.

Soient P et Q deux polynémes de K[X] s’ils ont un diviseur commun D € K[X], c’est-a-dire

p p
P =DP; et Q = DQq, alors la fraction rationnelle — est identifiable a la fraction rationnelle -1
1
Désormais on ne considérera que des fractions irréductibles.

Notation 8.4.1. On notera K(X) I'’ensemble des fractions rationnelles dont le numérateur et le
dénominateur sont des polynémes de K[X]. On définit ainsi les ensembles R(X) et C(X) puisque
I'on rappelle que K est soit le corps des nombres réels, soit le corps des nombres complexes.
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8.4.2 Partie entiere d’une fraction rationnelle

Exercices:
Exercice A.1.35
Exercice A.1.36

P
Proposition 8.4.1. Soit F = 6 € K(X) alors la décomposition

P
F=E+ 60 avec ou bien Py =0 ou bien deg Py < degQ (8.4.1)

est unique. On appelle E la partie entiere de F et on note E = &(F).

Démonstration -

Existence - Si degP < degQ alors (8.4.1) est immédiate avec E = 0, Py = P. Sinon on peut
effectuer la division euclidienne de P par Q qui donne P = EQ + Py, d’ot1 le résultat.

Unicité - Supposons que I'on a deux décompositions :

Py, . P,
F=E+—=E+—.
Q Q
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Si Py # Py, alors A
. Py-Pp
E-E=

avec deg(Py — Py) < degQ

ce qui est une contradiction puisque Q ne peut pas diviser (P, — Py) pour des raisons de degré.

Proposition 8.4.2. Soient deux fractions rationnelles F et F alors

EF+F)=&8F) +&F).

La démonstration de cette proposition est faite en exercice.
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8.4.3 Décomposition en éléments simples dans C(X)

Exercices : Cours:
Exercice A.1.37 Division - puissances croissantes

p
Définition 8.4.2. On dit que z est un pdle d’ordre p de la fraction irréductible F = — si z est un

zéro d'ordre p de Q.

P
Proposition 8.4.3. Si z est pole d’ordre p de F = 6 € C(X), on peut décomposer F de maniére

unique sous la forme

P o Op Py

—= fob——+ (8.4.2)
Q X-z X-2P

p
oit la fraction rationnelle Q—l nadmet plus z comme pole.
1

Démonstration -
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1. Existence. Nous pouvons écrire le dénominateur de F sous la forme Décomposition

. i N en éléments
Qx) = (x - 2)”Q1(x) ouQ1 (2) # simples dans

Posons C(X)

y=x-2,P()=Py+2=Px),Q01)=Q(y+2) =Qx),01(y) =Q1(y +2) = Q1 (%),
nous obtenons ~ -
f(x) _Py+a _PYy) _ PY)
Q Qy+2 Q) yPAi(y)

ol1 Q1 (0) = Q; (2) # 0. Nous pouvons donc faire la division de P par Q; suivant les puissances
croissantes, ce qui donne

Py =(ap+apay+-+ary? H0i () +y"Pi(y)

d’out
Px) _ P _a Nl SN O bi(y)
Q(x) Oy vyt Ty Q)
@p p-1 | ar | Pix)
x-27 (x-2P1 7 (x-2 O Concepts
ou1’on a noté Py (x) = Py (x — z).
2. Unicité. Supposons qu'il existe deux décompositions de la forme (8.4.2) : Exemples
Exerci
o= % 4t Documents

QW x-z T —2r T’
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PO _ @ 9 P Décomposition
) s=x (=27 Qi) en éléments
La factorisation Q(x) = (x — 2)”Q; (x) étant unique on a Q; = Q;. En écrivant I'égalité des simples dans
seconds membres des deux décompositions, puis en multipliant par (x — z)” et en faisant C(X)

X = z on obtient a, = @p. On continue alors de la méme maniére en multipliant par (x —
z)P~1 et en faisant x = z etc....ce qui donne l'égalité ay = a; Vk=p—1,...,1. I nereste plus
que deux fractions ayant le méme dénominateur soit P; = Py.

Cette proposition permet de démontrer aisément le théoreme fondamental suivant.

P
Théoreme 8.4.1. SoitF = 6 € C(X) irréductible, alors si Q admet la factorisation

Q=a(X-2z)"(X-2)"...(X —zp)™

alors F admet la décomposition unique en éléments simples suivante

P a a a
— =F +2 12 ., e
Q X-z1 (X-2)? (X =z)™
azy azp o 21
X-22 X-2)> = X-z)" (8.4.3) Concepts
+...
Ayl ano Apn
T — SR Py .
X-zp X-2zp) (X —2zp)"r Exemples
Exercices
ot les a; j sont des nombres complexes. Documents
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La démonstration du théoreme 8.4.3 fournit déja une méthode systématique pour calculer les
coefficients a; ;. Mais la détermination pratique de ces coefficients est réalisée grace a I'utilisation
des propriétés de la fonction rationnelle associée (comportement a I'infini, valeur en des points
particuliers, conjugaison de nombres complexes, ...), ce que nous verrons dans le paragraphe
"Calcul pratique de la décomposition en éléments simples).
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8.4.4 Décomposition en éléments simples dans R(X)

Cours:
Fractions rationnelles - Décomposition
dans les complexes

Puisqu'une fraction rationnelle a coefficients réels peut étre considérée comme une fraction
rationnelle a coefficients complexes, on peut obtenir la décomposition (8.4.3) du paragraphe ré-
férencé. D’autre part, si z est un pole réel de la fraction, les coefficients des éléments simples
correspondants sont aussi réels (car obtenus comme coefficients du quotient d'une division sui-
vant les puissances croissantes de polyndmes a coefficients réels). Par contre, si z est un pole
complexe, Z est aussi un pole de méme ordre (proposition 8.3.3), par suite dans la décomposition
(8.4.3) on a autant de termes correspondants a z que ceux correspondants a z. Largumentation de
la proposition 8.3.3 montre d’autre part que leurs coefficients sont conjugués les uns des autres.
La démonstration (admise) nécessite en fait le recours aux théoremes de I'arithmétique des poly-
nomes.
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Exemples
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Décomposition
en éléments

simples dans
Q=aX—-r)™ ... (X-rp)"™(X* = fX+y)™ ... (X" = BgX +1y)" R(X)

p
Théoréme 8.4.2. SoitF = 6 € R(X) irréductible, alors si Q admet la factorisation

oit les polynomes X? — B X + v n'ont pas de racines réelles alors F admet la décomposition
unique en éléments simples suivante

p an a2 aim
= = [g+ s 000 F
Q X-n X-n)? (X —rp)™M
+ oo
a a a
P, P (8.4.4)
X-rp (X-rp)? (X —rp)™>
X + v H12X + V12 - M X +Vip,
X2-prX+y1 (X2-p1X+y)? T (X2-BX+y))™m
+ oo
EaX+vg Hg2 X + Vg2 Han, X +Van,
Xz—ﬁqX+}/q (Xz—ﬁqX+yq)2 (Xz—ﬁqX+yq)”q

oitles a;j, ur; et vy sont des nombres réels.
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Exemples
Exercices
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8.4.5 Calcul pratique de la décomposition en éléments simples dans R(X)

Exercices:
Exercice A.1.38
Exercice A.1.39

Nous allons présenter ici plusieurs exemples de calcul des coefficients du développement.
- Poles réels simples

Soit a calculer la décomposition en éléments simples de la fraction rationnelle 1/(X?~-1). Cette
fraction admet deux poles simples 1 et —1. Elle admet donc une décomposition de la forme :

1 A B

= + 8.4.5
x2-1 x-1 x+1 ( )

Une méthode simple permet d’avoir rapidement A et B. Elle consiste a multiplier les deux membres
de I'identité ci-dessus par x — 1, ce qui donne :

1
—— =A+B—— (8.4.6)
x+1 x+1

puis a ‘faire’ x = 1, ce qui aboutit a A =1/2. De méme en multipliant maintenant I'identité (8.4.5)

par x + 1, on obtient :

1 x+1
——=A——+B (8.4.7)
x—1 x—1
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Faisons alors x = —1, nous obtenons aussitot B=—-1/2, d’ ou :

1 _1{ 1 1 } -
x2-1 2| x-1 x+1 o

- Poles réels

Soit a calculer la décomposition en éléments simples de la fraction rationnelle

1
——— (8.4.9)

Cette fraction admet deux poles simples 1 et —1 et un pole double 0. Elle admet donc une décom-
position de la forme :

= -4 + B €2 (8.4.10)
x2(x2-1) x-1 x+1 x x2° o
Nous déterminons A et B exactement comme précédemment. Il vient successivement :
——=A+( 1)(—B +C+D) (8.4.11)
= X — —_ - 1. L= )
x?(x+1) x+1 x x?
ce qui donne pour x =1, A=1/2, puis :
B+( +1)( A +C+D) (8.4.12)
- = X —t+—+—]. A.
x?(x-1) x-1 x x?

ce qui donne pour x = —1, B = —1/2. Nous obtenons D, par la méme méthode, en multipliant
cette fois-ci par x?. Il vient alors :

1
(x2_

o A B
=X + +Cx+D (8.4.13)
1) x—-1 x+1
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d’ot1 en faisant x = 0, la valeur de D, soit D = —1.

Pour calculer maintenant C, il faut procéder différemment. Nous pouvons donner a x une
valeur quelconque, puis la reporter dans (8.4.10). En substituant en outre a A, B et D, leurs va-
leurs, nous obtenons une équation ou la seule inconnue est C. Il est évidemment recommandé
de choisir la valeur de x de maniere a rendre les calculs aussi simples que possible. Les valeurs
privilégiées sont en général x = 0, x = 1 et x = —1. Ici toutes les trois sont des poles et ont donc
déja été utilisées. Plutot que de prendre une valeur de x, telle que x = 2 par exemple, on a intérét a
faire tendre x vers +oo. Précisons. Nous multiplions les deux membres de (8.4.10) par x. Il vient :

1 X X 1
= +B +C+D— (8.4.14)
x(x2-1) x—1 x+1 X
puis faisons tendre x vers +oo. Il vient :
0=A+B+C, (8.4.15)

ce qui donne C =0, d'ou la décomposition cherchée :

1 _1( 1 1 ) 1 8.4.16)
x2x2-1) 2\x-1 x+1) x2° o

Facteur irréductible du second degré
Soit a calculer la décomposition en éléments simples de

1

m. (8.4.17)
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Cette fraction admet un pole réel simple 0 et deux pdles complexes simples i et —i. Elle admet
donc, sur R, une décomposition de la forme :

1 _A Bx+C

_— 8.4.18
x(x2+1) x x2+1 ( )

Nous déterminons A exactement comme précédemment. Nous multiplions (8.4.18) par x. Il vient :

1 Bx%+Cx
=A+
x24+1 x24+1

de sorte qu’en faisant x = 0, nous obtenons A = 1.
Pour déterminer B et C, nous faisons x = 1 puis x = —1 dans l'identité (8.4.18). Il vient ainsi

1 B+C 1 -B+C
pourx=1, —-=A+——pourx=-1, —--=-A+
2 2 2 2

)

d’ot1 découle aussitét B=—1et C=0.
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8.4.6 Calcul pratique de la décomposition en éléments simples dans C(X)

Exercices:
Exercice A.1.40
Exercice A.1.41

_ X*+1
X2+ DX -2
Cette fraction rationnelle admet 4 p6les complexes i, —i sont 2 poles simples, 1 est pole double

1. Ici, le degré du numérateur n’est pas strictement inférieur au degré du dénominateur. Aussi,
la division euclidienne donne

. X3-X?+X
F=142FouFj=—————.
(X2+1)(X-1)2
La décomposition (8.4.3) donne alors

a B c d

F = + + + , a,B,c,deC. 8.4.19
Xy T X—i X1 x—1)2 h ( )

2. Comme précédemment on va calculer le coefficient du terme de plus haut degré associé
a un pole quelconque, par exemple, le coefficient d. Elle consiste a multiplier les deux
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membres de (8.4.19) par (x — 1)2, puis 42 donner 2 x la valeur 1. Nous obtenons ainsi

i =7 1
——=d, doud=-
(12+1) 2
tous les autres termes du membre de droite étant nuls.
De méme en multipliant les deux membres de (8.4.19) par (x—i), puis en faisant x = i, nous

obtenons

LR

1
—————=p,douff=-.
(i+0)(i—1)? p p 4
3. Comme F; est réelle et comme les coefficients ¢ et d sont réels, en prenant les conjugués
des deux membres de (8.4.19), nous obtenons (par unicité de la décomposition) a = § = i.
Sil’on se sent mal a I'aise avec le raisonnement précédent, on peut alternativement, multi-
plier les deux membres de (8.4.19) par (x + i), puis en faisant x = —i, retrouver @ = 1/4.

4. Tl reste a calculer c. Faisant x = 0 dans les deux membres de (8.4.19), il vient c = d = %

5. Une autre facon consisterait a multiplier les deux membres de I'identité (8.4.19) par (x — 1)

puis a faire tendre x vers I'infini ce qui donnerait 1 = a + 8 + ¢, soit a nouveau ¢ = %

Finalement la décomposition en éléments simples de F dans C est

1 1 1 1
F=1+2F =1+

+ + +
2(X+1i) 2(X-i) X-1 (X-1)?

Pour obtenir la décomposition en éléments simples dans R(X) de F, il suffit de regrouper les deux
premiers termes du développement, ce qui donne

F=1+

X N 1 . 1 )
X2+1 X-1 (X-12)
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Une méthode qui est toujours valable mais pas tres efficace, car elle conduit a la résolution d’'un Calcul pratique
nombre d’équations correspondant au nombre de coefficients inconnus de la décomposition,
consiste a réduire au méme dénominateur le membre de droite de la décomposition et a identifier
les coefficients du numérateur.

de la
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en éléments
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C(X)
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8.5 Calcul des primitives des fractions rationnelles

8.5.1 Primitvede 1/(t—=1", n=1 .. ... .. . . . .. 68
N ur+v
85.2 Primitvede —— . . . . . .. ... . 69
t?—PBt+y
ut+v

8.5.3 Primitvede ———,n>1
(2 — Br+y)"

Concepts

Exemples
Exercices
Documents
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8.5.1 Primitivede 1/(r-r", n=>1

Exercices:
Exercice A.1.42
Exercice A.1.43

— n=1-Laréponse estimmédiate :

fﬂzlnlt—rH—C (8.5.1)
t—r

— n>1 - Laréponse s'obtient rapidement a nouveau, on arrive a :

dt 1
= +C (8.5.2)
(t-n"  A-n)(t-nn!

Nous voyons ainsi que, lorsque toutes les racines du dénominateur (c’est-a-dire, tous les
poles de la fraction rationnelle considérée), sont réelles, on obtient sans difficulté, une fois
la décomposition en éléments simples calculée, les primitives correspondantes. Par contre,
la situation est plus délicate, en présence de racines complexes. Concepts

Exemples
Exercices
Documents
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ut+v

8.5.2 Primitive de -
t-—=pPt+y

Exercices:
Exercice A.1.44

On suppose que est un élément simple dans R(X), c’est a dire que t*> — Bt +y n'a

t>—Bt+y
pas de racine réelle, on a donc 4y — 82 > 0.

ut+v _(y) 2t-f +(v @) 1

= + -
2—Bt+y \2)2—Pr+y 2 ) t2—PBt+y
donc ; 5
pr+v © Y
— dt==J)+|v+—=—|K(
t2—PBt+y 210 (V 2) @

Le calcul de J est simple :
J(O =In(* - Bt+y) +C

Notons que puisque le trinéme > — ft +y n’a pas de racines réelles, il garde toujours le méme
signe (+). Il n’est donc pas nécessaire de prendre sa valeur absolue avant le logarithme.
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Pour le calcul de K, il faut écrire le dénominateur sous la forme :

Primitive de
) ut+v
B t>?—Bt+y
ﬁ)z p ( ﬁz) T3
D) =?-Bt+y=|t-=| +y-==[y-= |14 —2—] |.
() pt+y ( S| YT T\ 7
Y-7
t— E ﬁz
si on effectue le changement de variable y = 2 avec a = y——, alors
a
_B
1 1 =5
K(p) = —f = f :—Arctany+C=—Arctan +C
(t g ) 1+y2 «a a a
Concepts
Exemples
Exercices
Documents
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Ur+v "
(2= Bt+p)"’

ur+v _ K 2t—-p ( E
= f(tZ Bripn f(tZ By AT\VTHS

= ](t)+(v+,u§

8.5.3 Primitive de >1

f (r2 = Bt+y)"

K(1)

J se calcule facilement. On arrive cette fois-cia:

U

J(@) = A= prry)i] +C

En ce qui concerne K, par contre, nous allons seulement pouvoir obtenir une relation de récur-
rence. Posons donc:

K (t)_f dt _[ dt 1 f dy
e (tz—ﬁt+y)" B ((t—§)2+0(2)n ~ q2n-1 (l+y2)”
_B 2
- (s -3 B .
oul'ona pose a nouveau y = - avec a = Y — Z Posons maintenant :

d 1 2 2
f T dy—fy—dy:Mn_l—Ln
A+y2)n ) (d+y)n 1+y2)n
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Il reste a calculer L,,. Nous allons le faire par parties, en notant que 2y est la dérivée de y?, puis
en posant :

W =—2 . wp=y,
(1+y3)n
d’ou
u(y) = A-md+y2r] vy =1
ce qui conduita:
y 1 dy

n

- 21—+ y?)n-1 - 20-n)J Q+y>)nt

de sorte que, en regroupant, nous obtenons :

y 1
My, = Mp_1 - + M,,_
P T 0wy 20— !
soit finalement :
_3-2n 3 y
"T20-n " 20-m@+yA)nt
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Exercice A.1.1 Ch2-Exercice27

Soient les deux lois définies sur R? de la maniére suivante. Etant donnés deux couples (x, y) et
(x',y") de R?, on pose :

- (x5, )+, y) Dzéf(x +x', y+7) (addition),

- (Y x,y) e eyl — yy', xy' + x'y) (multiplication)
Montrer que ce sont des lois de composition interne dans R?, que I'addition est commutative,
associative, que son élément neutre est (0,0) et que 'opposé de (x, y) est (—x,—y). Montrer que

la multiplication est commutative, associative, que son élément neutre est (1,0) et que I'inverse

de (x,y) # (0,0) est (— al T y 5). Enfin, montrer que la multiplication est distributive par
x°+ X<+ y

rapport a 'addition.

Retour au cours

Solution
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Exercice A.1.2 Ch2-Exercice28

1/ Soient z=x+iyetz =x'+1iy, et soit la somme z+ z’ et le produit zz'. Ecrire z + 2’ et zz’
sous la forme canonique (regles d’addition et de multiplication " habituelles " - ne pas oublier
que iZ=-1).

2/ On suppose z = (x,y) = x + iy non nul (c’est-a-dire # (0,0)), vérifier que son inverse, c-a-d le
nombre complexe z’ tel que zz' = z'z =1, est (z' =)% = j

_x iV
2+y)2 xZ+y2 "

Retour au cours
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Exercice A.1.3 Ch2-Exercice29

Montrer que les racines carrées d'un nombre réel négatif a, c’est-a-dire les solutions de z> = a

sont +iy/—a.

Retour au cours
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Exercice A.1.4 Ch2-Exercice30

Calculer, en utilisant la formule du bindéme de Newton, (z + z')3 et (z + 2)*.

Retour au cours

Solution
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Exercice A.1.5 Ch2-Exercice31

2z+1 _4lzl*-1 i4Imz
2z—1 2z-12 |2z-1J2°

Soit z # %, z € C, montrer que

Retour au cours
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Exercice A.1.6 Ch2-Exercice32

En appliquant I'inégalité triangulaire successivement a z = (z—z') + 2z’ et 2’ = (2 — z) + z, mon-
trer que
! !
llz| —1z'|| < |z - 2|

Retour au cours

Solution
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Exercice A.1.7 Ch2-Exercice33

Montrer que Arg (1) = —Argz [271].

Solution

Retour au cours
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Exercice A.1.8 Ch2-Exercice34

Dans un repere orthonormé (O, ii, U/), représenter un nombre complexe en précisant son mo-
dule et son argument. Plus précisément donner la représentation graphiquede 1, i, 1 +iet1—i.

Retour au cours

Solution
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Exercice A.1.9 Ch2-Exercice35

Déduire de la formule de De Moivre que pour tout z € C non nul et tout n € N, on a Argz" =
nArgz [27].

Retour au cours

Solution
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Exercice A.1.10 Ch2-Exercice36

Déterminer les quatre racines de I'quation z* + z2 = 0

Solution

Retour au cours
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Exercice A.1.11 Ch2-Exercice37

Donner les racines cubiques de l'unité (on les note habituellement {1, j, jz}) et les représenter
graphiquement. Justifier la notation j? et montrer que j = j%, 1+ j + j*> = 0.

Retour au cours

Solution
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Exercice A.1.12 Ch2-Exercice38

Déterminer les racines carrées de i et j.

Solution

Retour au cours

suivant »
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Exercice A.1.13 Ch2-Exercice39

Calculer les deux racines carrées de —5 + 121i.

Solution

Retour au cours

suivant »
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Exercice A.1.14 Ch2-Exercice40

On suppose que a, b, c sont réels, a #0, A = b? —4ac #0.

Rappeler I'expression des deux racines zy, z; de I'équation az? + bz + ¢ = 0, distinguer les cas
A>0etA<DO.

On note rg, r les deux racines carrées de A, montrer que 'on a

—b+r0 —l’)+l‘1

zZ0 = 21 =
2a 2a

Retour au cours

Solution
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Exercice A.1.15 Ch2-Exercice41

Résoudre I'équation du second degré : z> —iz+1-3i =0.

Solution

Retour au cours
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Exercice A.1.16 Ch2-Exercice42

Démontrer que

Solution

6191 elez = ei(61+92)’ elO =

Retour au cours
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Exercice A.1.17 Ch2-Exercice43

Démontrer les formules d’Euler

Solution

Retour au cours

suivant »
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Exercice A.1.18 Ch2-Exercice44

Montrer que sin®6 =

Solution

L
16

sin560 — 2 sin36 + 2 sind.

Retour au cours
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< précédent section A suivant »

Exercice A.1.19 Ch8-Exercice1

Le polynéme (1+ i) X? —3X +i peut-il étre considéré comme un polynéme sur C 2 sur R 2 Quel
est le degré de ce polynome ?

Retour au cours

Solution

Concepts

Exemples
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Documents
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Exercice A.1.20 Ch8-Exercice2

Montrer sur un exemple que la définition du produit de deux polynémes est cohérente avec
le produit des fonctions polynomiales que vous connaissez (choisir par exemple n =2 m = 3).

Retour au cours

Solution

Concepts

Exemples
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< précédent section A

Exercice A.1.21 Ch8-Exercice3

Montrer, par contraposée, que si AB =0 alors A=00ou B=0.

Solution

Retour au cours
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< précédent section A suivant »

Exercice A.1.22 Ch8-Exercice4

Soit A € K, [X] et B € K;,[X], montrer que A+ B € K, [X], que aA € K, [X] (a € K). Est-ce que
ABeK,[X]?

Retour au cours

Solution

Concepts

Exemples
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< précédent section A

Exercice A.1.23 Ch8-Exerciceb5

Quel est le conjugué de A=3X>+(2i - 1)X +i?

Solution

Retour au cours
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< précédent section A suivant »

Exercice A.1.24 Ch8-Exercice6

Montrer que X +2 est un diviseur de X*—16. Donner les autres diviseurs de X* —16 dans R[X].

Retour au cours

Solution

Concepts
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Exercice A.1.25 Ch8-Exercice7

Soit A= BQ + R montrer que si D divise A et B, alors D divise R.

Retour au cours

Solution
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< précédent section A suivant »

Exercice A.1.26 Ch8-Exercice8

Effectuer la division euclidienne de X* + 1 par (X? + 1)(X — 1)2.

Retour au cours

Solution
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< précédent section A suivant »

Exercice A.1.27 Ch8-Exercice9

— Diviser suivant les puissances croissantes le polynéme A = X*+1 par (X2 +1)(X-1)2 de
facon a pouvoir mettre X? en facteur dans le reste.

— Diviser suivant les puissances croissantes Y2 + Y +2 par Y + 1 de facon a pouvoir mettre Y3
en facteur dans le reste.

Retour au cours

Solution
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Exemples
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< précédent section A suivant »

Exercice A.1.28 Ch8-Exercice10

Montrer que dans K[X] tout polynéme de degré 1 est irréductible. Peut-on trouver un poly-
noéme de degré 2 qui soit irréductible dans C[X] ?

Retour au cours

Solution
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Exercice A.1.29 Ch8-Exercicel1

Soient xy = i, xo = 4+ 1, x3 = 3. Existe-t-il un polynéme de degré 2 qui s’annule en ces trois
points ? Un polynéme de degré 3 ? Un polyndme de degré 4 ? Si oui, en donner un.

Retour au cours

Solution

Concepts

Exemples
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Documents
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Exercice A.1.30 Ch8-Exercicel12

Factoriser dans C[X] le polynéme

A=X*+3X%+2.

Retour au cours

Solution
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< précédent section A suivant »

Exercice A.1.31 Ch8-Exercice13

Soient x; = i, x2 =4, x3 = 3, existe-t-il un polyndéme de degré 3 a coefficients réels qui s’annule
en ces trois points ? Un polynéme de degré 4 a coefficients réels ? Si oui en donner un.

Retour au cours

Solution

Concepts

Exemples
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Documents
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Exercice A.1.32 Ch8-Exercicel14

Factoriser dans R[X] le polynome

A=X>-x*+3X3-3x%+2X-2.

Retour au cours

Solution
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Exercice A.1.33 Ch8-Exercicel15

Soit le polynome
A=X"+3X%+5X°.

Pour quelles valeurs de k € N a-t-on A®(0) =0 (ne pas calculer les dérivées) ?

Retour au cours

Solution

Concepts

Exemples
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< précédent section A

Exercice A.1.34 Ch8-Exercicel16

La fraction rationnelle
YEEDED e

3X2-X-2
est-elle irréductible ? Dans le cas contraire, la simplifier.

F =

Retour au cours

Solution
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< précédent section A

Exercice A.1.35 Ch8-Exercicel7

Calculer la partie entiere de

Sl
F=—™— —
(X2+1)(X-1)2
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< précédent section A

Exercice A.1.36 Ch8-Exercicel18

Montrer la proposition suivante :
Soient deux fractions rationnelles F et E alors

EF+F)=&F) +&WF.

ou l'on a noté &(F) la partie entiere de F.

Retour au cours

Solution
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< précédent section A

Exercice A.1.37 Ch8-Exercicel19

Soit la fraction rationnelle
X?-X+2

F="—"—"_°=
(X-1)3X
Mettre F la sous la forme de la décomposition (8.4.2).

Retour au cours

Solution
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Exercice A.1.38 Ch8-Exercice20

Décomposer en éléments simples dans R(X) la fraction rationnelle suivante :

2X+3
X2-5X+6

Retour au cours

Solution

113

Concepts

Exemples
Exercices
Documents



< précédent section A suivant »

Exercice A.1.39 Ch8-Exercice21

Décomposer en éléments simples la fraction rationnelle suivante :

2X+1
(X-2)3"

Retour au cours

Solution

Concepts

Exemples
Exercices
Documents
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Exercice A.1.40 Ch8-Exercice22

Décomposer en éléments simples dans R(X) la fraction rationnelle suivante :

SR
(X2+1)(X-1)2"

Retour au cours

Solution
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Exemples
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Exercice A.1.41 Ch8-Exercice23

Décomposer en éléments simples dans R(X) puis dans C(X) la fraction rationnelle suivante :

2X3+ X2 +3X+1
(X2+1D(X2%2+2)

Retour au cours

Solution
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< précédent section A suivant »

Exercice A.1.42 Ch8-Exercice24

Intégrer la fraction rationnelle suivante :

2x+3
x2-5x+6

Retour au cours

Solution
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Concepts
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< précédent section A suivant »

Exercice A.1.43 Ch8-Exercice25

Intégrer la fraction rationnelle suivante :

2x+1
(x-2)%

Retour au cours

Solution
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Concepts
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< précédent section A

Exercice A.1.44 Ch8-Exercice26

Intégrer la fraction rationnelle suivante :

2x3+x2+3x+1
(x2+1D(x2+2)

Retour au cours

Solution
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A.2 Exercices de TD
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Exercice A.2.1 TD2-Exercice8

Le but de cet exercice est de démontrer quelques sommations classiques dans C en fonction
deneN.

1. Calculer le module et 'argument des nombres complexes (1 + N3, A+id*et 1+0)" En
déduire que :

2psn 5 7T
Y nPCP(=1-C2+Ci-CB+-- )= (VEWCONHZ)
p=0
2p+1=n S T
Y CDPGIT=C -Gt Crm )= (V2)"sin(ng)
p=0

2. Montrer que

2" 1+CL+C2+C3 +---
0 = 1-CL+C3-C3+--

3. Soit j =cos(27/3) + isin(27/3). Montrer que (1 + j)" = A+ Bj + Cj2 avec:

A = 1+C+C5+...
1 4 7

B = C,+C,+Cp+---

C = C3+Co+Ch+--.

121 >
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section A

Trouver trois équations vérifiées par A, B et C et en déduire que :

A = l(2”+2(:os(ﬂ))
-3 3
(., (n+1)nm
B = 5(2 —2cos( ))
(., (n—-1)nm
CcC = 5(2 —2cos( ))

Question1 Aide 1 Aide 2 Aide 3
Question2 Aide 1 Aide 2
Question 3  Aide 1 Aide 2
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< précédent section A suivant »

Exercice A.2.2 TD2-Exercice9

On désigne par P le demi-plan complexe supérieur, par D le disque unité et par U le cercle
unité, c’est-a-dire :

On considere I'application suivante f : C\{—-i} - C, z — f(2) =
1.
2.
3.

. Montrer que Vze C\{—i},onal—|f(z)|* =4

P = {zeC; Imz>0}
D = {zeC; |z|]<1}
U = {zeC; |z|=1}
z—i
m.
Montrer que f est injective.
Montrer que Yz e C\ {—i},ona f(z) # 1.
Montrer que Im f=C\ {1}.
Imz
lz+ 0|2
On considere fj larestriction de f a R. Montrer que fj est une application de R dans U \ {1}
et qu’elle est surjective.

On considere f; larestriction de f a P. Montrer que f, est une application de P sur D et que

cette application est bijective. Coneas

Exemples
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Documents
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Question 1
Question 2
Question 3
Question 4
Question 5
Question 6

Aide 1
Aide 1
Aide 1
Aide 1
Aide 1
Aide 1
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Aide 2

Aide 2 Aide 3 Aide 4
Aide 2
Aide 2 Aide 3 Aide 4
Aide 2
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< précédent

Exercice A.2.3 TD2-Exercice10

Résoudre dans C les équations suivantes.

1. 1+z+22=0

2. Z2+z+2=0

3. Q-0)z°—(7T+i)z+4+6i=0
4, z3=-8

5. z' =64-64iV3
Question1 Aide 1 Aide 2
Question2 Aide 1 Aide 2
Question 3 Aide 1 Aide 2
Question4 Aide 1 Aide 2 Aide 3
Question5 Aide 1 Aide 2
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Exercice A.2.4 TD8-Exercice1

1. Déterminer le réel a pour que le polyndéme p défini par p(x) = x* — x + a soit divisible par
x—2.
Pour cette valeur de a est-ce que p est divisible par (x — 2)22

2. Soit n € N, déterminer a et b pour que ax"*! +bx" +1 soit divisible par (x—1)2. Déterminer
alors le quotient.

Concepts
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Exercice A.2.5 TD8-Exercice2

Décomposer en produit de facteurs irréductibles dans C[X] puis dans R[X] les polynomes
xt+1, x6-7x3-8.

Concepts

Exemples
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Documents
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Exercice A.2.6 TD8-Exercice3

1. On définit les polyndmes P(x) = X+3x%+x+1, Qx) = X2+ x+1.
(a) Diviser P par Q suivant les puissances croissantes (on veut un reste de valuation 3).

B+3x%+x+1

(b) En déduire une primitive de la fonction ————— .
Bx2+x+1)

1
Réponse : —— +2In|x]| —ln(x2 +x+1)+C
2x2

2. Ens’inspirant de la méthode précédente, trouver une primitive de

|1+x|)
+C
| x|

xAx+1)

re 111
éponse: ———+ ———+1In
p 3x3  2x2

Concepts
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Exercice A.2.7 TD8-Exercice4

1. Décomposer en éléments simples dans R(X) et dans C(X) les fractions rationnelles sui-

vantes :
1 xX2+2x+1 1 x*+6x2-2x+5 1
1-x2" x2-5x46" x2—x+1 (x2+4)x-1  (x-1)8x-2)
Réponses :
1 1 1 X +2x+1 9 16
= + , =1- + ,
1-x2 2(0+x) 2(1-x) x2-5x+6 x—2 x-3
1 B i i
-x+1l V3x+j) V3(x+j2)
x*+6x2-2x+5 x-1 2 2+ 2—i 2
=x+1+ + =x+1+ — + — +
(x2+4)(x-1) x2+4) (x-1) 4(x—-2i) 4x+2i) (x-1
1 1 1 1 1
=- = =o000= +
(x—1)8(x-2) (x-18 (x-1)7 (x-1) ((x-2)

2. Décomposer en élément simples dans R(X) les fractions rationnelles suivantes :

b 2x3 +5x2 +6x+3 1 3x+4 ax+p
(x—a)(x—b)’ +x+1 7 (24122 -1)" (x2+2x+3)2" (x2-2x+5)2
Réponses :
X a b
sia#b,

G-ax-Db @-DbDx-a b-ax-b
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. X 1 a
sia=b = +
(x—a)(x—-b) x—-a ((x-—a)?
2x3+5x> +6x+3 X 1-j? 1—-j
=2X+3+——=2x+3+ = F ;
xX2+x+1 x24+x+1 3(x—j) 3x-j?
1 ~ 1 i, 1
(2+1)2(x2-1)  8(x+i)? 4(x+i) 8(x—i)? 4(x—1i)
1 1
+ —
8(x-1) 8(x+1)
1 1 1 1

= = + —
2(x2+1)2 4(x2+1) 8(x-1) 8(x+1)
3. Décomposer en élément simples dans R(X)

3+x 2 1
B=x2+x-1" (x=1D42+1)" x"(x-1)

Réponses :
3+x 2 2x+1
B-x2+x-1 x-1 x2+1
2 1 1 1 1
G-D'2+1]) x-DF x-13 2@-12 22+D)’
1 1 noq

x*(x—1) T x-1 k:lﬁ
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Exercice A.2.8 TD8-Exercice5

Caculer les primitives des fractions rationnelles de I’exercice précédent.
Réponses :

1 1. 1+x X +2x+1
dx=-1n +C, | ———dx=x-9In|x-2|+16In|x—-3|+C,
1 - x? 27 1-x] x2-5x+6

[ ok aee 2 a2 o
————dx=—Arctan ,
X2—x+1 V3 V3

x*+6x2—2x+5 x? LR 1 x
dx=—+x+—-In(x“+4)— -Arctan— +2In|x—-1|+C
(x2+4)(x—1) 2 2 2 2
1 1 1 |x—2|
dx = +...+ + +1n
(x-1)8x-2) 7(x-1)7 2(x-12 x-1 |x—1|
2x3+5x2 +6x+3 ) 1., 1 2x+1
dx=x"+3x+-In(x*+x+1)— —Arctan +C,
x*+x+1 2 V3
X 1 1. [|x-1]
——— dx=—-——————Arctanx+—1In ,
(x2+12(x2-1) 4(x2+1) 2 8 |x+1|
f Sx+4 3 1 lArctan(x+1)+ x+l Concepts
(x2+2x+3)2 2 x242x+3 42 V2 ] 4(x2+2x+3)
Exemples
Exercices
ax+ a 1 a+ x—1 a+ x—1
f _ @ g O + 'BArctan( )+ P +C Documents
(x2-2x+5)2 2 x2-2x+5 16 8 x2-2x+5
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3+x 5
————dx=2In|x-1|-In(x*+1) —Arctanx + C,
B-x>+x-1

2 1 1 1 1
f—dx:— + - — —Arctanx + C,
(x—D4(x2+1) 3x-13 2(x-12 2(x-1 2

1 el
f— =In|x-1|-1n|x| + Z — +C.
x"(x-1) o ixt
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Exercice A.2.9 TD8-Exercice6

1. Calculer une primitive de la fraction rationnelle i3
x
Injx+1] In(x*-x+1) 1 2x-1
= + —Arctan +C.
V3

3 6 V3

1
2. En vous inspirant de la facon dont on a calculé une primitive de RSk calculer une
X

(

Réponse : F(x) =

rimitive de ———
= (1+x0)2

X
Réponse : %F(x) + m

Concepts

Exemples
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Exercice A.2.10 TD8-Exercice?

2 cos® x h i tanx
f E dx f tanzxdx, f 3 dx
z gin® x 0 0 COS%x

4

1. Calculer

Réponses: §, 1- %, 3.
2. Onrappelle que
2tan

1+ tan? 5

On pose ¢ = tan 3, utiliser ce changement de variable pour calculer :

T T T
fi dx fﬁ dx fi dx
o cosx’ z sinx’ Jo 2+cosx

Réponses : In(2 + v/3), 2lr13 Q
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section A suivant »

Exemple B.1.1 Division euclidienne

A: DG Sy ) ﬂ
-BQ;: -2x°3 2X 2=
R : -X?> +X +2
-BQy: e -1
R: X +1

On obtient donc
2X3 - X - X+2=(X*-1DRX-1)+X+1.

Retour au cours

Concepts
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Exemple B.1.2 Division suivant les puissances croissantes

Soient les polynomes A = 2 — X + X? —3X3, B = 1 — X? et effectuons la division suivant les
puissances croissantes de facon a pouvoir mettre X* en facteur dans le reste.

A: 2 -X +x? -3x8 il = x*
-BQ;: -2 2X? 2-X+3X%2-4X3
Ri: -X +3%x?> -3x°

-BQ>: +X -x3

Ry: 3x? -4x3

—-BQ3: —3X2 +3X*

R3: -4Xx3 +3x*4

-BQy: +4Xx3 —4X°

Ry: 3x*  —4x°

On obtient donc

2-X+X?2-3X3=(1-X)2-X+3X>-4X3+X*3-4X)

Concepts

Retour au cours
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C.1 Documents du chapitre 8

C.1.1  Le Polynéme nul

Sommaire
Concepts

Exemples
Exercices
Documents




section A

Document C.1.1 Le Polynéme nul

Il est génant que le polyndme nul n’ait pas de degré, car on rencontre beaucoup ce polynoéme.
Nous verrons que cela oblige dans beaucoup d’énoncés de théorémes, a distinguer les cas poly-
néme nul ou non nul. Pour éviter cela, on adopte classiquement la convention ci-dessous :

deg(0) = —oc0
avec les regles de calcul :
VnrnelN, -oo<n, -oo+mn=-00, —00+(—00)=—00.

Insistons bien sur le fait que cette convention ne change rien a I’essentiel. Elle permet seulement,
mais cela en vaut la peine, de simplifier plusieurs énoncés importants.

Insistons aussi sur le fait qu’il n’est pas possible de convenir du fait que le degré du polyn6me nul
est 0 : cela conduit a des contradictions. Pour connaitre le degré d’'un polyndéme constant, R, il
faut savoir si R est nul ou pas. Tout ce que I'on peut dire sinon, c’est que : deg(R) < n, quel que
soit n dans N.

Voyons par exemple sur 'addition des polynomes la convention précédente. Elle nous permet
d’énoncer un résultat sans avoir a distinguer dans I’énoncé les cas ot1 'un des trois polyndmes A,
Bou A+ Bestnul.

Proposition C.1.1. Soient A et B deux polynémes de K[ X], alors

deg(A + B) < max(deg(A),deg(B)).
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section A

Démonstration - Si aucun des polyndmes n’est nul, la démonstration est faite dans le paragraphe
du cours. Il reste a examiner les cas ou I'un des trois polyndémes est nul. Si A est nul, alors deg(A) =
—oo et A+ B = B, de sorte que la proposition est bien vérifiée avec les deux régles de calcul :

—oo+deg(B) = —o0 et —oo = deg(B).
Enfin, si A+ B est nul, on a bien encore dans tous les cas

—oo < max(deg(A),deg(B)).

Retour au cours
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Le gras indique un grain ou le concept est dé-
fini ; I'italique indique un renvoi a un exercice ou un
exemple, le gras italique a un document, et le ro-
main a un grain ou le concept est mentionné.

A

Argument d'un nombre complexe........... 13

Bindme de Newton ..............ccoeveunnen... 7
Calcul pratique - poles complexes........... 64
Calcul pratique - polesréels.................. 60
Calcul trigonométrique ...................... 26

Index des concepts

D

De Moivre-formule...............coovvvuen... 17
Division - puissances croissantes........ 38, 54
Division euclidienne ......................... 35
Exponentielle complexe - définition ... .. 24,26

F

Factorisation dans le corps des complexes. .41,

44
Factorisation dans le corps des réels....... 44, 47
Fraction rationnelle - Partie entiére.......... 52
Fractions rationnelles - Décomposition dans les
complexes........coveiiiiiiinn.. 54, 58
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Fractions rationnelles - Décomposition dans les

réels......oooiiiiiii 58
Fractions rationnelles - Définition........... 50
Inégalités- nombres complexes.............. 11

L

Lois de composition interne des nombres com-
plexes .....ooeiiiiiii 4

Multiplicité desracines ...................... 47

N

Nombre complexe - conjugué et module..9, 11
Nombre complexe - partie réelle et imaginaire5
Nombres complexes - représentation graphique

15
Polyndmes - Définition ...................... 29
Polynomes irréductibles ..................... 40

Primitive des poles complexes multiples ... .
Primitive des poles complexes simples......

Primitive des poles réels .....

R

Racines complexes..........

Racines d'une équation du second degré....

Racines niémes de 'unité. ..

S

Somme - Produit - Conjugué
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Solution de I'exercice A.1.1

Pour 'addition, les propriétés sont évidentes. La multiplication est commutative car (x, y) x (x/,y') = (x', ') x (x, y), son

élément neutre est bien (1,0) puisque (x, y) x (1,0) = (x, y), 'élément inverse de (x, y) est bien (szxyZ’ ——Y) puisque

x2+y
(X, Y) x (752~ 7152) = (1,0). Enfin

) x () + & YN = x X +x", Y+ =X+ X)) -y + ), x( + )+ y( + X))

et
(x,y)><(x,,y’)+(x,y)><(x”,y”)z(xx’—yy’,xy,+yx’)+(xx”—yy",xy"+yx")

d’ou la distributivité du produit par rapport a I’addition.

Retour a I'exercice A



Solution de I'exercice A.1.2

- z+Z =(x+xXN+ily+y),
zz’—(x+iy)(x +iy) =xxX' +i?yy +ilxy +xX'y) =xx' —yy' +i(xy + x'y).
- X+ iz i) =1

x2+y x2+y

Retour a I'exercice a



Solution de I'exercice A.1.3

Sil'onrésout (x+iy)(x+iy) = a, on obtient x*> — y* + i2xy = a, ce qui donne x> — y*> = a et xy = 0. Puisque a < 0, la seule
solution (x et y sont réels) est donnée par x=0et y = +iy/—a

Retour a I'exercice a



Solution de I'exercice A.1.4

(z+2)3 =23+32%2 +3z22% +z8 et (z+ 2)* = z* + 4237 + 62°2"% + 422" + 2%

Retour a I'exercice a



Solution de I'exercice A.1.5

On multiplie numérateur et dénominateur par la quantié conjuguée du dénominateur. On obtient ainsi |2z — 1/? au
dénominateur et
2z+1)2z-1)=4lz* +2(Z-2) -1 =4/z]* - 1-4iImz

au numérateur.

Retour a I'exercice a



Solution de I'exercice A.1.6

Onalz|<|z—Z|+|Z|et|2|<|z—2'|+|z|, dot—|z— 2| < |z| - |Z| < |z— 2.

Retour a I'exercice a



Solution de I'exercice A.1.7
1 1 1
Arg(z x ;) = Argz +Arg; [27r]. On remarque alors que Arg(z x —) = Argl,= 0 [27].
z

Retour a I'exercice A



Solution de I'exercice A.1.8

Voir la figure C.1.1.

) + 141
i
v
p 1
7
+1-1

+

FIGURE C.1.1 — Représentation graphique de complexes

Retour a I'exercice a



Solution de I'exercice A.1.9

Si on pose 6 = Arg z, alors on a Arg(z)" = Arg(cos nf + i sin nf), d’ou Arg(2)" = nf [27].

Retour a I'exercice a



Solution de I'exercice A.1.10

z* + z%2 = Z2(z%2 + 1), 0 est racine double, i est racine simple, —i est racine simple.

Retour a I'exercice a



Solution de I'exercice A.1.11

PB=1o|zl=1 etArgz = %, k=0,1,2. On a donc les trois racines

z71=1,2=] :cos%”+isin%” = —%+i‘/7§ et z3 = j2 :cos%”+isin%” = —%—i‘/;’ (qui est bien le carré de j par la

formule de De Moivre). Voir la figure C.1.2. On voit aisément que z3 est le conjugué de z, et que z, + z3 = 2cos %” =-1.

FIGURE C.1.2 — Racines cubiques de I'unité

Retour a I'exercice A



Solution de I'exercice A.1.12

li|=1,Argi = %, les racines carrées de i doivent vérifier :
T
|z| =1etArgz = i +kmr, k=0,1.

D’ou les deux racines
— coSZ +igin® = Y2 4 1¥2
zZp=cosy +isiny =% -tflz ,f
— ST | join BT _ V2 _ V2
Z1 =COS>F +isin 2 = — %5 — Y=,

On a bien siir z; = —z.

On calcule de la méme maniere les racines carrées de j.

Retour a I'exercice a



Solution de I'exercice A.1.13

On cherche z = a + ib tel que z? = -5+ 12i, on doit donc avoir :
(a®>-b*=-5,ab=6) < (ab=6,a*+5a>-36=0) & (ab=6,a’ =4) © ((a=2,b=3) ou (a=—2,b = -3))
On obtient donc zp =2 +3i,2; = —2—-3i

Retour a I'exercice A



Solution de I'exercice A.1.14

. b+ VA -b-VA
- SiA>0, zg = ,21 = .
2a 2a
. -b+iv-A -b—-iv-A
- SiA<0,zp=——m—,21 = —.
2a 2a

Or Si A > 0 les 2 racines carrées de A sont 7y = VA et 1 = —V/A.
Si A <0les 2 racines carrées de A sont ro =iv—Aetr; =—iv—A.
Ce qui termine la démonstration.

Retour a I'exercice a



Solution de I'exercice A.1.15

On calcule A = —5+12i, on a vu dans I'exercice A.1.13 que les deux racines carrées de A sont r; = 2+3i,1, = —2—31, donc

i+ry 4i+2 . i+r, —2-2i
21 = = =2i+1,2p = =
2 2 2 2

=-1-i

Retour a I'exercice a



Solution de I'exercice A.1.16

Ceci se déduit strictement de la proposition du paragraphe Argument d’'un nombre complexe. En effet 'argument du
produit est la somme des arguments et I’argument de I'inverse est 'opposé de I'argument.

Retour a I'exercice a



Solution de I'exercice A.1.17

Faites la somme puis la différence de
e'% = cosf +isinb),

e % = cosf —isind.

Retour a I'exercice a



Solution de I'exercice A.1.18

1 ) .

.5 i0 —i6\5

sinf=——(e'"" —e .
(2i)5( )

Les coefficients du bindme de Newton sont alors 1,5,10, 10,5, 1. Il vous reste a finir le calcul ...

Retour a I'exercice a



Solution de I'exercice A.1.19

Puisque les coefficients sont complexes, le polynome est défini sur C. Son degré est évidemment 2.

Retour a I'exercice a



Solution de I'exercice A.1.20

(ap+ a;x+ azxz)(bo ar b1x+ b2x2 + b3x3) = a()b() aF (a0b1 ar (llb())x+ ((l()bg + a; b1 ar (lzb())x2
+(aob3 + a; bg aF azbl)x3 +(a bg aF dzbz)x4 aF a2b3x5

Remarquons que sil'on utilise la formule générale
k
ck=)_ aibg—;
i=0

pour k =4 pa exemple on obtient
¢4 = agbs + a1 bz + ax by + asby + agbg

mais les coefficients by, az, a4 sont nuls.

Retour a I'exercice a



Solution de I'exercice A.1.21

La contraposée de
(AB=0)=(A=0)ou (B=0)

est
(A#0) et (B#0)= (AB#0).

Supposons donc que A et B soient des polynomes non nuls. Alors leur degré est défini et ils s’écrivent
A=ay+ax+...+a,x", B=byg+bi1x+...+ byx™

avec a, # 0 et b,, # 0. Le coefficient de x™*" dans le produit AB est donné par

n+m
Cnem = Y Aibg_i = Aobpsm+...+ Anbpm + ...+ Apimbo.
i=0
Or dans cette somme, seul le terme a, b, est non nul. En effet dans les termes qui le précedent, ce sont les coefficients
(bj) j=n+m,..,m+1 qui sont nuls et dans les termes qui le suivent ce sont les termes (@;) j=n+1,..,n+m qui sont nuls. Le coef-
ficient de x"**™ est donc non nul et le polynome AB est donc non nul.

Retour a I'exercice A



Solution de I'exercice A.1.22

Vous venez de voir que le degré de la somme de deux polynomes A et B est tel que

deg(A+ B) <max{deg(A),deg(B)}.

Dong, si deg(A) < netdeg(B) < n, alors
max{deg(A),deg(B)}<n

et donc A+ B € K, [X]. Si 'un des deux polyndmes est nul, par exemple A, alors A+ B = A € K;[X]. 1l est évident que
deg(aA) =deg(A)sia#0etque aA=0sia=0.Dans tous les cas on obtient un polynéme de K, [X].
Par contre deg(AB) =degA+degB entraine seulement que AB € Ky, [X].

Retour a I'exercice a



Solution de I'exercice A.1.23

A=3X’+(-2i-1D)X—i.

Retour a I'exercice a



Solution de I'exercice A.1.24

X4 -16=(X?-4)(X%?+4) = (X -2)(X +2)(X? + 4).

Retour a I'exercice a



Solution de I'exercice A.1.25

Si D divise A et B cela signifie qu'il existe deux polynomes S et T tels que
A=DS, B=DT

d’ol
DS=DTQ+R

soit
R=D(S-TQ)

ce qui montre bien que D divise R.

Retour a I'exercice A



Solution de I'exercice A.1.26

Avant d’effectuer la division développer le deuxieme polynome. Si vous ne faites pas d’erreurs de calcul, vous trouverez

X +1=X+ DX -1)%+ 02X -2X%+2X).

Retour a I'exercice a



Solution de I'exercice A.1.27

— Tout d’abord
XP+D)(X-1)?=x*-2Xx3+2X?-2X +1.

Le résultat donne
1+ X =1 -2X+2X2-2X3+ XH1+2X) + X?(2-2X +4X*-2X3),

ce qui n’a rien a voir avec la division euclidienne ...
— Ona
2+Y+Y2=2-Y+2YH)(1+Y)-2Y3

Retour a I'exercice A



Solution de I'exercice A.1.28

Siun polynéme A de degré 1 admettait un diviseur D qui ne soit ni un polynéme constant, ni A, on aurait
A=DQ

et Q ne pourrait pas étre un polynéme constant. A serait donc le produit de deux polynomes de degré strictement positif
dont le degré serait supérieur ou égal a 2, ce qui est impossible. A est donc irréductible.

Puisque vous savez qu'un polynome de degré 2 a deux racines réelles ou complexes, distinctes ou confondues, il
n’est donc jamais irréductible dans C[X].

Retour a I'exercice A



Solution de I'exercice A.1.29
Un polynome de degré 2 a au plus deux racines distinctes. Il ne peut donc pas s’annuler en trois points distincts. Un
polynome de degré 3 a coefficients complexes qui s’annule en ces trois points est
A=X-)(X-4-1)(X-3).
Tout polynéme qui admet A comme diviseur s’annule en (x, X, x3). Un polynome de degré 4 serait par exemple

B=XA.

Retour a I'exercice A



Solution de I'exercice A.1.30

Ce poOlynome s’écrit
A= (X*+2)(X*+1)

soit, puisque les deux polynémes ont des racines complexes évidentes

A= (X - V2)(X+V2) (X - )X +1).

Retour a I'exercice a



Solution de I'exercice A.1.31

Un polyndéme a coefficients réels est tel que si un nombre complexe est racine de ce polynéme, son conjugué est aussi
racine. Donc si x; est racine d'un polyndme A a coefficients réels, x; est racine de A. Le polynome de R[X] de plus petit
degré qui a pour racines (xi, X2, x3), s’ écrit donc

A=a(X —x1) (X = X1) (X = x2) (X — x3)

ol a € R. C’est donc un polyndéme de degré 4 et non pas 3! Bien vérifier que bien que x; et X; ne sont pas réels, les
coefficients de A sont réels.

Retour a I'exercice A



Solution de I'exercice A.1.32

Ce poOlynome s’écrit
A= (X2 +2)(X°+1)(X-1)

et puisque les deux premiers polynémes n'ont pas de racines réelles, on ne peut factoriser davantage dans R[X].

Retour a I'exercice A



Solution de I'exercice A.1.33

Puisque
A= X>(X?+3X+5)

la racine x = 0 est de multiplicité 5 et donc AKX ) =0 pour k=0,...,4 et A®(0) £0. Puisque le polyndme A est de degré
7, alors A% (x) = 0 pour k > 7, quel que soit x € R, et donc en particulier pour x = 0. Pour ce qui est de A® (0) et A™(0),
vous pouvez utiliser la formule de Taylor on obtient A® ) =6!x3, AD0) =7 et plus précisément A®(0)=5!%x5

Retour a I'exercice a



Solution de I'exercice A.1.34

On voit que x = 1 est racine du numérateur et du dénominateur. On peut donc factoriser par x — 1 le numérateur et le

dénominateur :

B-x+x-1_ (x-D0*+1)

3x2-x-2  (x—-1Bx+2)

F(x) =

ce qui donne, apres simplification
¥ +1

F(x) = .
(x) 3x+2

Puisque x = —— n’est pas racine du numérateur, cette fraction est irréductible alors que la fraction de I'énoncé n’était
pas irréductible.

Retour a I'exercice a



Solution de I'exercice A.1.35

On a calculé dans I'exercice A.1.26 la division euclidienne du numérateur par le dénominateur et on a trouvé

x*+1 B +2x3—2x2+2x
RP+Dx-12 @2+ x-12

La partie entiere est donc le polyn6me constant 1.

Retour a I'exercice A



Solution de I'exercice A.1.36

Ona .
Py . - Py
F=E+—,F=E+—
Q Q
ce qui donne
X . Py Py
F+F=E+E+—+—.
Q Q
Sil’on réduit au méme dénominateur la somme des deux fractions :

. . PyO+P
FiP=pt by 20T PQ
QQ

Ordeg(Py) < deg(Q) et deg(Py) < deg(Q), d’otr

deg(POQ +PyQ) < max{deg(POO), deg(POQ} <deg(Q)+ deg(O)

soit
deg(PyQ+PyQ) < deg(QQ).

On a donc la bonne décomposition pour calculer la partie entiere de F + F, ce qui montre la proposition.

Retour a I'exercice a



Solution de I'exercice A.1.37

On effectue le changement de variable y = x — 1, et on obtient

2ry+2
Fp=L "<
y(y+1)

Il reste a effectuer la division suivant les puissances croissantes de y® + y +2 par y + 1 de facon a pouvoir mettre y° en
facteur dans le reste, ce qui a été fait dans I’exercice A.1.27. On a obtenu

2+y+y2:(2—y+2y2)(1+y)—2y3

ce qui donne

F(x) =
& . y+1
soit
Fyo 2oL, 2 2
Sy y oyl
On peut alors revenir a x, ce qui donne
1 2
F(x) =

G-1° -12 x-1 x

Retour a I'exercice A



Solution de I'exercice A.1.38

La décomposition en éléments simples est de la forme :

2x+3 _ A B
x>-5x+6 x-3 x-2"

On multiplie par (x —3) ce qui donne
2x+3 At B(x—-3)

x-2 x—2

)

eton fait x=3
9=A.

On fait de méme pour B et on trouve B = —7.

Retour a I'exercice a



Solution de I'exercice A.1.39

La décomposition en éléments simples est de la forme :

2x+1 A B C
= < = .
(x-238 ((x-23 ((x-22 x-2

On multiplie par (x —2)3 et on fait x = 2 ce qui donne
A=5.

Par identification, on obtient
5+B(x—-2)+C(x-2)2=2x+1.

Ce qui donne aisément C = 0 (coefficient de x?) puis B = 2 (coefficient de x).

Retour a I'exercice a



Solution de I'exercice A.1.40

On a déja calculé dans le cours la décomposition de cette fraction dans C(X), en particulier la partie entiére a déja été
déterminée. On doit donc maintenant décomposer la fraction F; dans R(X)

e
F=1+42F, Fj=——~ .
(X2+1)(X-1)2
ax+b c d
F(x) = (C.1.1)

+ + .
X+1 x-1 (x—1)?
Le calcul de d est inchangé par rapport a celui effectué dans C dans le cours. On utilise d’autres idées pour calculer a, b,
c.
— Multipliant les deux membres de (C.1.1) par x et faisant tendre x vers 'infini, on a

l=a+c.
— Faisant x = 0 dans les deux membres de (C.1.1) on obtient
0=b—-c+d.
— Réduisant les deux membres de (C.1.1) au méme dénominateur, on obtient I'égalité

X-x*+x  (ax+bh)(x-1D*+x*+D(cx—c+d)

(+D(x-1)2 (X2 +1)(x-1)2?

et I'identification des coefficients de x au numérateur donne

l1-a-2b+ec.



etenfin a = %

On a ainsi trois équations a trois inconnues et la résolution de ces trois équations donne aisément b = 0 puis ¢ = d

1
2
En comparant a ce qui a été trouvé dans C(X), on peut vérifier que

Retour a I'exercice A



Solution de I'exercice A.1.41

La décomposition en éléments simples dans R(X) est de la forme :

2x3+x*+3x+1 Ax+B Cx+D
= A .
2+ (x%2+2)  x®+1 x2+2

Par identification, on obtient
(Ax+B)(x* +2) + (Cx+ D) (x* +1) =2 + x* +3x + 1.
On identifie les coefficients des puissances de x, ce qui donne un systeme d’équations. Les équations
A+C=2,2A+C=3,

donnent
A=C=1.

Les équations
B+D=1,2B+D=1,

donnent
B=0,D=1.

La décomposition en éléments simples dans C(X) est de la forme

2x3+x%+3x+1 A , B _C D
P+D2+2)  x+i x—i x+v2i x-V2i

Les coefficients peuvent s’obtenir en multipliant des deux cotés par 'un des dénominateurs puis a prendre la valeur de
x qui annule ce dénominateur. Ainsi, en multipliant par (x — i) puis en posant x = —i, on obtient

2i-1-3i+1 _
(=20)(-1+2)



soit A =1/2. On peut calculer de la méme maniere C =

le conjugué de la décomposition, on obtient

i. En utilisant I'unicité de la décomposition et en prenant

=

A=B,C=D.

Retour a I'exercice a



Solution de I'exercice A.1.42

On utilise la décomposition en éléments simples de I'exercice A.1.38 et on integre, ce qui donne :

9In|x—-3|-7In|x— 2|+ Cte.

Retour a I'exercice a



Solution de I'exercice A.1.43

On utilise la décomposition en éléments simples de I'exercice A.1.39 et on integre, ce qui donne :

5 1

_2 _2— 4 Cte.
2(x=22 ‘x—2 "

Retour a I'exercice a



Solution de I'exercice A.1.44

On utilise la décomposition en éléments simples dans R(X) de I'exercice A.1.41 et on intégre, ce qui donne :

1., 1, 1 x
—In(x*+1)+ —In(x“+2) + —Arctan— + Cte.
2 2 2

V2

Retour a I'exercice a



Aide 1, Question 1, Exercice A.2.1

Voir les paragraphes : De Moivre-formuleet Binome de Newton.

Retour a I'exercice a



Aide 2, Question 1, Exercice A.2.1

Il est facile de montrer que
. T .. 7
1+i= ﬁ(cos—%—zsm—).
4 4

En utilisant la formule de De moivre on peut donc obtenir les modules et les arguments de (1 + N3 a+D*et1+0)"
Lautre membre est obtenu par le bindbme de Newton puis par identification des parties réelles et imaginaires.

Retour a I'exercice a



Aide 3, Question 1, Exercice A.2.1

Regroupez les puissances paires et les puissances impaires du bin6me de Newton en deux sommes différentes et utilisez

le fait que
2P = (=1)P, 2P = (-D)Pi.

Retour a I'exercice a



Aide 1, Question 2, Exercice A.2.1

Voir le paragraphe : Binome de Newton et calculer deux bino6mes bien particuliers!

Retour a I'exercice a



Aide 2, Question 2, Exercice A.2.1

Que pensez-vousde2=1+1et0=1-17?C’estla clé du résultat.

Retour a I'exercice A



Aide 1, Question 3, Exercice A.2.1

Que vaut A+ B+ C?Onrappelle que 1 + j = —j?

Retour a I'exercice a



Aide 2, Question 3, Exercice A.2.1

-j%= cos 5 +isinZ, en déduire les parties réelles et imaginaires de (1 + j)", identifier avec les parties réelles et imagi-

naires de A+ Bj +Cj?

Retour a I'exercice a



Aide 1, Question 1, Exercice A.2.2

La définition d'une application injective (Voir le paragraphe est valable méme si les espaces sont complexes.

Retour a I'exercice a



Aide 2, Question 1, Exercice A.2.2

Résolvez f(z1) = f(z2) pour z; et zp dans C\ {—i}. Vous obtiendrez facilement l'injectivité de f.

Retour a I'exercice a



Aide 1, Question 2, Exercice A.2.2

Vous pouvez raisonner par I’absurde ce qui permet d’avoir une démonstration treés courte.

Retour a I'exercice a



Aide 1, Question 3, Exercice A.2.2

Quelle est la définition de I'image d'une application ? (Voir le paragraphe : .)

Retour a I'exercice a



Aide 2, Question 3, Exercice A.2.2

Pour montrer que deux ensembles sont égaux on procede souvent par double inclusion. L'une des inclusions est évi-
dente, laquelle ?

Retour a I'exercice a



Aide 3, Question 3, Exercice A.2.2

On a montré dans la question précédente que Im f < C\{1}. Pour I'autre inclusion, il faut montrer que pour tout élément
de teIm f cC\ ({1} il existe z€ C\ {—i} tel que t = f(z).

Retour a I'exercice a



Aide 4, Question 3, Exercice A.2.2

Résolvez t = f(z), ce qui va vous permettre de construire explicitement z et de voir que z appartient bien a '’ensemble
de départ de f.

Retour a I'exercice a



Aide 1, Question 4, Exercice A.2.2

Il suffit de faire le calcul, il n'y a aucune difficulté particuliere. Partez du membre de gauche et réduisez au méme déno-
minateur.

Retour a I'exercice a



Aide 2, Question 4, Exercice A.2.2

Pour ceux qui ont du mal, revoyez le carré de la somme des modules dans le paragraphe Nombre complexe - conjugué
et module, puis comparez la partie réelle de iz avec la partie imaginaire de z.

Retour a I'exercice a



Aide 1, Question 5, Exercice A.2.2

Il faut déja démontrer que fj : R — U\ {1} puis que f est surjective. Utiliser la question précédente pour montrer que si z
est réelle alors | f(z)| = 1 puis la deuxiéme question pour finir la premiére partie.

Retour a I'exercice a



Aide 2, Question 5, Exercice A.2.2

Pour la surjectivité, on sait déja que pour V¢ € U \ {1},3z, f(z) = ¢, il reste a montrer que z est réel. Comment caractériser
un nombre réel ?

Retour a I'exercice a



Aide 3, Question 5, Exercice A.2.2

Utiliser la question 4).

Retour a I'exercice a



Aide 4, Question 5, Exercice A.2.2

SiteU\{l1}, alors |f(z)| =1, doncImz=0.
Donc z est réel.

Retour a I'exercice a



Aide 1, Question 6, Exercice A.2.2

Il faut montrer que f> : P — D, que f> est injective (vous I'avez déja montré, ou1?) et enfin que f, est surjective.

Retour a I'exercice a



Aide 2, Question 6, Exercice A.2.2

Utiliser la quatrieme question pour montrer aisément que f, : P — D. Pour la surjectivité, utilisez le calcul du z tel que
t = f(z) de la cinquiéme question et déduisez en Im z. Que faut-il alors démontrer ?

Retour a I'exercice a



Aide 1, Question 1, Exercice A.2.3

Résolvez comme un trindme du second degré.

Retour a I'exercice a



Aide 2, Question 1, Exercice A.2.3

Pour vérifier votre résultat, vous pouvez utiliser la factorisation :
1-22=(1-2)(1+z+27%)

et les racines cubiques de I'unité données dans le paragraphe : Racines niemes de l'unité.

Retour a I'exercice a



Aide 1, Question 2, Exercice A.2.3

Résolvez comme un trindme du second degré.

Retour a I'exercice a



Aide 2, Question 2, Exercice A.2.3

—1+i\/76t—1—i\/7
2 2

Les racines sont :

Retour a I'exercice a



Aide 1, Question 3, Exercice A.2.3

Revoir le paragraphe Racines d'une équation du second degré. Attention, ici les coefficients sont complexes donc le
discriminant est un nombre complexe dont il faut calculer les racines carrées.

Retour a I'exercice a



Aide 2, Question 3, Exercice A.2.3

Le discriminant est : 8 + 6i = 9+ 6i — i2 = (3 + i)2. Si vous ne voyez pas "l'astuce", vous résolvez (a + ib)?2 = 8+ 6i comme
vous le faisiez en terminal. Les solutions sont alors

5+1i . 2 .
Z1=——=243i, p=——=1+1.
1-1i 1-1

Retour a I'exercice a



Aide 1, Question 4, Exercice A.2.3

Voir le paragraphe : Racines niemes de l'unité.

Retour a I'exercice a



Aide 2, Question 4, Exercice A.2.3

= (2)3 (cosm + isin)
d’ou1 les racines ont pour module 2 et pour argument

n  2km
Argz=—+——,k=0,1,2.
3 3

Elles s’écrivent
T T . 51 . 5m
21 =2(cos§ +s1n§), Zp=2(cosm+sinm), z3=2 cos?+sm? ,

expressions que vous pouvez encore simplifier ... Représentez les solutions sur un cercle du plan complexe de rayon 2.

Retour a I'exercice A



Aide 3, Question 4, Exercice A.2.3

21 = —ij,Zz =-2, Z3 = —2j

Retour a I'exercice a



Aide 1, Question 5, Exercice A.2.3

Voir le paragraphe : Racines niemes de 'unité. Calculez le module et 'argument du membre de droite.

Retour a I'exercice a



Aide 2, Question 5, Exercice A.2.3

Le module de 64 — 64iv/3 est 128 et 'argument est —% a2km pres, soit
. 5w
Arg (64 —64iV/3) = ey
(pour la définition de Arg z, voir le paragraphe Argument d'un nombre complexe.
z' = (2)7(cos 5_n + isin 5—ﬂ)
- 3 3

A vous de donner les 7 racines de I’équation.

Retour a I'exercice A
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