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8.1.1 Lois de composition interne de R2

Exercices :
Exercice A.1.1

La nécessité d’étendre R résulte du fait que certaines équations algébriques n’ont pas de ra-
cine dans R, la plus célèbre étant x2 + 1 = 0. Mais il y a une différence fondamentale entre le
passage de Q à R et le passage de R à C. Dans le premier cas, il s’agit d’une extension destinée à
“remplir l’espace laissé vide entre les rationnels” , dans le deuxième cas, il s’agit d’une extension
“algébrique” : on va agrandir l’ensemble en lui rajoutant une composante, la partie imaginaire,
pour pouvoir résoudre des équations qui n’ont pas de racines dans R.

Définition 8.1.1. Sur E =R2 on définit les deux lois de composition :
– l’addition : (x, y)+ (x ′, y ′) = (x +x ′, y + y ′),
– la multiplication (x, y)× (x ′, y ′) = (xx ′− y y ′, x y ′+x ′y).

Vous montrerez en exercice que l’addition donne à E une structure de groupe commutatif et que
la multiplication a les propriétés nécessaires pour que E ait une structure de corps commutatif. Ce
corps, notéC, est appelé le corps des nombres complexes. Un nombre complexe, i.e. un élément
de C, est donc un couple de réels, obéissant aux lois de composition précédentes.
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8.1.2 Parties réelle et imaginaire d’un nombre complexe

Exercices :
Exercice A.1.2
Exercice A.1.3

En utilisant les règles de l’addition et de la multiplication, on vérifie :

(0,1)× (0,1) = (−1,0)

On identifie le nombre complexe (x,0) (dont la 2ème composante est nulle) au réel x.

On note i le nombre complexe (0,1), on a donc i 2 = −1, c’est à dire i est une des racines de
l’équation z2 +1 = 0.

On a d’autre part :
(x, y) = (x,0)+ (0, y) = (x,0)+ (0,1)× (y,0).

On peut donc écrire un nombre complexe z = (x, y) sous la forme dite canonique : z = x + i y .
On dit que x est la partie réelle et y la partie imaginaire de z, et on les note respectivement Re z
et Im z :

z = x + i y (= Re z + i Im z).
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Proposition 8.1.1. Soient z et z ′ deux nombres complexes, alors on a

(zz ′ = 0) ⇔ ((z = 0) ou (z ′ = 0)).

Démonstration - L’implication ⇐ est évidente. Réciproquement, supposons que zz ′ = 0.Alors, soit

z = 0 et c’est terminé, soit z 6= 0 et l’on a z ′ = (
1

z
z)z ′ = 1

z
(zz ′) = 1

z
0 = 0.

Cette propriété, qui est triviale dans R et dans C, n’est pas vraie dans certains ensembles. Par
exemple, vous verrez en MT23, que l’on peut avoir deux matrices non nulles dont le produit est
nul !
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8.1.3 Formule du binôme de Newton

Exercices :
Exercice A.1.4

Proposition 8.1.2. Pour tous nombres complexes z et z ′ et pour tout entier n ≥ 2, on a

(z + z ′)n = zn +C 1
n zn−1z ′+ . . .+C k

n zn−k z ′k + . . .+C n−1
n zz ′n−1 + z ′n . (8.1.1)

Démonstration - La formule se démontre par récurrence.
– Elle est vraie pour n = 2 puisque (z + z ′)2 = z2 +2zz ′+ z ′2 et que C 1

2 = 2.
– Supposans la vraie pour n −1, c’est-à-dire supposons que

(z + z ′)n−1 = zn−1 + . . .+C p
n−1zn−1−p z ′p + . . .+ z ′n−1.

On en déduit que

(z + z ′)n = (z + z ′)(z + z ′)n−1 = z(z + z ′)n−1 + z ′(z + z ′)n−1

= z(zn−1 + . . .+C k
n−1zn−1−k z ′k + . . .+ z ′n−1)+

+z ′(zn−1 + . . .+C k−1
n−1zn−1−(k−1)z ′k−1 + . . .+ z ′n−1)

= zn + . . .+ (C k
n−1 +C k−1

n−1)zn−k z ′k + . . .+ z ′n .



Sommaire
Concepts

Exemples
Exercices

Documents

Î précédent section N suivant Ï

ÎÎ 8

Formule du
binôme de

Newton

Calculons, pour 1 ≤ k ≤ n −1, la somme :

C k
n−1 +C k−1

n−1 = (n −1)!

k ! (n −1−k)!
+ (n −1)!

(k −1)! (n −1−k +1)!

= (n −1)!

k ! (n −k)!
((n −k)+k) =C k

n (8.1.2)

d’où découle le résultat annoncé.
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8.1.4 Conjugué et module d’un nombre complexe

Exercices :
Exercice A.1.5

Définition 8.1.2. Soit z = x + i y un nombre complexe, alors
– le nombre complexe x − i y s’appelle le conjugué de z et se note z̄ ,
– le nombre réel

√
x2 + y2 s’appelle le module de z et se note |z |.

Voici un résumé des principales propriétés des conjugués et des modules :

– z̄ = z, (z1 + z2) = z̄1 + z̄2, z1z2 = z̄1 z̄2, ∀z 6= 0,

(
1

z

)
= 1

z̄
,

– |z|2 = zz̄, |z| = |z̄|, |zz ′| = |z||z ′|,
∣∣∣∣1

z

∣∣∣∣= 1

|z| ,
– Re z = 1

2 (z + z̄), Im z = 1
2i (z − z̄), |z + z ′|2 = |z|2 +2Re(zz̄ ′)+|z ′|2,

– z = 0 ⇔ |z| = 0 et ∀z 6= 0,
1

z
= z̄

|z|2 .

Démontrons quelques-unes de ces propriétés (vérifier les autres pour être sûr de bien les mani-
puler) :
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– Tout d’abord, pour z = x + i y (6= 0), nous avons

(
1

z

)
= 1

z̄
:

1

z
= 1

x + i y
= x − i y

(x + i y)(x − i y)
= x

x2 + y2 − i
y

x2 + y2 ,

1

z̄
= 1

x − i y
= x + i y

(x + i y)(x − i y)
= x

x2 + y2 + i
y

x2 + y2 .

– De même, si z 6= 0, on a

∣∣∣∣1

z

∣∣∣∣= 1

|z| puisque

∣∣∣∣1

z

∣∣∣∣2

=
(

x

x2 + y2

)2

+
(

y

x2 + y2

)2

= 1

x2 + y2 et

(
1

|z|
)2

= 1

x2 + y2

– Et enfin le calcul de |z + z ′|2 s’obtient par

|z + z ′|2 = (z + z ′)(z̄ + z̄ ′) = zz̄ + z ′ z̄ + zz̄ ′+ z ′ z̄ ′

Or,
zz̄ ′ = z̄z ′

d’où
z ′ z̄ + zz̄ ′ = 2Re

(
zz̄ ′)

de plus
zz̄ = |z|2, z ′ z̄ ′ = |z ′|2,

de sorte que l’on a bien :
|z + z ′|2 = |z|2 +2Re(zz̄ ′)+|z ′|2.
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8.1.5 Inégalité triangulaire

Exercices :
Exercice A.1.6

Cours :
Nombre complexe - conjugué et
module

Proposition 8.1.3. Pour tous nombres complexes z et z ′, on a
– |Re z| ≤ |z| et | Im z| ≤ |z|,
– |z + z ′| ≤ |z|+ |z ′| (inégalité triangulaire)
– ||z|− |z ′|| ≤ |z − z ′|.

Démonstration - Cette démonstration utilise les points du paragraphe référencé.
– Si z = x + i y , alors |z|2 = x2 + y2, |Re z|2 = (Re z)2 = x2 et | Im z|2 = (Im z)2 = y2, ce qui donne

le résultat puisque :
∀a ∈R+, ∀b ∈R+, (a2 ≤ b2) ⇔ (a ≤ b).

– De même, l’inégalité triangulaire est équivalente à

|z + z ′|2 ≤ (|z|+ |z ′|)2.
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Inégalité
triangulaire

Or
(|z|+ |z ′|)2 −|z + z ′|2 = |z|2 +2|z||z ′|+ |z ′|2

−(|z|2 +2Re(zz̄ ′)+|z ′|2)
= 2(|z||z̄ ′|−Re(zz̄ ′))
= 2(|zz̄ ′|−Re(zz̄ ′)).

La dernière quantité est positive ou nulle d’après les propriétés des complexes, d’où le ré-
sultat.

– La troisième est obtenue en appliquant l’inégalité triangulaire successivement à

z = (z − z ′)+ z ′ et z ′ = (z ′− z)+ z.

Elle vous est laissée à titre d’exercice.
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8.1.6 Argument d’un nombre complexe

Exercices :
Exercice A.1.7

Les propriétés des fonctions trigonométriques cosinus et sinus, nous permettent d’affirmer
que, étant donnés deux nombres réels a et b vérifiant a2 +b2 = 1, il existe un angle θ tel que

cosθ = a et sinθ = b. (8.1.3)

Nous savons aussi que :

((cosθ = cosφ) et (sinθ = sinφ)) ⇔ (θ =φ+2kπ, k ∈Z),

on dit alors que θ est congru àφmodulo 2π et on le note θ ≡φ [2π].

Autrement dit, l’angle θ défini par les équations (8.1.3) n’est défini quà 2kπ près.

Soit maintenant z = x + i y , un nombre complexe non nul, alors on peut l’écrire

z = |z|( x

|z| + i
y

|z| ).

Il existe un θ (défini à 2kπ près) tel que :

cosθ = x

|z| et sinθ = y

|z| puisque

(
x

|z|
)2

+
(

y

|z|
)2

= 1.
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Ceci nous conduit à la définition

Définition 8.1.3. Pour tout nombre complexe z différent de 0 le nombre réel θ, défini à 2kπ
près, tel que z = |z|(cosθ+ i sinθ) s’appelle l’argument de z et se note arg z .

Proposition 8.1.4. Pour tous nombres complexes z et z ′ non nuls on a

arg(zz ′) ≡ arg z +arg z ′ [2π] et arg

(
1

z

)
≡−arg z [2π].

Démonstration - Soient

z = |z|(cosθ+ i sinθ) et z ′ = |z ′|(cosθ′+ i sinθ′),

alors
zz ′ = |zz ′|(cosθcosθ′− sinθ sinθ′+ i (sinθcosθ′+cosθ sinθ′))

= |zz ′|(cos(θ+θ′)+ i (sin(θ+θ′)) .

d’où la première relation.
La deuxième relation est donnée en exercice.

Remarque 8.1.1. Il est parfois utile de choisir une détermination particulière de l’argument. Cer-
tains auteurs choisissent l’unique θ appartenant à l’intervalle [0,2π[, d’autres celui de l’intervalle
]−π,+π]. Nous ferons le premier choix et noterons donc Arg z (∈ [0,2π[) cette détermination de
l’argument.
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8.1.7 Représentation graphique des nombres complexes

Exercices :
Exercice A.1.8

Nous avons identifié un nombre complexe z = x + i y à un élément (x, y) de R2, nous pouvons

donc représenter ce nombre complexe par un vecteur
−−→
OM de composantes x et y dans un repère

orthonormé (O,~u,~v). Le nombre z s’appelle l’affixe du point M . Puisque, dans le paragraphe pré-
cédent nous avons écrit z sous la forme trigonométrique z = |z|(cosθ+ i sinθ), les composantes

du vecteur
−−→
OM sont donc |z|cosθ et |z|sinθ, ce qui veut dire que |z| représente la longueur du

vecteur
−−→
OM et l’argument θ de z est une mesure de l’angle que fait

−−→
OM avec le vecteur unitaire ~u.

Il résulte des opérations que l’on a construites surR2 et que l’on a étendues àC que si z est associé

à
−−→
OM , si z ′ est associé à

−−−→
OM ′ alors z + z ′ est associé à

−−→
OM +−−−→

OM ′.
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FIGURE 8.1.1 – Représentation graphique d’un nombre complexe
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8.1.8 La formule de De Moivre

Exercices :
Exercice A.1.9

Proposition 8.1.5. Pour tout nombre réel θ et tout entier n ∈N, on a

(cosθ+ i sinθ)n = cosnθ+ i sinnθ.

Démonstration - Cette relation se démontre par récurrence.
– La formule est évidemment vraie pour n = 0 et n = 1.
– Supposons la vraie pour n −1, c’est-à-dire :

(cosθ+ i sinθ)n−1 = cos(n −1)θ+ i sin(n −1)θ,

et démontrons la pour n. Il vient :

(cosθ+ i sinθ)n = (cosθ+ i sinθ)n−1(cosθ+ i sinθ)

= (cos(n −1)θ+ i sin(n −1)θ)(cosθ+ i sinθ)

= (cos(n −1)θcosθ− sin(n −1)θ sinθ)

+i (cos(n −1)θ sinθ+ sin(n −1)θcosθ)

= cosnθ+ i sinnθ.
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8.1.9 Le théorème de d’Alembert - Gauss

Exercices :
Exercice A.1.10

Le théorème suivant, de d’Alembert - Gauss, montre que C permet de résoudre certaines
équations algébriques :

Théorème 8.1.1. Toute équation algébrique dans C, c’est-à-dire toute équation de la forme

an zn +an−1zn−1 + . . .+a0 = 0, (8.1.4)

où les coefficients ai , 0 ≤ i ≤ n sont des nombres complexes, n ≥ 1 et an 6= 0, admet au moins
une racine z dans C.

Corollaire 8.1.1. L’équation (8.1.4) admet exactement n racines dans C (en comptant chaque
racine multiple autant de fois que sa multiplicité).

La démonstration du théorème sort du cadre de ce cours, par contre on verra (au chapitre sur les
polynômes) que le corollaire est tout à fait accessible (si l’on admet le théorème, bien entendu).
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Le théorème
de d’Alembert -

Gauss

Par exemple, l’équation z2 + 1 = 0 (z = (x, y) et 1 = (1,0)) admet pour racines les nombres
complexes z1 = i et z2 =−i .

Les paragraphes suivants permettent d’obtenir les racines dans certains cas particuliers.
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8.1.10 Racines nièmes de l’unité

Exercices :
Exercice A.1.11
Exercice A.1.12
Exercice A.1.13

Étant donné un nombre complexe α non nul, on va chercher tous les nombres complexes z
possibles vérifiant zn = α. Ces nombres complexes seront appelés les racines nièmes de α. On
démontre que tout nombre complexe non nul admet exactement n racines nièmes.

Proposition 8.1.6. Soit n ∈N tel que n ≥ 2 et α ∈C non nul. Alors

(zn =α) ⇔
(
|z| = n

√
|α| et Arg z = Argα

n
+ 2kπ

n
, où 0 ≤ k ≤ n −1

)
.

Démonstration
Pour la notation Arg z, voir la remarque 8.1.1.

a/ (⇒) Si zn = α, alors |z|n = |zn | = |α|, d’où |z| = n
p|α| et aussi Arg zn = Arg α, ce qui donne

(proposition 8.1.4) nArg z ≡ Arg α [2π]. Il existe donc k ∈ Z tel que nArg z = Arg α+2kπ. Les in-
égalités

0 ≤ Arg z < 2π et 0 ≤ Arg α< 2π,
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donnent aisément −1 < k < n, d’où le résultat.
b/ (⇐) Supposons les relations de droite vérifiées, alors

cos(nArg z) = cosArgα, sin(nArg z) = sinArgα

et d’après la formule de De Moivre, il vient

zn = |z|n(cosArg z + i sinArg z)n

= |α|(cosnArg z + i sinnArg z)
= |α|(cosArgα+ i sinArgα) =α.

Un cas particulier important est celui des racines nièmes de l’unité. Elles sont solution de zn =
1 et correspondent à α= 1. On obtient donc |z| = 1 et Arg z = 0

n + 2kπ
n ,0 ≤ k ≤ n −1, soit les racines

suivantes :

zk = cos
2kπ

n
+ i sin

2kπ

n
, k = 0,1, . . . ,n −1.

Les racines de l’unité étant de module 1 sont représentées graphiquement sur le cercle de rayon
1 et de centre O.

Remarque importante - La définition des racines d’un nombre complexe est une extension
stricte du cas réel. Si a ∈ R est strictement positif, on appelle habituellement racine carrée de a
le nombre positif r tel que r 2 = a. En fait, si l’on note par

p
a ce nombre r , le nombre r ′ = −pa

a aussi son carré égal à a, donc est une racine de a au sens de la définition ci-dessus. C’est par
convention, que l’on dit que "dans R, le nombre positif

p
a est la racine de a", même si, "dans C il

admet deux racines, les nombres
p

a et (−pa)", toutes deux réelles !

Si a ∈ C (non réel), alors
p

a n’a pas de sens puisque le nombre complexe a a deux racines
carrées et qu’il n’existe pas dans ce cas de convention pour privilégier l’une ou l’autre.



Sommaire
Concepts

Exemples
Exercices

Documents

Î précédent section N suivant Ï

22 ÏÏ

8.1.11 Racines d’une équation du second degré

Exercices :
Exercice A.1.14
Exercice A.1.15

Soient a,b,c trois nombres complexes, on suppose a 6= 0, on recherche les nombres com-
plexes z qui vérifient az2 +bz + c = 0. Ceci va généraliser ce que l’on sait faire lorsque les coeffi-
cients a,b,c sont réels. On peut d’ailleurs faire un raisonnement semblable.

az2 +bz + c = a

(
z + b

2a

)2

+ c − b2

4a

= a

((
z + b

2a

)2

− b2 −4ac

4a2

)

On définit le nombre complexe ∆= b2 −4ac.

Si ∆= 0, alors

az2 +bz + c = a

(
z + b

2a

)2

ce qui implique que
−b

2a
est racine double de l’équation.
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Si ∆ 6= 0, si on note r0 et r1 les deux racines carrées (complexes) de ∆, alors
r0

2a
,

r1

2a
sont les

deux racines carrées de
b2 −4ac

4a2 , on a donc :

az2 +bz + c = 0 ⇔
(

z + b

2a

)2

= ∆

4a2

⇔
((

z + b

2a

)
= r0

2a
ou

(
z + b

2a

)
= r1

2a

)
⇔

(
z = −b + r0

2a
ou z = −b + r1

2a

)
Montrer en exercice que dans le cas a,b,c réels, on retrouve les formules que vous connaissez.
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8.1.12 Introduction à l’exponentielle complexe

Exercices :
Exercice A.1.16
Exercice A.1.17

Il est commode de poser
e iθ = cosθ+ i sinθ

Cette notation dite "exponentielle complexe", a priori curieuse, est justifiée par le fait qu’elle en-
traîne les règles opératoires qui rappellent les fonctions de l’exponentielle réelle. En effet, vous
montrerez en exercice que

e iθ1 e iθ2 = e i (θ1+θ2), e i 0 = 1,
1

e iθ
= e−iθ.

Remarquons que

e iθ = (cosθ+ i sinθ) = cosθ− i sinθ = cos(−θ)+ i sin(−θ) = e−iθ.

Cette notation permet d’écrire un nombre complexe donné par son module ρ et son argument θ
sous la forme simplifiée

z = ρe iθ.
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Ainsi la formule de De Moivre s’écrit

zn = (ρe iθ)n = ρne i nθ, n ∈N.

Les formules d’Euler expriment cosθ et sinθ à l’aide de l’exponentielle complexe :

cosθ = e iθ+e−iθ

2
, sinθ = e iθ−e−iθ

2i
.

Attention ! e iθ1 = e iθ2 n’implique pas que θ1 = θ2 mais que θ1 = θ2 +2kπ, k ∈Z.
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8.1.13 Application au calcul trigonométrique

Exercices :
Exercice A.1.18

Cours :
Exponentielle complexe - définition

L’utilisation directe de la formule de De Moivre permet d’exprimer cosnθ et sinnθ en fonction
des puissances de cosθ et sinθ, lorsque l’on utilise la formule du binôme de Newton. Par exemple,
on a (cosθ+ i sinθ)3 = cos3θ+ i sin3θ, et la formule du binôme de Newton donne

(cosθ+ i sinθ)3 = cos3θ+3i cos2θ sinθ−3cosθ sin2θ− i sin3θ,

d’où {
cos3θ = cos3θ−3cosθ sin2θ

sin3θ = 3cos2θ sinθ− sin3θ

Mais ce qui est le plus utile c’est de pouvoir exprimer les puissances de cosθ et sinθ en expression
linéaire de coskθ et sinkθ, par exemple pour pouvoir les intégrer (voir chapitre sur les intégrales).
On peut alors utiliser l’exponentielle complexe (voir le paragraphe référencé). Ainsi

cosn θ = 1

2n (e iθ+e−iθ)n , sinn θ = 1

(2i )n (e iθ−e−iθ)n .

On développe alors par le binôme de Newton et on regroupe les termes e i kθ et e−i kθ.
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Illustrons par un exemple. Choisissons n = 4 et appliquons la méthode précédente :

cos4θ = 1

24 ((e iθ+e−iθ)4

= 1

16
(e i 4θ+4e i 2θ+6+4e−i 2θ+e−i 4θ)

= 1

16
(2cos4θ+8cos2θ+6) = 1

8
cos4θ+ 1

2
cos2θ+ 3

8
.
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8.2 Généralités sur les polynômes

8.2.1 Définition des polynômes à coefficients réels ou complexes . . . 29
8.2.2 Somme, produit, conjugué de polynômes . . . . . . . . . . . . . . . 32
8.2.3 Division euclidienne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.2.4 Division suivant les puissances croissantes . . . . . . . . . . . . . . 38
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8.2.1 Définition des polynômes à coefficients réels ou complexes

Exercices :
Exercice A.1.19

Documents :
Document C.1.1

Définition 8.2.1. On appelle polynôme ou fonction polynomiale à coefficients dans R (ou C)
une fonction A définie sur R (ou C), qui est soit nulle, soit de la forme

∀x ∈R (ouC), A(x) = a0 +a1x +·· ·+am−1xm−1 +am xm (8.2.1)

avec am 6= 0. Les éléments (ai )0≤i≤m ∈R (ou C) sont appelés coefficients du polynôme A. L’en-
tier m s’appelle le degré de A et se note deg(A).
On appelle monôme tout polynôme de la forme

αxk , α ∈R (ouC), k ∈N. (8.2.2)

Un polynôme est donc une somme de monômes.

Lorsque l’on a besoin des coefficients de A pour des indices supérieurs à m on pose par
convention

∀i > m, ai = 0.
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Cette convention permet par exemple, de définir de manière commode la somme de deux poly-
nômes. Le degré du polynôme nul n’est pas défini, puisque tous les coefficients de ce polynôme
sont nuls. Nous verrons que cela oblige dans beaucoup d’énoncés de théorèmes, à distinguer les
cas polynôme nul ou non nul. Pour éviter cela, on peut convenir que le polynôme nul est de degré
−∞. Nous ne le ferons pas mais nous explicitons cette convention dans le document référencé.

Il est clair qu’une fonction polynomiale est parfaitement définie dès que l’on connaît ses co-
efficients. À un jeu de coefficients, (ai )0≤i≤m ∈ R (ou C), correspond une et une seule fonction
polynomiale. La réciproque par contre n’est pas évidente d’où la définition suivante :

Définition 8.2.2. Deux polynômes A et B définis par

A(x) = a0 +a1x +·· ·+an−1xn−1 +am xm

B(x) = b0 +b1x +·· ·+bm−1xm−1 +bn xn

sont égaux si ai = bi ∀i ∈N.

Nous montrerons plus loin, que cette définition de l’égalité des polynômes est équivalente à
A(x) = B(x) ∀x ∈R, qui est en fait égalité entre deux fonctions (polynomiales).

Notation 8.2.1. On désigne par X le monôme défini par X (x) = x et par α le polynôme constant
A(x) =α où α est un scalaire.

Le polynôme A défini par (8.2.1) peut donc s’écrire :

A = am X m +am−1X m−1 + . . .+a1X +a0. (8.2.3)
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Sous cette forme, on peut dire que A est un "polynôme à une indéterminée X " (sa valeur en un
point x est obtenue en donnant à X la valeur x).

Notation 8.2.2. Si l’on note K le corps R (ou C), alors on notera K[X ] l’ensemble des polynômes à
coefficients dans K. On notera aussi Kn[X ] l’ensemble des polynômes de degré inférieur ou égal
à n auquel on rajoute le polynôme nul.
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8.2.2 Somme, produit, conjugué de polynômes

Exercices :
Exercice A.1.20
Exercice A.1.21
Exercice A.1.22
Exercice A.1.23

Nous allons définir sur l’ensemble des polynômes deux opérations l’addition et la multiplica-
tion. La définition sera simple. Elle se fera par restriction à l’ensemble des fonctions polynomiales,
de l’addition et de la multiplication des fonctions de R (ou de C) dans lui-même. Rappelons ces
deux définitions (K =R ou C) :

∀x ∈ K, ( f +g )(x)
Déf= f (x)+g (x), ( f g )(x)

Déf= f (x)g (x).

Soient deux polynômes A ∈ Km[X ] et B ∈ Kn[X ] définis par :

A = a0 +a1X +·· ·+am−1X m−1 +am X m , (8.2.4)

B = b0 +b1X +·· ·+bn−1X n−1 +bn X n .

Définition 8.2.3. La somme A +B est le polynôme C dont les coefficients sont donnés par ck =
ak +bk pour k = 0, . . . , max(m,n).
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Cette définition entraîne bien que (A+B)(x) = A(x)+B(x), quel que soit x. La proposition suivante
est fondamentale pour les applications. Vous verrez, dans le document référencé, l’utilisation pos-
sible de la convention du degré "−∞" du polynôme nul.

Proposition 8.2.1. Soient A et B deux polynômes non nuls de K[X ], tels que A +B est non nul
alors

deg(A+B) ≤ max(deg(A),deg(B)).

Démonstration - Supposons que m < n. Cela n’enlève rien à la généralité de la démonstration
puisque A et B jouent exactement le même rôle. Il vient alors :

A+B = (a0 +b0)+ (a1 +b1)X +·· ·+ (am +bm)X m +bm+1X m+1 +·· ·+bn X n .

Nous voyons qu’alors, deg(A+B) = n = max(deg(A),deg(B)).

Si maintenant m = n, il vient :

A+B = (a0 +b0)+ (a1 +b1)X +·· ·+ (an +bn)X n .

Si, de plus, an +bn = 0, alors deg(A+B) < n de sorte que la proposition est bien démontrée.

Définition 8.2.4. Le produit d’un polynôme par le polynôme nul est nul. Si A et B sont non
nuls, le produit AB est le polynôme C de coefficients ck , définis par : ck =∑k

i=0 ai bk−i .
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Proposition 8.2.2. Soient A et B deux polynômes non nuls. Alors, le polynôme produit AB
vérifie :

deg(AB) = deg(A)+deg(B).

Démonstration - Effectuons le produit des deux polynômes A et B . Il vient :

AB = ambn X m+n + (am−1bn +ambn−1)X m+n−1 +·· ·+ (a0b1 +a1b0)X +a0b0.

On obtient bien ainsi un polynôme de degré m+n. En effet, le coefficient de plus haut degré, soit
ambn , est non nul puisque am et bn sont tous deux différents de 0.

Définition 8.2.5. Soit A ∈C[X ], on appelle polynôme conjugué de A et on note Ā le polynôme
obtenu en conjuguant les coefficients de A.
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8.2.3 Division euclidienne

Exercices :
Exercice A.1.24
Exercice A.1.25
Exercice A.1.26

Exemples :

Exemple B.1.1

Définition 8.2.6. On dit que B ∈ Kn [X ] divise A ∈ Kn [X ] (ou que A est divisible par B ou que
B est un diviseur de A) s’il existe Q ∈ Kn[X ] tel que A = BQ.

Regarder en exemple la division de 2X 3−X 2−X +2 par X 2−1 qui vous permettra de comprendre
la justification théorique de la division de deux polynômes suivant les puissances décroissantes.

Théorème 8.2.1. Soient A,B ∈ K[X ], B non nul, alors il existe un unique couple de polynômes
(Q,R) tel que

A = BQ +R avec

{
degR < degB ,
ou R = 0.

(8.2.5)
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Démonstration - Notons

A = a0 +a1X + . . .+am X m , B = b0 +b1X + . . .+bn X n

1. Existence - La démonstration de l’existence d’au moins une décomposition de ce type est construc-
tive. Le procédé de construction qui va être décrit est l’algorithme d’Euclide (Comparer avec
l’exemple référencé).

– Étape 0. Si A = 0, l’identité A = 0×B +0 convient. Si deg(A) < deg(B), l’identité A = 0×B +
A, convient, le reste A étant alors effectivement de degré strictement inférieur à celui du
diviseur B . Nous pourrons donc supposer dorénavant que deg(A) ≥ deg(B).

– Étape 1 - Elle consiste à trouver un monôme Q1 tel que deg(A −BQ1)<degA. Pour ce faire,
on prend

Q1 = am

bn
X m−n , R1 = A−BQ1.

Alors, si R1 = 0 ou si deg(R1) < deg(B), on pose Q =Q1 et R = R1 et c’est terminé. Sinon
– Étape 2 - on recommence l’étape 1 en remplaçant A par R1. On obtient ainsi les polynômes

Q2 et R2 tels que deg(R1 −BQ2)<degR1 et R2 = R1 −BQ2 soit

R2 = A−BQ1 −BQ2 = A−B(Q1 +Q2).

Si R2 = 0 ou deg(R2) < deg(B), on pose Q = Q1 +Q2 et R = R2 et l’algorithme est terminé,
sinon on recommence l’étape 2 en remplaçant R1 par R2. Comme on obtient un polynôme
Rk dont le degré décroit strictement, l’algorithme se termine en un nombre fini p d’étapes
qui donnent R = Rp et Q =Q1 + . . .+Qp .

2. Unicité - Supposons que l’on ait deux décompositions

A = BQ +R avec degR < degB , A = BQ̂ + R̂ avec deg R̂ < degB
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alors par différence on obtient

0 = B(Q̂ −Q)+ R̂ −R soit R − R̂ = B(Q̂ −Q).

Si R = R̂ alors puisque B est non nul, on a Q = Q̂ (voir exercice A.1.21) et le résultat est établi. Si
R 6= R̂ alors on a simultanément

deg(R − R̂) ≤ max(degR,deg R̂) < degB

et
deg(R − R̂) = degB +deg(Q −Q̂) ≥ degB

ce qui est impossible.
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8.2.4 Division suivant les puissances croissantes

Exercices :
Exercice A.1.27

Exemples :

Exemple B.1.2

Regarder l’exemple qui va montrer la façon pratique de mener les calculs.

Théorème 8.2.2. Soient A et B deux polynômes tels que A 6= 0 et tels que le terme constant de B
ne soit pas nul. Alors quel que soit l’entier k ≥ 0, il existe un couple unique (Q,R) tel que

A = BQ +X k+1R, avec

{
ou bien Q = 0,
ou bien deg(Q) ≤ k

(8.2.6)

Démonstration - Elle repose sur la même démarche que la division euclidienne. La principale
différence consiste à ranger les termes des polynômes par ordre croissant de leurs degrés. L’algo-
rithme se termine lorsque le reste Ri peut s’écrire Ri (x) = xk+1R(x).
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8.3 Factorisation des polynômes

8.3.1 Polynômes irréductibles . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.3.2 Factorisation des polynômes de C[X ] . . . . . . . . . . . . . . . . . . 41
8.3.3 Factorisation des polynômes de R[X ] . . . . . . . . . . . . . . . . . . 44
8.3.4 Lien entre multiciplité des racines et dérivées . . . . . . . . . . . . 47

L’ensemble des polynômes muni de l’addition, de la multiplication et de la division eucli-
dienne, possède les propriétés de structure de Z, muni de ses addition, multiplication et divi-
sion euclidienne. Plus précisément, on peut construire sur K[X ] une arithmétique très proche
de l’arithmétique usuelle des entiers. Les théorèmes fondamentaux s’énoncent exactement de la
même manière.

La construction de cette arithmétique relève d’un cours d’algèbre. Nous nous contenterons
d’énoncer quelques définitions et de démontrer les théorèmes avec toujours en vue notre objec-
tif : apprendre à calculer des primitives de fractions rationnelles.
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8.3.1 Polynômes irréductibles

Exercices :
Exercice A.1.28

Définition 8.3.1. On dit qu’un polynôme P ∈ K[X ] est irréductible ou premier s’il admet
comme seuls diviseurs les polynômes constants ou proportionnels à P, c’est-à-dire α et βP
(α,β ∈ K∗).

Les polynômes irréductibles jouent le même rôle que les nombres premiers en arithmétique d’où
la dénomination de polynôme premier. L’irréductibilité dépend de K. Par exemple, dans R[X ]

– le polynôme X 2 −1 n’est pas irréductible car X 2 −1 = (X −1)(X +1),
– le polynôme X 2 +1 est irréductible.

Dans C[X ] le polynôme X 2 +1 = (X + i )(X − i )1 n’est pas irréductible.

Définition 8.3.2. Deux polynômes sont dits premiers entre eux s’ils admettent comme seuls
diviseurs communs les polynômes constants.

Par exemple, les polynômes A = X +a et B = X +b sont premiers entre eux si a 6= b. Les polynômes
A = X +a et B = X 2 +1 sont premiers entre eux quel que soit le réel a.
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8.3.2 Factorisation des polynômes de C[X ]

Exercices :
Exercice A.1.29
Exercice A.1.30

Proposition 8.3.1. A ∈ K[X ] est divisible par (X −r ) si et seulement si r est un zéro du polynôme
A c’est-à-dire A(r ) = 0.

Démonstration - D’après le théorème 8.2.1, on a :

A = (X − r )Q +R avec

{
deg(R) < deg(X − r ) = 1
ou R = 0

(8.3.1)

et donc R est un polynôme constant R = ρ tel que A(r ) = R(r ) = ρ. On obtient ainsi que

{A(r ) = 0} ⇐⇒ {R = 0}

ce qui est bien le résultat annoncé.

Le résultat fondamental suivant (non démontré) permettra de démontrer le théorème, qui
suit, sur la factorisation dans C.
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Théorème 8.3.1 (Théorème de d’Alembert). Tout polynôme de C[X ], de degré supérieur ou
égal à un, a un zéro, au moins, dans C.

Théorème 8.3.2. Tout polynôme A ∈C[X ] avec degA = n ≥ 1 peut se mettre sous la forme

A =α(X − z1)(X − z2) . . . (X − zn) (8.3.2)

où α, z1, . . . , zn ∈C.

Démonstration - Si n = 1, alors A =αX +β avec α 6= 0 puisque degA ≥ 1 et donc

A =α

(
X −

(
−β

α

))
.

La proposition est vraie pour n = 1, on va faire une démonstration par récurrence, supposons
donc le résultat vrai pour les polynômes de degré inférieur ou égal à n −1.

Soit maintenant un polynôme A de degré n alors, d’après le théorème de d’Alembert, A a au
moins un zéro z1 ∈C et donc (X −z1) divise A d’après la proposition 8.3.1, soit A = (X −z1)A1 avec
degA1 = n −1. On applique l’hypothèse de récurrence à A1 : A1 = α(X − z2)(X − z3) . . . (X − zn) et
on obtient A =α(X − z1)(X − z2) . . . (X − zn)

La constante α est évidemment le coefficient du terme de degré n de A. Les nombres z j ne
sont pas tous distincts, on peut donc les regrouper pour obtenir :

A =α(X − z1)n1 (X − z2)n2 . . . (X − zp )np (8.3.3)
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expression dans laquelle les z j sont tous distincts et n1 + . . .+np = n. On dit que les zi sont des
zéros d’ordre ni , c’est-à-dire des zéros tels que (X − zi )ni divise A mais pas (X − zi )ni+1.

Proposition 8.3.2.
– Les seuls polynômes premiers de C[X ] sont les polynômes constants et les polynômes de

degré 1.
– Un polynôme de degré n surC admet exactement n zéros (à condition de compter chacun

d’eux autant de fois que sa multiplicité).
– Deux polynômes A et B sont égaux si et seulement si A(x) = B(x) ∀x ∈C

Démonstration - Le seul résultat à démontrer est le dernier.

A = B ⇒ A(x) = B(x) ∀x ∈C.

Réciproquement

A 6= B ⇒ A−B 6= 0 ⇒ deg(A−B) = p

⇒ A−B admet exactement p racines dans C⇒∃x ∈C, (A−B)(x) 6= 0

Remarquons que cette dernière propriété montre bien l’équivalence sur R ou C, de la notion
de polynôme, conçu comme suite de coefficients et de la notion de fonction polynomiale.
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8.3.3 Factorisation des polynômes de R[X ]

Exercices :
Exercice A.1.31
Exercice A.1.32

Cours :
Factorisation dans le corps des
complexes

Puisque R ⊂ C, un polynôme de R[X ] peut toujours être considéré comme un polynôme de
C[X ] et donc tous les résultats du paragraphe référencé sont applicables. Le but de ce paragraphe
est de factoriser en restant dans R[X ].

Proposition 8.3.3. Soit A ∈ R[X ], si A admet un zéro ρ non réel, de multiplicité m, il admet
aussi ρ̄ comme zéro de même multiplicité et est divisible par S = X 2 −βX +γ où β = 2Reρ et
γ= |ρ|2.

Démonstration - Si A admet un zéro ρ non réel, de multiplicité m, alors

A = (X −ρ)mQ où Q(ρ) 6= 0.

Prenons les conjugués des deux membres (le conjugué Ā de A s’obtient, par définition,en conju-
guant les coefficients de A qui sont réels donc Ā = A)

A = Ā = (X − ρ̄)mQ̄ avec Q̄(ρ̄) =Q(ρ) 6= 0.
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Ainsi ρ̄ est aussi un zéro d’ordre m de A et d’après (8.3.3)

S = (X −ρ)m(X − ρ̄)m = (X 2 −βX +γ)m

est un diviseur de A. Notons que S étant à coefficients réels le quotient de A par S est aussi à
coefficients réels.

Théorème 8.3.3. Soit A ∈R[X ], alors A peut se factoriser sous la forme

A =α(X − r1)m1 . . . (X − rp )mp (X 2 −β1X +γ1)n1 . . . (X 2 −βq X +γq )nq (8.3.4)

où les ri sont les racines réelles distinctes et où si l’on note (r ′
k , r̄ ′

k ) les couples distincts de racines
conjuguées complexes non réelles, X 2−βk X +γk = (X −r ′

k )(X − r̄ ′
k ). On a donc βk = 2Reer ′

k et
γ= |r ′

k |2.

Démonstration - Dans le paragraphe référencé, on a obtenu la factorisation dans C[X ] suivante

A =α(X − z1)n1 (X − z2)n2 . . . (X − zp )np .

Dans l’équation 8.3.4, les ri sont donc des zéros réels de A de multiplicité mi et les r ′
k , r̄ ′

k des
zéros complexes non réels de multiplicité nk , par suite

m1 + . . .+mp +2(n1 + . . .+nq ) = n.
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Proposition 8.3.4. Les seuls polynômes irréductibles de R[X ] sont les polynômes constants, les
polynômes du premier degré et les polynômes de degré 2 n’ayant pas de racines réelles : αX 2 −
βX +γ tels que β2 −4αγ< 0.

La démonstration découle de manière évidente du résultat précédent. Mais, attention, un poly-
nôme à coefficients réels peut avoir une décomposition dans R sans avoir de zéros réels.

X 4 +4 = (X 2 −2X +2)(X 2 +2X +2).
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8.3.4 Lien entre multiciplité des racines et dérivées

Exercices :
Exercice A.1.33

Cours :
Factorisation dans le corps des réels

Théorème 8.3.4. Soient A ∈R[X ] et m ≤ deg(A). Alors, r ∈R est un zéro de multiplicité m de A
si et seulement si

A(r ) = A′(r ) = A′′(r ) = . . . = A(m−1)(r ) = 0 et A(m)(r ) 6= 0. (8.3.5)

où A(k) désigne la dérivée d’ordre k de la fonction polynôme x 7→ A(x).

Démonstration -
– Condition nécessaire. Par définition r ∈ R est un zéro de A de multiplicité m est équivalent

à A = (X − r )mQ, avec Q(r ) 6= 0.
On va démontrer par récurrence que cette propriété implique (8.3.5)
Si m = 1, A(r ) = (r − r )Q(r ) = 0, A′(x) = (x − r )Q ′(x)+Q(x), A′(r ) =Q(r ) 6= 0
Supposons que{

A(x) = (x − r )mQ(x)
Q(r ) 6= 0

⇒ A(r ) = A′(r ) = . . . = A(m−1)(r ) = 0 et A(m)(r ) 6= 0
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On va montrer la propriété à l’ordre m +1 :{
A(x) = (x − r )m+1Q(x)
Q(r ) 6= 0

⇒
{

A(r ) = 0
A′(x) = (x − r )mQ1(x)

On a Q1(x) = (m+1)Q(x)+(x−r )Q ′(x) donc Q1(r ) = (m+1)Q(r ) 6= 0, on peut donc appliquer
l’hypothèse de récurrence au polynôme A′, on obtient

A′(r ) = . . . = (A′)(m−1)(r ) = 0,(A′)(m)(r ) 6= 0 ⇔
A′(r ) = . . . = A(m)(r ) = 0, A(m+1)(r ) 6= 0,

ce qui termine la démonstration.
– Condition suffisante. Utilisons la formule de Taylor pour les polynômes (vue au chapitre 6).

Alors si n est le degré de A on a

A(x) = A(r )+ (x − r )A′(r )+ (x − r )2

2!
A′′(r )+·· ·+ (x − r )n

n!
A(n)(r ).

Puisque A(r ) = A′(r ) = A′′(r ) = . . . = A(m−1)(r ) = 0, on a

A(x) = (x − r )m

m!
A(m)(r )+·· ·+ (x − r )n

n!
A(n)(r ) (8.3.6)

= (x − r )m
(

1

m!
A(m)(r )+·· ·+ (x − r )n−m

n!
A(n)(r )

)
(8.3.7)

On a donc A = (X − r )mQ, avec Q(r ) = 1
m! A(m)(r ) 6= 0, r est donc zéro de multiplicité m de

A.
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8.4 Fractions rationnelles

8.4.1 Définition des fractions rationnelles . . . . . . . . . . . . . . . . . . . 50
8.4.2 Partie entière d’une fraction rationnelle . . . . . . . . . . . . . . . . . 52
8.4.3 Décomposition en éléments simples dans C(X ) . . . . . . . . . . . 54
8.4.4 Décomposition en éléments simples dans R(X ) . . . . . . . . . . . 58
8.4.5 Calcul pratique de la décomposition en éléments simples dans R(X ) 60
8.4.6 Calcul pratique de la décomposition en éléments simples dans C(X ) 64



Sommaire
Concepts

Exemples
Exercices

Documents

section N suivant Ï

50 ÏÏ

8.4.1 Définition des fractions rationnelles

Exercices :
Exercice A.1.34

Les entiers naturels (sauf 0) n’ont pas d’opposé pour la loi d’addition. C’est ce qui a conduit à
la construction de Z, ensemble des entiers relatifs. Cet ensemble contient les entiers naturels n et
leurs opposés −n.

De même les entiers relatifs (sauf 1) n’ont pas d’inverses pour la loi de multiplication. C’est
pour cela qu’ont été construits les nombres rationnels (Q). Tout entier m de Z a un inverse dans
Q, 1/m.

Pour les polynômes, chaque polynôme P a un opposé −P , mais aucun d’eux, mis à part le
polynôme 1, n’a d’inverse pour la multiplication des polynômes. Les fractions rationnelles sont
construites afin que chaque polynôme P ait un inverse 1/P .

Notre objectif est de décomposer toute fraction rationnelle en une somme d’ éléments simples
dont on sait calculer les primitives, ce qui va utiliser la factorisation des polynômes. Mais avant
nous allons définir les fractions rationnelles.
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Définition 8.4.1. Soit P et Q deux fonctions polynomiales, on appelle fraction ou fonction
rationnelle, la fonction notée F dont le domaine de définition est {x ∈ K|Q(x) 6= 0} qui est définie

par F (x) = P (x)

Q(x)
.

On suppose que Q est non nul car, pour Q = 0, le domaine de définition de F est vide, ce qui
n’a aucun intérêt.

Soient P et Q deux polynômes de K[X ] s’ils ont un diviseur commun D ∈ K[X ], c’est-à-dire

P = DP1 et Q = DQ1, alors la fraction rationnelle
P

Q
est identifiable à la fraction rationnelle

P1

Q1
.

Désormais on ne considérera que des fractions irréductibles.

Notation 8.4.1. On notera K(X ) l’ensemble des fractions rationnelles dont le numérateur et le
dénominateur sont des polynômes de K[X ]. On définit ainsi les ensembles R(X ) et C(X ) puisque
l’on rappelle que K est soit le corps des nombres réels, soit le corps des nombres complexes.
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8.4.2 Partie entière d’une fraction rationnelle

Exercices :
Exercice A.1.35
Exercice A.1.36

Proposition 8.4.1. Soit F = P

Q
∈ K(X ) alors la décomposition

F = E + P0

Q
avec ou bien P0 = 0 ou bien degP0 < degQ (8.4.1)

est unique. On appelle E la partie entière de F et on note E = E (F ).

Démonstration -

Existence - Si degP < degQ alors (8.4.1) est immédiate avec E = 0, P0 = P . Sinon on peut
effectuer la division euclidienne de P par Q qui donne P = EQ +P0, d’où le résultat.

Unicité - Supposons que l’on a deux décompositions :

F = E + P0

Q
= Ê + P̂0

Q
.
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Si P̂0 6= P0, alors

E − Ê = P̂0 −P0

Q
avec deg(P̂0 −P0) < degQ

ce qui est une contradiction puisque Q ne peut pas diviser (P̂0 −P0) pour des raisons de degré.

Proposition 8.4.2. Soient deux fractions rationnelles F et F̂ alors

E (F + F̂ ) = E (F )+E (F̂ ).

La démonstration de cette proposition est faite en exercice.
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8.4.3 Décomposition en éléments simples dans C(X )

Exercices :
Exercice A.1.37

Cours :
Division - puissances croissantes

Définition 8.4.2. On dit que z est un pôle d’ordre p de la fraction irréductible F = P

Q
si z est un

zéro d’ordre p de Q.

Proposition 8.4.3. Si z est pôle d’ordre p de F = P

Q
∈ C(X ), on peut décomposer F de manière

unique sous la forme
P

Q
= α1

X − z
+ . . .+ αp

(X − z)p + P1

Q1
(8.4.2)

où la fraction rationnelle
P1

Q1
n’admet plus z comme pôle.

Démonstration -
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1. Existence. Nous pouvons écrire le dénominateur de F sous la forme

Q(x) = (x − z)pQ1(x) oùQ1(z) 6= 0.

Posons

y = x − z, P̃ (y) = P (y + z) = P (x),Q̃(y) =Q(y + z) =Q(x),Q̃1(y) =Q1(y + z) =Q1(x),

nous obtenons
P

Q
(x) = P (y + z)

Q(y + z)
= P̃ (y)

Q̃(y)
= P̃ (y)

y pQ̃1(y)

où Q̃1(0) =Q1(z) 6= 0. Nous pouvons donc faire la division de P̃ par Q̃1 suivant les puissances
croissantes, ce qui donne

P̃ (y) = (αp +αp−1 y +·· ·+α1 y p−1)Q̃1(y)+ y p P̃1(y)

d’où

P (x)

Q(x)
= P̃ (y)

y pQ̃1(y)
= αp

y p + αp−1

y p−1 + . . .+ α1

y
+ P̃1(y)

Q̃1(y)

= αp

(x − z)p + αp−1

(x − z)p−1 + . . .+ α1

(x − z)
+ P1(x)

Q1(x)

où l’on a noté P1(x) = P̃1(x − z).

2. Unicité. Supposons qu’il existe deux décompositions de la forme (8.4.2) :

P (x)

Q(x)
= α1

x − z
+ . . .+ αp

(x − z)p + P1(x)

Q1(x)
,
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P (x)

Q(x)
= α̂1

x − z
+ . . .+ α̂p

(x − z)p + P̂1(x)

Q̂1(x)
.

La factorisation Q(x) = (x − z)pQ1(x) étant unique on a Q1 = Q̂1. En écrivant l’égalité des
seconds membres des deux décompositions, puis en multipliant par (x − z)p et en faisant
x = z on obtient αp = α̂p . On continue alors de la même manière en multipliant par (x −
z)p−1 et en faisant x = z etc. . . ce qui donne l’égalité αk = α̂k ∀k = p−1, . . . ,1. Il ne reste plus
que deux fractions ayant le même dénominateur soit P1 = P̂1.

Cette proposition permet de démontrer aisément le théorème fondamental suivant.

Théorème 8.4.1. Soit F = P

Q
∈C(X ) irréductible, alors si Q admet la factorisation

Q =α(X − z1)n1 (X − z2)n2 . . . (X − zp )np

alors F admet la décomposition unique en éléments simples suivante

P

Q
= E + a11

X − z1
+ a12

(X − z1)2 + . . .+ a1n1

(X − z1)n1

+ a21

X − z2
+ a22

(X − z2)2 + . . .+ a2n2

(X − z2)n2

+ . . .

+ ap1

X − zp
+ ap2

(X − zp )2 + . . .+
apnp

(X − zp )np

(8.4.3)

où les ai j sont des nombres complexes.
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La démonstration du théorème 8.4.3 fournit déjà une méthode systématique pour calculer les
coefficients ai j . Mais la détermination pratique de ces coefficients est réalisée grâce à l’utilisation
des propriétés de la fonction rationnelle associée (comportement à l’infini, valeur en des points
particuliers, conjugaison de nombres complexes, . . . ), ce que nous verrons dans le paragraphe
"Calcul pratique de la décomposition en éléments simples).
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8.4.4 Décomposition en éléments simples dans R(X )

Cours :
Fractions rationnelles - Décomposition
dans les complexes

Puisqu’une fraction rationnelle à coefficients réels peut être considérée comme une fraction
rationnelle à coefficients complexes, on peut obtenir la décomposition (8.4.3) du paragraphe ré-
férencé. D’autre part, si z est un pôle réel de la fraction, les coefficients des éléments simples
correspondants sont aussi réels (car obtenus comme coefficients du quotient d’une division sui-
vant les puissances croissantes de polynômes à coefficients réels). Par contre, si z est un pôle
complexe, z̄ est aussi un pôle de même ordre (proposition 8.3.3), par suite dans la décomposition
(8.4.3) on a autant de termes correspondants à z que ceux correspondants à z̄. L’argumentation de
la proposition 8.3.3 montre d’autre part que leurs coefficients sont conjugués les uns des autres.
La démonstration (admise) nécessite en fait le recours aux théorèmes de l’arithmétique des poly-
nômes.
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Théorème 8.4.2. Soit F = P

Q
∈R(X ) irréductible, alors si Q admet la factorisation

Q =α(X − r1)m1 . . . (X − rp )mp (X 2 −β1X +γ1)n1 . . . (X 2 −βq X +γq )nq

où les polynômes X 2 −βk X +γk n’ont pas de racines réelles alors F admet la décomposition
unique en éléments simples suivante

P

Q
= E + a11

X − r1
+ a12

(X − r1)2 + . . .+ a1m1

(X − r1)m1
+·· ·

+ · · ·
+ ap1

X − rp
+ ap2

(X − rp )2 + . . .+
apmp

(X − rp )mp
(8.4.4)

+ µ11X +ν11

X 2 −β1X +γ1
+ µ12X +ν12

(X 2 −β1X +γ1)2 + . . .+ µ1n1 X +ν1n1

(X 2 −β1X +γ1)n1

+ ·· ·
+ µq1X +νq1

X 2 −βq X +γq
+ µq2X +νq2

(X 2 −βq X +γq )2 + . . .+
µqnq X +νqnq

(X 2 −βq X +γq )nq

où les ai j , µkl et νkl sont des nombres réels.
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8.4.5 Calcul pratique de la décomposition en éléments simples dans R(X )

Exercices :
Exercice A.1.38
Exercice A.1.39

Nous allons présenter ici plusieurs exemples de calcul des coefficients du développement.

- Pôles réels simples

Soit à calculer la décomposition en éléments simples de la fraction rationnelle 1/(X 2−1). Cette
fraction admet deux pôles simples 1 et −1. Elle admet donc une décomposition de la forme :

1

x2 −1
= A

x −1
+ B

x +1
(8.4.5)

Une méthode simple permet d’avoir rapidement A et B . Elle consiste à multiplier les deux membres
de l’identité ci-dessus par x −1, ce qui donne :

1

x +1
= A+B

x −1

x +1
(8.4.6)

puis à ‘faire’ x = 1, ce qui aboutit à A = 1/2. De même en multipliant maintenant l’identité (8.4.5)
par x +1, on obtient :

1

x −1
= A

x +1

x −1
+B (8.4.7)



Sommaire
Concepts

Exemples
Exercices

Documents

Î précédent section N suivant Ï

ÎÎ 61 ÏÏ

Calcul pratique
de la

décomposition
en éléments

simples dans
R(X )

Faisons alors x =−1, nous obtenons aussitôt B =−1/2, d’où :

1

x2 −1
= 1

2

{
1

x −1
− 1

x +1

}
(8.4.8)

- Pôles réels

Soit à calculer la décomposition en éléments simples de la fraction rationnelle

1

X 2(X 2 −1)
. (8.4.9)

Cette fraction admet deux pôles simples 1 et −1 et un pôle double 0. Elle admet donc une décom-
position de la forme :

1

x2(x2 −1)
= A

x −1
+ B

x +1
+ C

x
+ D

x2 . (8.4.10)

Nous déterminons A et B exactement comme précédemment. Il vient successivement :

1

x2(x +1)
= A+ (x −1)

(
B

x +1
+ C

x
+ D

x2

)
. (8.4.11)

ce qui donne pour x = 1, A = 1/2, puis :

1

x2(x −1)
= B + (x +1)

(
A

x −1
+ C

x
+ D

x2

)
. (8.4.12)

ce qui donne pour x = −1, B = −1/2. Nous obtenons D , par la même méthode, en multipliant
cette fois-ci par x2. Il vient alors :

1

(x2 −1)
= x2

(
A

x −1
+ B

x +1

)
+C x +D (8.4.13)
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d’où en faisant x = 0, la valeur de D , soit D =−1.

Pour calculer maintenant C , il faut procéder différemment. Nous pouvons donner à x une
valeur quelconque, puis la reporter dans (8.4.10). En substituant en outre à A, B et D , leurs va-
leurs, nous obtenons une équation où la seule inconnue est C . Il est évidemment recommandé
de choisir la valeur de x de manière à rendre les calculs aussi simples que possible. Les valeurs
privilégiées sont en général x = 0, x = 1 et x = −1. Ici toutes les trois sont des pôles et ont donc
déjà été utilisées. Plutôt que de prendre une valeur de x, telle que x = 2 par exemple, on a intérêt à
faire tendre x vers +∞. Précisons. Nous multiplions les deux membres de (8.4.10) par x. Il vient :

1

x(x2 −1)
= A

x

x −1
+B

x

x +1
+C +D

1

x
(8.4.14)

puis faisons tendre x vers +∞. Il vient :

0 = A+B +C , (8.4.15)

ce qui donne C = 0, d’où la décomposition cherchée :

1

x2(x2 −1)
= 1

2

(
1

x −1
− 1

x +1

)
− 1

x2 . (8.4.16)

Facteur irréductible du second degré

Soit à calculer la décomposition en éléments simples de

1

X (X 2 +1)
. (8.4.17)
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Cette fraction admet un pôle réel simple 0 et deux pôles complexes simples i et −i . Elle admet
donc, sur R, une décomposition de la forme :

1

x(x2 +1)
= A

x
+ B x +C

x2 +1
. (8.4.18)

Nous déterminons A exactement comme précédemment. Nous multiplions (8.4.18) par x. Il vient :

1

x2 +1
= A+ B x2 +C x

x2 +1
.

de sorte qu’en faisant x = 0, nous obtenons A = 1.

Pour déterminer B et C , nous faisons x = 1 puis x =−1 dans l’identité (8.4.18). Il vient ainsi

pour x = 1,
1

2
= A+ B +C

2
, pour x =−1, −1

2
=−A+ −B +C

2
,

d’où découle aussitôt B =−1 et C = 0.
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8.4.6 Calcul pratique de la décomposition en éléments simples dans C(X )

Exercices :
Exercice A.1.40
Exercice A.1.41

F = X 4 +1

(X 2 +1)(X −1)2 .

Cette fraction rationnelle admet 4 pôles complexes i ,−i sont 2 pôles simples, 1 est pôle double

1. Ici, le degré du numérateur n’est pas strictement inférieur au degré du dénominateur. Aussi,
la division euclidienne donne

F = 1+2F1 où F1 = X 3 −X 2 +X

(X 2 +1)(X −1)2 .

La décomposition (8.4.3) donne alors

F1 = α

X + i
+ β

X − i
+ c

X −1
+ d

(X −1)2 , α,β,c,d ∈C. (8.4.19)

2. Comme précédemment on va calculer le coefficient du terme de plus haut degré associé
à un pôle quelconque, par exemple, le coefficient d . Elle consiste à multiplier les deux
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membres de (8.4.19) par (x −1)2, puis à donner à x la valeur 1. Nous obtenons ainsi

13 −12 +1

(12 +1)
= d , d’où d = 1

2

tous les autres termes du membre de droite étant nuls.

De même en multipliant les deux membres de (8.4.19) par (x−i ), puis en faisant x = i , nous
obtenons

i 3 − i 2 + i

(i + i )(i −1)2 =β, d’où β= 1

4
.

3. Comme F1 est réelle et comme les coefficients c et d sont réels, en prenant les conjugués
des deux membres de (8.4.19), nous obtenons (par unicité de la décomposition) α= β̄= 1

4 .

Si l’on se sent mal à l’aise avec le raisonnement précédent, on peut alternativement, multi-
plier les deux membres de (8.4.19) par (x + i ), puis en faisant x =−i , retrouver α= 1/4.

4. Il reste à calculer c. Faisant x = 0 dans les deux membres de (8.4.19), il vient c = d = 1
2 .

5. Une autre façon consisterait à multiplier les deux membres de l’identité (8.4.19) par (x −1)
puis à faire tendre x vers l’infini ce qui donnerait 1 =α+β+ c, soit à nouveau c = 1

2 .

Finalement la décomposition en éléments simples de F dans C est

F = 1+2F1 = 1+
(

1

2(X + i )
+ 1

2(X − i )
+ 1

X −1
+ 1

(X −1)2

)
Pour obtenir la décomposition en éléments simples dans R(X ) de F , il suffit de regrouper les deux
premiers termes du développement, ce qui donne

F = 1+
(

X

X 2 +1
+ 1

X −1
+ 1

(X −1)2

)
.
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Calcul pratique
de la

décomposition
en éléments

simples dans
C(X )

Une méthode qui est toujours valable mais pas très efficace, car elle conduit à la résolution d’un
nombre d’équations correspondant au nombre de coefficients inconnus de la décomposition,
consiste à réduire au même dénominateur le membre de droite de la décomposition et à identifier
les coefficients du numérateur.
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8.5 Calcul des primitives des fractions rationnelles

8.5.1 Primitive de 1/(t − r )n , n ≥ 1 . . . . . . . . . . . . . . . . . . . . . . . . 68

8.5.2 Primitive de
µt +ν

t 2 −βt +γ . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.5.3 Primitive de
µt +ν

(t 2 −βt +γ)n , n > 1 . . . . . . . . . . . . . . . . . . . . . . 71
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8.5.1 Primitive de 1/(t − r )n , n ≥ 1

Exercices :
Exercice A.1.42
Exercice A.1.43

– n = 1 - La réponse est immédiate : ∫
d t

t − r
= ln |t − r |+C (8.5.1)

– n > 1 - La réponse s’obtient rapidement à nouveau, on arrive à :∫
d t

(t − r )n = 1

(1−n)(t − r )n−1 +C (8.5.2)

Nous voyons ainsi que, lorsque toutes les racines du dénominateur (c’est-à-dire, tous les
pôles de la fraction rationnelle considérée), sont réelles, on obtient sans difficulté, une fois
la décomposition en éléments simples calculée, les primitives correspondantes. Par contre,
la situation est plus délicate, en présence de racines complexes.
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8.5.2 Primitive de
µt +ν

t 2 −βt +γ

Exercices :
Exercice A.1.44

On suppose que
µt +ν

t 2 −βt +γ est un élément simple dans R(X ), c’est à dire que t 2 −βt +γ n’a

pas de racine réelle, on a donc 4γ−β2 > 0.

µt +ν
t 2 −βt +γ =

(µ
2

) 2t −β
t 2 −βt +γ +

(
ν+ βµ

2

)
1

t 2 −βt +γ
donc ∫

µt +ν
t 2 −βt +γd t = µ

2
J (t )+

(
ν+ βµ

2

)
K (t )

Le calcul de J est simple :
J (t ) = ln(t 2 −βt +γ)+C

Notons que puisque le trinôme t 2 −βt +γ n’a pas de racines réelles, il garde toujours le même
signe (+). Il n’est donc pas nécessaire de prendre sa valeur absolue avant le logarithme.
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Primitive de
µt +ν

t 2 −βt +γ

Pour le calcul de K , il faut écrire le dénominateur sous la forme :

D(t ) = t 2 −βt +γ=
(

t − β

2

)2

+γ− β2

4
=

(
γ− β2

4

)1+

 t − β
2√

γ− β2

4


2 .

si on effectue le changement de variable y = t − β
2

α
avec α=

√
γ− β2

4
, alors

K (t ) = 1

α2

∫
d t

1+
(

t− β

2
α

)2 = 1

α

∫
d y

1+ y2 = 1

α
Arctan y +C = 1

α
Arctan

(
t − β

2

α

)
+C
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8.5.3 Primitive de
µt +ν

(t 2 −βt +γ)n
, n > 1

I (t ) =
∫

µt +ν
(t 2 −βt +γ)n = µ

2

∫
2t −β

(t 2 −βt +γ)n d t +
(
ν+µβ

2

)∫
d t

(t 2 −βt +γ)n

= J (t )+
(
ν+µβ

2

)
K (t )

J se calcule facilement. On arrive cette fois-ci à :

J (t ) = µ

2(1−n)(t 2 −βt +γ)n−1 +C

En ce qui concerne K , par contre, nous allons seulement pouvoir obtenir une relation de récur-
rence. Posons donc :

Kn(t ) =
∫

d t

(t 2 −βt +γ)n =
∫

d t

((t − β
2 )2 +α2)n

= 1

α2n−1

∫
d y

(1+ y2)n

où l’on a posé à nouveau y = t − β
2

α
avec α=

√
γ− β2

4
. Posons maintenant :

Mn =
∫

d y

(1+ y2)n =
∫

1+ y2

(1+ y2)n d y −
∫

y2

(1+ y2)n d y = Mn−1 −Ln
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Primitive de
µt +ν

(t 2 −βt +γ)n , n >
1

Il reste à calculer Ln . Nous allons le faire par parties, en notant que 2y est la dérivée de y2, puis
en posant :

u′(y) = 2y

(1+ y2)n , v(y) = y,

d’où :

u(y) = 1

(1−n)(1+ y2)n−1 v ′(y) = 1

ce qui conduit à :

Ln = y

2(1−n)(1+ y2)n−1 − 1

2(1−n)

∫
d y

(1+ y2)n−1

de sorte que, en regroupant, nous obtenons :

Mn = Mn−1 − y

2(1−n)(1+ y2)n−1 + 1

2(1−n)
Mn−1

soit finalement :

Mn = 3−2n

2(1−n)
Mn−1 − y

2(1−n)(1+ y2)n−1
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Annexe A
Exercices

A.1 Exercices du chapitre 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.2 Exercices de TD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
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A.1 Exercices du chapitre 8

A.1.1 Ch2-Exercice27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.1.2 Ch2-Exercice28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.1.3 Ch2-Exercice29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.1.4 Ch2-Exercice30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.1.5 Ch2-Exercice31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.1.6 Ch2-Exercice32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.1.7 Ch2-Exercice33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.1.8 Ch2-Exercice34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.1.9 Ch2-Exercice35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.1.10 Ch2-Exercice36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.1.11 Ch2-Exercice37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.1.12 Ch2-Exercice38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.1.13 Ch2-Exercice39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.1.14 Ch2-Exercice40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.1.15 Ch2-Exercice41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.1.16 Ch2-Exercice42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.1.17 Ch2-Exercice43 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.1.18 Ch2-Exercice44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
A.1.19 Ch8-Exercice1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.1.20 Ch8-Exercice2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.1.21 Ch8-Exercice3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
A.1.22 Ch8-Exercice4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
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A.1.23 Ch8-Exercice5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.1.24 Ch8-Exercice6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
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Exercice A.1.1 Ch2-Exercice27

Soient les deux lois définies sur R2 de la manière suivante. Étant donnés deux couples (x, y) et
(x ′, y ′) de R2, on pose :

– (x, y)+ (x ′, y ′) Déf= (x +x ′, y + y ′) (addition),

– (x, y)× (x ′, y ′) Déf= (xx ′− y y ′, x y ′+x ′y) (multiplication)
Montrer que ce sont des lois de composition interne dans R2, que l’addition est commutative,
associative, que son élément neutre est (0,0) et que l’opposé de (x, y) est (−x,−y). Montrer que
la multiplication est commutative, associative, que son élément neutre est (1,0) et que l’inverse

de (x, y) 6= (0,0) est (
x

x2 + y2 ,− y

x2 + y2 ). Enfin, montrer que la multiplication est distributive par

rapport à l’addition.

Retour au cours

Solution
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Exercice A.1.2 Ch2-Exercice28

1/ Soient z = x + i y et z ′ = x ′+ i y ′, et soit la somme z + z ′ et le produit zz ′. Ecrire z + z ′ et zz ′

sous la forme canonique (règles d’addition et de multiplication " habituelles " - ne pas oublier
que i 2 =−1).
2/ On suppose z = (x, y) = x + i y non nul (c’est-à-dire 6= (0,0)), vérifier que son inverse, c-à-d le
nombre complexe z ′ tel que zz ′ = z ′z = 1, est (z ′ =) 1

z = x
x2+y2 − i y

x2+y2 .

Retour au cours

Solution
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Exercice A.1.3 Ch2-Exercice29

Montrer que les racines carrées d’un nombre réel négatif a, c’est-à-dire les solutions de z2 = a
sont ±i

p−a.

Retour au cours

Solution
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Exercice A.1.4 Ch2-Exercice30

Calculer, en utilisant la formule du binôme de Newton, (z + z ′)3 et (z + z ′)4.

Retour au cours

Solution
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Exercice A.1.5 Ch2-Exercice31

Soit z 6= 1
2 , z ∈C, montrer que

2z +1

2z −1
= 4|z|2 −1

|2z −1|2 − i
4Im z

|2z −1|2 .

Retour au cours

Solution
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Exercice A.1.6 Ch2-Exercice32

En appliquant l’inégalité triangulaire successivement à z = (z−z ′)+z ′ et z ′ = (z ′−z)+z, mon-
trer que

||z|− |z ′|| ≤ |z − z ′|

Retour au cours

Solution
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Exercice A.1.7 Ch2-Exercice33

Montrer que Arg( 1
z ) ≡−Arg z [2π].

Retour au cours

Solution
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Exercice A.1.8 Ch2-Exercice34

Dans un repère orthonormé (O,~u,~v), représenter un nombre complexe en précisant son mo-
dule et son argument. Plus précisément donner la représentation graphique de 1, i , 1+ i et 1− i .

Retour au cours

Solution
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Exercice A.1.9 Ch2-Exercice35

Déduire de la formule de De Moivre que pour tout z ∈ C non nul et tout n ∈N, on a Arg zn ≡
nArg z [2π].

Retour au cours

Solution
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Exercice A.1.10 Ch2-Exercice36

Déterminer les quatre racines de l’quation z4 + z2 = 0

Retour au cours

Solution
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Exercice A.1.11 Ch2-Exercice37

Donner les racines cubiques de l’unité (on les note habituellement {1, j , j 2}) et les représenter
graphiquement. Justifier la notation j 2 et montrer que j̄ = j 2, 1+ j + j 2 = 0.

Retour au cours

Solution
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Exercice A.1.12 Ch2-Exercice38

Déterminer les racines carrées de i et j .

Retour au cours

Solution
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Exercice A.1.13 Ch2-Exercice39

Calculer les deux racines carrées de −5+12i .

Retour au cours

Solution



Sommaire
Concepts

Exemples
Exercices

Documents

Î précédent section N suivant Ï

89

Exercice A.1.14 Ch2-Exercice40

On suppose que a,b,c sont réels, a 6= 0, ∆= b2 −4ac 6= 0.
Rappeler l’expression des deux racines z0, z1 de l’équation az2 +bz + c = 0, distinguer les cas

∆> 0 et ∆< 0.
On note r0,r1 les deux racines carrées de ∆, montrer que l’on a

z0 = −b + r0

2a
, z1 = −b + r1

2a

Retour au cours

Solution
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Exercice A.1.15 Ch2-Exercice41

Résoudre l’équation du second degré : z2 − i z +1−3i = 0.

Retour au cours

Solution
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Exercice A.1.16 Ch2-Exercice42

Démontrer que

e iθ1 e iθ2 = e i (θ1+θ2), e i 0 = 1,
1

e iθ
= e−iθ.

Retour au cours

Solution
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Exercice A.1.17 Ch2-Exercice43

Démontrer les formules d’Euler

Retour au cours

Solution
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Exercice A.1.18 Ch2-Exercice44

Montrer que sin5θ = 1
16 sin5θ− 5

16 sin3θ+ 5
8 sinθ.

Retour au cours

Solution
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Exercice A.1.19 Ch8-Exercice1

Le polynôme (1+i )X 2−3X +i peut-il être considéré comme un polynôme sur C ? sur R ? Quel
est le degré de ce polynôme ?

Retour au cours

Solution
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Exercice A.1.20 Ch8-Exercice2

Montrer sur un exemple que la définition du produit de deux polynômes est cohérente avec
le produit des fonctions polynomiales que vous connaissez (choisir par exemple n = 2 m = 3).

Retour au cours

Solution
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Exercice A.1.21 Ch8-Exercice3

Montrer, par contraposée, que si AB = 0 alors A = 0 ou B = 0.

Retour au cours

Solution
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Exercice A.1.22 Ch8-Exercice4

Soit A ∈ Kn[X ] et B ∈ Kn[X ], montrer que A +B ∈ Kn[X ], que αA ∈ Kn[X ] (α ∈ K). Est-ce que
AB ∈ Kn[X ] ?

Retour au cours

Solution
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Exercice A.1.23 Ch8-Exercice5

Quel est le conjugué de A = 3X 2 + (2i −1)X + i ?

Retour au cours

Solution



Sommaire
Concepts

Exemples
Exercices

Documents

Î précédent section N suivant Ï

99

Exercice A.1.24 Ch8-Exercice6

Montrer que X +2 est un diviseur de X 4−16. Donner les autres diviseurs de X 4−16 dansR[X ].

Retour au cours

Solution
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Exercice A.1.25 Ch8-Exercice7

Soit A = BQ +R montrer que si D divise A et B , alors D divise R.

Retour au cours

Solution
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Exercice A.1.26 Ch8-Exercice8

Effectuer la division euclidienne de X 4 +1 par (X 2 +1)(X −1)2.

Retour au cours

Solution
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Exercice A.1.27 Ch8-Exercice9

– Diviser suivant les puissances croissantes le polynôme A = X 4 + 1 par (X 2 + 1)(X − 1)2 de
façon à pouvoir mettre X 2 en facteur dans le reste.

– Diviser suivant les puissances croissantes Y 2+Y +2 par Y +1 de façon à pouvoir mettre Y 3

en facteur dans le reste.

Retour au cours

Solution
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Exercice A.1.28 Ch8-Exercice10

Montrer que dans K[X ] tout polynôme de degré 1 est irréductible. Peut-on trouver un poly-
nôme de degré 2 qui soit irréductible dans C[X ] ?

Retour au cours

Solution
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Exercice A.1.29 Ch8-Exercice11

Soient x1 = i , x2 = 4+ i , x3 = 3. Existe-t-il un polynôme de degré 2 qui s’annule en ces trois
points ? Un polynôme de degré 3 ? Un polynôme de degré 4 ? Si oui, en donner un.

Retour au cours

Solution
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Exercice A.1.30 Ch8-Exercice12

Factoriser dans C[X ] le polynôme

A = X 4 +3X 2 +2.

Retour au cours

Solution
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Exercice A.1.31 Ch8-Exercice13

Soient x1 = i , x2 = 4, x3 = 3, existe-t-il un polynôme de degré 3 à coefficients réels qui s’annule
en ces trois points ? Un polynôme de degré 4 à coefficients réels ? Si oui en donner un.

Retour au cours

Solution
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Exercice A.1.32 Ch8-Exercice14

Factoriser dans R[X ] le polynôme

A = X 5 −X 4 +3X 3 −3X 2 +2X −2.

Retour au cours

Solution
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Exercice A.1.33 Ch8-Exercice15

Soit le polynôme
A = X 7 +3X 6 +5X 5.

Pour quelles valeurs de k ∈N a-t-on A(k)(0) = 0 (ne pas calculer les dérivées) ?

Retour au cours

Solution
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Exercice A.1.34 Ch8-Exercice16

La fraction rationnelle

F = X 3 −X 2 +X −1

3X 2 −X −2

est-elle irréductible ? Dans le cas contraire, la simplifier.

Retour au cours

Solution
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Exercice A.1.35 Ch8-Exercice17

Calculer la partie entière de

F = X 4 +1

(X 2 +1)(X −1)2 .

Retour au cours

Solution
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Exercice A.1.36 Ch8-Exercice18

Montrer la proposition suivante :
Soient deux fractions rationnelles F et F̂ alors

E (F + F̂ ) = E (F )+E (F̂ ).

où l’on a noté E (F ) la partie entière de F .

Retour au cours

Solution
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Exercice A.1.37 Ch8-Exercice19

Soit la fraction rationnelle

F = X 2 −X +2

(X −1)3X

Mettre F la sous la forme de la décomposition (8.4.2).

Retour au cours

Solution
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Exercice A.1.38 Ch8-Exercice20

Décomposer en éléments simples dans R(X ) la fraction rationnelle suivante :

2X +3

X 2 −5X +6
.

Retour au cours

Solution



Sommaire
Concepts

Exemples
Exercices

Documents

Î précédent section N suivant Ï

114

Exercice A.1.39 Ch8-Exercice21

Décomposer en éléments simples la fraction rationnelle suivante :

2X +1

(X −2)3 .

Retour au cours

Solution
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Exercice A.1.40 Ch8-Exercice22

Décomposer en éléments simples dans R(X ) la fraction rationnelle suivante :

F = X 4 +1

(X 2 +1)(X −1)2 .

Retour au cours

Solution
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Exercice A.1.41 Ch8-Exercice23

Décomposer en éléments simples dans R(X ) puis dans C(X ) la fraction rationnelle suivante :

2X 3 +X 2 +3X +1

(X 2 +1)(X 2 +2)
.

Retour au cours

Solution
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Exercice A.1.42 Ch8-Exercice24

Intégrer la fraction rationnelle suivante :

2x +3

x2 −5x +6
.

Retour au cours

Solution
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Exercice A.1.43 Ch8-Exercice25

Intégrer la fraction rationnelle suivante :

2x +1

(x −2)3 .

Retour au cours

Solution
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Exercice A.1.44 Ch8-Exercice26

Intégrer la fraction rationnelle suivante :

2x3 +x2 +3x +1

(x2 +1)(x2 +2)
.

Retour au cours

Solution
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Exercice A.2.1 TD2-Exercice8

Le but de cet exercice est de démontrer quelques sommations classiques dans C en fonction
de n ∈N.

1. Calculer le module et l’argument des nombres complexes (1 + i )3, (1 + i )4 et (1 + i )n . En
déduire que :

2p≤n∑
p=0

(−1)pC 2p
n (= 1−C 2

n +C 4
n −C 6

n +·· · ) = (
p

2)n cos(n
π

4
)

2p+1≤n∑
p=0

(−1)pC 2p+1
n (=C 1

n −C 3
n +C 5

n −·· · ) = (
p

2)n sin(n
π

4
)

2. Montrer que

2n = 1+C 1
n +C 2

n +C 3
n +·· ·

0 = 1−C 1
n +C 2

n −C 3
n +·· ·

3. Soit j = cos(2π/3)+ i sin(2π/3). Montrer que (1+ j )n = A+B j +C j 2 avec :

A = 1+C 3
n +C 6

n +·· ·
B = C 1

n +C 4
n +C 7

n +·· ·
C = C 2

n +C 5
n +C 8

n +·· ·
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Exercice A.2.1
TD2-Exercice8

Trouver trois équations vérifiées par A, B et C et en déduire que :

A = 1

3

(
2n +2cos(

nπ

3
)
)

B = 1

3

(
2n −2cos(

(n +1)π

3
)

)
C = 1

3

(
2n −2cos(

(n −1)π

3
)

)

Question 1 Aide 1 Aide 2 Aide 3
Question 2 Aide 1 Aide 2
Question 3 Aide 1 Aide 2
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Exercice A.2.2 TD2-Exercice9

On désigne par P le demi-plan complexe supérieur, par D le disque unité et par U le cercle
unité, c’est-à-dire :

P = {z ∈C; Im z > 0}

D = {z ∈C; |z| < 1}

U = {z ∈C; |z| = 1}

On considère l’application suivante f : C\ {−i } →C, z 7−→ f (z) = z−i
z+i .

1. Montrer que f est injective.

2. Montrer que ∀z ∈C\ {−i }, on a f (z) 6= 1.

3. Montrer que Im f =C\ {1}.

4. Montrer que ∀z ∈C\ {−i }, on a 1−| f (z)|2 = 4
Im z

|z + i |2 .

5. On considère f1 la restriction de f à R. Montrer que f1 est une application de R dans U \ {1}
et qu’elle est surjective.

6. On considère f2 la restriction de f à P . Montrer que f2 est une application de P sur D et que
cette application est bijective.
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Exercice A.2.2
TD2-Exercice9

Question 1 Aide 1 Aide 2
Question 2 Aide 1
Question 3 Aide 1 Aide 2 Aide 3 Aide 4
Question 4 Aide 1 Aide 2
Question 5 Aide 1 Aide 2 Aide 3 Aide 4
Question 6 Aide 1 Aide 2
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Exercice A.2.3 TD2-Exercice10

Résoudre dans C les équations suivantes.

1. 1+ z + z2 = 0

2. z2 + z +2 = 0

3. (1− i )z2 − (7+ i )z +4+6i = 0

4. z3 =−8

5. z7 = 64−64i
p

3

Question 1 Aide 1 Aide 2
Question 2 Aide 1 Aide 2
Question 3 Aide 1 Aide 2
Question 4 Aide 1 Aide 2 Aide 3
Question 5 Aide 1 Aide 2
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Exercice A.2.4 TD8-Exercice1

1. Déterminer le réel a pour que le polynôme p défini par p(x) = x4 − x + a soit divisible par
x −2.

Pour cette valeur de a est-ce que p est divisible par (x −2)2 ?

2. Soit n ∈N∗, déterminer a et b pour que axn+1+bxn+1 soit divisible par (x−1)2. Déterminer
alors le quotient.



Sommaire
Concepts

Exemples
Exercices

Documents

Î précédent section N suivant Ï

127

Exercice A.2.5 TD8-Exercice2

Décomposer en produit de facteurs irréductibles dans C[X ] puis dans R[X ] les polynômes
x4 +1, x6 −7x3 −8.
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Exercice A.2.6 TD8-Exercice3

1. On définit les polynômes P (x) = x3 +3x2 +x +1, Q(x) = x2 +x +1.

(a) Diviser P par Q suivant les puissances croissantes (on veut un reste de valuation 3).

(b) En déduire une primitive de la fonction
x3 +3x2 +x +1

x3(x2 +x +1)
.

Réponse : − 1

2x2 +2ln |x|− ln(x2 +x +1)+C

2. En s’inspirant de la méthode précédente, trouver une primitive de
1

x4(x +1)
.

Réponse : − 1

3x3 + 1

2x2 − 1

x
+ ln

( |1+x|
|x|

)
+C
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Exercice A.2.7 TD8-Exercice4

1. Décomposer en éléments simples dans R(X ) et dans C(X ) les fractions rationnelles sui-
vantes :

1

1−x2 ,
x2 +2x +1

x2 −5x +6
,

1

x2 −x +1
,

x4 +6x2 −2x +5

(x2 +4)(x −1)
,

1

(x −1)8(x −2)

Réponses :
1

1−x2 = 1

2(1+x)
+ 1

2(1−x)
,

x2 +2x +1

x2 −5x +6
= 1− 9

x −2
+ 16

x −3
,

1

x2 −x +1
= ip

3(x + j )
− ip

3(x + j 2)
,

x4 +6x2 −2x +5

(x2 +4)(x −1)
= x +1+ x −1

(x2 +4)
+ 2

(x −1)
= x +1+ 2+ i

4(x −2i )
+ 2− i

4(x +2i )
+ 2

(x −1)

1

(x −1)8(x −2)
=− 1

(x −1)8 − 1

(x −1)7 − . . .− 1

(x −1)
+ 1

(x −2)

2. Décomposer en élément simples dans R(X ) les fractions rationnelles suivantes :

x

(x −a)(x −b)
,

2x3 +5x2 +6x +3

x2 +x +1
,

1

(x2 +1)2(x2 −1)
,

3x +4

(x2 +2x +3)2 ,
αx +β

(x2 −2x +5)2

Réponses :

si a 6= b,
x

(x −a)(x −b)
= a

(a −b)(x −a)
+ b

(b −a)(x −b)
,
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Exercice A.2.7
TD8-Exercice4

si a = b
x

(x −a)(x −b)
= 1

x −a
+ a

(x −a)2

2x3 +5x2 +6x +3

x2 +x +1
= 2x +3+ x

x2 +x +1
= 2x +3+ 1− j 2

3(x − j )
+ 1− j

3(x − j 2)

1

(x2 +1)2(x2 −1)
= 1

8(x + i )2 − i

4(x + i )
+ 1

8(x − i )2 + i

4(x − i )

+ 1

8(x −1)
− 1

8(x +1)

= − 1

2(x2 +1)2 − 1

4(x2 +1)
+ 1

8(x −1)
− 1

8(x +1)

3. Décomposer en élément simples dans R(X )

3+x

x3 −x2 +x −1
,

2

(x −1)4(x2 +1)
,

1

xn(x −1)

Réponses :
3+x

x3 −x2 +x −1
= 2

x −1
− 2x +1

x2 +1
,

2

(x −1)4(x2 +1)
= 1

(x −1)4 − 1

(x −1)3 + 1

2(x −1)2 − 1

2(x2 +1)
,

1

xn(x −1)
= 1

x −1
−

n∑
k=1

1

xk
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Exercice A.2.8 TD8-Exercice5

Caculer les primitives des fractions rationnelles de l’exercice précédent.
Réponses :∫

1

1−x2 d x = 1

2
ln

|1+x|
|1−x| +C ,

∫
x2 +2x +1

x2 −5x +6
d x = x −9ln |x −2|+16ln |x −3|+C ,

∫
1

x2 −x +1
d x = 2p

3
Arctan

(
2x −1p

3

)
+C ,

∫
x4 +6x2 −2x +5

(x2 +4)(x −1)
d x = x2

2
+x + 1

2
ln(x2 +4)− 1

2
Arctan

x

2
+2ln |x −1|+C∫

1

(x −1)8(x −2)
d x = 1

7(x −1)7 + . . .+ 1

2(x −1)2 + 1

x −1
+ ln

|x −2|
|x −1| +C

∫
2x3 +5x2 +6x +3

x2 +x +1
d x = x2 +3x + 1

2
ln(x2 +x +1)− 1p

3
Arctan

2x +1p
3

+C ,∫
1

(x2 +1)2(x2 −1)
d x =− x

4(x2 +1)
− 1

2
Arctan x + 1

8
ln

|x −1|
|x +1| +C ,∫

3x +4

(x2 +2x +3)2 d x =−3

2

1

x2 +2x +3
+ 1

4
p

2
Arctan

(
x +1p

2

)
+ x +1

4(x2 +2x +3)
+C

∫
αx +β

(x2 −2x +5)2 d x =−α
2

1

x2 −2x +5
+ α+β

16
Arctan

(
x −1

2

)
+ α+β

8

x −1

x2 −2x +5
+C
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Exercice A.2.8
TD8-Exercice5

∫
3+x

x3 −x2 +x −1
d x = 2ln |x −1|− ln(x2 +1)−Arctan x +C ,∫

2

(x −1)4(x2 +1)
d x =− 1

3(x −1)3 + 1

2(x −1)2 − 1

2(x −1)
− 1

2
Arctan x +C ,

∫
1

xn(x −1)
= ln |x −1|− ln |x|+

n−1∑
i=1

1

i xi
+C .



Sommaire
Concepts

Exemples
Exercices

Documents

Î précédent section N suivant Ï

133

Exercice A.2.9 TD8-Exercice6

1. Calculer une primitive de la fraction rationnelle
1

1+x3 .

Réponse : F (x) = ln |x +1|
3

− ln(x2 −x +1)

6
+ 1p

3
Arctan

(
2x −1p

3

)
+C .

2. En vous inspirant de la façon dont on a calculé une primitive de
1

(1+x2)2 , calculer une

primitive de
1

(1+x3)2

Réponse : 2
3 F (x)+ x

3(1+x3)
.
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Exercice A.2.10 TD8-Exercice7

1. Calculer ∫ π
2

π
4

cos3 x

sin5 x
d x,

∫ π
4

0
tan2 xd x,

∫ π
4

0

tan x

cos2 x
d x

Réponses : 1
4 , 1− π

4 , 1
2 .

2. On rappelle que

cos x = 1− tan2 x
2

1+ tan2 x
2

, sin x = 2tan x
2

1+ tan2 x
2

On pose t = tan x
2 , utiliser ce changement de variable pour calculer :∫ π

3

0

d x

cos x
,

∫ π
2

π
3

d x

sin x
,

∫ π
2

0

d x

2+cos x

Réponses : ln(2+p
3), 1

2 ln3,

p
3π

9
.
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Annexe B
Exemples

B.1 Exemples du chapitre 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
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B.1 Exemples du chapitre 8

B.1.1 Division euclidienne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
B.1.2 Division suivant les puissances croissantes . . . . . . . . . . . . . . 138
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Exemple B.1.1 Division euclidienne

A : 2X 3 −X 2 −X +2
−BQ1 : −2X 3 2X

R1 : −X 2 +X +2
−BQ2 : X 2 −1

R : X +1

X 2 −1
2X −1

On obtient donc
2X 3 −X 2 −X +2 = (X 2 −1)(2X −1)+X +1.

Retour au cours
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Exemple B.1.2 Division suivant les puissances croissantes

Soient les polynômes A = 2− X + X 2 − 3X 3, B = 1− X 2 et effectuons la division suivant les
puissances croissantes de façon à pouvoir mettre X 4 en facteur dans le reste.

A : 2 −X +X 2 −3X 3

−BQ1 : −2 2X 2

R1 : −X +3X 2 −3X 3

−BQ2 : +X −X 3

R2 : 3X 2 −4X 3

−BQ3 : −3X 2 +3X 4

R3 : −4X 3 +3X 4

−BQ4 : +4X 3 −4X 5

R4 : 3X 4 −4X 5

1−X 2

2−X +3X 2 −4X 3

On obtient donc

2−X +X 2 −3X 3 = (1−X 2)(2−X +3X 3 −4X 3)+X 4(3−4X )

Retour au cours
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Annexe C
Documents

C.1 Documents du chapitre 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
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C.1 Documents du chapitre 8

C.1.1 Le Polynôme nul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
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Document C.1.1 Le Polynôme nul

Il est gênant que le polynôme nul n’ait pas de degré, car on rencontre beaucoup ce polynôme.
Nous verrons que cela oblige dans beaucoup d’énoncés de théorèmes, à distinguer les cas poly-
nôme nul ou non nul. Pour éviter cela, on adopte classiquement la convention ci-dessous :

deg(0) =−∞

avec les règles de calcul :

∀n ∈N, −∞< n, −∞+n =−∞, −∞+ (−∞) =−∞.

Insistons bien sur le fait que cette convention ne change rien à l’essentiel. Elle permet seulement,
mais cela en vaut la peine, de simplifier plusieurs énoncés importants.
Insistons aussi sur le fait qu’il n’est pas possible de convenir du fait que le degré du polynôme nul
est 0 : cela conduit à des contradictions. Pour connaître le degré d’un polynôme constant, R, il
faut savoir si R est nul ou pas. Tout ce que l’on peut dire sinon, c’est que : deg(R) ≤ n, quel que
soit n dansN.
Voyons par exemple sur l’addition des polynômes la convention précédente. Elle nous permet
d’énoncer un résultat sans avoir à distinguer dans l’énoncé les cas où l’un des trois polynômes A,
B ou A+B est nul.

Proposition C.1.1. Soient A et B deux polynômes de K[X ], alors

deg(A+B) ≤ max(deg(A),deg(B)).
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Document
C.1.1

Le Polynôme
nul

Démonstration - Si aucun des polynômes n’est nul, la démonstration est faite dans le paragraphe
du cours. Il reste à examiner les cas où l’un des trois polynômes est nul. Si A est nul, alors deg(A) =
−∞ et A+B = B , de sorte que la proposition est bien vérifiée avec les deux règles de calcul :

−∞+deg(B) =−∞ et −∞≤ deg(B).

Enfin, si A+B est nul, on a bien encore dans tous les cas

−∞≤ max(deg(A),deg(B)).

Retour au cours
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Index des concepts

Le gras indique un grain où le concept est dé-

fini ; l’italique indique un renvoi à un exercice ou un

exemple, le gras italique à un document, et le ro-

main à un grain où le concept est mentionné.

A
Argument d’un nombre complexe . . . . . . . . . . . 13

B
Binôme de Newton . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

C
Calcul pratique - pôles complexes . . . . . . . . . . . 64
Calcul pratique - pôles réels. . . . . . . . . . . . . . . . . .60
Calcul trigonométrique . . . . . . . . . . . . . . . . . . . . . . 26

D
De Moivre-formule . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Division - puissances croissantes . . . . . . . . 38, 54
Division euclidienne . . . . . . . . . . . . . . . . . . . . . . . . . 35

E
Exponentielle complexe - définition . . . . . 24, 26

F
Factorisation dans le corps des complexes . . 41,

44
Factorisation dans le corps des réels . . . . . 44, 47
Fraction rationnelle - Partie entière . . . . . . . . . . 52
Fractions rationnelles - Décomposition dans les

complexes . . . . . . . . . . . . . . . . . . . . . . . 54, 58
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Fractions rationnelles - Décomposition dans les
réels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Fractions rationnelles - Définition . . . . . . . . . . . 50

I
Inégalités- nombres complexes . . . . . . . . . . . . . . 11

L
Lois de composition interne des nombres com-

plexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

M
Multiplicité des racines . . . . . . . . . . . . . . . . . . . . . . 47

N
Nombre complexe - conjugué et module . . 9, 11
Nombre complexe - partie réelle et imaginaire5
Nombres complexes - représentation graphique

15

P
Polynômes - Définition . . . . . . . . . . . . . . . . . . . . . . 29
Polynômes irréductibles . . . . . . . . . . . . . . . . . . . . . 40

Primitive des pôles complexes multiples . . . . 71
Primitive des pôles complexes simples . . . . . . 69
Primitive des pôles réels . . . . . . . . . . . . . . . . . . . . . 68

R
Racines complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Racines d’une équation du second degré . . . . 22
Racines nièmes de l’unité . . . . . . . . . . . . . . . . . . . . 20

S
Somme - Produit - Conjugué. . . . . . . . . . . . . . . . .32



Solution de l’exercice A.1.1

Pour l’addition, les propriétés sont évidentes. La multiplication est commutative car (x, y)× (x ′, y ′) = (x ′, y ′)× (x, y), son
élément neutre est bien (1,0) puisque (x, y)× (1,0) = (x, y), l’élément inverse de (x, y) est bien ( x

x2+y2 ,− y
x2+y2 ) puisque

(x, y)× ( x
x2+y2 ,− y

x2+y2 ) = (1,0). Enfin

(x, y)× ((x ′, y ′)+ (x ′′, y ′′)) = (x, y)× (x ′+x ′′, y ′+ y ′′) = (x(x ′+x ′′)− y(y ′+ y ′′), x(y ′+ y ′′)+ y(x ′+x ′′))

et
(x, y)× (x ′, y ′)+ (x, y)× (x ′′, y ′′) = (xx ′− y y ′, x y ′+ y x ′)+ (xx ′′− y y ′′, x y ′′+ y x ′′)

d’où la distributivité du produit par rapport à l’addition.

Retour à l’exercice N



Solution de l’exercice A.1.2

– z + z ′ = (x +x ′)+ i (y + y ′),
zz ′ = (x + i y)(x ′+ i y ′) = xx ′+ i 2 y y ′+ i (x y ′+x ′y) = xx ′− y y ′+ i (x y ′+x ′y).

– (x + i y)( x
x2+y2 − i y

x2+y2 ) = 1

Retour à l’exercice N



Solution de l’exercice A.1.3

Si l’on résout (x+ i y)(x+ i y) = a, on obtient x2− y2+ i 2x y = a, ce qui donne x2− y2 = a et x y = 0. Puisque a < 0, la seule
solution (x et y sont réels) est donnée par x = 0 et y =±i

p−a

Retour à l’exercice N



Solution de l’exercice A.1.4

(z + z ′)3 = z3 +3z2z ′+3zz ′2 + z ′3 et (z + z ′)4 = z4 +4z3z ′+6z2z ′2 +4zz ′3 + z ′4.

Retour à l’exercice N



Solution de l’exercice A.1.5

On multiplie numérateur et dénominateur par la quantié conjuguée du dénominateur. On obtient ainsi |2z − 1|2 au
dénominateur et

(2z +1)(2z̄ −1) = 4|z|2 +2(z̄ − z)−1 = 4|z|2 −1−4i Im z

au numérateur.

Retour à l’exercice N



Solution de l’exercice A.1.6

On a |z| ≤ |z − z ′|+ |z ′| et |z ′| ≤ |z − z ′|+ |z|, d’où −|z − z ′| ≤ |z|− |z ′| ≤ |z − z ′|.

Retour à l’exercice N



Solution de l’exercice A.1.7

Arg(z × 1

z
) ≡ Arg z +Arg

1

z
[2π]. On remarque alors que Arg(z × 1

z
) = Arg1,≡ 0 [2π].

Retour à l’exercice N



Solution de l’exercice A.1.8

Voir la figure C.1.1.

+

+

+

++

1− i

1

1+ i

~v

i

~u

FIGURE C.1.1 – Représentation graphique de complexes

Retour à l’exercice N



Solution de l’exercice A.1.9

Si on pose θ = Arg z, alors on a Arg(z)n = Arg(cosnθ+ i sinnθ), d’où Arg(z)n ≡ nθ [2π].

Retour à l’exercice N



Solution de l’exercice A.1.10

z4 + z2 = z2(z2 +1), 0 est racine double, i est racine simple, −i est racine simple.

Retour à l’exercice N



Solution de l’exercice A.1.11

z3 = 1 ⇔ |z| = 1 et Arg z = 2kπ
3 , k = 0,1,2. On a donc les trois racines

z1 = 1, z2 = j = cos 2π
3 + i sin 2π

3 = −1
2 + i

p
3

2 et z3 = j 2 = cos 4π
3 + i sin 4π

3 = −1
2 − i

p
3

2 (qui est bien le carré de j par la
formule de De Moivre). Voir la figure C.1.2. On voit aisément que z3 est le conjugué de z2 et que z2 + z3 = 2cos 2π

3 =−1.

j 2

1

j

FIGURE C.1.2 – Racines cubiques de l’unité

Retour à l’exercice N



Solution de l’exercice A.1.12

|i | = 1,Arg i = π
2 , les racines carrées de i doivent vérifier :

|z| = 1 et Arg z = π

4
+kπ, k = 0,1.

D’où les deux racines
z0 = cos π

4 + i sin π
4 =

p
2

2 + i
p

2
2 ,

z1 = cos 5π
4 + i sin 5π

4 =−
p

2
2 − i

p
2

2 .
On a bien sûr z1 =−z0.
On calcule de la même manière les racines carrées de j .

Retour à l’exercice N



Solution de l’exercice A.1.13

On cherche z = a + i b tel que z2 =−5+12i , on doit donc avoir :
(a2 −b2 =−5, ab = 6) ⇔ (ab = 6, a4 +5a2 −36 = 0) ⇔ (ab = 6, a2 = 4) ⇔ ((a = 2,b = 3) ou (a =−2,b =−3))
On obtient donc z0 = 2+3i , z1 =−2−3i

Retour à l’exercice N



Solution de l’exercice A.1.14

– si ∆> 0, z0 = −b +p
∆

2a
, z1 = −b −p

∆

2a
.

– si ∆< 0, z0 = −b + i
p−∆

2a
, z1 = −b − i

p−∆
2a

.

Or Si ∆> 0 les 2 racines carrées de ∆ sont r0 =
p
∆ et r1 =−p∆.

Si ∆< 0 les 2 racines carrées de ∆ sont r0 = i
p−∆ et r1 =−i

p−∆.
Ce qui termine la démonstration.

Retour à l’exercice N



Solution de l’exercice A.1.15

On calcule∆=−5+12i , on a vu dans l’exercice A.1.13 que les deux racines carrées de∆ sont r1 = 2+3i ,r2 =−2−3i , donc

z1 = i + r1

2
= 4i +2

2
= 2i +1, z2 = i + r2

2
= −2−2i

2
=−1− i

Retour à l’exercice N



Solution de l’exercice A.1.16

Ceci se déduit strictement de la proposition du paragraphe Argument d’un nombre complexe. En effet l’argument du
produit est la somme des arguments et l’argument de l’inverse est l’opposé de l’argument.

Retour à l’exercice N



Solution de l’exercice A.1.17

Faites la somme puis la différence de
e iθ = cosθ+ i sinθ,

e−iθ = cosθ− i sinθ.

Retour à l’exercice N



Solution de l’exercice A.1.18

sin5θ = 1

(2i )5 (e iθ−e−iθ)5.

Les coefficients du binôme de Newton sont alors 1,5,10,10,5,1. Il vous reste à finir le calcul . . .

Retour à l’exercice N



Solution de l’exercice A.1.19

Puisque les coefficients sont complexes, le polynôme est défini sur C. Son degré est évidemment 2.

Retour à l’exercice N



Solution de l’exercice A.1.20

(a0 +a1x +a2x2)(b0 +b1x +b2x2 +b3x3) = a0b0 + (a0b1 +a1b0)x + (a0b2 +a1b1 +a2b0)x2

+(a0b3 +a1b2 +a2b1)x3 + (a1b3 +a2b2)x4 +a2b3x5

Remarquons que si l’on utilise la formule générale

ck =
k∑

i=0
ai bk−i

pour k = 4 pa exemple on obtient
c4 = a0b4 +a1b3 +a2b2 +a3b1 +a4b0

mais les coefficients b4, a3, a4 sont nuls.

Retour à l’exercice N



Solution de l’exercice A.1.21

La contraposée de
(AB = 0) ⇒ (A = 0) ou (B = 0)

est
(A 6= 0) et (B 6= 0) ⇒ (AB 6= 0).

Supposons donc que A et B soient des polynômes non nuls. Alors leur degré est défini et ils s’écrivent

A = a0 +a1x + . . .+an xn , B = b0 +b1x + . . .+bm xm

avec an 6= 0 et bm 6= 0. Le coefficient de xm+n dans le produit AB est donné par

cn+m =
n+m∑
i=0

ai bk−i = a0bn+m + . . .+anbm + . . .+an+mb0.

Or dans cette somme, seul le terme anbm est non nul. En effet dans les termes qui le précèdent, ce sont les coefficients
(b j ) j=n+m,...,m+1 qui sont nuls et dans les termes qui le suivent ce sont les termes (ai )i=n+1,...,n+m qui sont nuls. Le coef-
ficient de xn+m est donc non nul et le polynôme AB est donc non nul.

Retour à l’exercice N



Solution de l’exercice A.1.22

Vous venez de voir que le degré de la somme de deux polynômes A et B est tel que

deg (A+B) ≤ max{deg (A),deg (B)}.

Donc, si deg (A) ≤ n et deg (B) ≤ n, alors
max{deg (A),deg (B)} ≤ n

et donc A +B ∈ Kn[X ]. Si l’un des deux polynômes est nul, par exemple A, alors A +B = A ∈ Kn[X ]. Il est évident que
deg (αA) = deg (A) si α 6= 0 et que αA = 0 si α= 0. Dans tous les cas on obtient un polynôme de Kn[X ].

Par contre deg(AB) =degA+degB entraine seulement que AB ∈ K2n[X ].

Retour à l’exercice N



Solution de l’exercice A.1.23

Ā = 3X 2 + (−2i −1)X − i .

Retour à l’exercice N



Solution de l’exercice A.1.24

X 4 −16 = (X 2 −4)(X 2 +4) = (X −2)(X +2)(X 2 +4).

Retour à l’exercice N



Solution de l’exercice A.1.25

Si D divise A et B cela signifie qu’il existe deux polynômes S et T tels que

A = DS, B = DT

d’où
DS = DT Q +R

soit
R = D(S −TQ)

ce qui montre bien que D divise R.

Retour à l’exercice N



Solution de l’exercice A.1.26

Avant d’effectuer la division développer le deuxième polynôme. Si vous ne faites pas d’erreurs de calcul, vous trouverez

X 4 +1 = (X 2 +1)(X −1)2 + (2X 3 −2X 2 +2X ).

Retour à l’exercice N



Solution de l’exercice A.1.27

– Tout d’abord
(X 2 +1)(X −1)2 = X 4 −2X 3 +2X 2 −2X +1.

Le résultat donne
1+X 4 = (1−2X +2X 2 −2X 3 +X 4)(1+2X )+X 2(2−2X +4X 2 −2X 3),

ce qui n’a rien à voir avec la division euclidienne . . .
– On a

2+Y +Y 2 = (2−Y +2Y 2)(1+Y )−2Y 3.

Retour à l’exercice N



Solution de l’exercice A.1.28

Si un polynôme A de degré 1 admettait un diviseur D qui ne soit ni un polynôme constant, ni βA, on aurait

A = DQ

et Q ne pourrait pas être un polynôme constant. A serait donc le produit de deux polynômes de degré strictement positif
dont le degré serait supérieur ou égal à 2, ce qui est impossible. A est donc irréductible.

Puisque vous savez qu’un polynôme de degré 2 a deux racines réelles ou complexes, distinctes ou confondues, il
n’est donc jamais irréductible dans C[X ].

Retour à l’exercice N



Solution de l’exercice A.1.29

Un polynôme de degré 2 a au plus deux racines distinctes. Il ne peut donc pas s’annuler en trois points distincts. Un
polynôme de degré 3 à coefficients complexes qui s’annule en ces trois points est

A = (X − i )(X −4− i )(X −3).

Tout polynôme qui admet A comme diviseur s’annule en (x1, x2, x3). Un polynôme de degré 4 serait par exemple

B = X A.

Retour à l’exercice N



Solution de l’exercice A.1.30

Ce pôlynôme s’écrit
A = (X 2 +2)(X 2 +1)

soit, puisque les deux polynômes ont des racines complexes évidentes

A = (X −p
2i )(X +p

2i )(X − i )(X + i ).

Retour à l’exercice N



Solution de l’exercice A.1.31

Un polynôme à coefficients réels est tel que si un nombre complexe est racine de ce polynôme, son conjugué est aussi
racine. Donc si x1 est racine d’un polynôme A à coefficients réels, x̄1 est racine de A. Le polynôme de R[X ] de plus petit
degré qui a pour racines (x1, x2, x3), s’écrit donc

A =α(X −x1)(X − x̄1)(X −x2)(X −x3)

où α ∈ R. C’est donc un polynôme de degré 4 et non pas 3 ! Bien vérifier que bien que x1 et x̄1 ne sont pas réels, les
coefficients de A sont réels.

Retour à l’exercice N



Solution de l’exercice A.1.32

Ce pôlynôme s’écrit
A = (X 2 +2)(X 2 +1)(X −1)

et puisque les deux premiers polynômes n’ont pas de racines réelles, on ne peut factoriser davantage dans R[X ].

Retour à l’exercice N



Solution de l’exercice A.1.33

Puisque
A = X 5(X 2 +3X +5)

la racine x = 0 est de multiplicité 5 et donc A(k)(0) = 0 pour k = 0, . . . ,4 et A(5)(0) 6= 0. Puisque le polynôme A est de degré
7, alors A(k)(x) = 0 pour k > 7, quel que soit x ∈ R, et donc en particulier pour x = 0. Pour ce qui est de A(6)(0) et A(7)(0),
vous pouvez utiliser la formule de Taylor on obtient A(6)(0) = 6!×3, A(7)(0) = 7! et plus précisément A(5)(0) = 5!×5

Retour à l’exercice N



Solution de l’exercice A.1.34

On voit que x = 1 est racine du numérateur et du dénominateur. On peut donc factoriser par x −1 le numérateur et le
dénominateur :

F (x) = x3 −x2 +x −1

3x2 −x −2
= (x −1)(x2 +1)

(x −1)(3x +2)

ce qui donne, après simplification

F (x) = x2 +1

3x +2
.

Puisque x = −2

3
n’est pas racine du numérateur, cette fraction est irréductible alors que la fraction de l’énoncé n’était

pas irréductible.

Retour à l’exercice N



Solution de l’exercice A.1.35

On a calculé dans l’exercice A.1.26 la division euclidienne du numérateur par le dénominateur et on a trouvé

x4 +1

(x2 +1)(x −1)2 = 1+ 2x3 −2x2 +2x

(x2 +1)(x −1)2 .

La partie entière est donc le polynôme constant 1.

Retour à l’exercice N



Solution de l’exercice A.1.36

On a

F = E + P0

Q
, F̂ = Ê + P̂0

Q̂

ce qui donne

F + F̂ = E + Ê + P0

Q
+ P̂0

Q̂
.

Si l’on réduit au même dénominateur la somme des deux fractions :

F + F̂ = E + Ê + P0Q̂ + P̂0Q

QQ̂
.

Or deg (P0) < deg (Q) et deg (P̂0) < deg (Q̂), d’où

deg (P0Q̂ + P̂0Q) ≤ max{deg (P0Q̂),deg (P̂0Q} < deg (Q)+deg (Q̂)

soit
deg (P0Q̂ + P̂0Q) < deg (QQ̂).

On a donc la bonne décomposition pour calculer la partie entière de F + F̂ , ce qui montre la proposition.

Retour à l’exercice N



Solution de l’exercice A.1.37

On effectue le changement de variable y = x −1, et on obtient

F (x) = y2 + y +2

y3(y +1)
.

Il reste à effectuer la division suivant les puissances croissantes de y2 + y +2 par y +1 de façon à pouvoir mettre y3 en
facteur dans le reste, ce qui a été fait dans l’exercice A.1.27. On a obtenu

2+ y + y2 = (2− y +2y2)(1+ y)−2y3

ce qui donne

F (x) = 2− y +2y2

y3 − 2

y +1
,

soit

F (x) = 2

y3 − 1

y2 + 2

y
− 2

y +1
.

On peut alors revenir à x, ce qui donne

F (x) = 2

(x −1)3 − 1

(x −1)2 + 2

x −1
− 2

x
.

Retour à l’exercice N



Solution de l’exercice A.1.38

La décomposition en éléments simples est de la forme :

2x +3

x2 −5x +6
= A

x −3
+ B

x −2
.

On multiplie par (x −3) ce qui donne
2x +3

x −2
= A+ B(x −3)

x −2
,

et on fait x = 3
9 = A.

On fait de même pour B et on trouve B =−7.

Retour à l’exercice N



Solution de l’exercice A.1.39

La décomposition en éléments simples est de la forme :

2x +1

(x −2)3 = A

(x −2)3 + B

(x −2)2 + C

x −2
.

On multiplie par (x −2)3 et on fait x = 2 ce qui donne

A = 5.

Par identification, on obtient
5+B(x −2)+C (x −2)2 = 2x +1.

Ce qui donne aisément C = 0 (coefficient de x2) puis B = 2 (coefficient de x).

Retour à l’exercice N



Solution de l’exercice A.1.40

On a déjà calculé dans le cours la décomposition de cette fraction dans C(X ), en particulier la partie entière a déjà été
déterminée. On doit donc maintenant décomposer la fraction F1 dans R(X )

F = 1+2F1, F1 = X 3 −X 2 +X

(X 2 +1)(X −1)2 .

F1(x) = ax +b

x2 +1
+ c

x −1
+ d

(x −1)2 . (C.1.1)

Le calcul de d est inchangé par rapport à celui effectué dans C dans le cours. On utilise d’autres idées pour calculer a, b,
c.

– Multipliant les deux membres de (C.1.1) par x et faisant tendre x vers l’infini, on a

1 = a + c.

– Faisant x = 0 dans les deux membres de (C.1.1) on obtient

0 = b − c +d .

– Réduisant les deux membres de (C.1.1) au même dénominateur, on obtient l’égalité

x3 −x2 +x

(x2 +1)(x −1)2 = (ax +b)(x −1)2 + (x2 +1)(cx − c +d)

(x2 +1)(x −1)2

et l’identification des coefficients de x au numérateur donne

1−a −2b + c.



On a ainsi trois équations à trois inconnues et la résolution de ces trois équations donne aisément b = 0 puis c = d = 1
2

et enfin a = 1
2 .

En comparant à ce qui a été trouvé dans C(X ), on peut vérifier que

x
2

x2 +1
=

1
4

x − i
+

1
4

x + i
.

Retour à l’exercice N



Solution de l’exercice A.1.41

La décomposition en éléments simples dans R(X ) est de la forme :

2x3 +x2 +3x +1

(x2 +1)(x2 +2)
= Ax +B

x2 +1
+ C x +D

x2 +2
.

Par identification, on obtient

(Ax +B)(x2 +2)+ (C x +D)(x2 +1) = 2x3 +x2 +3x +1.

On identifie les coefficients des puissances de x, ce qui donne un système d’équations. Les équations

A+C = 2, 2A+C = 3,

donnent
A =C = 1.

Les équations
B +D = 1, 2B +D = 1,

donnent
B = 0, D = 1.

La décomposition en éléments simples dans C(X ) est de la forme

2x3 +x2 +3x +1

(x2 +1)(x2 +2)
= A

x + i
+ B

x − i
+ C

x +p
2i

+ D

x −p
2i

.

Les coefficients peuvent s’obtenir en multipliant des deux côtés par l’un des dénominateurs puis à prendre la valeur de
x qui annule ce dénominateur. Ainsi, en multipliant par (x − i ) puis en posant x =−i , on obtient

2i −1−3i +1

(−2i )(−1+2)
= A



soit A = 1/2. On peut calculer de la même manière C = 1
2 +

p
2

4 i . En utilisant l’unicité de la décomposition et en prenant
le conjugué de la décomposition, on obtient

A = B̄ , C = D̄ .

Retour à l’exercice N



Solution de l’exercice A.1.42

On utilise la décomposition en éléments simples de l’exercice A.1.38 et on intègre, ce qui donne :

9ln |x −3|−7ln |x −2|+C te.

Retour à l’exercice N



Solution de l’exercice A.1.43

On utilise la décomposition en éléments simples de l’exercice A.1.39 et on intègre, ce qui donne :

−5

2

1

(x −2)2 −2
1

x −2
+C te.

Retour à l’exercice N



Solution de l’exercice A.1.44

On utilise la décomposition en éléments simples dans R(X ) de l’exercice A.1.41 et on intègre, ce qui donne :

1

2
ln(x2 +1)+ 1

2
ln(x2 +2)+ 1p

2
Arctan

xp
2
+C te.

Retour à l’exercice N



Aide 1, Question 1, Exercice A.2.1

Voir les paragraphes : De Moivre-formuleet Binôme de Newton.

Retour à l’exercice N



Aide 2, Question 1, Exercice A.2.1

Il est facile de montrer que

1+ i =
p

2
(
cos

π

4
+ i sin

π

4

)
.

En utilisant la formule de De moivre on peut donc obtenir les modules et les arguments de (1+ i )3, (1+ i )4 et (1+ i )n .
L’autre membre est obtenu par le binôme de Newton puis par identification des parties réelles et imaginaires.

Retour à l’exercice N



Aide 3, Question 1, Exercice A.2.1

Regroupez les puissances paires et les puissances impaires du binôme de Newton en deux sommes différentes et utilisez
le fait que

i 2p = (−1)p , i 2p+1 = (−1)p i .

Retour à l’exercice N



Aide 1, Question 2, Exercice A.2.1

Voir le paragraphe : Binôme de Newton et calculer deux binômes bien particuliers !

Retour à l’exercice N



Aide 2, Question 2, Exercice A.2.1

Que pensez-vous de 2 = 1+1 et 0 = 1−1 ? C’est la clé du résultat.

Retour à l’exercice N



Aide 1, Question 3, Exercice A.2.1

Que vaut A+B +C ? On rappelle que 1+ j =− j 2

Retour à l’exercice N



Aide 2, Question 3, Exercice A.2.1

− j 2 = cos π
3 + i sin π

3 , en déduire les parties réelles et imaginaires de (1+ j )n , identifier avec les parties réelles et imagi-
naires de A+B j +C j 2

Retour à l’exercice N



Aide 1, Question 1, Exercice A.2.2

La définition d’une application injective (Voir le paragraphe est valable même si les espaces sont complexes.

Retour à l’exercice N



Aide 2, Question 1, Exercice A.2.2

Résolvez f (z1) = f (z2) pour z1 et z2 dans C\ {−i }. Vous obtiendrez facilement l’injectivité de f .

Retour à l’exercice N



Aide 1, Question 2, Exercice A.2.2

Vous pouvez raisonner par l’absurde ce qui permet d’avoir une démonstration très courte.

Retour à l’exercice N



Aide 1, Question 3, Exercice A.2.2

Quelle est la définition de l’image d’une application ? (Voir le paragraphe : .)

Retour à l’exercice N



Aide 2, Question 3, Exercice A.2.2

Pour montrer que deux ensembles sont égaux on procède souvent par double inclusion. L’une des inclusions est évi-
dente, laquelle ?

Retour à l’exercice N



Aide 3, Question 3, Exercice A.2.2

On a montré dans la question précédente que Im f ⊂C\{1}. Pour l’autre inclusion, il faut montrer que pour tout élément
de t ∈ Im f ⊂C\ {1} il existe z ∈C\ {−i } tel que t = f (z).

Retour à l’exercice N



Aide 4, Question 3, Exercice A.2.2

Résolvez t = f (z), ce qui va vous permettre de construire explicitement z et de voir que z appartient bien à l’ensemble
de départ de f .

Retour à l’exercice N



Aide 1, Question 4, Exercice A.2.2

Il suffit de faire le calcul, il n’y a aucune difficulté particulière. Partez du membre de gauche et réduisez au même déno-
minateur.

Retour à l’exercice N



Aide 2, Question 4, Exercice A.2.2

Pour ceux qui ont du mal, revoyez le carré de la somme des modules dans le paragraphe Nombre complexe - conjugué
et module, puis comparez la partie réelle de i z avec la partie imaginaire de z.

Retour à l’exercice N



Aide 1, Question 5, Exercice A.2.2

Il faut déjà démontrer que f1 :R→U \{1} puis que f est surjective. Utiliser la question précédente pour montrer que si z
est réelle alors | f (z)| = 1 puis la deuxième question pour finir la première partie.

Retour à l’exercice N



Aide 2, Question 5, Exercice A.2.2

Pour la surjectivité, on sait déjà que pour ∀t ∈U \ {1},∃z, f (z) = t , il reste à montrer que z est réel. Comment caractériser
un nombre réel ?

Retour à l’exercice N



Aide 3, Question 5, Exercice A.2.2

Utiliser la question 4).

Retour à l’exercice N



Aide 4, Question 5, Exercice A.2.2

Si t ∈U \ {1}, alors | f (z)| = 1, donc Im z = 0.
Donc z est réel.

Retour à l’exercice N



Aide 1, Question 6, Exercice A.2.2

Il faut montrer que f2 : P → D , que f2 est injective (vous l’avez déjà montré, où ?) et enfin que f2 est surjective.

Retour à l’exercice N



Aide 2, Question 6, Exercice A.2.2

Utiliser la quatrième question pour montrer aisément que f2 : P → D . Pour la surjectivité, utilisez le calcul du z tel que
t = f (z) de la cinquième question et déduisez en Im z. Que faut-il alors démontrer ?

Retour à l’exercice N



Aide 1, Question 1, Exercice A.2.3

Résolvez comme un trinôme du second degré.

Retour à l’exercice N



Aide 2, Question 1, Exercice A.2.3

Pour vérifier votre résultat, vous pouvez utiliser la factorisation :

1− z3 = (1− z)(1+ z + z2)

et les racines cubiques de l’unité données dans le paragraphe : Racines nièmes de l’unité.

Retour à l’exercice N



Aide 1, Question 2, Exercice A.2.3

Résolvez comme un trinôme du second degré.

Retour à l’exercice N



Aide 2, Question 2, Exercice A.2.3

Les racines sont :
−1+ i

p
7

2
et

−1− i
p

7

2
.

Retour à l’exercice N



Aide 1, Question 3, Exercice A.2.3

Revoir le paragraphe Racines d’une équation du second degré. Attention, ici les coefficients sont complexes donc le
discriminant est un nombre complexe dont il faut calculer les racines carrées.

Retour à l’exercice N



Aide 2, Question 3, Exercice A.2.3

Le discriminant est : 8+6i = 9+6i − i 2 = (3+ i )2. Si vous ne voyez pas "l’astuce", vous résolvez (a + i b)2 = 8+6i comme
vous le faisiez en terminal. Les solutions sont alors

z1 = 5+ i

1− i
= 2+3i , z2 = 2

1− i
= 1+ i .

Retour à l’exercice N



Aide 1, Question 4, Exercice A.2.3

Voir le paragraphe : Racines nièmes de l’unité.

Retour à l’exercice N



Aide 2, Question 4, Exercice A.2.3

z3 = (2)3(cosπ+ i sinπ)

d’où les racines ont pour module 2 et pour argument

Arg z = π

3
+ 2kπ

3
, k = 0,1,2 .

Elles s’écrivent

z1 = 2
(
cos

π

3
+ sin

π

3

)
, z2 = 2(cosπ+ sinπ) , z3 = 2

(
cos

5π

3
+ sin

5π

3

)
,

expressions que vous pouvez encore simplifier ... Représentez les solutions sur un cercle du plan complexe de rayon 2.

Retour à l’exercice N



Aide 3, Question 4, Exercice A.2.3

z1 =−2 j 2, z2 =−2, z3 =−2 j

Retour à l’exercice N



Aide 1, Question 5, Exercice A.2.3

Voir le paragraphe : Racines nièmes de l’unité. Calculez le module et l’argument du membre de droite.

Retour à l’exercice N



Aide 2, Question 5, Exercice A.2.3

Le module de 64−64i
p

3 est 128 et l’argument est −π
3 à 2kπ près, soit

Arg (64−64i
p

3) = 5π

3

(pour la définition de Arg z, voir le paragraphe Argument d’un nombre complexe.

z7 = (2)7(cos
5π

3
+ i sin

5π

3
)

A vous de donner les 7 racines de l’équation.

Retour à l’exercice N


	Nombres complexes, polynômes et fractions rationnelles
	Les nombres complexes
	Lois de composition interne de R2
	Parties réelle et imaginaire d'un nombre complexe
	Formule du binôme de Newton
	Conjugué et module d'un nombre complexe
	Inégalité triangulaire
	Argument d'un nombre complexe
	Représentation graphique des nombres complexes
	La formule de De Moivre
	Le théorème de d'Alembert - Gauss
	Racines nièmes de l'unité
	Racines d'une équation du second degré
	Introduction à l'exponentielle complexe
	Application au calcul trigonométrique

	Généralités sur les polynômes
	Définition des polynômes à coefficients réels ou complexes 
	Somme, produit, conjugué de polynômes
	Division euclidienne
	Division suivant les puissances croissantes

	Factorisation des polynômes
	Polynômes irréductibles
	Factorisation des polynômes de C[X]
	Factorisation des polynômes de R[X]
	Lien entre multiciplité des racines et dérivées

	Fractions rationnelles
	Définition des fractions rationnelles
	Partie entière d'une fraction rationnelle
	Décomposition en éléments simples dans C(X)
	Décomposition en éléments simples dans R(X)
	Calcul pratique de la décomposition en éléments simples dans R(X)
	Calcul pratique de la décomposition en éléments simples dans C(X)

	Calcul des primitives des fractions rationnelles
	Primitive de 1/(t-r)n,n1
	Primitive de t+t2-t+
	Primitive de t+(t2-t+)n,n>1


	Exercices
	Exercices du chapitre 8
	Exercices de TD

	Exemples
	Exemples du chapitre 8

	Documents
	Documents du chapitre 8


