
Springer Series in 8
Computational
Mathematics

Editorial Board
R. Bank
R.L. Graham
J. Stoer
R. Varga
H. Yserentant



E. Hairer
S. P. Nørsett
G. Wanner

Solving Ordinary
Differential Equations I
Nonstiff Problems

Second Revised Edition
With 135 Figures

123



Ernst Hairer
Gerhard Wanner

Université de Genève
Section de Mathématiques
2–4 rue du Lièvre
1211 Genève 4
Switzerland
Ernst.Hairer@math.unige.ch
Gerhard.Wanner@math.unige.ch

Syvert P. Nørsett

Norwegian University of Science
and Technology (NTNU)
Department of Mathematical Sciences
7491 Trondheim
Norway
norsett@math.ntnu.no

Corrected 3rd printing 2008

ISBN 978-3-540-56670-0 e-ISBN 978-3-540-78862-1

DOI 10.1007/978-3-540-78862-1

Springer Series in Computational Mathematics ISSN 0179-3632

Library of Congress Control Number: 93007847

Mathematics Subject Classification (2000): 65Lxx, 34A50

© 1993, 1987 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data
banks. Duplication of this publication or parts thereof is permitted only under the provisions
of the German Copyright Law of September 9, 1965, in its current version, and permission
for use must always be obtained from Springer. Violations are liable to prosecution under the
German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Cover design: WMX Design GmbH, Heidelberg
Typesetting: by the authors
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com



This edition is dedicated to

Professor John Butcher

on the occasion of his 60th birthday

His unforgettable lectures on Runge-Kutta methods, given in June
1970 at the University of Innsbruck, introduced us to this subject
which, since then, we have never ceased to love and to develop with all

our humble abilities.



From the Preface to the First Edition

So far as I remember, I have never seen an Author’s Preface
which had any purpose but one — to furnish reasons for the
publication of the Book. (Mark Twain)

Gauss’ dictum, “when a building is completed no one should
be able to see any trace of the scaffolding,” is often used by
mathematicians as an excuse for neglecting the motivation
behind their own work and the history of their field. For-
tunately, the opposite sentiment is gaining strength, and nu-
merous asides in this Essay show to which side go my sym-
pathies. (B.B. Mandelbrot 1982)

This gives us a good occasion to work out most of the book
until the next year. (the
Authors in a letter, dated Oct. 29, 1980, to Springer-Verlag)

There are two volumes, one on non-stiff equations, . . . , the second
on stiff equations, . . . . The first volume has three chapters, one on
classical mathematical theory, one on Runge-Kutta and extrapolation
methods, and one on multistep methods. There is an Appendix con-
taining some Fortran codes which we have written for our numerical
examples.

Each chapter is divided into sections. Numbers of formulas, the-
orems, tables and figures are consecutive in each section and indicate,
in addition, the section number, but not the chapter number. Cross ref-
erences to other chapters are rare and are stated explicitly. . . . Refer-
ences to the Bibliography are by “Author” plus “year” in parentheses.
The Bibliography makes no attempt at being complete; we have listed
mainly the papers which are discussed in the text.

Finally, we want to thank all those who have helped and encour-
aged us to prepare this book. The marvellous “Minisymposium”
which G. Dahlquist organized in Stockholm in 1979 gave us the first
impulse for writing this book. J. Steinig and Chr. Lubich have read the
whole manuscript very carefully and have made extremely valuable
mathematical and linguistical suggestions. We also thank J.P. Eck-
mann for his troff software with the help of which the whole manu-
script has been printed. For preliminary versions we had used textpro-
cessing programs written by R. Menk. Thanks also to the staff of the
Geneva computing center for their help. All computer plots have been
done on their beautiful HP plotter. Last but not least, we would like
to acknowledge the agreable collaboration with the planning and pro-
duction group of Springer-Verlag.

October 29, 1986 The Authors



VIII Preface

Preface to the Second Edition

The preparation of the second edition has presented a welcome oppor-
tunity to improve the first edition by rewriting many sections and by
eliminating errors and misprints. In particular we have included new
material on

– Hamiltonian systems (I.14) and symplectic Runge-Kutta methods
(II.16);

– dense output for Runge-Kutta (II.6) and extrapolation methods
(II.9);

– a new Dormand & Prince method of order 8 with dense output
(II.5);

– parallel Runge-Kutta methods (II.11);

– numerical tests for first- and second order systems (II.10 and III.7).
Our sincere thanks go to many persons who have helped us with our
work:

– all readers who kindly drew our attention to several errors and mis-
prints in the first edition;

– those who read preliminary versions of the new parts of this edi-
tion for their invaluable suggestions: D.J. Higham, L. Jay, P. Kaps,
Chr. Lubich, B. Moesli, A. Ostermann, D. Pfenniger, P.J. Prince,
and J.M. Sanz-Serna.

– our colleague J. Steinig, who read the entire manuscript, for his nu-
merous mathematical suggestions and corrections of English (and
Latin!) grammar;

– our colleague J.P. Eckmann for his great skill in manipulating
Apollo workstations, font tables, and the like;

– the staff of the Geneva computing center and of the mathematics
library for their constant help;

– the planning and production group of Springer-Verlag for numer-
ous suggestions on presentation and style.

This second edition now also benefits, as did Volume II, from the mar-
vels of TEXnology. All figures have been recomputed and printed,
together with the text, in Postscript. Nearly all computations and
text processings were done on the Apollo DN4000 workstation of the
Mathematics Department of the University of Geneva; for some long-
time and high-precision runs we used a VAX 8700 computer and a
Sun IPX workstation.

November 29, 1992 The Authors
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Chapter I. Classical Mathematical Theory

. . . halte ich es immer für besser, nicht mit dem Anfang anzufan-
gen, der immer das Schwerste ist.

(B. Riemann copied this from F. Schiller into his notebook)

This first chapter contains the classical theory of differential equations, which we
judge useful and important for a profound understanding of numerical processes
and phenomena. It will also be the occasion of presenting interesting examples of
differential equations and their properties.

We first retrace in Sections I.2-I.6 the historical development of classical inte-
gration methods by series expansions, quadrature and elementary functions, from
the beginning (Newton and Leibniz) to the era of Euler, Lagrange and Hamil-
ton. The next part (Sections I.7-I.14) deals with theoretical properties of the so-
lutions (existence, uniqueness, stability and differentiability with respect to initial
values and parameters) and the corresponding flow (increase of volume, preser-
vation of symplectic structure). This theory was initiated by Cauchy in 1824 and
then brought to perfection mainly during the next 100 years. We close with a brief
account of boundary value problems, periodic solutions, limit cycles and strange
attractors (Sections I.15 and I.16).



I.1 Terminology

A differential equation of first order is an equation of the form

y′ = f(x, y) (1.1)

with a given function f(x, y) . A function y(x) is called a solution of this equation
if for all x ,

y′(x) = f
(
x, y(x)

)
. (1.2)

It was observed very early by Newton, Leibniz and Euler that the solution usually
contains a free parameter, so that it is uniquely determined only when an initial
value

y(x0) = y0 (1.3)

is prescribed. Cauchy’s existence and uniqueness proof of this fact will be dis-
cussed in Section I.7. Differential equations arise in many applications. We shall
see the first examples of such equations in Section I.2, and in Section I.3 how some
of them can be solved explicitly.

A differential equation of second order for y is of the form

y′′ = f(x, y, y′). (1.4)

Here, the solution usually contains two parameters and is only uniquely determined
by two initial values

y(x0) = y0, y′(x0) = y′
0. (1.5)

Equations of second order can rarely be solved explicitly (see I.3). For their nu-
merical solution, as well as for theoretical investigations, one usually sets y1(x) :=
y(x) , y2(x) := y′(x) , so that equation (1.4) becomes

y′
1 = y2

y′
2 = f(x, y1, y2)

y1(x0) = y0

y2(x0) = y′
0.

(1.4’)

This is an example of a first order system of differential equations, of dimension n
(see Sections I.6 and I.9),

y′
1 = f1(x, y1, . . . , yn)

. . .

y′
n = fn(x, y1, . . . , yn)

y1(x0) = y10

. . .

yn(x0) = yn0.

(1.6)
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Most of the theory of this book is devoted to the solution of the initial value prob-
lem for the system (1.6). At the end of the 19th century (Peano 1890) it became
customary to introduce the vector notation

y = (y1, . . . , yn)T , f = (f1, . . . , fn)T

so that (1.6) becomes y′ = f(x, y) , which is again the same as (1.1), but now with
y and f interpreted as vectors.

Another possibility for the second order equation (1.4), instead of transforming
it into a system (1.4’), is to develop methods specially adapted to second order
equations (Nyström methods). This will be done in special sections of this book
(Sections II.13 and III.10). Nothing prevents us, of course, from considering (1.4)
as a second order system of dimension n .

If, however, the initial conditions (1.5) are replaced by something like y(x0) =
a , y(x1) = b , i.e., if the conditions determining the particular solution are not all
specified at the same point x0 , we speak of a boundary value problem. The theory
of the existence of a solution and of its numerical computation is here much more
complicated. We give some examples in Section I.15.

Finally, a problem of the type

∂u

∂t
= f
(
t, u,

∂u

∂x
,
∂2u

∂x2

)
(1.7)

for an unknown function u(t, x) of two independent variables will be called a par-
tial differential equation. We can also deal with partial differential equations of
higher order, with problems in three or four independent variables, or with sys-
tems of partial differential equations. Very often, initial value problems for partial
differential equations can conveniently be transformed into a system of ordinary
differential equations, for example with finite difference or finite element approxi-
mations in the variable x . In this way, the equation

∂u

∂t
= a2 ∂2u

∂x2

would become
dui

dt
=

a2

Δx2

(
ui+1 − 2ui +ui−1

)
,

where ui(t) ≈ u(t, xi) . This procedure is called the “method of lines” or “method
of discretization in space” (Berezin & Zhidkov 1965). We shall see in Section I.6
that this connection, the other way round, was historically the origin of partial dif-
ferential equations (d’Alembert, Lagrange, Fourier). A similar idea is the “method
of discretization in time” (Rothe 1930).



I.2 The Oldest Differential Equations

. . . So zum Beispiel die Aufgabe der umgekehrten Tangentenme-
thode, von welcher auch Descartes eingestand, dass er sie nicht in
seiner Gewalt habe. (Leibniz, 27. Aug 1676)

. . . et on sait que les seconds Inventeurs n’ont pas de droit à l’In-
vention. (Newton, 29 mai 1716)

Il ne paroist point que M. Newton ait eu avant moy la characteris-
tique & l’algorithme infinitesimal . . . (Leibniz)

And by these words he acknowledged that he had not yet found the
reduction of problems to differential equations. (Newton)

Newton

Differential equations are as old as differential calculus. Newton considered them
in his treatise on differential calculus (Newton 1671) and discussed their solution
by series expansion. One of the first examples of a first order equation treated by
Newton (see Newton (1671), Problema II, Solutio Casus II, Ex. I) was

y′ = 1− 3x + y +x2 +xy. (2.1)

For each value x and y , such an equation prescribes the derivative y′ of the solu-
tions. We thus obtain a vector field, which, for this particular equation, is sketched
in Fig. 2.1a. (So, contrary to the belief of many people, vector fields existed long
before Van Gogh). The solutions are the curves which respect these prescribed
directions everywhere (Fig. 2.1b).

Newton discusses the solution of this equation by means of infinite series,
whose terms he obtains recursively (“ . . . & ils se jettent sur les series, oú M. New-
ton m’a precedé sans difficulté; mais . . .”, Leibniz). The first term

y = 0 + . . .

is the initial value for x = 0 . Inserting this into the differential equation (2.1) he
obtains

y′ = 1 + . . .

which, integrated, gives
y = x + . . . .

Again, from (2.1), we now have

y′ = 1− 3x +x + . . . = 1− 2x + . . .

and by integration
y = x−x2 + . . . .
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a: b:

m

correct

m

m

m

c:

Fig. 2.1. a) vector field, b) various solution curves of equation (2.1),
c) Correct solution vs. approximate solution

The next round gives

y′ = 1− 2x +x2 + . . . , y = x−x2 +
x3

3
+ . . . .

Continuing this process, he finally arrives at

y = x−xx +
1
3
x3 − 1

6
x4 +

1
30

x5 − 1
45

x6; &c. (2.2)

These approximations, term after term, are plotted in Fig. 2.1c together with the
correct solution. It can be seen that these approximations are closer and closer
to the true solution for small values of x . For more examples see Exercises 1-3.
Convergence will be discussed in Section I.8.



6 I. Classical Mathematical Theory

Leibniz and the Bernoulli Brothers

A second access to differential equations is the consideration of geometrical prob-
lems such as inverse tangent problems (Debeaune 1638 in a letter to Descartes). A
particular example describes the path of a silver pocket watch (“horologio porta-
bili suae thecae argentae”) and was proposed around 1674 by “Claudius Perraltus
Medicus Parisinus” to Leibniz: a curve y(x) is required whose tangent AB is
given, say everywhere of constant length a (Fig. 2.2). This leads to

y′ = − y√
a2 − y2

, (2.3)

a first order differential equation. Despite the efforts of the “plus célèbres mathé-
maticiens de Paris et de Toulouse” (from a letter of Descartes 1645, “Toulouse”
means “Fermat”) the solution of these problems had to wait until Leibniz (1684)
and above all until the famous paper of Jacob Bernoulli (1690). Bernoulli’s idea
applied to equation (2.3) is as follows: let the curve BM in Fig. 2.3 be such that
LM is equal to

√
a2 − y2/y . Then (2.3), written as

dx = −
√

a2 − y2

y
dy, (2.3’)

shows that for all y the areas S1 and S2 (Fig. 2.3) are the same. Thus (“Ergo &
horum integralia aequantur”) the areas BMLB and A1A2C2C1 must be equal
too. Hence (2.3’) becomes (Leibniz 1693)

x =
∫ a

y

√
a2 − y2

y
dy = −

√
a2 − y2 − a · log

a−
√

a2 − y2

y
. (2.3”)

dy

dx

y

x
a

S

S

aB

M L

A A

C C

solution

Fig. 2.2. Illustration from Fig. 2.3. Jac. Bernoulli’s
Leibniz (1693) Solution of (2.3)
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Variational Calculus

In 1696 Johann Bernoulli invited the brightest mathematicians of the world (“Pro-
fundioris in primis Mathesos cultori, Salutem!”) to solve the brachystochrone
(shortest time) problem, mainly in order to fault his brother Jacob, from whom
he expected a wrong solution. The problem is to find a curve y(x) connecting two
points P0, P1 , such that a point gliding on this curve under gravitation reaches P1

in the shortest time possible. In order to solve his problem, Joh. Bernoulli (1697b)
imagined thin layers of homogeneous media and knew from optics (Fermat’s prin-
ciple) that a light ray with speed v obeying the law of Snellius

sinα = Kv

passes through in the shortest time. Since the speed is known to be proportional to
the square root of the fallen height, he obtains, by passing to thinner and thinner
layers,

sin α =
1√

1 + y′2
= K

√
2g(y−h), (2.4)

a differential equation of the first order.

Fig. 2.4. Solutions of the variational problem (Joh. Bernoulli,
Jac. Bernoulli, Euler)

The solutions of (2.4) can be shown to be cycloids (see Exercise 6 of Sec-
tion I.3). Jacob, in his reply, also furnished a solution, much less elegant but unfor-
tunately correct. Jacob’s method (see Fig. 2.4) was something like today’s (inverse)
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“finite element” method and more general than Johann’s and led to the famous work
of Euler (1744), which gives the general solution of the problem∫ x1

x0

F (x, y, y′) dx = min (2.5)

with the help of the differential equation of the second order

Fy(x, y, y′)− d

dx

(
Fy′(x, y, y′)

)
= Fy −Fy′y′y′′−Fy′yy

′−Fy′x = 0, (2.6)

and treated 100 variational problems in detail. Equation (2.6), in the special case
where F does not depend on x , can be integrated to give

F −Fy′y′ = K. (2.6’)

Euler’s original proof used polygons in order to establish equation (2.6). Only the
ideas of Lagrange, in 1755 at the age of 19, led to the proof which is today the usual
one (letter of Aug. 12, 1755; Oeuvres vol. 14, p. 138): add an arbitrary “variation”
δy(x) to y(x) and linearize (2.5).∫ x1

x0

F
(
x, y + δy, y′ + (δy)′

)
dx (2.7)

=
∫ x1

x0

F
(
x, y, y′) dx +

∫ x1

x0

(
Fy(x, y, y′) δy +Fy′(x, y, y′)(δy)′

)
dx + . . .

The last integral in (2.7) represents the “derivative” of (2.5) with respect to δy .
Therefore, if y(x) is the solution of (2.5), we must have∫ x1

x0

(
Fy(x, y, y′) δy +Fy′(x, y, y′)(δy)′

)
dx = 0 (2.8)

or, after partial integration,∫ x1

x0

(
Fy(x, y, y′)− d

dx
Fy′(x, y, y′)

)
· δy(x) dx = 0. (2.8’)

Since (2.8’) must be fulfilled by all δy , Lagrange “sees” that

Fy(x, y, y′)− d

dx
Fy′(x, y, y′) = 0 (2.9)

is necessary for (2.5). Euler, in his reply (Sept. 6, 1755) urged a more precise proof
of this fact (which is now called the “fundamental Lemma of variational Calculus”).
For several unknown functions∫

F (x, y1, y
′
1, . . . , yn, y′

n) dx = min (2.10)

the same proof leads to the equations

Fyi
(x, y1, y

′
1, . . . , yn, y′

n)− d

dx
Fy′

i
(x, y1, y

′
1, . . . , yn, y′

n) = 0 (2.11)
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for i = 1, . . . , n . Euler (1756) then gave, in honour of Lagrange, the name “Varia-
tional calculus” to the whole subject (“ . . . tamen gloria primae inventionis acutis-
simo Geometrae Taurinensi La Grange erat reservata”).

Clairaut

A class of equations with interesting properties was found by Clairaut (see Clairaut
(1734), Problème III). He was motivated by the movement of a rectangular wedge
(see Fig. 2.5), which led him to differential equations of the form

y−xy′ + f(y′) = 0. (2.12)

This was the first implicit differential equation and possesses the particularity that
not only the lines y = Cx− f(C) are solutions, but also their enveloping curves
(see Exercise 5). An example is shown in Fig. 2.6 with f(C) = 5(C3 −C)/2 .

Fig. 2.5. Illustration from Clairaut (1734)

Since the equation is of the third degree in y′ , a given initial value may allow
up to three different solution lines. Furthermore, where a line touches an envelop-
ing curve, the solution may be continued either along the line or along the curve.
There is thus a huge variety of different possible solution curves. This phenomenon
attracted much interest in the classical literature (see e.g., Exercises 4 and 6). To-
day we explain this curiosity by the fact that at these points no Lipschitz condition
is satisfied (see also Ince (1944), p. 538–539).
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Fig. 2.6. Solutions of a Clairaut differential equation

Exercises

1. (Newton). Solve equation (2.1) with another initial value y(0) = 1 .

Newton’s result: y = 1 + 2x +x3 + 1
4
x4 + 1

4
x5, &c.

2. (Newton 1671, “Problema II, Solutio particulare”). Solve the total differential
equation

3x2 − 2ax + ay− 3y2y′ + axy′ = 0.

Solution given by Newton: x3 −ax2 +axy − y3 = 0 . Observe that he missed
the arbitrary integration constant C .

3. (Newton 1671). Solve the equations

a) y′ = 1 +
y

a
+

xy

a2
+

x2y

a3
+

x3y

a4
, &c.

b) y′ = −3x + 3xy + y2 −xy2 + y3 −xy3 + y4 −xy4 + 6x2y

− 6x2 + 8x3y− 8x3 + 10x4y− 10x4, &c.

Results given by Newton:

a) y = x +
x2

2a
+

x3

2a2
+

x4

2a3
+

x5

2a4
+

x6

2a5
, &c.

b) y = −3
2
x2 − 2x3 − 25

8
x4 − 91

20
x5 − 111

16
x6 − 367

35
x7, &c.



I.2 The Oldest Differential Equations 11

4. Show that the differential equation

x + yy′ = y′√x2 + y2 − 1

possesses the solutions 2ay = a2 + 1−x2 for all a . Sketch these curves and
find yet another solution of the equation (from Lagrange (1774), p. 7, which
was written to explain the “Clairaut phenomenon”).

5. Verify that the envelope of the solutions y = Cx− f(C) of the Clairaut equa-
tion (2.12) is given in parametric representation by

x(p) = f ′(p)

y(p) = pf ′(p)− f(p) .

Show that this envelope is also a solution of (2.12) and calculate it for f(C) =
5(C3 −C)/2 (cf. Fig. 2.6).

6. (Cauchy 1824). Show that the family y = C(x +C)2 satisfies the differential
equation (y′)3 = 8y2 −4xyy′ . Find yet another solution which is not included
in this family (see Fig. 2.7).

Answer: y = − 4
27x3 .

Fig. 2.7. Solution family of Cauchy’s example in Exercise 6



I.3 Elementary Integration Methods

We now discuss some of the simplest types of equations, which can be solved by
the computation of integrals.

First Order Equations

The equation with separable variables.

y′ = f(x)g(y). (3.1)

Extending the idea of Jacob Bernoulli (see (2.3’)), we divide by g(y) , integrate and
obtain the solution (Leibniz 1691, in a letter to Huygens)∫

dy

g(y)
=
∫

f(x) dx +C.

A special example of this is the linear equation y′ = f(x)y , which possesses the
solution

y(x) = CR(x), R(x) = exp
(∫

f(x) dx
)
.

The inhomogeneous linear equation.

y′ = f(x)y + g(x). (3.2)

Here, the substitution y(x)=c(x)R(x) leads to c′(x)=g(x)/R(x) (Joh. Bernoulli
1697). One thus obtains the solution

y(x) = R(x)
(∫ x

x0

g(s)
R(s)

ds +C
)
. (3.3)

Total differential equations. An equation of the form

P (x, y) +Q(x, y)y′ = 0 (3.4)

is found to be immediately solvable if

∂P

∂y
=

∂Q

∂x
. (3.5)
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One can then find by integration a potential function U(x, y) such that

∂U

∂x
= P,

∂U

∂y
= Q.

Therefore (3.4) becomes d
dxU(x, y(x)) = 0 , so that the solutions can be expressed

by U(x, y(x)) = C . For the case when (3.5) is not satisfied, Clairaut and Euler
investigated the possibility of multiplying (3.4) by a suitable factor M(x, y) , which
sometimes allows the equation MP +MQy′ = 0 to satisfy (3.5).

Second Order Equations

Even more than for first order equations, the solution of second order equations by
integration is very seldom possible. Besides linear equations with constant coeffi-
cients, whose solutions for the second order case were already known to Newton,
several tricks of reduction are possible, as for example the following:

For a linear equation
y′′ = a(x)y′ + b(x)y

we make the substitution (Riccati 1723, Euler 1728)

y = exp
(∫

p(x) dx
)
. (3.6)

The derivatives of this function contain only derivatives of p of lower order

y′ = p · exp
(∫

p(x) dx
)
, y′′ =

(
p2 + p′

) · exp
(∫

p(x) dx
)

so that inserting this into the differential equation, after division by y , leads to a
lower order equation

p2 + p′ = a(x)p + b(x) (3.7)

which, however, is nonlinear.
If the equation is independent of y , y′′ = f(x, y′) , it is natural to put y′ = v

which gives v′ = f(x, v) .
An important case is that of equations independent of x :

y′′ = f(y, y′).

Here we consider y′ as function of y : y′ = p(y) . Then the chain rule gives y′′ =
p′p = f(y, p) , which is a first order equation. When the function p(y) has been
found, it remains to integrate y′ = p(y) , which is an equation of type (3.1) (Riccati
(1712): “Per liberare la premessa formula dalle seconde differenze , . . . , chiamo p
la sunnormale BF . . . ”, see also Euler (1769), Problema 96, p. 33).

The investigation of all possible differential equations which can be integrated
by analytical methods was begun by Euler. His results have been collected, in
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more than 800 pages, in Volumes XXII and XXIII of Euler’s Opera Omnia. For a
more recent discussion see Ince (1944), p. 16-61. An irreplaceable document on
this subject is the book of Kamke (1942). It contains, besides a description of the
solution methods and general properties of the solutions, a systematically ordered
list of more than 1500 differential equations with their solutions and references to
the literature.

The computations, even for very simple looking equations, soon become very
complicated and one quickly began to understand that elementary solutions would
not always be possible. It was Liouville (1841) who gave the first proof of the
fact that certain equations, such as y′ = x2 + y2 , cannot be solved in terms of
elementary functions. Therefore, in the 19th century mathematicians became more
and more interested in general existence theorems and in numerical methods for
the computation of the solutions.

Exercises

1. Solve Newton’s equation (2.1) by quadrature.

2. Solve Leibniz’ equation (2.3) in terms of elementary functions.

Hint. The integral for y might cause trouble. Use the substitution a2 − y2 =
u2 , −ydy = udu .

3. Solve and draw the solutions of y′ = f(y) where f(y) =
√|y| .

4. Solve the master-and-dog problem: a dog runs with speed w in the direction
of his master, who walks with speed v along the y -axis. This leads to the
differential equation

(xy′)′ = − v

w

√
1 + (y′)2.

5. Solve the equation my′′ = −k/y2 , which describes a body falling according
to Newton’s law of gravitation.

6. Verify that the cycloid

x−x0 = R (τ − sin τ), y−h = R (1− cos τ), R =
1

4gK2

satisfies the differential equation (2.4) for the brachystochrone problem. Solv-
ing (2.4) in a forward manner, one arrives after some simplifications at the
integral ∫ √

y

1− y
dy,

which is computed by the substitution y = (sin t)2 .
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7. Reduce the “Bernoulli equation” (Jac. Bernoulli 1695)

y′ + f(x)y = g(x)yn

with the help of the coordinate transformation z(x) = (y(x))q and a suit-
able choice of q , to a linear equation (Leibniz, Acta Erud. 1696, p. 145, Joh.
Bernoulli, Acta Erud. 1697, p. 113).

8. Compute the “Linea Catenaria” of the hanging rope. The solution was given
by Joh. Bernoulli (1691) and Leibniz (1691) (see Fig. 3.2) without any hint.

Hint. (Joh. Bernoulli, “Lectiones . . . in usum Ill. Marchionis Hospitalii”
1691/92). Let H resp. V be the horizontal resp. vertical component of the
tension in the rope (Fig. 3.1). Then H = a is a constant and V = q · s is pro-
portional to the arc length. This leads to Cp = s or Cdp = ds i.e., Cdp =√

1 + p2dx , where p = y′ , a differential equation.

Result. y = K +C cosh
(x−x0

C

)
.

H

V

x

y

s

Fig. 3.1. Solution of the Fig. 3.2. “Linea Catenaria”
Catenary problem drawn by Leibniz (1691)
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Lisez Euler, lisez Euler, c’est notre maı̂tre à tous. (Laplace)

[Euler] . . . c’est un homme peu amusant, mais un très-grand Géo-
mètre. (D’Alembert, letter to Voltaire, March 3, 1766)

[Euler] . . . un Géomètre borgne, dont les oreilles ne sont pas faites
pour sentir les délicatesses de la poésie.

(Frédéric II, in a letter to Voltaire)

Following in the footsteps of Euler (1743), we want to understand the general so-
lution of n th order linear differential equations. We say that the equation

L(y) := an(x)y(n) + an−1(x)y(n−1) + . . .+ a0(x)y = 0 (4.1)

with given functions a0(x), . . . , an(x) is homogeneous. If n solutions u1(x) ,
. . . , un(x) of (4.1) are known, then any linear combination

y(x) = C1u1(x) + . . .+Cnun(x) (4.2)

with constant coefficients C1, . . . , Cn is also a solution of (4.1), since all deriva-
tives of y appear only linearly in (4.1).

Equations with Constant Coefficients

Let us first consider the special case

y(n)(x) = 0. (4.3)

This can be integrated once to give y(n−1)(x) = C1 , then y(n−2)(x) = C1x+C2 ,
etc. Replacing at the end the arbitrary constants Ci by new ones, we finally obtain

y(x) = C1x
n−1 +C2x

n−2 + . . .+Cn.

Thus there are n “free parameters” in the “general solution” of (4.3). Euler’s in-
tuition, after some more examples, also expected the same result for the general
equation (4.1). This fact, however, only became completely clear many years later.

We now treat the general equation with constant coefficients,

y(n) +An−1y
(n−1) + . . .+A0y = 0. (4.4)

Our problem is to find a basis of n linearly independent solutions u1(x), . . .,
un(x) . To this end, Euler’s inspiration was guided by the transformation (3.6),
(3.7) above: if a(x) and b(x) are constants, we assume p constant in (3.7) so that
p′ vanishes, and we obtain the quadratic equation p2 = ap+ b . For any root of this
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equation, (3.6) then becomes y = epx . In the general case we thus assume y = epx

with an unknown constant p , so that (4.4) leads to the characteristic equation

pn +An−1p
n−1 + . . .+A0 = 0. (4.5)

If the roots p1, . . . , pn of equation (4.5) are distinct, all solutions of (4.4) are given
by

y(x) = C1e
p1x + . . .+Cnepnx. (4.6)

It is curious to see that the “brightest mathematicians of the world” struggled for
many decades to find this solution, which appears so trivial to today’s students.

A difficulty arises with the solution (4.6) when (4.5) does not possess n distinct
roots. Consider, with Euler, the example

y′′− 2qy′ + q2y = 0. (4.7)

Here p = q is a double root of the corresponding characteristic equation. If we set

y = eqxu, (4.8)

(4.7) becomes u′′ = 0 , which brings us back to (4.3). So the general solution of
(4.7) is given by y(x) = eqx(C1x +C2) (see also Exercise 5 below). After some
more examples of this type, one sees that the transformation (4.8) effects a shift of
the characteristic polynomial, so that if q is a root of multiplicity k , we obtain for
u an equation ending with . . .+Bu(k+1) +Cu(k) = 0 . Therefore

eqx(C1x
k−1 + . . .+Ck)

gives us k independent solutions.
Finally, for a pair of complex roots p=α± iβ the solutions e(α+iβ)x , e(α−iβ)x

can be replaced by the real functions

eαx(C1 cos βx +C2 sin βx).

The study of the inhomogeneous equation

L(y) = f(x) (4.9)

was begun in Euler (1750), p. 13. We mention from this work the case where f(x)
is a polynomial, say for example the equation

Ay′′ +By′ +Cy = ax2 + bx + c. (4.10)

Here Euler puts y(x) = Ex2 +Fx+G+v(x) . Inserting this into (4.10) and elim-
inating all possible powers of x , one obtains

CE = a, CF + 2BE = b, CG +BF + 2AE = c,

Av′′ +Bv′ +Cv = 0.

This allows us, when C is different from zero, to compute E, F and G and we
observe that the general solution of the inhomogeneous equation is the sum of a
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particular solution of it and of the general solution of the corresponding homoge-
neous equation. This is also true in the general case and can be verified by trivial
linear algebra.

The above method of searching for a particular solution with the help of un-
known coefficients works similarly if f(x) is composed of exponential, sine, or
cosine functions and is often called the “fast method”. We see with pleasure that it
was historically the first method to be discovered.

Variation of Constants

The general treatment of the inhomogeneous equation

an(x)y(n) + . . .+ a0(x)y = f(x) (4.11)

is due to Lagrange (1775) (“ . . . par une nouvelle méthode aussi simple qu’on
puisse le désirer”, see also Lagrange (1788), seconde partie, Sec. V.) We assume
known n independent solutions u1(x), . . . , un(x) of the homogeneous equation.
We then set, in extension of the method employed for (3.2), instead of (4.2)

y(x) = c1(x)u1(x) + . . .+ cn(x)un(x) (4.12)

with unknown functions ci(x) (“method of variation of constants”). We have to
insert (4.12) into (4.11) and thus compute the first derivative

y′ =
n∑

i=1

c′iui +
n∑

i=1

ciu
′
i.

If we continue blindly to differentiate in this way, we soon obtain complicated and
useless formulas. Therefore Lagrange astutely requires the first term to vanish and
puts

n∑
i=1

c′iu
(j)
i = 0 j = 0, then also for j = 1, . . . , n− 2. (4.13)

Then repeated differentiation of y , with continued elimination of the undesired
terms (4.13), gives

y′ =
n∑

i=1

ciu
′
i , . . . y(n−1) =

n∑
i=1

ciu
(n−1)
i ,

y(n) =
n∑

i=1

c′iu
(n−1)
i +

n∑
i=1

ciu
(n)
i .

If we insert this into (4.11), we observe wonderful cancellations due to the fact
that the ui(x) satisfy the homogeneous equation, and finally obtain, together with
(4.13),
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⎛⎜⎜⎝
u1 . . . un

u′
1 . . . u′

n
...

...
u

(n−1)
1 . . . u

(n−1)
n

⎞⎟⎟⎠
⎛⎜⎜⎝

c′1
c′2
...

c′n

⎞⎟⎟⎠=

⎛⎜⎜⎝
0
...
0

f(x)/an(x)

⎞⎟⎟⎠ . (4.14)

This is a linear system, whose determinant is called the “Wronskian” and whose
solution yields c′1(x), . . . , c′n(x) and after integration c1(x), . . . , cn(x) .

Much more insight into this formula will be possible in Section I.11.

Exercises

1. Find the solution “huius aequationis differentialis quarti gradus” a4y(4) + y =
0 , a4y(4) − y = 0 ; solve the equation “septimi gradus” y(7) + y(5) + y(4) +
y(3) + y(2) + y = 0 . (Euler 1743, Ex. 4, 5, 6 ).

2. Solve by Euler’s technique y′′− 3y′− 4y = cos x and y′′ + y = cos x .

Hint. In the first case the particular solution can be searched for in the form
E cos x+F sin x . In the second case (which corresponds to a resonance in the
equation) one puts Ex cosx +Fx sinx just as in the solution of (4.7).

3. Find the solution of

y′′− 3y′− 4y = g(x), g(x) =
{

cos(x) 0 ≤ x ≤ π/2
0 π/2 ≤ x

such that y(0) = y′(0) = 0 ,

a) by using the solution of Exercise 2,

b) by the method of Lagrange (variation of constants).

4. (Reduction of the order if one solution is known). Suppose that a nonzero
solution u1(x) of y′′ + a1(x)y′ + a0(x)y = 0 is known. Show that a second
independent solution can be found by putting u2(x) = c(x)u1(x) .

5. Treat the case of multiple characteristic values (4.7) by considering them as a
limiting case p2 → p1 and using the solutions

u1(x) = ep1x, u2(x) = lim
p2→p1

ep2x − ep1x

p2 − p1

=
∂ep1x

∂p1

, etc.

(d’Alembert (1748), p. 284: “Enfin, si les valeurs de p & de p′ sont égales,
au lieu de les supposer telles, on supposera p = a +α , p′ = a−α , α étant
quantité infiniment petite . . .”).



I.5 Equations with Weak Singularities

Der Mathematiker weiss sich ohnedies beim Auftreten von singu-
lären Stellen gegebenenfalls leicht zu helfen. (K. Heun 1900)

Many equations occurring in applications possess singularities, i.e., points at which
the function f(x, y) of the differential equation becomes infinite. We study in some
detail the classical treatment of such equations, since numerical methods, which
will be discussed later in this book, often fail at the singular point, at least if they
are not applied carefully.

Linear Equations

As a first example, consider the equation

y′ =
q + bx

x
y, q �= 0 (5.1)

with a singularity at x=0 . Its solution, using the method of separation of variables
(3.1), is

y(x) = Cxqebx = C(xq + bxq+1 + . . .). (5.2)

These solutions are plotted in Fig. 5.1 for different values of q and show the fun-
damental difference in the behaviour of the solutions in dependence of q .

q q q

Fig. 5.1. Solutions of (5.1) for b = 1
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Euler started a systematic study of equations with singularities. He asked
which type of equation of the second order can conveniently be solved by a se-
ries as in (5.2) (Euler 1769, Problema 122, p. 177, “ . . . quas commode per series
resolvere licet . . .”). He found the equation

Ly : = x2(a + bx)y′′ +x(c + ex)y′ + (f + gx)y = 0. (5.3)

Let us put y = xq(A0 +A1x+A2x
2 + . . .) with A0 �= 0 and insert this into (5.3).

We observe that the powers x2 and x which are multiplied by y′′ and y′ , re-
spectively, just re-establish what has been lost by the differentiations and obtain by
comparing equal powers of x(

q(q−1)a + qc + f
)
A0 = 0 (5.4a)(

(q+i)(q+i−1)a + (q+i)c + f
)
Ai (5.4b)

= −
(
(q+i−1)(q+i−2)b + (q+i−1)e + g

)
Ai−1

for i = 1, 2, 3, . . . . In order to get A0 �= 0 , q has to be a root of the index equation

χ(q) : = q(q− 1)a + qc + f = 0. (5.5)

For a �= 0 there are two characteristic roots q1 and q2 of (5.5). Since the left-hand
side of (5.4b) is of the form χ(q + i)Ai = . . . , this relation allows us to compute
A1, A2, A3, . . . at least for q1 (if the roots are ordered such that Re q1 ≥ Re q2 ).
Thus we have obtained a first non-zero solution of (5.3). A second linearly inde-
pendent solution for q = q2 is obtained in the same way if q1 − q2 is not an integer.

Case of double roots. Euler found a second solution in this case with the inspi-
ration of some acrobatic heuristics (Euler 1769, p. 150: “ . . . quod x0

0 aequivaleat
ipsi 	x x . . .”). Fuchs (1866, 1868) then wrote a monumental paper on the form
of all solutions for the general equation of order n , based on complicated calcu-
lations. A very elegant idea was then found by Frobenius (1873): fix A0 , say as
A0(q)=1 , completely ignore the index equation, choose q arbitrarily and consider
the coefficients of the recursion (5.4b) as functions of q to obtain the series

y(x, q) = xq
∞∑

i=0

Ai(q)x
i, (5.6)

whose convergence is discussed in Exercise 8 below. Since all conditions (5.4b)
are satisfied, with the exception of (5.4a), we have

Ly(x, q) = χ(q)xq. (5.7)

A second independent solution is now found simply by differentiating (5.7) with
respect to q :

L
(∂y

∂q
(x, q)

)
= χ(q) · logx · xq +χ′(q) · xq. (5.8)
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If we set q = q1

∂y

∂q
(x, q1) = log x · y(x, q1) +xq1

∞∑
i=0

A′
i(q1)x

i, (5.9)

we obtain the desired second solution since χ(q1) = χ′(q1) = 0 (remember that q1

is a double root of χ).

The case q1 − q2 = m ∈ Z , m ≥ 1 . In this case we define a function z(x) by
satisfying A0(q)=1 and the recursion (5.4b) for all i with the exception of i=m .
Then

Lz = χ(q)xq +Cxq+m (5.10)

where C is some constant. For q = q2 the first term in (5.10) vanishes and a
comparison with (5.8) shows that

χ′(q1)z(x)−C
∂y

∂q
(x, q1) (5.11)

is the required second solution of (5.3).

Euler (1778) later remarked that the formulas obtained become particularly
elegant, if one starts from the differential equation

x(1−x)y′′ + (c− (a + b + 1)x)y′− aby = 0 (5.12)

instead of from (5.3). Here, the above method leads to

q(q− 1) + cq = 0, q1 = 0, q2 = 1− c, (5.13)

Ai+1 =
(a + i)(b + i)
(c + i)(1 + i)

Ai for q1 = 0. (5.14)

The resulting solutions, later named hypergeometric functions, became particularly
famous throughout the 19th century with the work of Gauss (1812).

More generally, the above method works in the case of a differential equation

x2y′′ +xa(x)y′ + b(x)y = 0 (5.15)

where a(x) and b(x) are regular analytic functions. One then says that 0 is a
regular singular point. Similarly, we say that the equation (x−x0)2y′′ + (x−
x0)a(x)y′ + b(x)y = 0 possesses the regular singular point x0 . In this case solu-
tions can be obtained by the use of algebraic singularities (x−x0)q .

Finally, we also want to study the behaviour at infinity for an equation of the
form

a(x)y′′ + b(x)y′ + c(x)y = 0. (5.16a)

For this, we use the coordinate transformation t = 1/x , z(t) = y(x) which yields

t4a
(1

t

)
z′′ +

(
2t3a

(1
t

)
− t2b

(1
t

))
z′ + c

(1
t

)
z = 0. (5.16b)
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∞ is called a regular singular point of (5.16a) if 0 is a regular singular point of
(5.16b). For examples see Exercise 9.

Nonlinear Equations

For nonlinear equations also, the above method sometimes allows one to obtain, if
not the complete series of the solution, at least a couple of terms.

EXEMPLUM. Let us see what happens if we try to solve the classical brachys-
tochrone problem (2.4) by a series. We suppose h = 0 and the initial value y(0) =
0 . We write the equation as

(y′)2 =
L

y
− 1 or y(y′)2 + y = L. (5.17)

At the initial point y(0) = 0 , y′ becomes infinite and most numerical methods
would fail. We search for a solution of the form y = A0x

q . This gives in (5.17)
q2A3

0x
3q−2 +A0x

q = L . Due to the initial value we have that y(x) becomes neg-
ligible for small values of x . We thus set the first term equal to L and obtain
3q− 2 = 0 and q2A3

0 = L . So

u(x) =
(9Lx2

4

)1/3

(5.18)

is a first approximate solution. The idea is now to use (5.18) just to escape from the
initial point with a small x , and then to continue the solution with any numerical
step-by-step procedure from the later chapters.

A more refined approximation could be tried in the form y = A0x
q +A1x

q+r .
This gives with (5.17)

q2A3
0x

3q−2 + q(3q + 2r)A2
0A1x

3q+r−2 +A0x
q + . . . = L.

We use the second term to neutralize the third one, which gives 3q + r− 2 = q or
r = q = 2/3 and 5q2A0A1 = −1 . Therefore

v(x) =
(9Lx2

4

)1/3

−
( 92x4

42L53

)1/3

(5.19)

is a better approximation. The following numerical results illustrate the utility of
the approximations (5.18) and (5.19) compared with the correct solution y(x) from
I.3, Exercise 6, with L = 2 :

x = 0.10 y(x) = 0.342839 u(x) = 0.355689 v(x) = 0.343038
x = 0.01 y(x) = 0.076042 u(x) = 0.076631 v(x) = 0.076044.
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Exercises

1. Compute the general solution of the equation x2y′′ +xy′ + gxny = 0 with g
constant (Euler 1769, Problema 123, Exemplum 1).

2. Apply the technique of Euler to the Bessel equation

x2y′′ +xy′ + (x2 − g2)y = 0.

Sketch the solutions obtained for g = 2/3 and g = 10/3 .

3. Compute the solutions of the equations

x2y′′− 2xy′ + y = 0 and x2y′′− 3xy′ + 4y = 0.

Equations of this type are often called Euler’s or even Cauchy’s equation. Its
solution, however, was already known to Joh. Bernoulli.

4. (Euler 1769, Probl. 123, Exempl. 2). Let

y(x) =
∫ 2π

0

√
sin2 s +x2 cos2 s ds

be the perimeter of the ellipse with axes 1 and x < 1 .

a) Verify that y(x) satisfies the differential equation

x(1−x2)y′′− (1 +x2)y′ +xy = 0. (5.20)

b) Compute the solutions of this equation.

c) Show that the coordinate change x2 = t , y(x) = z(t) transforms (5.20) to
a hypergeometric equation (5.12).

Hint. The computations for a) lead to the integral∫ 2π

0

1− 2 cos2 s + q2 cos4 s

(1− q2 cos2 s)3/2
ds, q2 = 1−x2

which must be shown to be zero. Develop this into a power series in q2 .

5. Try to solve the equation

x2y′′ + (3x− 1)y′ + y = 0

with the help of a series (5.6) and study its convergence.

6. Find a series of the type

y = A0x
q +A1x

q+s +A2x
q+2s + . . .

which solves the nonlinear “Emden-Fowler equation” of astrophysics
(x2y′)′ + y2x−1/2 = 0 in the neighbourhood of x = 0 .
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7. Approximate the solution of Leibniz’s equation (2.3) in the neighbourhood of
the singular initial value y(0) = a by a function of the type y(x) = a−Cxq .
Compare the result with the correct solution of Exercise 2 of I.3.

8. Show that the radius of convergence of series (5.6) is given by

i) r = |a/b| ii) r = 1

for the coefficients given by (5.4) and (5.14), respectively.

9. Show that the point ∞ is a regular singular point for the hypergeometric equa-
tion (5.12), but not for the Bessel equation of Exercise 2.

10. Consider the initial value problem

y′ =
λ

x
y + g(x), y(0) = 0. (5.21)

a) Prove that if λ ≤ 0 , the problem (5.21) possesses a unique solution for
x ≥ 0 ;

b) If g(x) is k -times differentiable and λ ≤ 0 , then the solution y(x) is
(k + 1) -times differentiable for x ≥ 0 and we have

y(j)(0) =
(
1− λ

j

)−1

g(j−1)(0), j = 1, 2, . . . .



I.6 Systems of Equations

En général on peut supposer que l’Equation différentio-différentielle de
la Courbe ADE est ϕdt2 = ±dde . . . (d’Alembert 1743, p. 16)

Parmi tant de chefs-d’œuvre que l’on doit à son génie [de Lagrange], sa
Mécanique est sans contredit le plus grand, le plus remarquable et le plus
important. (M. Delambre, Oeuvres de Lagrange, vol. 1, p. XLIX)

Newton (1687) distilled from the known solutions of planetary motion (the Ke-
pler laws) his “Lex secunda” together with the universal law of gravitation. It was
mainly the “Dynamique” of d’Alembert (1743) which introduced, the other way
round, second order differential equations as a general tool for computing mechan-
ical motion. Thus, Euler (1747) studied the movement of planets via the equations
in 3-space

m
d2x

dt2
= X, m

d2y

dt2
= Y, m

d2z

dt2
= Z, (6.1)

where X, Y, Z are the forces in the three directions. (“ . . . & par ce moyen j’evite
quantité de recherches penibles”).

The Vibrating String and Propagation of Sound

Suppose a string is represented by a sequence of identical and equidistant mass
points and denote by y1(t) , y2(t), . . . the deviation of these mass points from
the equilibrium position (Fig. 6.1a). If the deviations are supposed small (“fort
petites”), the repelling force for the i-th mass point is proportional to −yi−1 +
2yi −yi+1 (Brook Taylor 1715, Johann Bernoulli 1727). Therefore equations (6.1)
become

y′′
1 = K2(−2y1 + y2)

y′′
2 = K2(y1 − 2y2 + y3)

. . .

y′′
n = K2(yn−1 − 2yn).

(6.2)

This is a system of n linear differential equations. Since the finite differences
yi−1 − 2yi + yi+1 ≈ c2 ∂2y

∂x2 , equation (6.2) becomes, by the “inverse” method of
lines, the famous partial differential equation (d’Alembert 1747)

∂2u

∂t2
= a2 ∂2u

∂x2

for the vibrating string.
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The propagation of sound is modelled similarly (Lagrange 1759): we suppose
the medium to be a sequence of mass points and denote by y1(t) , y2(t), . . . their
longitudinal displacements from the equilibrium position (see Fig. 6.1b). Then by
Hooke’s law of elasticity the repelling forces are proportional to the differences
of displacements (yi−1 − yi)− (yi − yi+1) . This leads to equations (6.2) again
(“En examinant les équations, . . . je me suis bientôt aperçu qu’elles ne différaient
nullement de celles qui appartiennent au problème de chordis vibrantibus . . . ”).

b

a

c

y1
y2

y3

y4

y1 y2 y3 y4

y1

y2

y3

y4

Fig. 6.1. Model for sound propagation,
vibrating and hanging string

Another example, treated by Daniel Bernoulli (1732) and by Lagrange (1762,
Nr. 36), is that of mass points attached to a hanging string (Fig. 6.1c). Here the
tension in the string becomes greater in the upper part of the string and we have the
following equations of movement

y′′
1 = K2(−y1 + y2)

y′′
2 = K2(y1 − 3y2 + 2y3)

y′′
3 = K2(2y2 − 5y3 + 3y4)

. . .

y′′
n = K2

(
(n− 1)yn−1 − (2n− 1)yn

)
.

(6.3)

In all these examples, of course, the deviations yi are supposed to be “infinitely”
small, so that linear models are realistic.

Using a notation which came into use only a century later, we write these equa-
tions in the form

y′′
i =

n∑
j=1

aijyj, i = 1, . . . , n, (6.4)

which is a system of 2nd order linear equations with constant coefficients. La-
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grange solves system (6.4) by putting yi = cie
pt , which leads to

p2ci =
n∑

j=1

aijcj , i = 1, . . . , n (6.5)

so that p2 must be an eigenvalue of the matrix A = (aij) and c = (c1, . . . , cn)T

a corresponding eigenvector. We see here the first appearance of an eigenvalue
problem.

Lagrange (1762, Nr. 30) then explains that the equations (6.5) are solved by
computing c2/c1, . . . , cn/c1 as functions of p from n− 1 equations and by in-
serting these results into the last equation. This leads to a polynomial of degree n
(in fact, the characteristic polynomial) to obtain n different roots for p2 . We thus
get 2n solutions y

(j)
i = c

(j)
i exp(±pjt) and the general solution as linear combi-

nations of these.
A complication arises when the characteristic polynomial possesses multiple

roots. In this case, Lagrange (in his famous “Mécanique Analytique” of 1788,
seconde partie, sect.VI, No.7) affirms the presence of “secular” terms similar to
the formulas following (4.8). This, however, is not completely true, as became
clear only a century later (see e.g., Weierstrass (1858), p.243: “ . . . um bei dieser
Gelegenheit einen Irrtum zu berichtigen, der sich in der Lagrange’schen Theorie
der kleinen Schwingungen, sowie in allen späteren mir bekannten Darstellungen
derselben, findet.”). We therefore postpone this subject to Section I.12.

We solve equations (6.2) in detail, since the results obtained are of partic-
ular importance (Lagrange 1759). The corresponding eigenvalue problem (6.5)
becomes in this case p2c1 = K2(−2c1 + c2) , p2ci = K2(ci−1 − 2ci + ci+1) for
i = 2, . . . , n− 1 and p2cn = K2(cn−1 − 2cn) . We introduce p2/K2 + 2 = q , so
that

cj+1 − qcj + cj−1 = 0, c0 = 0, cn+1 = 0. (6.6)

This means that the ci are the solutions of a difference equation and therefore
cj = Aaj +Bbj where a and b are the roots of the corresponding characteristic
equation z2 − qz + 1 = 0 , hence

a + b = q, ab = 1.

The condition c0 =0 of (6.6), which means that A+B=0 , shows that cj =A(aj −
bj) with A �= 0 . The second condition cn+1 = 0 , or equivalently (a/b)n+1 = 1 ,
implies together with ab = 1 that

a = exp
( kπi

n + 1

)
, b = exp

(−kπi

n + 1

)
for some k = 1, . . . , n . Thus we obtain

qk = 2 cos
πk

n + 1
, k = 1, . . . , n, (6.7a)
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p2
k = 2K2

(
cos

πk

n + 1
− 1
)

= −4K2
(
sin

πk

2n + 2

)2

. (6.7b)

Finally, Euler’s formula from 1740, eix − e−ix = 2i sinx (“... si familière au-
jourd’hui aux Géomètres”) gives for the eigenvectors (with A = −i/2 )

c
(k)
j = sin

jkπ

n + 1
, j, k = 1, . . . , n. (6.8)

Since the pk are purely imaginary, we also use for exp(±pkt) the “familière”
formula and obtain the general solution

yj(t) =
n∑

k=1

sin
jkπ

n + 1
(ak cos rkt + bk sin rkt), rk = 2K sin

πk

2n + 2
. (6.9)

Lagrange then observed after some lengthy calculations, which are today seen by
using the orthogonality relations

n∑
�=1

sin
	jπ

n + 1
sin

	kπ

n + 1
=
{ 0 j �= k

n+1
2

j = k
j, k = 1, . . . , n

that

ak =
2

n + 1

n∑
j=1

sin
kjπ

n + 1
yj(0), bk =

1
rk

2
n + 1

n∑
j=1

sin
kjπ

n + 1
y′

j(0)

are determined by the initial positions and velocities of the mass points. He also
studied the case where n , the number of mass points, tends to infinity (so that, in
the formula for rk , sinx can be replaced by x ) and stood, 50 years before Fourier,
at the portal of Fourier series theory. “Mit welcher Gewandtheit, mit welchem
Aufwande analytischer Kunstgriffe er auch den ersten Theil dieser Untersuchung
durchführte, so liess der Uebergang vom Endlichen zum Unendlichen doch viel zu
wünschen übrig . . .” (Riemann 1854).

Fourier

J’ajouterai que le livre de Fourier a une importance capitale dans
l’histoire des mathématiques. (H. Poincaré 1893)

The first first order systems were motivated by the problem of heat conduction (Biot
1804, Fourier 1807). Fourier imagined a rod to be a sequence of molecules, whose
temperatures we denote by yi , and deduced from a law of Newton that the energy
which a particle passes to its neighbours is proportional to the difference of their
temperatures, i.e., yi−1 − yi to the left and yi+1 − yi to the right (“Lorsque deux
molécules d’un même solide sont extrêmement voisines et ont des températures
inégales, la molécule plus échauffée communique à celle qui l’est moins une quan-
tité de chaleur exactement exprimée par le produit formé de la durée de l’instant,
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de la différence extrêmement petite des températures, et d’une certaine fonction de
la distance des molécules”). This long sentence means, in formulas, that the total
gain of energy of the i th molecule is expressed by

y′
i = K2(yi−1 − 2yi + yi+1), (6.10)

or, in general by

y′
i =

n∑
j=1

aijyi, i = 1, . . . , n, (6.11)

a first order system with constant coefficients.
By putting yi = cie

pt , we now obtain the eigenvalue problem

pci =
n∑

j=1

aijcj , i = 1, . . . , n. (6.12)

If we suppose the rod cooled to zero at both ends (y0 = yn+1 = 0 ), we can use
Lagrange eigenvectors from above and obtain the solution

yj(t) =
n∑

k=1

ak sin
jkπ

n + 1
exp(−wkt), wk = 4K2

(
sin

πk

2n + 2

)2

. (6.13)

By taking n larger and larger, Fourier arrived from (6.10) (again the inverse
“method of lines”) at his famous heat equation

∂u

∂t
= a2 ∂2u

∂x2
(6.14)

which was the origin of Fourier series theory.

Lagrangian Mechanics

Dies ist der kühne Weg, den Lagrange . . . , freilich ohne ihn
gehörig zu rechtfertigen, eingeschlagen hat.

(Jacobi 1842/43, Vorl. Dynamik, p. 13)

This combines d’Alembert’s dynamics, the “principle of least action” of Leibniz–
Maupertuis and the variational calculus; published in the monumental treatise
“Mécanique Analytique” (1788). It furnishes an excellent means for obtaining
the differential equations of motion for complicated mechanical systems (arbitrary
coordinate systems, constraints, etc.).

If we define (with Poisson 1809) the “Lagrange function”

L = T −U (6.15)

where

T = m
ẋ2 + ẏ2 + ż2

2
(kinetic energy) (6.16)
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and U is the “potential energy” satisfying

∂U

∂x
= −X,

∂U

∂y
= −Y,

∂U

∂z
= −Z (6.17)

then the equations of motion (6.1) are identical to Euler’s equations (2.11) for the
variational problem ∫ t1

t0

L dt = min (6.18)

(this, mainly through a misunderstanding of Jacobi, is often called “Hamilton’s
principle”). The important idea is now to forget (6.16) and (6.17) and to apply
(6.15) and (6.18) to arbitrary mass points and arbitrary coordinate systems.

Example. The spherical pendulum (Lagrange 1788, Seconde partie, Section VIII,
Chap. II, §I). Let 	 = 1 and

x = sin θ cos ϕ

y = sin θ sin ϕ

z = − cos θ.

We set m = g = 1 and have

T =
1
2

(ẋ2 + ẏ2 + ż2) =
1
2

(θ̇2 + sin2 θ · ϕ̇2)

U = z = − cos θ
(6.19)

so that (2.11) becomes

Lθ −
d

dt
(Lθ̇) = − sin θ + sin θ cos θ · ϕ̇2 − θ̈ = 0

Lϕ − d

dt
(Lϕ̇) = − sin2 θ · ϕ̈− 2 sin θ cos θ · ϕ̇ · θ̇ = 0.

(6.20)

We have thus obtained, by simple calculus, the equations of motion for the problem.
These equations cannot be solved analytically. A solution, computed numerically
by a Runge-Kutta method (see Chapter II) is shown in Fig. 6.2.

In general, suppose that the mechanical system in question is described by n
coordinates q1, q2, . . . , qn and that L = T −U depends on q1, q2, . . . , qn ,
q̇1, q̇2, . . . , q̇n . Then the equations of motion are

d

dt
Lq̇i

=
n∑

k=1

Lq̇iq̇k
q̈k +

n∑
k=1

Lq̇iqk
q̇k = Lqi

, i = 1, . . . , n. (6.21)

These equations allow several generalizations to time-dependent systems and non-
conventional forces.
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a) b)

Fig. 6.2. Solution of the spherical pendulum, a) 0 ≤ x ≤ 20 , b) 0 ≤ x ≤ 100
(ϕ0 = 0, ϕ̇0 = 0.17, θ0 = 1, θ̇0 = 0)

Hamiltonian Mechanics

Nach dem Erscheinen der ersten Ausgabe der Mécanique analy-
tique wurde der wichtigste Fortschritt in der Umformung der Dif-
ferentialgleichungen der Bewegung von Poisson . . . gemacht . . .

im 15ten Hefte des polytechnischen Journals . . . Hier führt Pois-
son die Grössen p = ∂T/∂q′ . . . ein.

(Jacobi 1842/43, Vorl. Dynamik, p. 67)

Hamilton, having worked for many years with variational principles (Fermat’s prin-
ciple) in his researches on optics, discovered at once that his ideas, after introduc-
ing a “principal function”, allowed very elegant solutions for Kepler’s motion of
a planet (Hamilton 1833). He then undertook in several papers (Hamilton 1834,
1835) to revolutionize mechanics. After many pages of computation he thereby dis-
covered that it was “more convenient in many respects” (Hamilton 1834, Math. Pa-
pers II, p. 161) to work with the momentum coordinates (idea of Poisson)

pi =
∂L
∂q̇i

(6.22)

instead of q̇i , and with the function

H =
n∑

k=1

q̇kpk −L (6.23)

considered as function of q1, . . . , qn, p1, . . . , pn . This idea, to let derivatives
∂L/∂q̇i and independent variables pi interchange their parts in order to simplify
differential equations, is due to Legendre (1787). Differentiating (6.23) by the
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chain rule, we obtain

∂H

∂pi

=
n∑

k=1

∂q̇k

∂pi

· pk + q̇i −
n∑

k=1

∂L
∂q̇k

∂q̇k

∂pi

and
∂H

∂qi

=
n∑

k=1

∂q̇k

∂qi

· pk −
∂L
∂qi

−
n∑

k=1

∂L
∂q̇k

∂q̇k

∂qi

.

By (6.22) and (6.21) both formulas simplify to

q̇i =
∂H

∂pi

, ṗi = −∂H

∂qi

, i = 1, . . . , n. (6.24)

These equations are marvellously symmetric “ . . . and to integrate these differential
equations of motion . . . is the chief and perhaps ultimately the only problem of
mathematical dynamics” (Hamilton 1835). Jacobi (1843) called them canonical
differential equations.

Remark. If the kinetic energy T is a quadratic function of the velocities q̇i , Euler’s
identity (Euler 1755, Caput VII, § 224, “ . . . si V fuerit functio homogenea . . .”)
states that

2T =
n∑

k=1

q̇k

∂T

∂q̇k

. (6.25)

If we further assume that the potential energy U is independent of q̇i , we obtain

H =
n∑

k=1

q̇kpk −L =
n∑

k=1

q̇k

∂T

∂q̇k

−L = 2T −L = T +U. (6.26)

This is the total energy of the system.

Example. The spherical pendulum again. From (6.19) we have

pθ =
∂T

∂θ̇
= θ̇, pϕ =

∂T

∂ϕ̇
= sin2 θ · ϕ̇ (6.27)

and, by eliminating the undesired variables θ̇ and ϕ̇ ,

H = T +U =
1
2

(
p2

θ +
p2

ϕ

sin2 θ

)
− cos θ. (6.28)

Therefore (6.26) becomes

ṗθ = p2
ϕ · cos θ

sin3 θ
− sin θ ṗϕ = 0

θ̇ = pθ ϕ̇ =
pϕ

sin2 θ
.

(6.29)

These equations appear to be a little simpler than Lagrange’s formulas (6.20). For
example, we immediately see that pϕ = Const (Kepler’s second law).
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Exercises

1. Verify that, if u(x) is sufficiently differentiable,

u(x− δ)− 2u(x) +u(x + δ)
δ2

= u′′(x) +
δ2

12
u(4)(x) +O(δ4).

Hint. Use Taylor series expansions for u(x + δ) and u(x− δ) . This relation
establishes the connection between (6.10) and (6.14) as well as between (6.2)
and the wave equation.

2. Solve equation (6.3) for n = 2 and n = 3 by using the device of Lagrange
described above (1762) and discover naturally the characteristic polynomial of
the matrix.

3. Solve the first order system (6.11) with initial values yi(0) = (−1)i , where the
matrix A is the same as in Exercise 2, and draw the solutions. Physically, this
equation would represent a string with weights hanging, say, in honey.

4. Find the first terms of the development at the singular point x = 0 of the solu-
tions of the following system of nonlinear equations

x2y′′ + 2xy′ = 2yz2 +λx2y(y2 − 1), y(0) = 0

x2z′′ = z(z2 − 1) +x2y2z, z(0) = 1
(6.30)

where λ is a constant parameter. Equations (6.30) are the Euler equations for
the variational problem

I =
∫ ∞

0

(
(z′)2 +

x2(y′)2

2
+

(z2 − 1)2

2x2
+ y2z2 +

λ

4
x2(y2 − 1)2

)
dx,

y(∞) = 1, z(∞) = 0

which gives the mass of a “monopole” in nuclear physics (see ’t Hooft 1974).

5. Prove that the Hamiltonian function H(q1, . . . , qn, p1, . . . , pn) is a first inte-
gral for the system (6.24), i.e., every solution satisfies

H
(
q1(t), . . . , qn(t), p1(t), . . . , pn(t)

)
= Const.
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M. Cauchy annonce, que, pour se conformer au voeu du Conseil,
il ne s’attachera plus à donner, comme il a fait jusqu’à présent, des
démonstrations parfaitement rigoureuses.

(Conseil d’instruction de l’Ecole polytechnique, 24 nov. 1825)

You have all professional deformation of your minds; convergence
does not matter here ... (P. Henrici 1985)

We now enter a new era for our subject, more theoretical than the preceding one. It
was inaugurated by the work of Cauchy, who was not as fascinated by long numer-
ical calculations as was, say, Euler, but merely a fanatic for perfect mathematical
rigor and exactness. He criticized in the work of his predecessors the use of infinite
series and other infinite processes without taking much account of error estimates
or convergence results. He therefore established around 1820 a convergence the-
orem for the polygon method of Euler and, some 15 years later, for the power
series method of Newton (see Section I.8). Beyond the estimation of errors, these
results also allow the statement of general existence theorems for the solutions of
arbitrary differential equations (“d’une équation différentielle quelconque”), whose
solutions were only known before in a very few cases. A second important conse-
quence is to provide results about the uniqueness of the solution, which allow one
to conclude that the computed solution (numerically or analytically) is the only one
with the same initial value and that there are no others. Only then we are allowed
to speak of the solution of the problem.

His very first proof has recently been discovered on fragmentary notes (Cauchy
1824), which were never published in Cauchy’s lifetime (did his notes not satisfy
the Minister of education?: “ . . . mais que le second professeur, M. Cauchy, n’a
présenté que des feuilles qui n’ont pu satisfaire la commission, et qu’il a été jusqu’à
présent impossible de l’amener à se rendre au voeu du Conseil et à exécuter la
décision du Ministre”).

Convergence of Euler’s Method

Let us now, with bared head and trembling knees, follow the ideas of this historical
proof. We formulate it in a way which generalizes directly to higher dimensional
systems.

Starting with the one-dimensional differential equation

y′ = f(x, y), y(x0) = y0, y(X) =? (7.1)

we make use of the method explained by Euler (1768) in the last section of his “In-
stitutiones Calculi Integralis I” (Caput VII, p. 424), i.e., we consider a subdivision
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of the interval of integration

x0, x1, . . . , xn−1, xn = X (7.2)

and replace in each subinterval the solution by the first term of its Taylor series

y1 − y0 = (x1 −x0)f(x0, y0)

y2 − y1 = (x2 −x1)f(x1, y1)

. . .

yn − yn−1 = (xn −xn−1)f(xn−1, yn−1).

(7.3)

For the subdivision above we also use the notation

h = (h0, h1, . . . , hn−1)

where hi =xi+1 −xi . If we connect y0 and y1, y1 and y2, . . . etc by straight lines
we obtain the Euler polygon

yh(x) = yi + (x−xi)f(xi, yi) for xi ≤ x ≤ xi+1. (7.3a)

Lemma 7.1. Assume that |f | is bounded by A on

D =
{

(x, y) | x0 ≤ x ≤ X, |y− y0| ≤ b
}
.

If X −x0 ≤ b/A then the numerical solution (xi, yi) given by (7.3), remains in D
for every subdivision (7.2) and we have

|yh(x)− y0| ≤ A · |x−x0|, (7.4)∣∣∣yh(x)−
(
y0 + (x−x0)f(x0, y0)

)∣∣∣≤ ε · |x−x0| (7.5)

if |f(x, y)− f(x0, y0)| ≤ ε on D.

Proof. Both inequalities are obtained by adding up the lines of (7.3) and using the
triangle inequality. Formula (7.4) then shows immediately that for A(x−x0) ≤ b
the polygon remains in D .

Our next problem is to obtain an estimate for the change of yh(x) , when the
initial value y0 is changed: let z0 be another initial value and compute

z1 − z0 = (x1 −x0)f(x0, z0). (7.6)

We need an estimate for |z1 − y1| . Subtracting (7.6) from the first line of (7.3) we
obtain

z1 − y1 = z0 − y0 + (x1 −x0)
(
f(x0, z0)− f(x0, y0)

)
.

This shows that we need an estimate for f(x0, z0)− f(x0, y0) . If we suppose

|f(x, z)− f(x, y)| ≤ L|z− y| (7.7)
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we obtain
|z1 − y1| ≤

(
1 + (x1 −x0)L

)|z0 − y0|. (7.8)

Lemma 7.2. For a fixed subdivision h let yh(x) and zh(x) be the Euler polygons
corresponding to the initial values y0 and z0 , respectively. If∣∣∣∂f

∂y
(x, y)

∣∣∣≤ L (7.9)

in a convex region which contains (x, yh(x)) and (x, zh(x)) for all x0 ≤ x ≤ X ,
then

|zh(x)− yh(x)| ≤ eL(x−x0)|z0 − y0|. (7.10)

Proof. (7.9) implies (7.7), (7.7) implies (7.8), (7.8) implies

|z1 − y1| ≤ eL(x1−x0)|z0 − y0|.
If we repeat the same argument for z2 − y2 , z3 − y3 , and so on, we finally obtain
(7.10).

Remark. Condition (7.7) is called a “Lipschitz condition”. It was Lipschitz (1876)
who rediscovered the theory (footnote in the paper of Lipschitz: “L’auteur ne
connaı̂t pas évidemment les travaux de Cauchy . . .”) and advocated the use of (7.7)
instead of the more stringent hypothesis (7.9). Lipschitz’s proof is also explained
in the classical work of Picard (1891-96), Vol. II, Chap. XI, Sec. I.

If the subdivision (7.2) is refined more and more, so that

|h| := max
i=0,...,n−1

hi → 0,

we expect that the Euler polygons converge to a solution of (7.1). Indeed, we have

Theorem 7.3. Let f(x, y) be continuous, and |f | be bounded by A and satisfy the
Lipschitz condition (7.7) on

D =
{

(x, y) | x0 ≤ x ≤ X, |y− y0| ≤ b
}
.

If X −x0 ≤ b/A , then we have:

a) For |h| → 0 the Euler polygons yh(x) converge uniformly to a continuous
function ϕ(x) .

b) ϕ(x) is continuously differentiable and solution of (7.1) on x0 ≤ x ≤ X .

c) There exists no other solution of (7.1) on x0 ≤ x ≤ X .

Proof. a) Take an ε > 0 . Since f is uniformly continuous on the compact set D ,
there exists a δ > 0 such that

|u1 −u2| ≤ δ and |v1 − v2| ≤ A · δ
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imply
|f(u1, v1)− f(u2, v2)| ≤ ε. (7.11)

Suppose now that the subdivision (7.2) satisfies

|xi+1 −xi| ≤ δ, i.e., |h| ≤ δ. (7.12)

We first study the effect of adding new mesh-points. In a first step, we consider a
subdivision h(1) , which is obtained by adding new points only to the first subin-
terval (see Fig. 7.1). It follows from (7.5) (applied to this first subinterval) that for
the new refined solution yh(1)(x1) we have the estimate |yh(1)(x1)− yh(x1)| ≤
ε|x1 −x0| . Since the subdivisions h and h(1) are identical on x1 ≤ x ≤ X we
can apply Lemma 7.2 to obtain

|yh(1)(x)− yh(x)| ≤ eL(x−x1)(x1 −x0)ε for x1 ≤ x ≤ X.

We next add further points to the subinterval (x1, x2) and denote the new subdi-
vision by h(2) . In the same way as above this leads to |yh(2)(x2)− yh(1)(x2)| ≤
ε|x2 −x1| and

|yh(2)(x)− yh(1)(x)| ≤ eL(x−x2)(x2 −x1)ε for x2 ≤ x ≤ X.

The entire situation is sketched in Fig. 7.1. If we denote by ĥ the final refinement,
we obtain for xi < x ≤ xi+1

|y
ĥ
(x)− yh(x)| (7.13)

≤ ε
(
eL(x−x1)(x1 −x0) + . . .+ eL(x−xi)(xi −xi−1)

)
+ ε(x−xi)

≤ ε

∫ x

x0

eL(x−s) ds =
ε

L

(
eL(x−x0) − 1

)
.

If we now have two different subdivisions h and h̃ , which both satisfy (7.12), we
introduce a third subdivision ĥ which is a refinement of both subdivisions (just as
is usually done in proving the existence of Riemann’s integral), and apply (7.13)
twice. We then obtain from (7.13) by the triangle inequality

|yh(x)− y
h̃
(x)| ≤ 2

ε

L

(
eL(x−x0) − 1

)
.

For ε > 0 small enough, this becomes arbitrarily small and shows the uniform
convergence of the Euler polygons to a continuous function ϕ(x) .

b) Let

ε(δ) := sup
{∣∣f(u1, v1)−f(u2, v2)

∣∣ ; |u1−u2|≤ δ, |v1−v2|≤Aδ, (ui, vi)∈D
}

be the modulus of continuity. If x belongs to the subdivision h then we obtain
from (7.5) (replace (x0, y0) by (x, yh(x)) and x by x + δ )

|yh(x + δ)− yh(x)− δf
(
x, yh(x)

)| ≤ ε(δ)δ. (7.14)



I.7 A General Existence Theorem 39

y

x x x x  . . . xn = X

yh(x

yh x

yh x

yh x

Fig. 7.1. Lady Windermere’s Fan (O. Wilde 1892)

Taking the limit |h| → 0 we get

|ϕ(x + δ)−ϕ(x)− δf
(
x, ϕ(x)

)| ≤ ε(δ)δ. (7.15)

Since ε(δ) → 0 for δ → 0 , this proves the differentiability of ϕ(x) and ϕ′(x) =
f(x, ϕ(x)) .

c) Let ψ(x) be a second solution of (7.1) and suppose that the subdivision h

satisfies (7.12). We then denote by y
(i)
h (x) the Euler polygon to the initial value

(xi, ψ(xi)) (it is defined for xi ≤ x ≤ X ). It follows from

ψ(x) = ψ(xi) +
∫ x

xi

f
(
s, ψ(s)

)
ds

and (7.11) that

|ψ(x)− y
(i)
h (x)| ≤ ε|x−xi| for xi ≤ x ≤ xi+1.

Using Lemma 7.2 we deduce in the same way as in part a) that

|ψ(x)− yh(x)| ≤ ε

L

(
eL(x−x0) − 1

)
. (7.16)

Taking the limits |h|→ 0 and ε→ 0 we obtain |ψ(x)−ϕ(x)|≤0 , proving unique-
ness.

Theorem 7.3 is a local existence - and uniqueness - result. However, if we
interpret the endpoint of the solution as a new initial value, we can apply Theorem
7.3 again and continue the solution. Repeating this procedure we obtain

Theorem 7.4. Assume U to be an open set in R2 and let f and ∂f/∂y be con-
tinuous on U . Then, for every (x0, y0)∈U , there exists a unique solution of (7.1),
which can be continued up to the boundary of U (in both directions).
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Proof. Clearly, Theorem 7.3 can be rewritten to give a local existence - and unique-
ness - result for an interval (X, x0) to the left of x0 . The rest follows from the
fact that every point in U has a neighbourhood which satisfies the assumptions of
Theorem 7.3.

It is interesting to mention that formula (7.13) for |ĥ| → 0 gives the following
error estimate

|y(x)− yh(x)| ≤ ε

L

(
eL(x−x0) − 1

)
(7.17)

for the Euler polygon (|h| ≤ δ) . Here y(x) stands for the exact solution of (7.1).
The next theorem refines the above estimates for the case that f(x, y) is also dif-
ferentiable with respect to x .

Theorem 7.5. Suppose that in a neighbourhood of the solution

|f | ≤ A,
∣∣∣∂f

∂y

∣∣∣≤ L,
∣∣∣∂f

∂x

∣∣∣≤ M.

We then have the following error estimate for the Euler polygons:∣∣y(x)− yh(x)
∣∣≤ M +AL

L

(
eL(x−x0) − 1

)
· |h|, (7.18)

provided that |h| is sufficiently small.

Proof. For |u1 −u2| ≤ |h| and |v1 − v2| ≤ A|h| we obtain, due to the differentia-
bility of f , the estimate

|f(u1, v1)− f(u2, v2)| ≤ (M +AL)|h|
instead of (7.11). When we insert this amount for ε into (7.16), we obtain the
stated result.

The estimate (7.18) shows that the global error of Euler’s method is propor-
tional to the maximal step size |h| . Thus, for an accuracy of, say, three decimal
digits, we would need about a thousand steps; a precision of six digits will normally
require a million steps etc. We see thus that the present method is not recommended
for computations of high precision. In fact, the main subject of Chapter II will be
to find methods which converge faster.
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Existence Theorem of Peano

Si a est un complexe d’ordre n , et b un nombre réel, alors on peut
déterminer b′ et f , où b′ est une quantité plus grande que b , et
f est un signe de fonction qui à chaque nombre de l’intervalle de
b à b′ fait correspondre un complexe (en d’autres mots, ft est un
complexe fonction de la variable réelle t , définie pour toutes les
valeurs de l’intervalle (b, b′) ); la valeur de ft pour t = b est a ; et
dans tout l’intervalle (b, b′) cette fonction ft satisfait à l’équation
différentielle donnée. (Original version of Peano’s Theorem)

The Lipschitz condition (7.7) is a crucial tool in the proof of (7.10) and finally
of the Convergence Theorem. If we completely abandon condition (7.7) and only
require that f(x, y) be continuous, the convergence of the Euler polygons is no
longer guaranteed.

An example, plotted in Fig. 7.2, is given by the equation

y′ = 4
(
sign (y)

√
|y|+ max

(
0, x− |y|

x

)
· cos

(π log x

log 2

))
(7.19)

with y(0) = 0 . It has been constructed such that

f(h, 0) = 4(−1)ih for h = 2−i,

f(x, y) = 4 sign(y) ·
√
|y| for |y| ≥ x2.

h=1/2

h=1/4

h=1/8

h=1/16

h=1/32

h=1/64

Fig. 7.2. Solution curves and Euler polygons for equation (7.19)
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There is an infinity of solutions for this initial value, some of which are plotted
in Fig. 7.2. The Euler polygons converge for h = 2−i and even i to the maximal
solution y = 4x2 , and for odd i to y = −4x2 . For other sequences of h all inter-
mediate solutions can be obtained as well.

Theorem 7.6 (Peano 1890). Let f(x, y) be continuous and |f | be bounded by A
on

D =
{

(x, y) | x0 ≤ x ≤ X, |y− y0| ≤ b
}
.

If X−x0 ≤ b/A , then there is a subsequence of the sequence of the Euler polygons
which converges to a solution of the differential equation.

The original proof of Peano is, in its crucial part on the convergence result, very
brief and not clear to unexperienced readers such as us. Arzelà (1895), who took
up the subject again, explains his ideas in more detail and emphasizes the need for
an equicontinuity of the sequence. The proof usually given nowadays (for what has
become the theorem of Arzelà-Ascoli), was only introduced later (see e.g. Perron
(1918), Hahn (1921), p. 303) and is sketched as follows:

Proof. Let
v1(x), v2(x), v3(x), . . . (7.20)

be a sequence of Euler polygons for decreasing step sizes. It follows from (7.4)
that for fixed x this sequence is bounded. We choose a sequence of numbers
r1, r2, r3, . . . dense in the interval (x0, X) . There is now a subsequence of (7.20)
which converges for x = r1 (Bolzano-Weierstrass), say

v
(1)
1 (x), v(1)

2 (x), v(1)
3 (x), . . . (7.21)

We next select a subsequence of (7.21) which converges for x = r2

v
(2)
1 (x), v(2)

2 (x), v(2)
3 (x), . . . (7.22)

and so on. Then take the “diagonal” sequence

v
(1)
1 (x), v(2)

2 (x), v(3)
3 (x), . . . (7.23)

which, apart from a finite number of terms, is a subsequence of each of these se-
quences, and thus converges for all ri . Finally, with the estimate

|v(n)
n (x)− v(n)

n (rj)| ≤ A|x− rj|
(see (7.4)), which expresses the equicontinuity of the sequence, we obtain

|v(n)
n (x)− v(m)

m (x)|
≤ |v(n)

n (x)− v(n)
n (rj)|+ |v(n)

n (rj)− v(m)
m (rj)|+ |v(m)

m (rj)− v(m)
m (x)|

≤ 2A|x− rj|+ |v(n)
n (rj)− v(m)

m (rj)|.
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For fixed ε > 0 we then choose a finite subset R of {r1, r2, . . .} satisfying

min{|x− rj| ; rj ∈ R, x0 ≤ x ≤ X} ≤ ε/A

and secondly we choose N such that

|v(n)
n (rj)− v(m)

m (rj)| ≤ ε for n, m ≥ N and rj ∈ R.

This shows the uniform convergence of (7.23). In the same way as in part b) of the
proof of Theorem 7.3 it follows that the limit function is a solution of (7.1). One
only has to add an O(|h|) -term in (7.14), if x is not a subdivision point.

Exercises

1. Apply Euler’s method with constant step size xi+1 −xi = 1/n to the differ-
ential equation y′ = ky , y(0) = 1 and obtain a classical approximation for the
solution y(1) = ek . Give an estimate of the error.

2. Apply Euler’s method with constant step size to

a) y′ = y2 , y(0) = 1 , y(1/2) =?
b) y′ = x2 + y2 , y(0) = 0 , y(1/2) =?
Make rigorous error estimates using Theorem 7.4 and compare these estimates
with the actual errors. The main difficulty is to find a suitable region in which
the estimates of Theorem 7.4 hold, without making the constants A, L, M
too large and, at the same time, ensuring that the solution curves remain inside
this region (see also I.8, Exercise 3).

3. Prove the result: if the differential equation y′ = f(x, y) , y(x0) = y0 with f
continuous, possesses a unique solution, then the Euler polygons converge to
this solution.

4. “There is an elementary proof of Peano’s existence theorem” (Walter 1971).
Suppose that A is a bound for |f | . Then the sequence

yi+1 = yi +h ·max{f(x, y)|xi ≤ x ≤ xi+1, yi − 3Ah ≤ y ≤ yi +Ah}
converges for all continuous f to a (the maximal) solution. Try to prove this.
Unfortunately, this proof does not extend to systems of equations, unless they
are “quasimonotone” (see Section I.10, Exercise 3).



I.8 Existence Theory using Iteration Methods
and Taylor Series

A second approach to existence theory is possible with the help of an iterative re-
finement of approximate solutions. The first appearances of the idea are very old.
For instance many examples of this type can be found in the work of Lagrange,
above all in his astronomical calculations. Let us consider here the following illus-
trative example of a Riccati equation

y′ = x2 + y + 0.1y2, y(0) = 0. (8.1)

Because of the quadratic term, there is no elementary solution. A very natural idea
is therefore to neglect this term, which is in fact very small at the beginning, and to
solve for the moment

y′
1 = x2 + y1, y1(0) = 0. (8.2)

This gives, with formula (3.3), a first approximation

y1(x) = 2ex − (x2 + 2x + 2). (8.3)

With the help of this solution, we now know more about the initially neglected term
0.1y2 ; it will be close to 0.1y2

1 . So the idea lies at hand to reintroduce this solution
into (8.1) and solve now the differential equation

y′
2 = x2 + y2 + 0.1 · (y1(x)

)2
, y2(0) = 0. (8.4)

We can use formula (3.3) again and obtain after some calculations

y2(x) = y1(x) +
2
5
e2x − 2

15
ex(x3 + 3x2 + 6x− 54)

− 1
10

(x4 + 8x3 + 32x2 + 72x + 76).

This is already much closer to the correct solution, as can be seen from the follow-
ing comparison of the errors e1 = y(x)− y1(x) and e2 = y(x)− y2(x) :

x = 0.2 e1 = 0.228× 10−07 e2 = 0.233× 10−12

x = 0.4 e1 = 0.327× 10−05 e2 = 0.566× 10−09

x = 0.8 e1 = 0.534× 10−03 e2 = 0.165× 10−05.
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It looks promising to continue this process, but the computations soon become very
tedious.

Picard-Lindelöf Iteration

The general formulation of the method is the following: we try, if possible, to split
up the function f(x, y) of the differential equation

y′ = f(x, y) = f1(x, y) + f2(x, y), y(x0) = y0 (8.5)

so that any differential equation of the form y′ = f1(x, y) + g(x) can be solved
analytically and so that f2(x, y) is small. Then we start with a first approximation
y0(x) and compute successively y1(x), y2(x), . . . by solving

y′
i+1 = f1(x, yi+1) + f2

(
x, yi(x)

)
, yi+1(x0) = y0. (8.6)

The most primitive form of this process is obtained by choosing f1 = 0, f2 = f ,
in which case (8.6) is immediately integrated and becomes

yi+1(x) = y0 +
∫ x

x0

f
(
s, yi(s)

)
ds. (8.7)

This is called the Picard-Lindelöf iteration method. It appeared several times in
the literature, e.g., in Liouville (1838), Cauchy, Peano (1888), Lindelöf (1894),
Bendixson (1893). Picard (1890) considered it merely as a by-product of a simi-
lar idea for partial differential equations and analyzed it thoroughly in his famous
treatise Picard (1891-96), Vol. II, Chap. XI, Sect. III.

The fast convergence of the method, for |x−x0| small, is readily seen: if we
subtract formula (8.7) from the same with i replaced by i− 1 , we have

yi+1(x)− yi(x) =
∫ x

x0

(
f
(
s, yi(s)

)− f
(
s, yi−1(s)

))
ds. (8.8)

We now apply the Lipschitz condition (7.7) and the triangle inequality to obtain

|yi+1(x)− yi(x)| ≤ L

∫ x

x0

|yi(s)− yi−1(s)| ds. (8.9)

When we assume y0(x) ≡ y0 , the triangle inequality applied to (8.7) with i = 0
yields the estimate

|y1(x)− y0(x)| ≤ A|x−x0|
where A is a bound for |f | as in Section I.7. We next insert this into the right hand
side of (8.9) repeatedly to obtain finally the estimate (Lindelöf 1894)

|yi(x)− yi−1(x)| ≤ ALi−1 |x−x0|i
i!

. (8.10)
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The right-hand side is a term of the Taylor series for eL|x−x0| , which converges
for all x ; we therefore conclude that |yi+k − yi| becomes arbitrarily small when
i is large. The error is bounded by the remainder of the above exponential series.
So the sequence yi(x) converges uniformly to the solution y(x) . For example, if
L|x−x0| ≤ 1/10 and the constant A is moderate, 10 iterations would provide a
numerical solution with about 17 correct digits.

The main practical drawback of the method is the need for repeated computa-
tion of integrals, which is usually not very convenient, if at all analytically possible,
and soon becomes very tedious. However, its fast convergence and new machine
architectures (parallelism) coupled with numerical evaluations of the integrals have
made the approach interesting for large problems (see Nevanlinna 1989).

Taylor Series

Après avoir montré l’insuffisance des méthodes d’intégration fon-
dées sur le développement en séries, il me reste à dire en peu de
mots ce qu’on peut leur substituer. (Cauchy)

A third existence proof can be based on a study of the convergence of the Taylor
series of the solutions. This was mentioned in a footnote of Liouville (1836, p.
255), and brought to perfection by Cauchy (1839-42).

We have already seen the recursive computation of the Taylor coefficients in
the work of Newton (see Section I.2). Euler (1768) then formulated the general
procedure for the higher derivatives of the solution of

y′ = f(x, y), y(x0) = y0 (8.11)

which, by successive differentiation, are obtained as

y′′ = fx + fyy′ = fx + fyf

y′′′ = fxx + 2fxyf + fyyf
2 + fy(fx + fyf)

(8.12)

etc. Then the solution is

y(x0 +h) = y(x0) + y′(x0)h + y′′(x0)
h2

2!
+ . . . . (8.13)

The formulas (8.12) for higher derivatives soon become very complicated. Euler
therefore proposed to use only a few terms of this series with h sufficiently small
and to repeat the computations from the point x1 = x0 +h (“analytic continua-
tion”).

We shall now outline the main ideas of Cauchy’s convergence proof for the
series (8.13). We suppose that f(x, y) is analytic in the neighbourhood of the
initial value x0, y0 , which for simplicity of notation we assume located at the origin
x0 = y0 = 0 :

f(x, y) =
∑
i,j≥0

aijx
iyj , (8.14)
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where the aij are multiples of the partial derivatives occurring in (8.12). If the se-
ries (8.14) is assumed to converge for |x| ≤ r , |y| ≤ r , then the Cauchy inequalities
from classical complex analysis give

|aij | ≤
M

ri+j
, where M = max

|x|≤r,|y|≤r
|f(x, y)|. (8.15)

The idea is now the following: since all signs in (8.12) are positive, we obtain the
worst possible result if we replace in (8.14) all aij by the largest possible values
(8.15) (“method of majorants”):

f(x, y) →
∑

i,j≥0

M
xiyj

ri+j
=

M

(1−x/r)(1− y/r)
.

However, the majorizing differential equation

y′ =
M

(1−x/r)(1− y/r)
, y(0) = 0

is readily integrated by separation of variables (see Section I.3) and has the solution

y = r

(
1−
√

1 + 2M log
(
1− x

r

) )
. (8.16)

This solution has a power series expansion which converges for all x such that
|2M log(1−x/r)| < 1 . Therefore, the series (8.13) also converges at least for all
|h| < r

(
1− exp(−1/2M)

)
.

Recursive Computation of Taylor Coefficients

. . . dieses Verfahren praktisch nicht in Frage kommen kann.
(Runge & König 1924)

The exact opposite is true, if we use the right approach . . .
(R.E. Moore 1979)

The “right approach” is, in fact, an extension of Newton’s approach and has been
rediscovered several times (e.g,. Steffensen 1956) and implemented into computer
programs by Gibbons (1960) and Moore (1966). For a more extensive bibliography
see the references in Wanner (1969), p. 10-20.

The idea is the following: let

Yi =
1
i!

y(i)(x0), Fi =
1
i!

(
f
(
x, y(x)

))(i)∣∣
x=x0

(8.17)

be the Taylor coefficients of y(x) and of f
(
x, y(x)

)
, so that (8.13) becomes

y(x0 +h) =
∞∑

i=0

hiYi.
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Then, from (8.11),

Yi+1 =
1

i + 1
Fi. (8.18)

Now suppose that f(x, y) is the composition of a sequence of algebraic operations
and elementary functions. This leads to a sequence of items,

x, y, p, q, r, . . . , and finally f. (8.19)

For each of these items we find formulas for generating the i th Taylor coefficient
from the preceding ones as follows:

a) r = p± q :

Ri = Pi ±Qi, i = 0, 1, . . . (8.20a)

b) r = pq : the Cauchy product yields

Ri =
i∑

j=0

PjQi−j , i = 0, 1, . . . (8.20b)

c) r = p/q : write p = rq , use formula b) and solve for Ri :

Ri =
1

Q0

(
Pi −

i−1∑
j=0

RjQi−j

)
, i = 0, 1, . . . (8.20c)

There also exist formulas for many elementary functions (in fact, because these
functions are themselves solutions of rational differential equations).

d) r = exp(p) : use r′ = p′ · r and apply (8.20b). This gives for i = 1, 2, ...

R0 = exp(P0), Ri =
1
i

i−1∑
j=0

(i− j)RjPi−j . (8.20d)

e) r = log(p) : use p = exp(r) and rearrange formula d). This gives

R0 = log(P0), Ri =
1
P0

(
Pi −

1
i

i−1∑
j=1

(i− j)PjRi−j

)
. (8.20e)

f) r = pc, c �= 1 constant. Use pr′ = crp′ and apply (8.20b):

R0 = P c
0 , Ri =

1
iP0

(i−1∑
j=0

(
ci− (c + 1)j

)
RjPi−j

)
. (8.20f)
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g) r = cos(p) , s = sin(p) : as in d) we have

R0 = cos P0, Ri = −1
i

i−1∑
j=0

(i− j)SjPi−j ,

S0 = sin P0, Si =
1
i

i−1∑
j=0

(i− j)RjPi−j .

(8.20g)

The alternating use of (8.20) and (8.18) then allows us to compute the Taylor
coefficients for (8.17) to any wanted order in a very economical way. It is not dif-
ficult to write subroutines for the above formulas, which have to be called in the
same order as the differential equation (8.11) is composed of elementary opera-
tions. There also exist computer programs which “compile” Fortran statements for
f(x, y) into this list of subroutine calls. One has been written by T. Szymanski and
J.H. Gray (see Knapp & Wanner 1969).

Example. The differential equation y′ = x2 + y2 leads to the recursion

Y0 = y(0), Yi+1 =
1

i + 1

(
Pi +

i∑
j=0

YjYi−j

)
, i = 0, 1, . . .

where Pi = 1 for i = 2 and Pi = 0 for i �= 2 are the coefficients for x2 . One can
imagine how much easier this is than formulas (8.12).

An important property of this approach is that it can be executed in interval
analysis and thus allows us to obtain reliable error bounds by the use of Lagrange’s
error formula for Taylor series. We refer to the books by R.E. Moore (1966) and
(1979) for more details.

Exercises

1. Obtain from (8.10) the estimate

|yi(x)− y0| ≤
A

L

(
eL(x−x0) − 1

)
and explain the similarity of this result with (7.16).

2. Apply the method of Picard to the problem y′ = Ky , y(0) = 1 .

3. Compute three Picard iterations for the problem y′ = x2 + y2 , y(0) = 0 ,
y(1/2) =? and make a rigorous error estimate. Compare the result with the
correct solution y(1/2) = 0.041791146154681863220768806849179 .
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4. Compute with an iteration method the solution of

y′ =
√

x +
√

y, y(0) = 0

and observe that the method can work well for equations which pose serious
problems with other methods. An even greater difference occurs for the equa-
tions

y′ =
√

x+ y2, y(0) = 0 and y′ =
1√
x

+ y2, y(0) = 0.

5. Define f(x, y) by

f(x, y) =

⎧⎪⎪⎨⎪⎪⎩
0 for x ≤ 0
2x for x > 0, y < 0

2x− 4y

x
for 0 ≤ y ≤ x2

−2x for x > 0, x2 < y.

a) Show that f(x, y) is continuous, but not Lipschitz.

b) Show that for the problem y′ = f(x, y) , y(0) = 0 the Picard iteration
method does not converge.

c) Show that there is a unique solution and that the Euler polygons converge.

6. Use the method of Picard iteration to prove: if f(x, y) is continuous and satis-
fies a Lipschitz condition (7.7) on the infinite strip D = {(x, y) ; x0 ≤x≤X} ,
then the initial value problem y′ = f(x, y) , y(x0) = y0 possesses a unique
solution on x0 ≤ x ≤ X .

Compare this global result with Theorem 7.3.

7. Define a function y(x) (the “inverse error function”) by the relation

x =
2√
π

∫ y

0

e−t2dt

and show that it satisfies the differential equation

y′ =
√

π

2
ey2

, y(0) = 0.

Obtain recursion formulas for its Taylor coefficients.
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The first treatment of an existence theory for simultaneous systems of differential
equations was undertaken in the last existing pages (p. 123-136) of Cauchy (1824).
We write the equations as

y′
1 = f1(x, y1, . . . , yn),

. . .

y′
n = fn(x, y1, . . . , yn),

y1(x0) = y10,

. . .

yn(x0) = yn0,

y1(X) = ?

. . .

yn(X) = ?

(9.1)

and ask for the existence of the n solutions y1(x), . . . , yn(x) . It is again natural to
consider, in analogy to (7.3), the method of Euler

yk,i+1 = yki + (xi+1 −xi) · fk(xi, y1i, . . . , yni) (9.2)

(for k =1, . . . , n and i=0, 1, 2, . . .). Here yki is intended to approximate yk(xi) ,
where x0 < x1 < x2 . . . is a subdivision of the interval of integration as in (7.2).

We now try to carry over everything we have done in Section I.7 to the new
situation. Although we have no problem in extending (7.4) to the estimate

|yki − yk0| ≤ Ak|xi −x0| if |fk(x, y1, . . . , yn)| ≤ Ak, (9.3)

things become a little more complicated for (7.7): we have to estimate

fk(x, z1, . . . , zn)− fk(x, y1, . . . , yn) =
∂fk

∂y1

· (z1 − y1) + . . .+
∂fk

∂yn

· (zn − yn),

(9.4)
where the derivatives ∂fk/∂yi are taken at suitable intermediate points. Here
Cauchy uses the inequality now called the “Cauchy-Schwarz inequality” (“Enfin,
il résulte de la formule (13) de la 11e leçon du calcul différentiel . . .”) to obtain

|fk(x,z1, . . . , zn)− fk(x, y1, . . . , yn)| (9.5)

≤
√(∂fk

∂y1

)2

+ . . .+
(∂fk

∂yn

)2

·
√

(z1 − y1)2 + . . .+ (zn − yn)2.

At this stage, we begin to feel that further development is advisable only after the
introduction of vector notation.
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Vector Notation

This was promoted in our subject by the papers of Peano, (1888) and (1890), who
was influenced, as he says, by the famous “Ausdehnungslehre” of Grassmann and
the work of Hamilton, Cayley, and Sylvester. We introduce the vectors (Peano
called them “complexes”)

y = (y1, . . . , yn)T , yi = (y1i, . . . , yni)
T , z = (z1, . . . , zn)T etc,

and hope that the reader will not confuse the components yi of a vector y with
vectors with indices. We consider the “vector function”

f(x, y) =
(
f1(x, y), . . . , fn(x, y)

)T
,

so that equations (9.1) become

y′ = f(x, y), y(x0) = y0, y(X) =?, (9.1’)

Euler’s method (9.2) is

yi+1 = yi + (xi+1 −xi)f(xi, yi), i = 0, 1, 2, . . . (9.2’)

and the Euler polygon is given by

yh(x) = yi + (x−xi)f(xi, yi) for xi ≤ x ≤ xi+1.

There is no longer any difference in notation with the one-dimensional cases (7.1),
(7.3) and (7.3a).

In view of estimate (9.5), we introduce for a vector y =(y1, . . . , yn)T the norm
(originally “modulus”)

‖y‖ =
√

y2
1 + . . .+ y2

n (9.6)

which satisfies all the usual properties of a norm, for example the triangle inequality

‖y + z‖ ≤ ‖y‖+ ‖z‖,
∥∥∥ n∑

i=1

yi

∥∥∥≤ n∑
i=1

‖yi‖. (9.7)

The Euclidean norm (9.6) is not the only one possible, we also use (“on pourrait
aussi définir par mx la plus grande des valeurs absolues des élements de x ; alors
les propriétes des modules sont presqu’évidentes.”, Peano)

‖y‖ = max(|y1|, . . . , |yn|), (9.6’)

‖y‖ = |y1|+ . . .+ |yn|. (9.6”)

We are now able to formulate estimate (9.3) as follows, in perfect analogy with
(7.4): if for some norm ‖f(x, y)‖≤A on D = {(x, y) | x0 ≤x≤X, ‖y−y0‖≤ b}
and if X −x0 ≤ b/A then the numerical solution (xi, yi) , given by (9.2’), remains
in D and we have

‖yh(x)− y0‖ ≤ A · |x−x0|. (9.8)

The analogue of estimate (7.5) can be obtained similarly.
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In order to prove the implication “(7.9) ⇒ (7.7)” for vector-valued functions it
is convenient to work with norms of matrices.

Subordinate Matrix Norms

The relation (9.4) shows that the difference f(x, z)− f(x, y) can be written as the
product of a matrix with the vector z− y . It is therefore of interest to estimate
‖Qv‖ and to find the best possible estimate of the form ‖Qv‖ ≤ β‖v‖ .

Definition 9.1. Let Q be a matrix (n columns, m rows) and ‖ . . .‖ be one of the
norms defined in (9.6), (9.6’) or (9.6”). The subordinate matrix norm of Q is then
defined by

‖Q‖ = sup
v �=0

‖Qv‖
‖v‖ = sup

‖u‖=1

‖Qu‖. (9.9)

By definition, ‖Q‖ is the smallest number such that

‖Qv‖ ≤ ‖Q‖ · ‖v‖ for all v (9.10)

holds. The following theorem gives explicit formulas for the computation of (9.9).

Theorem 9.2. The norm of a matrix Q is given by the following formulas: for the
Euclidean norm (9.6),

‖Q‖ =
√

largest eigenvalue of QT Q ; (9.11)

for the max-norm (9.6’),

‖Q‖ = max
k=1,...,m

( n∑
i=1

|qki|
)
; (9.11’)

for the norm (9.6”),

‖Q‖ = max
i=1,...,n

( m∑
k=1

|qki|
)
. (9.11”)

Proof. Formula (9.11) can be seen from ‖Qv‖2 = vT QT Qv with the help of an
orthogonal transformation of QT Q to diagonal form.

Formula (9.11’) is obtained as follows (we denote (9.6’) by ‖ . . .‖∞ ):

‖Qv‖∞ = max
k=1,...,m

∣∣∣ n∑
i=1

qkivi

∣∣∣≤ ( max
k=1,...,m

n∑
i=1

|qki|
)
· ‖v‖∞ (9.12)

shows that ‖Q‖≤maxk

∑
i |qki| . The equality in (9.11’) is then seen by choosing

a vector of the form v = (±1,±1, . . . ,±1)T for which equality holds in (9.12).
The formula (9.11”) is proved along the same lines.
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All these formulas remain valid for complex matrices. QT has only to be
replaced by Q∗ (transposed and complex conjugate). See e.g., Wilkinson (1965),
p. 55-61, Bakhvalov (1976), Chap. VI, Par. 3. With these preparations it is possible
to formulate the desired estimate.

Theorem 9.3. If f(x, y) is differentiable with respect to y in an open convex
region U and if ∥∥∥∂f

∂y
(x, y)

∥∥∥≤ L for (x, y) ∈ U (9.13)

then

‖f(x, z)− f(x, y)‖≤ L ‖z− y‖ for (x, y), (x, z)∈ U. (9.14)

(Obviously, the matrix norm in (9.13) is subordinate to the norm used in (9.14).)

Proof. This is the “mean value theorem” and its proof can be found in every text-
book on calculus. In the case where ∂f/∂y is continuous, the following simple
proof is possible. We consider ϕ(t) = f

(
x, y + t(z − y)

)
and integrate its deriva-

tive (componentwise) from 0 to 1

f(x, z)− f(x, y) = ϕ(1)−ϕ(0) =
∫ 1

0

ϕ′(t) dt

=
∫ 1

0

∂f

∂y

(
x, y + t(z − y)

) · (z− y) dt.

(9.15)

Taking the norm of (9.15), using∥∥∥∫ 1

0

g(t) dt
∥∥∥≤ ∫ 1

0

‖g(t)‖ dt, (9.16)

and applying (9.10) and (9.13) yields the estimate (9.14). The relation (9.16) is
proved by applying the triangle inequality (9.7) to the finite Riemann sums which
define the two integrals.

We thus have obtained the analogue of (7.7). All that remains to do is, Da
capo al fine, to read Sections I.7 and I.8 again: Lemma 7.2, Theorems 7.3, 7.4, 7.5,
and 7.6 together with their proofs and the estimates (7.10), (7.13), (7.15), (7.16),
(7.17), and (7.18) carry over to the more general case with the only changes that
some absolute values are to be replaced by norms.

The Picard-Lindelöf iteration also carries over to systems of equations when
in (8.7) we interpret yi+1(x), y0 and f(s, yi(s)) as vectors, integrated componen-
twise. The convergence result with the estimate (8.10) also remains the same; for
its proof we have to use, between (8.8) and (8.9), the inequality (9.16).
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The Taylor series method, its convergence proof, and the recursive generation
of the Taylor coefficients also generalize in a straightforward manner to systems of
equations.

Exercises

1. Solve the system
y′
1 = −y2,

y′
2 = +y1,

y1(0) = 1

y2(0) = 0

by the methods of Euler and Picard, establish rigorous error estimates for all
three norms mentioned. Verify the results using the correct solution y1(x) =
cos x , y2(x) = sin x .

2. Consider the differential equations

y′
1 = −100y1 + y2,

y′
2 = y1 − 100y2,

y1(0) = 1,

y2(0) = 0,

y1(1) = ?

y2(1) = ?

a) Compute the exact solution y(x) by the method explained in Section I.6.

b) Compute the error bound for ‖z(x)− y(x)‖ , where z(x) = 0 , obtained
from (7.10).

c) Apply the method of Euler to this equation with h = 1/10 .

d) Apply Picard’s iteration method.

3. Compute the Taylor series solution of the system with constant coefficients
y′ = Ay , y(0) = y0 . Prove that this series converges for all x . Apply this
series to the equation of Exercise 1.

Result.

y(x) =
∞∑

i=0

xi

i!
Aiy0 =: eAxy0.
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Differential inequalities are an elegant instrument for gaining a better understand-
ing of equations (7.10), (7.17) and much new insight. This subject was inaugurated
in the paper, once again, Peano (1890) and further developed by Perron (1915),
Müller (1926), Kamke (1930). A classical treatise on the subject is the book of
Walter (1970).

Introduction

The basic idea is the following: let v(x) denote the Euler polygon defined in (7.3)
or (9.2), so that

v′(x) = f(xi, yi) for xi < x < xi+1. (10.1)

For any chosen norm, we investigate the error

m(x) = ‖v(x)− y(x)‖ (10.2)

as a function of x and we naturally try to estimate its growth.
Unfortunately, m(x) is not necessarily differentiable, due firstly to the cor-

ners of the Euler polygons and secondly, to corners originating from the norms,
especially the norms (9.6’) and (9.6”). Therefore we consider the so-called Dini
derivatives defined by

D+m(x) = lim sup
h→0,h>0

m(x +h)−m(x)
h

,

D+m(x) = lim inf
h→0,h>0

m(x +h)−m(x)
h

,

(see e.g., Scheeffer (1884), Hobson (1921), Chap. V, §260, §280). The property

‖w(x +h)‖−‖w(x)‖ ≤ ‖w(x +h)−w(x)‖ (10.3)

is a simple consequence of the triangle inequality (9.7). If we divide (10.3) by
h > 0 , we obtain the estimates

D+‖w(x)‖ ≤ ‖w′(x + 0)‖, D+‖w(x)‖ ≤ ‖w′(x + 0)‖, (10.4)
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where w′(x + 0) is the right derivative of the vector function w(x) . If we apply
this to m(x) of (10.2), we obtain

D+m(x) ≤ ‖v′(x + 0)− y′(x)‖
= ‖v′(x + 0)− f(x, v(x)) + f(x, v(x))− f(x, y(x))‖

and, using the triangle inequality and the Lipschitz condition (9.14),

D+m(x) ≤ δ(x) +L ·m(x). (10.5)

Here, we have introduced

δ(x) = ‖v′(x + 0)− f(x, v(x))‖ (10.6)

which is called the defect of the approximate solution v(x) . This fundamental
quantity measures the extent to which the function v(x) does not satisfy the im-
posed differential equation. (7.11) together with (10.1) tell us that δ(x)≤ ε , so that
(10.5) can be further estimated to become

D+m(x) ≤ L ·m(x) + ε, m(x0) = 0. (10.7)

Formula (10.7) (or (10.5)) is what one calls a differential inequality. The question
is: are we allowed to replace “≤” by “=”, i.e., to solve instead of (10.7) the
equation

u′ = Lu + ε, u(x0) = 0 (10.8)

and to conclude that m(x) ≤ u(x)? This would mean, by the formulas of Section
I.3 or I.5, that

m(x) ≤ ε

L

(
eL(x−x0) − 1

)
. (10.9)

We would thus have obtained (7.17) in a natural way and have furthermore discov-
ered an elegant and powerful tool for many kinds of new estimates.

The Fundamental Theorems

A general theorem of the type

D+m(x) ≤ g(x, m(x))
D+u(x) ≥ g(x, u(x))
m(x0) ≤ u(x0)

⎫⎬⎭ =⇒ m(x) ≤ u(x) for x0 ≤ x (10.10)

cannot be true. Counter-examples are provided by any differential equation with
non-unique solutions, such as

g(x, y) =
√

y, m(x) =
x2

4
, u(x) = 0. (10.11)

The important observation, due to Peano and Perron, which allows us to overcome
this difficulty, is that one of the first two inequalities must be replaced by a strict
inequality (see Peano (1890), §3, Lemme 1):
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Theorem 10.1. Suppose that the functions m(x) and u(x) are continuous and
satisfy for x0 ≤ x < X

a) D+m(x) ≤ g(x, m(x))

b) D+u(x) > g(x, u(x))

c) m(x0) ≤ u(x0).

(10.12)

Then
m(x) ≤ u(x) for x0 ≤ x ≤ X. (10.13)

The same conclusion is true if both D+ are replaced by D+ .

Proof. In order to be able to compare the derivatives D+m and D+u in (10.12),
we consider points at which m(x) = u(x) . This is the main idea.

If (10.13) were not true, we could choose a point x2 with m(x2) > u(x2) and
look for the first point x1 to the left of x2 with m(x1) = u(x1) . Then for small
h > 0 we would have

m(x1 +h)−m(x1)
h

>
u(x1 +h)−u(x1)

h

and, by taking limits, D+m(x1) ≥ D+u(x1) . This, however, contradicts (a) and
(b), which give

D+m(x1) ≤ g(x1, m(x1)) = g(x1, u(x1)) < D+u(x1).

Many variant forms of this theorem are possible, for example by using left Dini
derivates (Walter 1970, Chap. II, §8, Theorem V).

Theorem 10.2 (The “fundamental lemma”). Suppose that y(x) is a solution of
the system of differential equations y′ = f(x, y) , y(x0) = y0 , and that v(x) is an
approximate solution. If

a) ‖v(x0)− y(x0)‖ ≤ �

b) ‖v′(x + 0)− f(x, v(x))‖≤ ε

c) ‖f(x, v)− f(x, y)‖≤ L‖v− y‖,
then, for x ≥ x0 , we have the error estimate

‖y(x)− v(x)‖ ≤ �eL(x−x0) +
ε

L

(
eL(x−x0) − 1

)
. (10.14)

Remark. The two terms in (10.14) express, respectively, the influence of the error �
in the initial values and the influence of the defect ε to the error of the approximate
solution. It implies that the error depends continuously on both, and that for � =
ε = 0 we have y(x) = v(x) , i.e., uniqueness of the solution.
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Proof. We put m(x) = ‖y(x)− v(x)‖ and obtain, as in (10.7),

D+m(x) ≤ L ·m(x) + ε, m(x0) ≤ �.

We shall try to compare this with the differential equation

u′ = Lu + ε, u(x0) = �. (10.15)

Theorem 10.1 is not directly applicable. We therefore replace in (10.15) ε by
ε + η, η > 0 and solve instead

u′ = Lu + ε + η > Lu + ε, u(x0) = �.

Now Theorem 10.1 gives the estimate (10.14) with ε replaced by ε+η . Since this
estimate is true for all η > 0 , it is also true for η = 0 .

Variant form of Theorem 10.2. The conditions

a) ‖v(x0)− y(x0)‖ ≤ �

b) ‖v′(x + 0)− f(x, v(x))‖ ≤ δ(x)

c) ‖f(x, v)− f(x, y)‖≤ 	(x)‖v− y‖
imply for x ≥ x0

‖y(x)− v(x)‖ ≤ eL(x)
(
� +
∫ x

x0

e−L(s)δ(s) ds
)
, L(x) =

∫ x

x0

	(s) ds.

Proof. This is simply formula (3.3).

Theorem 10.3. If the function g(x, y) is continuous and satisfies a Lipschitz
condition, then the implication (10.10) is true for continuous functions m(x) and
u(x) .

Proof. Define functions wn(x) , vn(x) by

w′
n(x) = g(x, wn(x)) + 1/n, wn(x0) = m(x0),

v′
n(x) = g(x, vn(x))− 1/n, vn(x0) = u(x0),

so that from Theorem 10.1

m(x) ≤ wn(x), vn(x) ≤ u(x) for x0 ≤ x ≤ X. (10.16)

It follows from Theorem 10.2 that the functions wn(x) and vn(x) converge for
n →∞ to the solutions of

w′(x) = g(x, w(x)), w(x0) = m(x0),

v′(x) = g(x, v(x)), v(x0) = u(x0),
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since the defect is ±1/n . Finally, because of m(x0) ≤ u(x0) and uniqueness we
have w(x) ≤ v(x). Taking the limit n →∞ in (10.16) thus gives m(x) ≤ u(x) .

A further generalization of Theorem 10.2 is possible if the Lipschitz condition
(c) is replaced by something nonlinear such as

‖f(x, v)− f(x, y)‖≤ ω(x, ‖v− y‖).
Then the differential inequality for the error m(x) is to be compared with the
solution of

u′ = ω(x, u) + δ(x) + η, u(x0) = �, η > 0.

See Walter (1970), Chap. II, §11 for more details.

Estimates Using One-Sided Lipschitz Conditions

As we already observed in Exercise 2 of I.9, and as has been known for a long time,
much information about the errors can be lost by the use of positive Lipschitz con-
stants L (e.g (9.11), (9.11’), or (9.11”)) in the estimates (7.16), (7.17), or (7.18).
The estimates all grow exponentially with x , even if the solutions and errors de-
cay. Therefore many efforts have been made to obtain better error estimates, as for
example the papers Eltermann (1955), Uhlmann (1957), Dahlquist (1959), and the
references therein. We follow with great pleasure the particularly clear presentation
of Dahlquist.

Let us estimate the derivative of m(x) = ‖v(x)− y(x)‖ with more care than
we did in (10.5): for h > 0 we have

m(x +h) = ‖v(x +h)− y(x +h)‖
= ‖v(x)− y(x) +h(v′(x + 0)− y′(x))‖+O(h2) (10.17)

≤
∥∥∥v(x)− y(x) +h

(
f(x, v(x))− f(x, y(x))

)∥∥∥+hδ(x) +O(h2)

by the use of (10.6) and (9.7). Here, we apply the mean value theorem to the
function y +hf(x, y) and obtain

m(x +h) ≤
(

max
η∈[y(x),v(x)]

∥∥∥I +h
∂f

∂y
(x, η)

∥∥∥) ·m(x) +hδ(x) +O(h2)

and finally for h > 0 ,

m(x +h)−m(x)
h

≤ max
η∈[y(x),v(x)]

‖I +h∂f
∂y (x, η)‖− 1

h
m(x) + δ(x) +O(h).

(10.18)
The expression on the right hand side of (10.18) leads us to the following definition:
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Definition 10.4. Let Q be a square matrix, then we call

μ(Q) = lim
h→0,h>0

‖I +hQ‖− 1
h

(10.19)

the logarithmic norm of Q .

Here are formulas for its computation (Dahlquist (1959), p. 11, Eltermann
(1955), p. 498, 499):

Theorem 10.5. The logarithmic norm (10.19) is obtained by the following formu-
las: for the Euclidean norm (9.6),

μ(Q) = λmax = largest eigenvalue of
1
2
(QT +Q); (10.20)

for the max-norm (9.6’),

μ(Q) = max
k=1,...,n

(
qkk +

∑
i�=k

|qki|
)
; (10.20’)

for the norm (9.6”),

μ(Q) = max
i=1,...,n

(
qii +

∑
k �=i

|qki|
)
. (10.20”)

Proofs. Formulas (10.20’) and (10.20”) follow quite trivially from (9.11’) and
(9.11”) and the definition (10.19). The point is that the presence of I suppresses,
for h sufficiently small, the absolute values for the diagonal elements. (10.20) is
seen from the fact that the eigenvalues of

(I +hQ)T (I +hQ) = I +h(QT +Q) +h2QT Q,

for h → 0 , converge to 1 +hλi , where λi are the eigenvalues of QT +Q .

Remark. For complex-valued matrices the above formulas remain valid if one re-
places Q by Q∗ and qkk, qii by Reqkk, Reqii .

We now obtain from (10.18) the following improvement of Theorem 10.3.

Theorem 10.6. Suppose that we have the estimates

μ
(∂f

∂y
(x, η)

)
≤ 	(x) for η ∈ [y(x), v(x)] and (10.21)

‖v′(x + 0)− f(x, v(x))‖≤ δ(x), ‖v(x0)− y(x0)‖ ≤ �.

Then for x > x0 we have

‖y(x)− v(x)‖ ≤ eL(x)
(
� +
∫ x

x0

e−L(s)δ(s) ds
)
, (10.22)

with L(x) =
∫ x

x0
	(s) ds .
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Proof. Since, for a fixed x , the segment [v(x), y(x)] is compact,

K = max
i

max
[v(x),y(x)]

∣∣∣ ∂fi

∂yi

∣∣∣
is finite. Then (see the proof of Theorem 10.5)

‖I +h∂f
∂y

(x, η)‖− 1

h
= μ
(∂f

∂y
(x, η)

)
+O(h)

where the O(h) -term is uniformly bounded in η . (For the norms (9.6’) and (9.6”)
this term is in fact zero for h < 1/K ). Thus the condition (10.21) inserted into
(10.18) gives

D+m(x) ≤ 	(x)m(x) + δ(x).

Now the estimate (10.22) follows in the same way as that of Theorem 10.3.

Exercises

1. Apply Theorem 10.6 to the example of Exercise 2 of I.9. Observe the substan-
tial improvement of the estimates.

2. Prove the following (a variant form of the famous “Gronwall lemma”, Gron-
wall 1919): suppose that a positive function m(x) satisfies

m(x) ≤ � + ε(x−x0) +L

∫ x

x0

m(s) ds =: w(x) (10.23)

then
m(x) ≤ �eL(x−x0) +

ε

L

(
eL(x−x0) − 1

)
; (10.24)

a) directly, by subtracting from (10.23)

u(x) = � + ε(x−x0) +L

∫ x

x0

u(s) ds;

b) by differentiating w(x) in (10.23) and using Theorem 10.1.

c) Prove Theorem 10.2 with the help of the above lemma of Gronwall. The
same interrelations are, of course, also valid in more general situations.

3. Consider the problem y′ = λy , y(0) = 1 with λ≥ 0 and apply Euler’s method
with constant step size h = 1/n . Prove that

λ

1 +λ/n
yh(x) ≤ D+yh(x) ≤ λyh(x)
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and derive the estimate(
1 +

λ

n

)n

≤ eλ ≤
(
1 +

λ

n

)n+λ

for λ ≥ 0.

4. Prove the following properties of the logarithmic norm:

a) μ(αQ) = αμ(Q) for α ≥ 0

b) −‖Q‖ ≤ μ(Q) ≤ ‖Q‖
c) μ(Q +P ) ≤ μ(Q) +μ(P ), μ

(∫
Q(t) dt

)
≤ ∫ μ

(
Q(t)

)
dt

d) |μ(Q)−μ(P )| ≤ ‖Q−P‖.

5. For the Euclidean norm (10.20), μ(Q) is the smallest number satisfying

〈v, Qv〉 ≤ μ(Q)‖v‖2.

This property is valid for all norms associated with a scalar product. Prove this.

6. Show that for the Euclidean norm the condition (10.21) is equivalent to

〈y− z, f(x, y)− f(x, z)〉 ≤ 	(x)‖y− z‖2.

7. Observe, using an example of the form

y′
1 = y2, y′

2 = −y1,

that a generalization of Theorem 10.1 to systems of first order differential
equations, with inequalities interpreted component-wise, is not true in general
(Müller 1926).

However, it is possible to prove such a generalization of Theorem 10.1 under
the additional hypothesis that the functions gi(x, y1, . . . , yn) are quasimono-
tone, i.e., that

gi(x, y1, . . . , yj, . . . , yn) ≤ gi(x, y1, . . . , zj, . . . , yn)

if yj < zj for all j �= i.

Try to prove this.

An important fact is that many systems from parabolic differential equations,
such as equation (6.10), are quasimonotone. This allows many interesting ap-
plications of the ideas of this section (see Walter (1970), Chap. IV).



I.11 Systems of Linear Differential Equations

[Wronski] . . . beschäftigte sich mit Mathematik, Mechanik und
Physik, Himmelsmechanik und Astronomie, Statistik und politis-
cher Ökonomie, mit Geschichte, Politik und Philosophie, . . . er
versuchte seine Kräfte in mehreren mechanischen und technischen
Erfindungen. (S. Dickstein, III. Math. Kongr. 1904, p. 515)

With more knowledge about existence and uniqueness, and with more skill in lin-
ear algebra, we shall now, as did the mathematicians of the 19th century, better
understand many points which had been left somewhat obscure in Sections I.4 and
I.6 about linear differential equations of higher order.

Equation (4.9) divided by an(x) (which is �= 0 away from singular points)
becomes

y(n) + bn−1(x)y(n−1) + . . .+ b0(x)y = g(x), bi(x) = ai(x)/an(x). (11.1)

with g(x) = f(x)/an(x) . Introducing y = y1 , y′ = y2, . . . , y
(n−1) = yn we arrive

at⎛⎜⎜⎝
y′
1

y′
2
...

y′
n

⎞⎟⎟⎠=

⎛⎜⎜⎜⎝
0 1

0 0
. . .

...
... . . . 1

−b0(x) −b1(x) . . . −bn−1(x)

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

y1

y2
...

yn

⎞⎟⎟⎠+

⎛⎜⎜⎝
0
...
0

g(x)

⎞⎟⎟⎠ . (11.1’)

We again denote by y the vector (y1, . . . , yn)T and by f(x) the inhomogeneity,
so that (11.1’) becomes a special case of the following system of linear differential
equations

y′ = A(x)y + f(x), (11.2)

A(x) =
(
aij(x)

)
, f(x) =

(
fi(x)

)
, i, j = 1, . . . , n.

Here, the theorems of Section I.9 and I.10 apply without difficulty. Since the partial
derivatives of the right hand side of (11.2) with respect to yi are given by aki(x) ,
we have the Lipschitz estimate (see condition (c) of the variant form of Theorem
10.2), where 	(x) = ‖A(x)‖ in any subordinate matrix norm (9.11, 11’, 11”). We
apply Theorem 7.4, and the variant form of Theorem 10.2 with v(x) = 0 as “ap-
proximate solution”. We may also take 	(x)=μ(A(x)) (see (10.20, 20’, 20”)) and
apply Theorem 10.6.

Theorem 11.1. Suppose that A(x) is continuous on an interval [x0, X ] . Then for
any initial values y0 = (y10, . . . , yn0)T there exists for all x0 ≤ x ≤ X a unique
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solution of (11.2) satisfying

‖y(x)‖ ≤ eL(x)
(
‖y0‖+

∫ x

x0

e−L(s)‖f(s)‖ ds
)

(11.3)

L(x) =
∫ x

x0

	(s) ds, 	(x) = ‖A(x)‖ or 	(x) = μ
(
A(x)

)
.

For f(x) ≡ 0 , y(x) depends linearly on the initial values, i.e., there is a matrix
R(x, x0) (the “resolvent”), such that

y(x) = R(x, x0) y0. (11.4)

Proof. Since 	(x) is continuous and therefore bounded on any compact interval
[x0, X ] , the estimate (11.3) shows that the solutions can be continued until the end.
The linear dependence follows from the fact that, for f ≡ 0 , linear combinations
of solutions are again solutions, and from uniqueness.

Resolvent and Wronskian

From uniqueness we have that the solutions with initial values y0 at x0 and y1 =
R(x1, x0) y0 at x1 (see (11.4)) must be the same. Hence we have

R(x2, x0) = R(x2, x1)R(x1, x0) (11.5)

for x0 ≤ x1 ≤ x2 . Finally by integrating backward from x1, y1 , i.e., by the co-
ordinate transformation x = x1 − t , 0 ≤ t ≤ x1 −x0 , we must arrive, again by
uniqueness, at the starting values. Hence

R(x0, x1) =
(
R(x1, x0)

)−1

(11.6)

and (11.5) is true without any restriction on x0, x1, x2 .
Let yi(x) = (y1i(x), . . . , yni(x))T (for i = 1, . . . , n) be a set of n solutions

of the homogeneous differential equation

y′ = A(x) y (11.7)

which are linearly independent at x = x0 (i.e., they form a fundamental system).
We form the Wronskian matrix (Wronski 1810)

W (x) =

⎛⎜⎝ y11(x) . . . y1n(x)
...

...
yn1(x) . . . ynn(x)

⎞⎟⎠ ,
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so that
W ′(x) = A(x)W (x)

and all solutions can be written as

c1y1(x) + . . .+ cnyn(x) = W (x) c where c = (c1, . . . , cn)T . (11.8)

If this solution must satisfy the initial conditions y(x0) = y0 , we obtain
c = W−1(x0)y0 and we have the formula

R(x, x0) = W (x)W−1(x0). (11.9)

Therefore all solutions are known if one has found n linearly independent solu-
tions.

Inhomogeneous Linear Equations

Extending the idea of Joh. Bernoulli for (3.2) and Lagrange for (4.9), we now com-
pute the solutions of the inhomogeneous equation (11.2) by letting c be “variable”
in the “general solution” (11.8): y(x) = W (x)c(x) (Liouville 1838). Exactly as in
Section I.3 for (3.2) we obtain from (11.2) and (11.7) by differentiation

y′ = W ′c +Wc′ = AWc +Wc′ = AWc + f.

Hence c′ = W−1f . If we integrate this with integration constants c , we obtain

y(x) = W (x)
∫ x

x0

W−1(s)f(s) ds +W (x) c.

The initial conditions y(x0) = y0 imply c = W−1(x0)y0 and we obtain:

Theorem 11.2 (“Variation of constants formula”). Let A(x) and f(x) be contin-
uous. Then the solution of the inhomogeneous equation y′ = A(x)y + f(x) satis-
fying the initial conditions y(x0) = y0 is given by

y(x) = W (x)
(
W−1(x0) y0 +

∫ x

x0

W−1(s)f(s) ds
)

= R(x, x0) y0 +
∫ x

x0

R(x, s)f(s) ds.

(11.10)

The Abel-Liouville-Jacobi-Ostrogradskii Identity

We already know from (11.6) that W (x) remains regular for all x . We now show
that the determinant of W (x) can be given explicitly as follows (Abel 1827, Liou-
ville 1838, Jacobi 1845, §17):
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det
(
W (x)

)
= det

(
W (x0)

) · exp
(∫ x

x0

tr
(
A(s)

)
ds
)
, (11.11)

tr
(
A(x)

)
= a11(x) + a22(x) + . . .+ ann(x)

which connects the determinant of W (x) to the trace of A(x) .
For the proof of (11.11) (see also Exercise 2) we compute the derivative

d
dx det

(
W (x)

)
. Since det

(
W (x)

)
is multilinear, this derivative (by the Leibniz

rule) is a sum of n terms, whose first is

T1 = det

⎛⎜⎜⎝
y′
11 y′

12 . . . y′
1n

y21 y22 . . . y2n
...

...
...

yn1 yn2 . . . ynn

⎞⎟⎟⎠ .

We insert y′
1i = a11(x)y1i + . . .+ a1n(x)yni from (11.7). All terms a12(x)y2i ,

. . . , a1n(x)yni disappear by subtracting multiples of lines 2 to n , so that T1 =
a11(x) det

(
W (x)

)
. Summing all these terms we obtain finally

d

dx
det
(
W (x)

)
=
(
a11(x) + . . .+ ann(x)

) · det
(
W (x)

)
(11.12)

and (11.11) follows by integration.

Exercises

1. Compute the resolvent matrix R(x, x0) for the two systems

y′
1 = y1

y′
2 = 3y2

y′
1 = y2

y′
2 = −y1

and check the validity of (11.5), (11.6) as well as (11.11).

2. Reconstruct Abel’s original proof for (11.11), which was for the case

y′′
1 + py′

1 + qy1 = 0, y′′
2 + py′

2 + qy2 = 0.

Multiply the equations by y2 and y1 respectively and subtract to eliminate q .
Then integrate.

Use the result to obtain an identity for the two integrals

y1(a) =
∫ ∞

0

eax−x2
xα−1dx, y2(a) =

∫ ∞

0

e−ax−x2
xα−1dx,

which both satisfy
d2yi

da2
− a

2
· dyi

da
− α

2
yi = 0. (11.13)
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Hint. To verify (11.13), integrate from 0 to infinity the expression for
d
dx (exp(ax−x2)xα) (Abel 1827, case IV).

3. (Kummer 1839). Show that the general solution of the equation

y(n)(x) = xmy(x) (11.14)

can be obtained by quadrature.

Hint. Differentiate (11.14) to obtain

y(n+1) = xmy′ +mxm−1y. (11.15)

Suppose by recursion that the general solution of

ψ(n+1) = xm−1ψ, i.e.,
dn+1

dxn+1
ψ(xu) = xm−1um+nψ(xu) (11.16)

is already known. Show that then

y(x) =
∫ ∞

0

um−1 exp
(
− um+n

m+n

)
ψ(xu) dx

is the general solution of (11.15), and, under some conditions on the parame-
ters, also of (11.14). To simplify the computations, consider the function

g(u) = um exp
(
− um+n

m+n

)
ψ(xu),

compute its derivative with respect to u , multiply by xm−1 , and integrate from
0 to infinity.

4. (Weak singularities for systems). Show that the linear system

y′ =
1
x

(
A0 +A1x +A2x

2 + . . .
)
y (11.17)

possesses solutions of the form

y(x) = xq
(
v0 + v1x + v2x

2 + . . .
)

(11.18)

where v0, v1, . . . are vectors. Determine first q and v0 , then recursively v1, v2 ,
etc. Observe that there exist n independent solutions of the form (11.18) if the
eigenvalues of A0 satisfy λi �= λj mod (Z) (Fuchs 1866).

5. Find the general solution of the weakly singular systems

y′ =
1
x

(
3
4 1
1
4 −1

4

)
y and y′ =

1
x

(
3
4 1

−1
4 −1

4

)
y. (11.19)

Hint. While the first is easy from Exercise 4, the second needs an additional
idea (see formula (5.9)). A second possibility is to use the transformation
x = et , y(x) = z(t) , and apply the methods of Section I.12.
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Die Technik der Integration der linearen Differentialgleichungen
mit constanten Coeffizienten wird hier auf das Höchste entwickelt.

(F. Klein in Routh 1898)

Linearization

Systems of linear differential equations with constant coefficients form a class of
equations for which the resolvent R(x, x0) can be computed explicitly. They gen-
erally occur by linearization of time-independent (i.e., autonomous or permanent)
nonlinear differential equations

y′
i = fi(y1, . . . , yn) or y′′

i = fi(y1, . . . , yn) (12.1)

in the neighbourhood of a stationary point (Lagrange (1788), see also Routh (1860),
Chap. IX, Thomson & Tait 1879). We choose the coordinates so that the stationary
point under consideration is the origin, i.e., fi(0, . . . , 0) = 0 . We then expand fi

in its Taylor series and neglect all nonlinear terms:

y′
i =

n∑
k=1

∂fi

∂yk

(0)yk or y′′
i =

n∑
k=1

∂fi

∂yk

(0)yk. (12.1’)

This is a system of equations with constant coefficients, as introduced in Section
I.6 (see (6.4), (6.11)),

y′ = Ay or y′′ = Ay. (12.1”)

Autonomous systems are invariant under a shift x → x +C . We may therefore
always assume that x0 = 0 . For arbitrary x0 the resolvent is given by

R(x, x0) = R(x−x0, 0). (12.2)

Diagonalization

We have seen in Section I.6 that the assumption y(x) = v · eλx leads to

Av = λv or Av = λ2v, (12.3)

hence v �= 0 must be an eigenvector of A and λ the corresponding eigenvalue (in
the first case; a square root of the eigenvalue in the second case, which we do not
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consider any longer). From (12.3) we obtain by subtraction that there exists such a
v �= 0 if and only if the determinant

χA(λ) := det(λI −A) = (λ−λ1)(λ−λ2) . . . (λ−λn) = 0. (12.4)

This determinant is called the characteristic polynomial of A .
Suppose now that for the n eigenvalues λi the n eigenvectors vi can be cho-

sen linearly independent. We then have from (12.3)

A
(
v1, v2, . . . , vn

)
=
(
v1, v2, . . . , vn

)
diag
(
λ1, λ2, . . . , λn

)
,

or, if T is the matrix whose columns are the eigenvectors of A ,

T−1AT = diag
(
λ1, λ2, . . . , λn

)
. (12.5)

On comparing (12.5) with (12.1”), we see that the differential equation simplifies
considerably if we use the coordinate transformation

y(x) = Tz(x), y′(x) = Tz′(x) (12.6)

which leads to
z′(x) = diag

(
λ1, λ2, . . . , λn

)
z(x). (12.7)

Thus the original system of differential equations decomposes into n single equa-
tions which are readily integrated to give

z(x) = diag
(
exp(λ1x), exp(λ2x), . . . , exp(λnx)

)
z0,

from which (12.6), yields

y(x) = T diag
(
exp(λ1x), exp(λ2x), . . . , exp(λnx)

)
T−1y0. (12.8)

The Schur Decomposition

Der Beweis ist leicht zu erbringen. (Schur 1909)

The foregoing theory, beautiful as it may appear, has several drawbacks:
a) Not all n×n matrices have a set of n linearly independent eigenvectors;
b) Even if it is invertible, the matrix T can behave very badly (see Exercise 1).

However, for symmetric matrices a classical theory tells that A can always be di-
agonalized by orthogonal transformations. Let us therefore, with Schur (1909),
extend this classical theory to non-symmetric matrices. A real matrix Q is called
orthogonal if its column vectors are mutually orthogonal and of norm 1 , i.e., if
QT Q = I or QT = Q−1 . A complex matrix Q is called unitary if Q∗Q = I or
Q∗ = Q−1 , where Q∗ is the adjoint matrix of Q , i.e., transposed and complex
conjugate.
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Theorem 12.1. a) (Schur 1909). For each complex matrix A there exists a unitary
matrix Q such that

Q∗AQ =

⎛⎜⎜⎝
λ1 × × . . . ×

λ2 × . . . ×
. . .

...
λn

⎞⎟⎟⎠ ; (12.9)

b) (Wintner & Murnaghan 1931). For a real matrix A the matrix Q can be
chosen real and orthogonal, if for each pair of conjugate eigenvalues λ, λ=α± iβ
one allows the block(

λ ×
λ

)
to be replaced by

(× ×
× ×

)
.

Proof. a) The matrix A has at least one eigenvector with eigenvalue λ1 . We use
this (normalized) vector as the first column of a matrix Q1 . Its other columns are
then chosen by arbitrarily completing the first one to an orthonormal basis. Then

AQ1 = Q1

(
λ1 × . . . ×
0 A2

)
. (12.10)

We then apply the same argument to the (n− 1) -dimensional matrix A2 . This
leads to

A2Q̃2 = Q̃2

(
λ2 × . . . ×
0 A3

)
.

With the unitary matrix

Q2 =
(

1 0

0 Q̃2

)
we obtain

Q∗
1AQ1Q2 = Q2

⎛⎝ λ1 ×
λ2

× . . . ×
× . . . ×

0 A3

⎞⎠ .

A continuation of this process leads finally to a triangular matrix as in (12.9) with
Q = Q1Q2 . . .Qn−1 .

b) Suppose A to be a real matrix. If λ1 is real, Q1 can be chosen real and
orthogonal. Now let λ1 = α + iβ (β �= 0) be a non-real eigenvalue with a corre-
sponding eigenvector u + iv , i.e.,

A(u± iv) = (α± iβ)(u± iv) (12.11)

or
Au = αu−βv, Av = βu +αv. (12.11’)
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Since β �= 0 , u and v are linearly independent. We choose an orthogonal basis û ,
v̂ of the subspace spanned by u and v and take û , v̂ as the first two columns of
the orthogonal matrix Q1 . We then have from (12.11’)

AQ1 = Q1

⎛⎝ × ×
× ×

× . . . ×
× . . . ×

0 A3

⎞⎠ .

Schur himself was not very proud of “his” decomposition, he just derived it as
a tool for proving interesting properties of eigenvalues (see e.g., Exercise 2).

Clearly, if A is real and symmetric, QT AQ will also be symmetric, and there-
fore diagonal (see also Exercise 3).

Numerical Computations

The above theoretical proof is still not of much practical use. It requires that one
know the eigenvalues, but the computation of eigenvalues from the characteristic
polynomial is one of the best-known stupidities of numerical analysis. Good nu-
merical analysis turns it the other way round: the real matrix A is directly reduced,
first to Hessenberg form, and then by a sequence of orthogonal transformations to
the real Schur form of Wintner & Murnaghan (“QR-algorithm” of Francis, coded
by Martin, Peters & Wilkinson, contribution II/14 in Wilkinson & Reinsch 1970).
The eigenvalues then drop out. However, the produced code, called “HQR2”, does
not give the Schur form of A , since it continues for the eigenvectors of A . Some
manipulations must therefore be done to interrupt the code at the right moment
(in the FORTRAN translation HQR2 of Eispack (1974), for example, the “340” of
statement labelled “60” has to be replaced by “1001”). Happy “Matlab”-users just
call “SCHUR”.

Whenever the Schur form has been obtained, the transformation y(x)=Qz(x) ,
y′(x) = Qz′(x) (see (12.6)) leads to⎛⎜⎜⎝

z′1
...

z′n−1

z′n

⎞⎟⎟⎠=

⎛⎜⎜⎜⎝
λ1 b12 . . . b1,n−1 b1n

. . .
...

...
λn−1 bn−1,n

λn

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

z1
...

zn−1

zn

⎞⎟⎟⎠ . (12.12)

The last equation of this system is z′n = λnzn , and it can be integrated to give
zn = exp(λnx)zn0 . Next, the equation for zn−1 is

z′n−1 = λn−1zn−1 + bn−1,nzn (12.12’)

with zn known. This is a linear equation (inhomogeneous, if bn−1,n �= 0 ) which
can be solved by Euler’s technique (Section I.4). Two different cases arise:
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a) If λn−1 �= λn we put zn−1 = E exp(λn−1x) +F exp(λnx) , insert into
(12.12’) and compare coefficients. This gives F = bn−1,nzn0/(λn −λn−1)
and E = zn−1,0 −F .

b) If λn−1 = λn we set zn−1 = (E +Fx) exp(λnx) and obtain F = bn−1,nzn0

and E = zn−1,0 .
The next stage, following the same ideas, gives zn−2 , etc. Simple recursive

formulas for the elements of the resolvent, which work in the case λi �= λj , are
obtained as follows (Parlett 1976): we assume

zi(x) =
n∑

j=i

Eij exp(λjx) (12.13)

and insert this into (12.12). After comparing coefficients, we obtain for i = n ,
n− 1 , n− 2 , etc.

Eik =
1

λk −λi

( k∑
j=i+1

bijEjk

)
, k = i + 1, i + 2, . . .

Eii = zi0 −
n∑

j=i+1

Eij .

(12.13’)

The Jordan Canonical Form

Simpler Than You Thought
(Amer. Math. Monthly 87 (1980) Nr. 9)

Whenever one is not afraid of badly conditioned matrices (see Exercise 1), and
many mathematicians are not, the Schur form obtained above can be further trans-
formed into the famous Jordan canonical form:

Theorem 12.2 (Jordan 1870, Livre deuxième, §5 and 6). For every matrix A there
exists a non-singular matrix T such that

T−1AT = diag

⎧⎪⎨⎪⎩
⎛⎜⎝λ1 1

. . . 1
λ1

⎞⎟⎠ ,

⎛⎜⎝λ2 1
. . . 1

λ2

⎞⎟⎠ , . . .

⎫⎪⎬⎪⎭ . (12.14)

(The dimensions (≥ 1 ) of the blocks may vary and the λi are not necessarily dis-
tinct).

Proof. We may suppose that the matrix is already in the Schur form. This is of
course possible in such a way that identical eigenvalues are grouped together on
the principal diagonal.
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The next step (see Fletcher & Sorensen 1983) is to remove all nonzero elements
outside the upper-triangular blocks containing identical eigenvalues. We let

A =
(

B C
0 D

)
where B and D are upper-triangular. The diagonal elements of B are all equal to
λ1 , whereas those of D are λ2, λ3, . . . and all different from λ1 . We search for a
matrix S such that(

B C
0 D

)(
I S
0 I

)
=
(

I S
0 I

)(
B 0
0 D

)
or, equivalently,

BS +C = SD. (12.15)

From this relation the matrix S can be computed column-wise as follows: the first
column of (12.15) is BS1 +C1 = λ2S1 (here Sj and Cj denote the j th column
of S and C , respectively) which yields S1 because λ2 is not an eigenvalue of B .
The second column of (12.15) yields BS2 +C2 = λ3S2 + d12S1 and allows us to
compute S2 , etc.

In the following steps we treat each of the remaining blocks separately: we thus
assume that all diagonal elements are equal to λ and transform the block recur-
sively to the form stated in the theorem. Since (A−λI)n = 0 (n is the dimension
of the matrix A ) there exists an integer k (1 ≤ k ≤ n ) such that

(A−λI)k = 0, (A−λI)k−1 �= 0. (12.16)

We fix a vector v such that (A−λI)k−1v �= 0 and put

vj = (A−λI)k−jv, j = 1, . . . , k

so that

Av1 = λv1, Avj = λvj + vj−1 for j = 2, . . . , k.

The vectors v1, . . . , vk are linearly independent, because a multiplication of the
expression

∑k
j=1 cjvj = 0 with (A−λI)k−1 yields ck = 0 , then a multiplication

with (A−λI)k−2 yields ck−1 =0 , etc. As in the proof of the Schur decomposition
(Theorem 12.1) we complete v1, . . . , vk to a basis of Cn in such a way that (with
V = (v1, . . . , vn) )

AV = V

(
J C
0 D

)
, J =

⎛⎝λ 1
. . . 1

λ

⎞⎠⎫⎬⎭ k (12.17)

where D is upper-triangular with λ on its diagonal.
Our next aim is to eliminate the nonzero elements of C in (12.17). In analogy

to (12.15) it is natural to search for a matrix S such that JS +C = SD . Unfortu-
nately, such an S does not always exist because the eigenvalues of J and of D are
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the same. However, it is possible to find S such that all elements of C are removed
with the exception of its last line, i.e.,(

J C
0 D

)(
I S
0 I

)
=
(

I S
0 I

)(
J ekcT

0 D

)
(12.18)

or equivalently
JS +C = ekcT +SD,

where ek = (0, . . . , 0, 1)T and cT = (c1, . . . , cn−k) . This can be seen as follows:
the first column of this relation becomes (J −λI)S1 +C1 = c1ek . Its last com-
ponent yields c1 and the other components determine the 2nd to k th elements of
S1 . The first element of S1 can arbitrarily be put equal to zero. Then we compute
S2 from (J −λI)S2 +C2 = c2ek + d12S1 , etc. We thus obtain a matrix S (with
vanishing first line) such that (12.18) holds.

We finally show that the assumption (A−λI)k = 0 implies c = 0 in (12.18).
Indeed, a simple calculation yields(

J −λI ekcT

0 D−λI

)k

=
(

0 Ĉ
0 0

)
where the first row of Ĉ is equal to the row-vector cT .

We have thus transformed A to block-diagonal form with blocks J of (12.17)
and D . The procedure can now be repeated with the lower-dimensional matrix D .
The product of all the occurring transformation matrices is then the matrix T in
(12.14).

Corollary 12.3. For every matrix A and for every number ε �= 0 there exists a
non-singular matrix T (depending on ε) such that

T−1AT = diag

⎧⎪⎨⎪⎩
⎛⎜⎝λ1 ε

. . . ε
λ1

⎞⎟⎠ ,

⎛⎜⎝λ2 ε
. . . ε

λ2

⎞⎟⎠ , . . .

⎫⎪⎬⎪⎭ . (12.14’)

Proof. Multiply equation (12.14) from the right by D = diag (1, ε, ε2, ε3, . . .) and
from the left by D−1 .

Numerical difficulties in determining the Jordan canonical form are described
in Golub & Wilkinson (1976). There exist also several computer programs, for
example the one described in Kågström & Ruhe (1980).

When the matrix A has been transformed to Jordan canonical form (12.14),
the solutions of the differential equation y′ = Ay can be calculated by the method
explained in (12.12’), case b):

y(x) = TDT−1y0 (12.19)
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where D is a block-diagonal matrix with blocks of the form⎛⎜⎜⎜⎜⎜⎝
eλx xeλx . . .

xk

k!
eλx

eλx
...

. . . xeλx

eλx

⎞⎟⎟⎟⎟⎟⎠
This is an extension of formula (12.8).

a)a) b)b) c)c)

d)d) e)e) f)f)

a)
(−1 1

0 −2

)
d)

(
1 0
0 1

) b)
(

1 1
0 1

)
e)

(
1/3 1/3

1 0

) c)
(

1/3 −1/3
2 0

)
f)

(
1/6 −1/3

2 −1/6

)
Fig. 12.1. Solutions of linear two dimensional systems
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Geometric Representation

The geometric shapes of the solution curves of y′ = Ay are presented in Fig. 12.1
for dimension n = 2 . They are plotted as paths in the phase-space (y1, y2) . The
cases a), b), c) and e) are the linearized equations of (12.20) at the four critical
points (see Fig. 12.2).

Much of this structure remains valid also for nonlinear systems (12.1) in the
neighbourhood of equilibrium points. Exceptions may be “structurally unstable”
cases such as complex eigenvalues with α = Re (λ) = 0 . This has been the subject
of many papers discussing “critical points” or “singularities” (see e.g., the famous
treatise of Poincaré (1881, 82, 85)).

In Fig. 12.2 we show solutions of the quadratic system

y′
1 =

1
3
(y1 − y2)(1− y1 − y2)

y′
2 = y1(2− y2)

(12.20)

which possesses four critical points of all four possible structurally stable types
(Exercise 4).

Fig. 12.2. Solution flow of System (12.20)
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Exercises

1. a) Compute the eigenvectors of the matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎝

−1 20
−2 20

−3 20
. . .

. . .
−19 20

−20

⎞⎟⎟⎟⎟⎟⎟⎠ (12.21)

by solving (A−λiI)vi = 0 .

Result. v1 =(1, 0, . . .)T , v2 =(1,−1/20, 0, . . .)T , v3 =(1,−2/20, 2/400,
0, . . .)T , v4 = (1,−3/20, 6/400,−6/8000, 0, . . .)T , etc.

b) Compute numerically the inverse of T = (v1, v2, . . . , vn) and determine
its largest element (answer: 4.5× 1012 ). The matrix T is thus very badly
conditioned.

c) Compute numerically or analytically from (12.13) the solutions of

y′ = Ay, yi(0) = 1, i = 1, . . . , 20. (12.22)

Observe the “hump” (Moler & Van Loan 1978): although all eigenvalues
of A are negative, the solutions first grow enormously before decaying to
zero. This is typical of non-symmetric matrices and is connected with the
bad condition of T (see Fig. 12.3).

Result.

y1 =−2019

19!
e−20x +

(1 + 20)2018

18!
e−19x− (1 + 20 + 202/2!)2017

17!
e−18x± . . .

y

y

y

y
yy

Fig. 12.3. Solutions of equation (12.22) with matrix (12.21)
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2. (Schur). Prove that the eigenvalues of a matrix A satisfy the estimate
n∑

i=1

|λi|2 ≤
n∑

i,j=1

|aij|2

and that equality holds iff A is orthogonally diagonalizable (see also Exer-
cise 3).

Hint.
∑

i,j |aij|2 is the trace of A∗A and thus invariant under unitary trans-
formations Q∗AQ .

3. Show that the Schur decomposition S = Q∗AQ is diagonal iff A∗A = AA∗ .
Such matrices are called normal. Examples are symmetric and skew-sym-
metric matrices.

Hint. The condition is equivalent to S∗S = SS∗ .

4. Compute the four critical points of System (12.20), and for each of these points
the eigenvalues and eigenvectors of the matrix ∂f/∂y . Compare the results
with Figs. 12.2 and 12.1.

5. Compute a Schur decomposition and the Jordan canonical form of the matrix

A =
1
9

⎛⎝ 14 4 2
−2 20 1
−4 4 20

⎞⎠ .

Result. The Jordan canonical form is⎛⎝ 2 1
2

2

⎞⎠ .

6. Reduce the matrices

A =

⎛⎜⎝
λ 1 b c

λ 1 d
λ 1

λ

⎞⎟⎠ , A =

⎛⎜⎝
λ 1 b c

λ 0 d
λ 1

λ

⎞⎟⎠
to Jordan canonical form. In the second case distinguish the possibilities b +
d = 0 and b + d �= 0 .



I.13 Stability

The Examiners give notice that the following is the subject of
the Prize to be adjudged in 1877: The Criterion of Dynamical
Stability. (S.G. Phear
(Vice-Chancellor), J. Challis, G.G. Stokes, J. Clerk Maxwell)

Introduction

“To illustrate the meaning of the question imagine a particle to slide down inside a
smooth inclined cylinder along the lowest generating line, or to slide down outside
along the highest generating line. In the former case a slight derangement of the
motion would merely cause the particle to oscillate about the generating line, while
in the latter case the particle would depart from the generating line altogether. The
motion in the former case would be, in the sense of the question, stable, in the latter
unstable . . . what is desired is, a corresponding condition enabling us to decide
when a dynamically possible motion of a system is such, that if slightly deranged
the motion shall continue to be only slightly departed from.” (“The Examiners” in
Routh 1877).

Whenever no analytical solution of a problem is known, numerical solutions
can only be obtained for specified initial values. But often one needs information
about the stability behaviour of the solutions for all initial values in the neighbour-
hood of a certain equilibrium point. We again transfer the equilibrium point to the
origin and define:

Definition 13.1. Let

y′
i = fi(y1, . . . , yn), i = 1, . . . , n (13.1)

be a system with fi(0, . . . , 0) = 0 , i = 1, . . . , n . Then the origin is called stable in
the sense of Liapunov if for any ε > 0 there is a δ > 0 such that for the solutions,
‖y(x0)‖ < δ implies ‖y(x)‖ < ε for all x > x0 .

The first step, taken by Routh in his famous Adams Prize essay (Routh 1877),
was to study the linearized equation

y′
i =

n∑
j=1

aijyj , aij =
∂fi

∂yj

(0). (13.2)

(“The quantities x, y, z, . . . etc are said to be small when their squares can be ne-
glected.”) From the general solution of (13.2) obtained in Section I.12, we imme-
diately have
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Theorem 13.1. The linearized equation (13.2) is stable (in the sense of Liapunov)
iff all roots of the characteristic equation

det(λI −A) = a0λ
n + a1λ

n−1 + . . .+ an−1λ + an = 0 (13.3)

satisfy Re (λ)≤ 0 , and the multiple roots, which give rise to Jordan chains, satisfy
the strict inequality Re (λ) < 0 .

Proof. See (12.12) and (12.19). For Jordan chains the “secular” term (e.g., E +Fx
in the solution of (12.12), case (b)) which tends to infinity for increasing x , must
be “killed” by an exponential with strictly negative exponent.

The Routh-Hurwitz Criterion

The next task, which leads to the famous Routh-Hurwitz criterion, was the verifica-
tion of the conditions Re (λ) < 0 directly from the coefficients of (13.3), without
computing the roots. To solve this problem, Routh combined two known ideas:
the first was Cauchy’s argument principle, saying that the number of roots of a
polynomial p(z) = u(z) + iv(z) inside a closed contour is equal to the number of
(positive) rotations of the vector (u(z), v(z)) , as z travels along the boundary in
the positive sense (see e.g., Henrici (1974), p. 276). An example is presented in
Fig. 13.1 for the polynomial

z6 + 6z5 + 16z4 + 25z3 + 24z2 + 14z + 4

= (z + 1)(z + 2)(z2 + z + 1)(z2 + 2z + 2).
(13.4)

On the half-circle z =Reiθ (π/2≤ θ≤ 3π/2 , R very large) the argument of p(z) ,
due to the dominant term zn , makes n/2 positive rotations. In order to have all
zeros of p in the negative half plane, we therefore need an additional n/2 positive
rotations along the imaginary axis:

Lemma 13.2. Let p(z) be a polynomial of degree n and suppose that p(iy) �=0 for
y∈R . Then all roots of p(z) are in the negative half-plane iff, along the imaginary
axis, arg(p(iy)) makes n/2 positive rotations for y from −∞ to +∞ .

The second idea was the use of Sturm’s theorem (Sturm 1829) which had its
origin in Euclid’s algorithm for polynomials. Sturm made the discovery that in
the division of the polynomial pi−1(y) by pi(y) it is better to take the remainder
pi+1(y) with negative sign

pi−1(y) = pi(y)qi(y)− pi+1(y). (13.5)

Then, due to the “Sturm sequence property”

sign
(
pi+1(y)

) �= sign
(
pi−1(y)

)
if pi(y) = 0, (13.6)
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Fig. 13.1. Vector field of arg (p(z)) for the polynomial p(z) of (13.4)

the number of sign changes

w(y) = No. of sign changes of
(
p0(y), p1(y), . . . , pm(y)

)
(13.7)

does not vary at the zeros of p1(y), . . . , pm−1(y) . A consequence is the following

Lemma 13.3. Suppose that a sequence p0(y), p1(y), . . . , pm(y) of real polynomi-
als satisfies

i) deg(p0) > deg(p1) ,

ii) p0(y) and p1(y) not simultaneously zero,

iii) pm(y) �= 0 for all y ∈ R ,

iv) and the Sturm sequence property (13.6).
Then

w(∞)−w(−∞)
2

(13.8)

is equal to the number of rotations, measured in the positive direction, of the vector
(p0(y), p1(y)) as y tends from −∞ to +∞ .

Proof. Due to the Sturm sequence property, w(y) does not change at zeros of
p1(y), . . . , pm−1(y) . By assumption (iii) also pm(y) has no influence. There-
fore w(y) can change only at zeros of p0(y) . If w(y) increases by one at ŷ ,
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either p0(y) changes from + to − and p1(ŷ) > 0 or it changes from − to +
and p1(ŷ) < 0 (p1(ŷ) = 0 is impossible by (ii)). In both situations the vector
(p0(y), p1(y)) crosses the imaginary axis in the positive direction (see Fig. 13.2).
If w(y) decreases by one, (p0(y), p1(y)) crosses the imaginary axis in the nega-
tive direction. The result now follows from (i), since the vector (p0(y), p1(y)) is
horizontal for y →−∞ and for y → +∞ .

p

p

p

p

p

p

p

p

p
p

Fig. 13.2. Rotations of (p0(y), p1(y)) compared to w(y)

The two preceding lemmas together give us the desired criterion for stability:
let the characteristic polynomial (13.3)

p(z) = a0z
n + a1z

n−1 + . . .+ an = 0, a0 > 0

be given. We divide p(iy) by in and separate real and imaginary parts,

p0(y) = Re
p(iy)
in

= a0y
n − a2y

n−2 + a4y
n−4 ± . . .

p1(y) = −Im
p(iy)
in

= a1y
n−1 − a3y

n−3 + a5y
n−5 ± . . . .

(13.9)

Due to the special structure of these polynomials, the Euclidean algorithm (13.5) is
here particularly simple: we write

pi(y) = ci0y
n−i + ci1y

n−i−2 + ci2y
n−i−4 + . . . , (13.10)

and have for the quotient in (13.5) qi(y) = (ci−1,0/ci0)y , provided that ci0 �= 0 .
Now (13.10) inserted into (13.5) gives the following recursive formulas for the
computation of the coefficients cij :

ci+1,j = ci,j+1 ·
ci−1,0

ci0

− ci−1,j+1 =
1
ci0

det
(

ci−1,0 ci−1,j+1

ci,0 ci,j+1

)
. (13.11)

If ci0 = 0 for some i , the quotient qi(y) is a higher degree polynomial and the
Euclidean algorithm stops at pm(y) with m < n .

The sequence (pi(y)) obtained in this way obviously satisfies conditions (i)
and (iv) of Lemma 13.3. Condition (ii) is equivalent to p(iy) �= 0 for y ∈ R , and
(iii) is a consequence of (ii) since pm(y) is the greatest common divisor of p0(y)
and p1(y) .
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Theorem 13.4 (Routh 1877). All roots of the real polynomial (13.3) with a0 > 0
lie in the negative half plane Re λ < 0 if and only if

ci0 > 0 for i = 0, 1, 2, . . . , n. (13.12)

Remark. Due to the condition ci0 > 0 , the division by ci0 in formula (13.11) can
be omitted (common positive factor of pi+1(y) ), which leads to the same theorem
(Routh (1877), p. 27: “ . . . so that by remembering this simple cross-multiplication
we may write down . . .”). This, however, is not advisable for n large because of
possible overflow.

Proof. The coordinate systems (p0, p1) and (Re (p), Im (p)) are of opposite orien-
tation. Therefore, n/2 positive rotations of p(iy) correspond to n/2 negative rota-
tions of (p0(y), p1(y)) . If all roots of p(λ) lie in the negative half plane Re λ < 0 ,
it follows from Lemmas 13.2 and 13.3 that w(∞)−w(−∞) = −n , which is only
possible if w(∞) = 0 , w(−∞) = n . This implies the positivity of all leading
coefficients of pi(y) .

On the other hand, if (13.12) is satisfied, we see that pn(y) ≡ cn0 . Hence the
polynomials p0(y) and p1(y) cannot have a common factor and p(λ) �= 0 on the
imaginary axis. We can now apply Lemmas 13.2 and 13.3 again to obtain the result.

Table 13.1.
Routh tableau for (13.4)

j = 0 j = 1 j = 2 j = 3

i = 0 1 −16 24 −4

i = 1 6 −25 14

i = 2 11.83 −21.67 4

i = 3 14.01 −11.97

i = 4 11.56 −4

i = 5 7.12

i = 6 4

Table 13.2.
Routh tableau for (13.13)

j = 0 j = 1 j = 2

i = 0 1 −q s

i = 1 p −r

i = 2 pq − r −ps

i = 3 (pq − r)r− p2s

i = 4 ((pq − r)r− p2s)ps

Example 1. The Routh tableau (13.11) for equation (13.4) is given in Table 13.1.
It clearly satisfies the conditions for stability.

Example 2 (Routh 1877, p. 27). Express the stability conditions for the biquadratic
z4 + pz3 + qz2 + rz + s = 0. (13.13)

The cij values (without division) are given in Table 13.2. We have stability iff

p > 0, pq− r > 0, (pq− r)r− p2s > 0, s > 0.
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Computational Considerations

The actual computational use of Routh’s criterion, in spite of its high historical
importance and mathematical elegance, has two drawbacks for higher dimensions:

1) It is not easy to compute the characteristic polynomial for higher order matri-
ces;

2) The use of the characteristic polynomial is very dangerous in the presence of
rounding errors.
So, whenever one is not working with exact algebra or high precision, it is

advisable to avoid the characteristic polynomial and use numerically stable algo-
rithms for the eigenvalue problem (e.g., Eispack 1974).

Numerical experiments. 1. The 2n× 2n dimensional matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−.05
. . .

−.05

−1
. . .

−n

1
. . .

n

−.05
. . .

−.05

⎞⎟⎟⎟⎟⎟⎟⎟⎠
has the characteristic polynomial

p(z) =
n∏

j=1

(z2 + 0.1z + j2 + 0.0025).

We computed the coefficients of p using double precision, and then applied the
Routh algorithm in single precision (machine precision = 6× 10−8 ). The results
indicated stability for n ≤ 15 , but not for n ≥ 16 , although the matrix always has
its eigenvalues −0.05± ki in the negative half plane. On the other hand, a direct
computation of the eigenvalues of A with the use of Eispack subroutines gave no
problem for any n .

2. We also tested the Routh algorithm at the (scaled) numerators of the diago-
nal Padé approximations to exp(z)

1 +
n

2n
(nz) +

n(n−1)
(2n)(2n−1)

(nz)2

2!
+

n(n−1)(n−2)
(2n)(2n−1)(2n−2)

(nz)3

3!
+ . . . , (13.14)

which are also known to possess all zeros in C− . Here, the results were correct
only for n ≤ 21 , and wrong for larger n due to rounding errors.
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Liapunov Functions

We now consider the question whether the stability of the nonlinear system (13.1)
“can really be determined by examination of the terms of the first order only”
(Routh 1877, Chapt. VII). This theory, initiated by Routh and Poincaré, was
brought to perfection in the famous work of Liapunov (1892). As a general ref-
erence to the enormous theory that has developed in the meantime we mention
Rouche, Habets & Laloy (1977) and W. Hahn (1967).

Liapunov’s (and Routh’s) main tools are the so-called Liapunov functions
V (y1, . . . , yn) , which should satisfy

V (y1, . . . , yn) ≥ 0,

V (y1, . . . , yn) = 0 iff y1 = . . . = yn = 0 (13.15)

and along the solutions of (13.1)

d

dx
V
(
y1(x), . . . , yn(x)

)≤ 0. (13.16)

Usually V (y) behaves quadratically for small y and condition (13.15) means that

c‖y‖2 ≤ V (y) ≤ C‖y‖2, C ≥ c > 0. (13.17)

The existence of such a Liapunov function is then a sufficient condition for stability
of the origin.

We start with the construction of a Liapunov function for the linear case

y′ = Ay. (13.18)

This is best done in the basis which is naturally given by the eigenvectors (or Jordan
chains) of A . We therefore introduce y = Tz , z = T−1y , so that A is transformed
to Jordan canonical form (12.14’) J = T−1AT and (13.18) becomes

z′ = Jz. (13.19)

If we put

V0(z) = ‖z‖2 and V (y) = V0(T
−1y) = V0(z), (13.20)

the derivative of V (y(x)) becomes

d

dx
V
(
y(x)

)
=

d

dx
V0

(
z(x)

)
= 2Re 〈z(x), z′(x)〉

= 2Re 〈z(x), Jz(x)〉 ≤ 2μ(J)V
(
y(x)

)
.

(13.21)

By (10.20) the logarithmic norm is given by

2μ(J) = largest eigenvalue of (J +J∗).



I.13 Stability 87

The matrix J +J∗ is block-diagonal with tridiagonal blocks⎛⎜⎜⎜⎜⎝
2 Re λi ε

ε 2 Re λi

. . .
. . .

. . . ε
ε 2 Re λi

⎞⎟⎟⎟⎟⎠ . (13.22)

Subtracting the diagonal and using formula (6.7a), we see that the eigenvalues of
the m-dimensional matrix (13.22) are given by

2
(
Re λi + ε cos

πk

m+ 1

)
, k = 1, . . . , m. (13.23)

As a consequence of this formula or by the use of Exercise 4 we have:

Lemma 13.5. If all eigenvalues of A satisfy Re λi < −� < 0 , then there exists a
(quadratic) Liapunov function for equation (13.18) which satisfies

d

dx
V
(
y(x)

)≤−� V
(
y(x)

)
. (13.24)

This last differential inequality implies that (Theorem 10.1)

V
(
y(x)

)≤ V (y0) · exp
(−�(x−x0)

)
and ensures that limx→∞ ‖y(x)‖= 0 , i.e., asymptotic stability.

Stability of Nonlinear Systems

It is now easy to extend the same ideas to nonlinear equations. The following
theorem is an example of such a result.

Theorem 13.6. Let the nonlinear system

y′ = Ay + g(x, y) (13.25)

be given with Re λi < −� < 0 for all eigenvalues of A . Further suppose that for
each ε > 0 there is a δ > 0 such that

‖g(x, y)‖ ≤ ε‖y‖ for ‖y‖ < δ, x ≥ x0. (13.26)

Then the origin is (asymptotically) stable in the sense of Liapunov.

Proof. We use the Liapunov function V (y) constructed for Lemma 13.5 and obtain
from (13.25)

d

dx
V
(
y(x)

)≤−� V
(
y(x)

)
+ 2 Re

〈
T−1y(x), T−1g

(
x, y(x)

)〉
. (13.27)
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Cauchy’s inequality together with (13.26) yields

d

dx
V
(
y(x)

)≤ (−� + ‖T‖ · ‖T−1‖ε) ·V (y(x)
)
. (13.28)

For sufficiently small ε the right hand side is negative and we obtain asymptotic
stability.

We see that, for nonlinear systems, stability is only assured in a neighbourhood
of the origin. This can also be observed in Fig. 12.2. Another difference is that the
stability for eigenvalues on the imaginary axis can be destroyed. An example for
this (Routh 1877, pp. 95-96) is the system

y′
1 = y2, y′

2 = −y1 + y3
2 . (13.29)

Here, with the Liapunov function V = (y2
1 + y2

2)/2 , we obtain V ′ = y4
2 which is

> 0 for y2 �= 0 . Therefore all solutions with initial value �= 0 increase. A survey
of this question (“the center problem”) together with its connection to limit cycles
is given in Wanner (1983).

Stability of Non-Autonomous Systems

When the coefficients are not constant,

y′ = A(x)y, (13.30)

it is not a sufficient test of stability that the eigenvalues of A satisfy the conditions
of stability for each instantaneous value of x .

Examples. 1. (Routh 1877, p. 96).

y′
1 = y2, y′

2 = − 1
4x2

y1 (13.31)

which is satisfied by y1(x) = a
√

x .
2. An example with eigenvalues strictly negative: we start with

B =
(−1 0

4 −1

)
, y′ = By .

An inspection of the derivative of V = (y2
1 + y2

2)/2 shows that V increases in the
sector 2−√

3 < y2/y1 < 2+
√

3 . The idea is to take the initial value in this region
and, for x increasing, to rotate the coordinate system with the same speed as the
solution rotates:

y′ = T (x)BT (−x)y = A(x)y, T (x) =
(

cos ax − sin ax
sin ax cos ax

)
. (13.32)
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For y(0)= (1, 1)T , a good choice for a is a=2 and (13.32) possesses the solution

y(x) =
(
(cos 2x− sin 2x)ex, (cos 2x + sin 2x)ex

)T

. (13.33)

This solution is clearly unstable, while −1 remains for all x the double eigenvalue
of A(x) . For more examples see Exercises 6 and 7 below.

We observe that stability theory for non-autonomous systems is more compli-
cated. Among the cases in which stability can be shown are the following:
1) aii(x) < 0 and A(x) is diagonally dominant; then μ(A(x)) ≤ 0 such that sta-
bility follows from Theorem 10.6.
2) A(x)=B +C(x) , with B constant and satisfying Re λi <−�<0 for its eigen-
values, and ‖C(x)‖ < ε with ε so small that the proof of Theorem 13.6 can be
applied.

Exercises

1. Express the stability conditions for the polynomials z2 + pz + q = 0 and z3 +
pz2 + qz + r = 0 .

Result. a) p > 0 and q > 0 ; b) p > 0 , r > 0 and pq− r > 0 .

2. (Hurwitz 1895). Verify that condition (13.12) is equivalent to the positivity of
the principal minors of the matrix

H =

⎛⎜⎜⎜⎝
a1 a3 a5 . . .
a0 a2 a4 . . .

a1 a3 . . .
a0 a2 . . .

. . . . . .

⎞⎟⎟⎟⎠=
(
a2j−i

)n

i,j=1

(ak = 0 for k < 0 and k > n ). Understand that Routh’s algorithm (13.11) is
identical to a sort of Gaussian elimination transforming H to triangular form.

3. The polynomial

5 · 4 · 3 · 2 · 1
10 · 9 · 8 · 7 · 6

z5

5!
+

5 · 4 · 3 · 2
10 · 9 · 8 · 7

z4

4!
+

5 · 4 · 3
10 · 9 · 8

z3

3!
+

5 · 4
10 · 9

z2

2!
+

5
10

z + 1

is the numerator of the (5, 5) -Padé approximation to exp(z) . Verify that all
its roots satisfy Re z < 0 . Try to establish the result for general n (see e.g.,
Birkhoff & Varga (1965), Lemma 7).

4. (Gerschgorin). Prove that the eigenvalues of a matrix A=(aij) lie in the union
of the discs {

z ; |z− aii| ≤
∑
j �=i

|aij |
}
.
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Hint. Write the formula Ax = λx in coordinates
∑

j aijxj = λxi , put the di-
agonal elements on the right hand side and choose i such that |xi| is maximal.

5. Determine the stability of the origin for the system

y′
1 = −y2 − y2

1 − y1y2 ,

y′
2 = y1 + 2y1y2 .

Hint. Find a Liapunov function of degree 4 starting with
V = (y2

1 + y2
2)/2 + . . . such that V ′ = K(y2

1 + y2
2)2 + . . . and determine the

sign of K .

6. (J. Lambert 1987). Consider the system

y′ = A(x) · y where A(x) =
(−1/4x 1/x2

−1/4 −1/4x

)
. (13.34)

a) Show that both eigenvalues of A(x) satisfy Re λ < 0 for all x > 0 .

b) Compute μ(A) (from (10.20)) and show that

μ(A) ≤ 0 iff
√

5− 1 ≤ x ≤
√

5+1.

c) Compute the general solution of (13.34).

Hint. Introduce the new functions z2(x)= y2(x) , z1(x)=xy1(x) which leads
to the second equation of (11.19) (Exercise 5 of Section I.11). The solution is

y1(x) = x−3/4
(
a + b logx

)
, y2(x) = x1/4

(
−a

2
+ b (1− 1

2
log x)

)
.

(13.35)
d) Determine a and b such that ‖y(x)‖2

2 is increasing for 0 < x <
√

5− 1 .

e) Determine a and b such that ‖y(x)‖2
2 is increasing for

√
5+1 < x < ∞ .

Results. b = 1.8116035 · a for (d) and b = 0.2462015 · a for (e).

7. Find a counter-example for Fatou’s conjecture

If ÿ +A(t)y = 0 and ∀ t 0 < C1 ≤ A(t) ≤ C2 then y(t) is stable

(C.R. 189 (1929), p.967-969; for a solution see Perron (1930)).

8. Help James Watt (see original drawing from 1788 in Fig. 13.3) to solve the
stability problem for his steam engine governor: if ω is the rotation speed of
the engine, its acceleration is influenced by the steam supply and exterior work
as follows:

ω′ = k cos(ϕ +α)−F, k, F > 0.

Here α is a fixed angle and ϕ describes the motion of the governor. The
acceleration of ϕ is determined by centrifugal force, weight, and friction as

ϕ′′ = ω2 sin ϕ cos ϕ− g sin ϕ− bϕ′, g, b > 0.
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Compute the equilibrium point ϕ′′ = ϕ′ = ω′ = 0 and determine under which
conditions it is stable (the solution is easier for α = 0 ).

Correct solutions should be sent to: James Watt, famous inventor of the steam
engine, Westminster Abbey, 6HQ 1FX London.

Remark. Hurwitz’ paper (1895) was motivated by a similar practical problem,
namely “ . . . die Regulirung von Turbinen des Badeortes Davos”.

Fig. 13.3. James Watt’s steam engine governor



I.14 Derivatives with Respect to Parameters
and Initial Values

For a single equation, Dr. Ritt has solved the problem indicated in
the title by a very simple and direct method . . . Dr. Ritt’s proof
cannot be extended immediately to a system of equations.

(T.H. Gronwall 1919)

In this section we consider the question whether the solutions of differential equa-
tions are differentiable

a) with respect to the initial values;
b) with respect to constant parameters in the equation;

and how these derivatives can be computed. Both questions are, of course, of
extreme importance: once a solution has been computed (numerically) for given
initial values, one often wants to know how small changes of these initial values
affect the solutions. This question arises e.g. if some initial values are not known
exactly and must be determined from other conditions, such as prescribed boundary
values. Also, the initial values may contain errors, and the effect of these errors has
to be studied. The same problems arise for unknown or wrong constant parameters
in the defining equations.

Problems (a) and (b) are equivalent: let

y′ = f(x, y, p), y(x0) = y0 (14.1)

be a system of differential equations containing a parameter p (or several parame-
ters). We can add this parameter to the solutions(

y′
p′

)
=
(

f(x, y, p)
0

)
,

y(x0) = y0

p(x0) = p,
(14.1’)

so that the parameter becomes an initial value for p′ = 0 . Conversely, for a differ-
ential system

y′ = f(x, y), y(x0) = y0 (14.2)

we can write y(x) = z(x) + y0 and obtain

z′ = f(x, z + y0) = F (x, z, y0), z(x0) = 0, (14.2’)

so that the initial value has become a parameter. Therefore, of the two problems (a)
and (b), we start with (b) (as did Gronwall), because it seems simpler to us.
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The Derivative with Respect to a Parameter

Usually, a given problem contains several parameters. But since we are interested
in partial derivatives, we can treat one parameter after another while keeping the
remaining ones fixed. It is therefore sufficient in the following theory to suppose
that f(x, y, p) depends only on one scalar parameter p .

When we replace the parameter p in (14.1) by q we obtain another solution,
which we denote by z(x) :

z′ = f(x, z, q), z(x0) = y0. (14.3)

It is then natural to subtract (14.1) from (14.3) and to linearize

z′ − y′ = f(x, z, q)− f(x, y, p) (14.4)

=
∂f

∂y
(x, y, p)(z− y) +

∂f

∂p
(x, y, p)(q− p) + �1 · (z− y) + �2 · (q− p).

If we put (z(x)− y(x))/(q− p) = ψ(x) and drop the error terms, we obtain

ψ′ =
∂f

∂y

(
x, y(x), p

)
ψ +

∂f

∂p

(
x, y(x), p

)
, ψ(x0) = 0. (14.5)

This equation is the key to the problem.

Theorem 14.1 (Gronwall 1919). Suppose that for x0 ≤ x ≤ X the partial deriva-
tives ∂f/∂y and ∂f/∂p exist and are continuous in the neighbourhood of the
solution y(x) . Then the partial derivatives

∂y(x)
∂p

= ψ(x)

exist, are continuous, and satisfy the differential equation (14.5).

Proof. This theorem was the origin of the famous Gronwall lemma (see I.10, Exer-
cise 2). We prove it here by the equivalent Theorem 10.2. Set

L = max
∥∥∥∂f

∂y

∥∥∥, A = max
∥∥∥∂f

∂p

∥∥∥ (14.6)

where the max is taken over the domain under consideration. When we consider
z(x) as an approximate solution for (14.1) we have for the defect

‖z′(x)− f
(
x, z(x), p

)‖ = ‖f(x, z(x), q
)− f

(
x, z(x), p

)‖ ≤ A|q− p|,
therefore from Theorem 10.2

‖z(x)− y(x)‖ ≤ A

L
|q− p| (eL(x−x0) − 1). (14.7)

So for |q− p| sufficiently small and x0 ≤ x ≤ X , we can have ‖z(x)− y(x)‖
arbitrarily small. By definition of differentiability and by (14.7), for each ε > 0
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there is a δ such that the error terms in (14.4) satisfy

‖�1 · (z− y) + �2 · (q− p)‖ ≤ ε|q− p| if |q− p| ≤ δ. (14.8)

(The situation is, in fact, a little more complicated: the δ for the bounds ‖�1‖ < ε
and ‖�2‖ < ε may depend on x . But due to compactness and continuity, it can
then be replaced by a uniform bound. Another possibility to overcome this little
obstacle would be a bound on the second derivatives. But why should we worry
about this detail? Gronwall himself did not mention it).

We now consider (z(x)− y(x))/(q− p) as an approximate solution for (14.5)
and apply Theorem 10.2 a second time. Its defect is by (14.8) and (14.4) bounded
by ε and the linear differential equation (14.5) also has L as a Lipschitz constant
(see (11.2)). Therefore from (10.14) we obtain∥∥∥z(x)− y(x)

q− p
−ψ(x)

∥∥∥≤ ε

L
(eL(x−x0) − 1)

which becomes arbitrarily small; this proves that ψ(x) is the derivative of y(x)
with respect to p .

Continuity. The partial derivatives ∂y/∂p = ψ(x) are solutions of the differential
equation (14.5), which we write as ψ′ =g(x, ψ, p) , where by hypothesis g depends
continuously on p . Therefore the continuous dependence of ψ on p follows again
from Theorem 10.2.

Theorem 14.2. Let y(x) be the solution of equation (14.1) and consider the Jaco-
bian

A(x) =
∂f

∂y

(
x, y(x), p

)
. (14.9)

Let R(x, x0) be the resolvent of the equation y′ = A(x)y (see (11.4)). Then the
solution z(x) of (14.3) with a slightly perturbed parameter q is given by

z(x) = y(x) + (q− p)
∫ x

x0

R(x, s)
∂f

∂p

(
s, y(s), p

)
ds + o(|q− p|) (14.10)

Proof. This is the variation of constants formula (11.10) applied to (14.5).

It can be seen that the sensitivity of the solutions to changes of parameters is
influenced firstly by the partial derivatives ∂f/∂p (which is natural), and secondly
by the size of R(x, s) , i.e., by the stability of the differential equation with matrix
(14.9).
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Derivatives with Respect to Initial Values

Notation. We denote by y(x, x0, y0) the solution y(x) at the point x satisfying
the initial values y(x0) = y0 , and hope that no confusion arises from the use of the
same letter y for two different functions.

The following identities are trivial by definition or follow from uniqueness
arguments as for (11.6):

∂y(x, x0, y0)
∂x

= f
(
x, y(x, x0, y0)

)
(14.11)

y(x0, x0, y0) = y0 (14.12)

y
(
x2, x1, y(x1, x0, y0)

)
= y(x2, x0, y0) . (14.13)

Theorem 14.3. Suppose that the partial derivative of f with respect to y exists
and is continuous. Then the solution y(x, x0, y0) is differentiable with respect to
y0 and the derivative is given by the matrix

∂y(x, x0, y0)
∂y0

= Ψ(x) (14.14)

where Ψ(x) is the resolvent of the so-called “variational equation”

Ψ′(x) =
∂f

∂y

(
x, y(x, x0, y0)

) ·Ψ(x),

Ψ(x0) = I.

(14.15)

Proof. We know from (14.2) and (14.2’) that ∂F/∂z and ∂F/∂y0 are both equal
to ∂f/∂y , so the derivatives are known to exist by Theorem 14.1. In order to ob-
tain formula (14.15), we just have to differentiate (14.11) and (14.12) with respect
to y0 .

We finally compute the derivative of y(x, x0, y0) with respect to x0 .

Theorem 14.4. Under the same hypothesis as in Theorem 14.3, the solutions are
also differentiable with respect to x0 and the derivative is given by

∂y(x, x0, y0)
∂x0

= −∂y(x, x0, y0)
∂y0

· f(x0, y0) . (14.16)

Proof. Differentiate the identity

y
(
x1, x0, y(x0, x1, y1)

)
= y1,

which follows from (14.13), with respect to x0 and apply (14.11) (see Exercise 1).
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The Nonlinear Variation-of-Constants Formula

The following theorem is an extension of Theorem 11.2 to systems of non-linear
differential equations.

Theorem 14.5 (Alekseev 1961, Gröbner 1960). Denote by y and z the solutions
of

y′ = f(x, y), y(x0) = y0, (14.17a)

z′ = f(x, z) + g(x, z), z(x0) = y0, (14.17b)

respectively and suppose that ∂f/∂y exists and is continuous. Then the solutions
of (14.17a) and of the “perturbed” equation (14.17b) are connected by

z(x) = y(x) +
∫ x

x0

∂y

∂y0

(
x, s, z(s)

) · g(s, z(s)
)
ds. (14.18)

Proof. We choose a subdivision x0 = s0 < s1 < s2 < . . . < sN = x (see Fig. 14.1).
The descending curves represent the solutions of the unperturbed equation (14.17a)
with initial values si , z(si) . The differences di are, due to the different slopes of
z(s) and y(s) ((14.17b) minus (14.17a)), equal to di =g(si, z(si)) ·Δsi +o(Δsi) .
This “error” at si is then “transported” to the final value x by the amount given in
Theorem 14.3, to give

Di =
∂y

∂y0

(
x, si, z(si)

) · g(si, z(si)
) ·Δsi + o(Δsi). (14.19)

Since z(x)− y(x) =
∑N

i=1 Di, we obtain the integral in (14.18) after insertion of
(14.19) and passing to the limit Δsi → 0 .

y

x s s  . . . si si  . . . x

z x
z si

y x

Di

di

si

Fig. 14.1. Lady Windermere’s fan, Act 2
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If we also want to take into account a possible difference in the initial values,
we may formulate:

Corollary 14.6. Let y(x) and z(x) be the solutions of

y′ = f(x, y), y(x0) = y0,

z′ = f(x, z) + g(x, z), z(x0) = z0,

then

z(x) = y(x)+
∫ 1

0

∂y

∂y0

(
x, x0, y0 + s(z0 − y0)

)
· (z0 − y0) ds

+
∫ x

x0

∂y

∂y0

(
x, s, z(s)

)
· g(s, z(s)

)
ds.

(14.20)

These two theorems allow many estimates of the stability of general nonlinear
systems. For linear systems, ∂y/∂y0(x, s, z) is independent of z , and formulas
(14.20) and (14.18) become the variation-of-constants formula (11.10). Also, by
majorizing the integrals in (14.20) in a trivial way, one obtains the fundamental
lemma (10.14) and also the variant form of Theorem 10.2.

Flows and Volume-Preserving Flows

Considérons des molécules fluides dont l’ensemble forme à l’ori-
gine des temps une certaine figure F0 ; quand ces molécules se
déplaceront, leur ensemble formera une nouvelle figure qui ira en
se déformant d’une manière continue, et à l’instant t l’ensemble
des molécules envisagées formera une nouvelle figure F .

(H. Poincaré, Mécanique Céleste 1899, Tome III, p.2)

We now turn our attention to a new interpretation of the Abel-Liouville-Jacobi-
Ostrogradskii formula (11.11). Liouville and above all Jacobi (in his “Dynamik”
1843) used this formula extensively to obtain “first integrals”, i.e., relations be-
tween the solutions, so that the dimension of the system could be decreased and
the analytic integration of the differential equations of mechanics becomes a little
less hopeless. Poincaré then (see the quotation) introduced a much more geometric
point of view: for an autonomous system of differential equations 1

dy

dt
= f(y) (14.21)

we define the flow ϕt : Rn → Rn to be the function which associates, for a given
t , to the initial value y0 ∈ Rn the corresponding solution value at time t

ϕt(y
0) := y(t, 0, y0). (14.22)

1 Due to the origin of these topics in Mechanics and Astronomy, we here use t for the
independent variable.
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For sets A of initial values we also study its behaviour under the action of the flow
and write

ϕt(A) = {y | y = y(t, 0, y0), y0 ∈ A} . (14.22’)

We can imagine, with Poincaré, sets of “molecules” moving (and being deformed)
with the flow.

Example 14.7. Fig. 14.2 shows, for the two-dimensional system (12.20) (see
Fig. 12.2), the transformations which three sets A, B, C 2 undergo when t passes
from 0 to 0.2, 0.4 and (for C ) 0.6 . It can be observed that these sets quickly lose
very much of their beauty.

AA
AA

AA

BB

BB

CC

CC CC

CC

BB

Fig. 14.2. Transformation of three sets under a flow

Now divide A into “infinitely small” cubes I of sides dy0
1 , . . . , dy0

n . The
image ϕt(I) of such a cube is an infinitely small parallelepiped. It is created by
the columns of ∂y/∂y0(t, 0, y0) scaled by dy0

i , and its volume is
det
(
∂y/∂y0(t, 0, y0)

) · dy0
1 . . . dy0

n . Adding up all these volumes (over A ) or,
more precisely, using the transformation formula for multiple integrals

2 The resemblance of these sets with a certain feline animal is not entirely accidental; we
chose it in honour of V.I. Arnol’d.
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(Euler 1769b, Jacobi 1841), we obtain

Vol
(
ϕt(A)

)
=
∫

ϕt(A)

dy =
∫

A

∣∣∣det
( ∂y

∂y0
(t, 0, y0)

)∣∣∣ dy0.

Next we use formula (11.11) together with (14.15)

det
( ∂y

∂y0
(t, 0, y0)

)
= exp

(∫ t

0

tr
(
f ′(y(s, 0, y0))

)
ds
)

(14.23)

and we obtain

Theorem 14.8. Consider the system (14.21) with continuously differentiable func-
tion f(y) .

a) For a set A ⊂ Rn the total volume of ϕt(A) satisfies

Vol
(
ϕt(A)

)
=
∫

A

exp
(∫ t

0

tr
(
f ′(y(s, 0, y0))

)
ds
)

dy0. (14.24)

b) If tr
(
f ′(y)

)
= 0 along the solution, the flow is volume-preserving, i.e.,

Vol
(
ϕt(A)

)
= Vol (A) .

Example 14.9. For the system (12.20) we have

f ′(y) =
(

(1− 2y1)/3 (2y2 − 1)/3
2− y2 −y1

)
and tr

(
f ′(y)

)
= (1− 5y1)/3.

The trace of f ′(y) changes sign at the line y1 = 1/5 . To its left the volume in-
creases, to the right we have decreasing volumes. This can clearly be seen in
Fig. 14.2.

Example 14.10. For the mathematical pendulum (with y1 the angle of deviation
from the vertical)

ẏ1 = y2

ẏ2 = − sin y1

f ′(y) =
(

0 1
− cos y1 0

)
(14.25)

we have tr
(
f ′(y)

)
= 0 . Therefore the flow, although treating the cats quite badly,

at least preserves their areas (Fig. 14.3).
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AA

AA
AA

BB

BB

BB
BB

Fig. 14.3. Cats, beware of pendulums!

Canonical Equations and Symplectic Mappings

Let H(p1, . . . , pn, q1, . . . , qn) be a twice continuously differentiable function of
2n variables and (see (6.26))

ṗi = −∂H

∂qi

(p, q), q̇i =
∂H

∂pi

(p, q) (14.26)

the corresponding canonical system of differential equations. Small variations of
the initial values lead to variations δpi(t), δqi(t) of the solution of (14.26). By
Theorem 14.3 (variational equation) these satisfy

˙δpi = −
n∑

j=1

∂2H

∂pj∂qi

(p, q) · δpj −
n∑

j=1

∂2H

∂qj∂qi

(p, q) · δqj

˙δqi =
n∑

j=1

∂2H

∂pj∂pi

(p, q) · δpj +
n∑

j=1

∂2H

∂qj∂pi

(p, q) · δqj.

(14.27)

The upper left block of the Jacobian matrix is the negative transposed of the lower
right block. As a consequence, the trace of the Jacobian of (14.27) is identically
zero and the corresponding flow is volume-preserving (“Theorem of Liouville”).

But there is much more than that (Poincaré 1899, vol. III, p. 43): consider a
two-dimensional manifold A in the 2n -dimensional flow. We represent it as a
(differentiable) map of a compact set K ⊂ R2 into R2n (Fig. 14.4)

Φ : K −−−−−→ A ⊂ R2n

(u, v) �−→ (
p0(u, v), q0(u, v)

) (14.28)
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We let πi(A) be the projection of A onto the (pi, qi) -coordinate plane and con-
sider the sum of the oriented areas of πi(A) . We shall see that this is also an
invariant.

t
i

i

K

A

t(A)

i(A)

i( t(A))

u,vu,v
p ,qp ,q

pt,qtpt,qt t

t

pi

qi

Fig. 14.4. Two-dimensional manifold in the flow

The oriented area of πi(A) is a surface integral over A which is defined, with
the transformation formula in mind, as

or.area
(
πi(A)

)
=
∫∫
K

det

⎛⎜⎝ ∂p0
i

∂u

∂p0
i

∂v

∂q0
i

∂u

∂q0
i

∂v

⎞⎟⎠du dv . (14.29)

For the computation of the area of πi

(
ϕt(A)

)
, after the action of the flow, we use

the composition ϕt ◦Φ as coordinate map (Fig. 14.4). This produces, with pt
i, q

t
i

being the i th respectively (n+i) th component of this map,

or.area
(
πi(ϕt(A))

)
=
∫∫
K

det

⎛⎜⎝ ∂pt
i

∂u

∂pt
i

∂v

∂qt
i

∂u

∂qt
i

∂v

⎞⎟⎠du dv . (14.30)

There is no theoretical difficulty in differentiating this expression with respect to t
and summing for i=1, . . . , n . This will give zero and the invariance is established.

The proof, however, becomes more elegant if we introduce exterior differential
forms (E. Cartan 1899). These, originally “expressions purement symboliques”,
are today understood as multilinear maps on the tangent space (for more details
see “Chapter 7” of Arnol’d 1974). In our case the one-forms dpi , respectively dqi ,
map a tangent vector ξ to its i th, respectively (n+i) th, component. The exterior
product dpi ∧ dqi is a bilinear map acting on a pair of vectors

(dpi ∧ dqi)(ξ1, ξ2) = det
(

dpi(ξ1) dpi(ξ2)
dqi(ξ1) dqi(ξ2)

)
= dpi(ξ1)dqi(ξ2)− dpi(ξ2)dqi(ξ1)

(14.31)
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and satisfies Grassmann’s rules for exterior multiplication

dpi ∧ dpj = −dpj ∧ dpi , dpi ∧ dpi = 0 . (14.32)

For the two tangent vectors (see Fig. 14.4)

ξ0
1 =
(∂p0

1

∂u
(u, v), . . . ,

∂p0
n

∂u
(u, v),

∂q0
1

∂u
(u, v), . . . ,

∂q0
n

∂u
(u, v)

)T

ξ0
2 =
(∂p0

1

∂v
(u, v), . . . ,

∂p0
n

∂v
(u, v),

∂q0
1

∂v
(u, v), . . . ,

∂q0
n

∂v
(u, v)

)T
(14.33)

the expression (14.31) is precisely the integrand of (14.29). If we introduce the
differential 2 -form

ω2 =
n∑

i=1

dpi ∧ dqi (14.34)

then our candidate for invariance becomes
n∑

i=1

or.area
(
πi(A)

)
=
∫∫
K

ω2(ξ0
1 , ξ0

2) du dv.

After the action of the flow we have the tangent vectors

ξt
1 = ϕ′

t(p
0, q0) · ξ0

1 , ξt
2 = ϕ′

t(p
0, q0) · ξ0

2

and
n∑

i=1

or.area
(
πi(ϕt(A))

)
=
∫∫
K

ω2(ξt
1, ξ

t
2) du dv

(see (14.30)). We shall see that ω2(ξt
1, ξ

t
2) = ω2(ξ0

1 , ξ0
2) .

Definition 14.11. For a differentiable function g : R
2n → R

2n we define the dif-
ferential form g∗ω2 by

(g∗ω2)(ξ1, ξ2) := ω2
(
g′(p, q)ξ1, g

′(p, q)ξ2

)
. (14.35)

Such a function g is called symplectic (a name suggested by H. Weyl 1939, p. 165)
if

g∗ω2 = ω2, (14.36)

i.e., if the 2 -form ω2 is invariant under g .

Theorem 14.12. The flow of a canonical system (14.26) is symplectic, i.e.,

(ϕt)
∗ω2 = ω2 for all t. (14.37)

Proof. We compute the derivative of ω2(ξt
1, ξ

t
2) (see (14.35)) with respect to t by
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the Leibniz rule. This gives

d

dt

( n∑
i=1

(dpi ∧ dqi)(ξ
t
1, ξ

t
2)
)

=
n∑

i=1

(dpi ∧ dqi)(ξ̇
t
1, ξ

t
2) +

n∑
i=1

(dpi ∧ dqi)(ξ
t
1, ξ̇

t
2) .

(14.38)
Since the vectors ξt

1 and ξt
2 satisfy the variational equation (14.27), we have

d

dt
ω2(ξt

1, ξ
t
2) =

n∑
i,j=1

(
− ∂2H

∂pj∂qi

dpj ∧ dqi −
∂2H

∂qj∂qi

dqj ∧ dqi (14.39)

+
∂2H

∂pj∂pi

dpi ∧ dpj +
∂2H

∂qj∂pi

dpi ∧ dqj

)
(ξt

1, ξ
t
2).

The first and last terms in this formula cancel by symmetry of the partial derivatives.
Further, the properties (14.32) imply that

n∑
i,j=1

∂2H

∂pi∂pj

(p, q) dpi ∧ dpj =
∑
i<j

( ∂2H

∂pi∂pj

(p, q)− ∂2H

∂pj∂pi

(p, q)
)
dpi ∧ dpj

vanishes. Since the last remaining term cancels in the same way, the derivative
(14.38) vanishes identically.

Example 14.13. We use the spherical pendulum in canonical form (6.28)

ṗ1 = p2
2

cos q1

sin3 q1

− sin q1

q̇1 = p1

ṗ2 = 0

q̇2 =
p2

sin2 q1

(14.40)

and for A the familiar two-dimensional cat placed in R4 such that its projection
to (p1, q1) is a line; i.e., with zero area. It can be seen that with increasing t the
area in (p1, q1) increases and the area in (p2, q2) decreases. Their sum remains
constant. Observe that for larger t the left ear in (p1, q1) is twisted, i.e., surrounded
in the negative sense, so that this part counts for negative area (Fig. 14.5). If time
proceeded in the negative sense, both areas would increase, but the first area would
be oriented negatively.

Between the two-dimensional invariant of Theorem 14.12 and the 2n -dimen-
sional of Liouville’s theorem, there are many others; e.g., the differential 4 -form

ω4 =
∑
i<j

dpi ∧ dpj ∧ dqi ∧ dqj . (14.41)

These invariants, however, are not really new, because (14.41) is proportional to
the exterior square of ω2 , ω2 ∧ω2 = −2ω4 .
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(A)

( A)

q

p
(A) ( A)

q

p

Fig. 14.5. Invariance of ω2 =
∑n

i=1 dpi ∧ dqi for the spherical pendulum

Writing (14.31) in matrix notation

ω2(ξ1, ξ2) = ξT
1 Jξ2 with J =

(
0 I
−I 0

)
(14.42)

we obtain the following criterion:

Theorem 14.14. A differentiable transformation g : R2n → R2n is symplectic if
and only if its Jacobian R = g′(p, q) satisfies

RT JR = J (14.43)

with J given in (14.42).

Proof. This follows at once from (see (14.35))

(g∗ω2)(ξ1, ξ2) = (Rξ1)
T J(Rξ2) = ξT

1 RT JRξ2.

Exercises

1. Prove the following lemma from elementary calculus which is used in the proof
of Theorem 14.4: if for a function F (x, y) , ∂F/∂y exists and y(x) is differ-
entiable and such that F

(
x, y(x)

)
= Const , then ∂F/∂x exists at (x, y(x))

and is equal to

∂F

∂x

(
x, y(x)

)
= −∂F

∂y

(
x, y(x)

) · y′(x).

Hint. Use the identity

F
(
x1, y(x1)

)−F
(
x0, y(x1)

)
= F

(
x0, y(x0)

)−F
(
x0, y(x1)

)
.



I.15 Boundary Value and Eigenvalue Problems

Although our book is mainly concerned with initial value problems, we want to
include in this first chapter some properties of boundary and eigenvalue problems.

Boundary Value Problems

They arise in systems of differential equations, say

y′
1 = f1(x, y1, y2),

y′
2 = f2(x, y1, y2),

(15.1)

when there is no initial point x0 at which y1(x0) and y2(x0) are known simulta-
neously. Questions of existence and uniqueness then become much more compli-
cated.

Example 1. Consider the differential equation

y′′ = exp (y) or y′
1 = y2, y′

2 = exp (y1) (15.2a)

with the boundary conditions

y1(0) = a, y1(1) = b. (15.2b)

In order to apply our existence theorems or to do numerical computations (say by
Euler’s method (7.3)), we can proceed as follows: guess the missing initial value
y20 . We can then compute the solution and check whether the computed value for
y1(1) is equal to b or not. So our problem is, whether the function of the single
variable y20

F (y20) := y1(1)− b (15.3)

possesses a zero or not.
Equation (15.2a) is quasimonotone, which implies that F (y20) depends mono-

tonically on y20 (Fig. 15.1a, see Exercise 7 of I.10). Also, for y20 very small or
very large, y1(1) is arbitrarily small or large, or even infinite. Therefore, (15.2)
possesses for all a, b a unique solution (see Fig. 15.1b).
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a) b) c) d)

Fig. 15.1. a) Solutions of (15.2a) for different initial values y20 = −1.7, . . . ,−0.4
b) Unique solution of (15.2a) for a = 1, b = 2, y20 = −0.476984656

c) Solutions of (15.4a) for y(0) = 1 and y20 = 0, 1, 2, . . . , 9
d) The two solutions of (15.4a), y(0) = 1 , y(1) = 0.5 , y20 = 7.93719 , y20 = 0.97084

The root of F (y20) = 0 can be computed by an iterative method, (bisection,
regula falsi, . . .; if the derivative of y1(1) with respect to y20 is used from Theorem
14.3 or numerically from finite differences, also by Newton’s method). The initial
value problem is then computed several times. Small problems, such as the above
example, can be done by a simple dialogue with the computer. Harder problems
with more unknown initial values need more programming skills. This method is
one of the most commonly used and is called the shooting method.

Example 2. For the differential equation

y′′ = − exp(y) or y′
1 = y2, y′

2 = − exp(y1) (15.4a)

with the boundary conditions

y1(0) = a, y1(1) = b (15.4b)

the monotonicity of F (y20) is lost and things become more complicated: solutions
for different initial values y20 are sketched for a = 1 in Fig. 15.1c. It can be seen
that for b above a certain value (which is 1.499719998 ) there exists no solution of
the problem at all, and for b below this value there exist two solutions (Fig. 15.1d).

Example 3.

y′
1 = y2, y′

2 = y3
1 , y1(0) = 1, y1(100) = 2. (15.5)

This equation is similar to (15.2) and the same statement of existence and unique-
ness holds as above. However, if one tries to compute the solutions by the shoot-
ing method, one gets into trouble because of the length of the interval: the so-
lution nearly never exists on the whole interval; in fact, the correct solution is
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y20 = −0.70710616655 . But already for y20 = −0.7071061 , y1(x) tends to +∞
for x → 98.2 . On the other side, for y20 = −0.70711 , we have y1(94.1) = −∞ .
So the domain where F (y20) of (15.3) exists is of length less than 4× 10−6 .

In a case like this, one can use the multiple shooting technique: the interval is
split up into several subintervals, on each of which the problem is solved with well-
chosen initial values. At the endpoints of the subintervals, the solutions are then
matched together. Equation (15.3) thereby becomes a system of higher dimension
to be solved. Another possibility is to apply global methods (finite differences,
collocation). Instead of integrating a sequence of initial value problems, a global
representation of the approximate solution is sought. There exists an extensive
literature on methods for boundary value problems. As a general reference we give
Ascher, Mattheij & Russel (1988) and Deuflhard (1980).

Sturm-Liouville Eigenvalue Problems

This subject originated with a remarkable paper of Sturm (Sturm 1836) in Liou-
ville’s newly founded Journal. This paper was followed by a series of papers by
Liouville and Sturm published in the following volumes. It is today considered as
the starting point of the “geometric theory”, where the main effort is not to try to
integrate the equation, but merely to obtain geometric properties of the solution,
such as its form, oscillations, sign changes, zeros, existence of maxima or minima
and so on, directly from the differential equation (“Or on peut arriver à ce but par
la seule considération des équations différentielles en elles-mêmes, sans qu’on ait
besoin de leur intégration.”)

The physical origin was, as in Section I.6, the study of heat and small os-
cillations of elastic media. Let us consider the heat equation with non-constant
conductivity

∂u

∂t
=

∂

∂x

(
k(x)

∂u

∂x

)
− 	(x)u, k(x) > 0, (15.6)

which was studied extensively in Poisson’s “Théorie de la chaleur”. Poisson (1835)
assumes u(x, t) = y(x)e−λt , so that (15.6) becomes

d

dx

(
k(x)

dy

dx

)
− 	(x)y = −λy. (15.7)

We write (15.7) in the form

(k(x)y′)′ +G(x)y = 0 (15.8)

and state the following comparison theorem of Sturm:



108 I. Classical Mathematical Theory

Theorem 15.1. Consider, with (15.8), the differential equation

(k̂(x)ŷ′)′ + Ĝ(x)ŷ = 0, (15.9)

and assume k , k̂ differentiable, G , Ĝ continuous,

0 < k̂(x) ≤ k(x), Ĝ(x) ≥ G(x) (15.10)

for all x and let y(x) , ŷ(x) be linearly independent solutions of (15.8) and (15.9),
respectively. Then, between any two zeros of y(x) there is at least one zero of ŷ(x) ,
i.e., if y(x1) = y(x2) = 0 with x1 < x2 then there exists x3 in the open interval
(x1, x2) such that ŷ(x3) = 0 .

Proof. The original proof of Sturm is based on the quotient

q(x) =
y(x)

k(x)y′(x)

which is the slope of the line connecting the origin with the solution point in the
(ky′, y) -plane and satisfies a first-order differential equation. In order to avoid the
singularities caused by the zeros of y′(x) , we prefer the use of polar coordinates
(Prüfer 1926)

k(x)y′(x) = �(x) cosϕ(x), y(x) = �(x) sinϕ(x). (15.11)

Differentiation of (15.11) yields the following differential equations for ϕ and � :

ϕ′ =
1

k(x)
cos2 ϕ +G(x) sin2 ϕ (15.12)

�′ =
( 1

k(x)
−G(x)

)
· sinϕ · cosϕ · �. (15.13)

In the same way we also introduce functions �̂(x) and ϕ̂(x) for the second dif-
ferential equation (15.9). They satisfy analogous relations with k(x) and G(x)
replaced by k̂(x) and Ĝ(x) .

Suppose now that x1, x2 are two consecutive zeros of y(x) . Then ϕ(x1) and
ϕ(x2) must be multiples of π , since �(x) is always different from zero (unique-
ness of the initial value problem). By (15.12) ϕ′(x) is positive at x1 and at x2 .
Therefore we may assume that

ϕ(x1) = 0, ϕ(x2) = π, ϕ̂(x1) ∈ [0, π). (15.14)

The fact that equation (15.12) is first-order and the inequalities (15.10) allow the
application of Theorem 10.3 to give

ϕ̂(x) ≥ ϕ(x) for x1 ≤ x ≤ x2.

It is impossible that ϕ̂(x) = ϕ(x) everywhere, since this would imply Ĝ(x) =
G(x) , cos ϕ̂(x)/k̂(x) = cos ϕ(x)/k(x) by (15.12) and (15.10). As a consequence
of (15.13) we would have �̂(x) = C · �(x) and the solutions y(x) , ŷ(x) would be
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linearly dependent. Therefore, there exists x0 ∈ (x1, x2) such that ϕ̂(x0)>ϕ(x0) .
In this situation ϕ̂(x)>ϕ(x) for all x≥x0 and the existence of x3 ∈ (x1, x2) with
ϕ̂(x3) = π is assured.

The next theorem shows that our eigenvalue problem possesses an infinity of
solutions. We add to (15.7) the boundary conditions

y(x0) = y(x1) = 0. (15.15)

Theorem 15.2. The eigenvalue problem (15.7), (15.15) possesses an infinite se-
quence of eigenvalues λ1 < λ2 < λ3 < . . . whose corresponding solutions yi(x)
(“eigenfunctions”) possess respectively 0, 1, 2, . . . zeros in the interval (x0, x1) .
The zeros of yj+1(x) separate those of yj(x) . If 0 < K1 ≤ k(x) ≤ K2 and
L1 ≤ 	(x) ≤ L2 , then

L1 +K1

j2π2

(x1 −x0)2
≤ λj ≤ L2 +K2

j2π2

(x1 −x0)2
. (15.16)

Proof. Let y(x, λ) be the solution of (15.7) with initial values y(x0)= 0 , y′(x0)=
1 . Theorem 15.1 (with k̂(x) = k(x) , Ĝ(x) = G(x) + Δλ) implies that for in-
creasing λ the zeros of y(x, λ) move towards x0 , so that the number of zeros in
(x0, x1) is a non-decreasing function of λ .

Comparing next (15.7) with the solution (λ > L1)

sin
(√

(λ−L1)/K1 · (x−x0)
)

of K1y
′′ + (λ−L1)y = 0 we see that for λ < L1 +K1j

2π2/(x1 −x0)2 , y(x, λ)
has at most j − 1 zeros in (x0, x1] . Similarly, a comparison with

sin
(√

(λ−L2)/K2 · (x−x0)
)

which is a solution of K2y
′′ + (λ−L2)y = 0 , shows that y(x, λ) possesses at

least j zeros in (x0, x1) , if λ > L2 +K2j
2π2/(x1 −x0)2 . The statements of the

theorem are now simple consequences of these three properties.

Example. Fig. 15.2 shows the first 5 solutions of the problem

((1− 0.8 sin2 x)y′)′− (x−λ)y = 0, y(0) = y(π) = 0. (15.17)

The first eigenvalues are 2.1224 , 3.6078 , 6.0016 , 9.3773 , 13.7298 , 19.053 ,
25.347 , 32.609 , 40.841 , 50.041 , etc.
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Fig. 15.2. Solutions of the Sturm-Liouville eigenvalue problem (15.17)

For more details about this theory, which is a very important page of history,
we refer to the book of Reid (1980).

Exercises

1. Consider the equation

L(x)y′′ +M(x)y′ +N(x)y = 0.

Multiply it with a suitable function ϕ(x) , so that the ensuing equation is of the
form (15.8) (Sturm 1836, p. 108).

2. Prove that two solutions of (15.7), (15.15) satisfy the orthogonality relations∫ x1

x0

yj(x)yk(x)dx = 0 for λj �= λk.

Hint. Multiply this by λj , replace λjyj(x) from (15.7) and do partial integra-
tion (Liouville 1836, p. 257).

3. Solve the problem (15.5) by elementary functions. Explain why the given value
for y20 is so close to −√

2/2 .

4. Show that the boundary value problem (see Collatz 1967)

y′′ = −y3, y(0) = 0, y(A) = B (15.18)

possesses infinitely many solutions for each pair (A, B) with A �= 0 .

Hint. Draw the solution y(x) of (15.18) with y(0) = 0 , y′(0) = 1 . Show that
for each constant a , z(x) = ay(ax) is also a solution.



I.16 Periodic Solutions, Limit Cycles,
Strange Attractors

2◦ Les demi-spirales que l’on suit sur un arc infini sans arriver à
un nœud ou à un foyer et sans revenir au point de départ ; . . .

(H. Poincaré 1882, Oeuvres vol. 1, p. 54)

The phenomenon of limit cycles was first described theoretically by Poincaré
(1882) and Bendixson (1901), and has since then found many applications in
Physics, Chemistry and Biology. In higher dimensions things can become much
more chaotic and attractors may look fairly “strange”.

Van der Pol’s Equation

I have a theory that whenever you want to get in trouble with a
method, look for the Van der Pol equation.

(P.E. Zadunaisky 1982)

The first practical examples were studied by Rayleigh (1883) and later by Van der
Pol (1920-1926) in a series of papers on nonlinear oscillations: the solutions of

y′′ +αy′ + y = 0

are damped for α > 0 , and unstable for α < 0 . The idea is to change α (with
the help of a triode, for example) so that α < 0 for small y and α > 0 for large
y . The simplest expression, which describes the physical situation in a somewhat
idealized form, would be α = ε(y2 −1), ε > 0 . Then the above equation becomes

y′′ + ε(y2 − 1)y′ + y = 0, (16.1)

or, written as a system,

y′
1 = y2

y′
2 = ε(1− y2

1)y2 − y1, ε > 0.
(16.2)

In this equation, small oscillations are amplified and large oscillations are damped.
We therefore expect the existence of a stable periodic solution to which all other
solutions converge. We call this a limit cycle (Poincaré 1882, “Chap. VI”). The
original illustrations of the paper of Van der Pol are reproduced in Fig. 16.1.
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Fig. 16.1. Illustrations from
Van der Pol (1926)
(with permission)

Existence proof. The existence of limit cycles is studied by the method of Poincaré
sections (Poincaré 1882, “Chap. V, Théorie des conséquents”). The idea is to cut
the solutions transversally by a hyperplane Π and, for an initial value y0 ∈ Π , to
study the first point Φ(y0) where the solution again crosses the plane Π in the
same direction.

For our example (16.2), we choose for Π the half-line y2 = 0 , y1 > 0 . We
then examine the signs of y′

1 and y′
2 in (16.2). The sign of y′

2 changes at the curve

y2 =
y1

ε(1− y2
1)

, (16.3)

which is drawn as a broken line in Fig. 16.2. It follows (see Fig. 16.2) that Φ(y0)
exists for all y0 ∈Π . Since two different solutions cannot intersect (due to unique-
ness), the map Φ is monotone. Further, Φ is bounded (e.g., by every solution
starting on the curve (16.3)), so Φ(y0) < y0 for y0 large. Finally, since the origin
is unstable, Φ(y0) > y0 for y0 small. Hence there must be a fixed point of Φ(y0) ,
i.e., a limit cycle.

The limit cycle is, in fact, unique. The proof for this is more complicated and
is indicated in Exercise 8 below (Liénard 1928).



I.16 Periodic Solutions, Limit Cycles, Strange Attractors 113

y

y

Fig. 16.2. The Poincaré map for Van der Pol’s equation, ε = 1

With similar ideas one proves the following general result:

Theorem 16.1 (Poincaré 1882, Bendixson 1901). Each bounded solution of a two-
dimensional system

y′
1 = f1(y1, y2), y′

2 = f2(y1, y2) (16.4)

must

i) tend to a critical point f1 = f2 = 0 for an infinity of points xi →∞ ; or

ii) be periodic; or

iii) tend to a limit cycle.

Remark. Exercise 1 below explains why the possibility (i) is written in a form
somewhat more complicated than seems necessary.

Steady-state approximations for ε large. An important tool for simplifying com-
plicated nonlinear systems is that of steady-state approximations. Consider (16.2)
with ε very large. Then, in the neighbourhood of f2(y1, y2) = 0 for |y1| > 1 ,
the derivative of y′

2 = f2 with respect to y2 is very large negative. Therefore the
solution will very rapidly approach an equilibrium state in the neighbourhood of
y′
2 = f2(y1, y2) = 0 , i.e., in our example, y2 = y1/(ε(1− y2

1)) . This can be in-
serted into (16.2) and leads to

y′
1 =

y1

ε(1− y2
1)

, (16.5)

an equation of lower dimension. Using the formulas of Section I.3, (16.5) is easily
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solved to give

log(y1)−
y2
1

2
=

x−x0

ε
+ Const.

These curves are dotted in Van der Pol’s Fig. 16.3 for ε = 10 and show the good
approximation of this solution.

Fig. 16.3. Solution of Van der Pol’s equation for ε = 10
compared with steady state approximations

Asymptotic solutions for ε small. The computation of periodic solutions for
small parameters was initiated by astronomers such as Newcomb and Lindstedt
and brought to perfection by Poincaré (1893). We demonstrate the method for the
Van der Pol equation (16.1). The idea is to develop the solution as a series in powers
of ε . Since the period will change too, we also introduce a coordinate change

t = x(1 + γ1ε + γ2ε
2 + . . .) (16.6)

and put

y(x) = z(t) = z0(t) + εz1(t) + ε2z2(t) + . . . . (16.7)

Inserting now y′(x) = z′(t)(1 + γ1ε + . . .) , y′′(x) = z′′(t)(1 + γ1ε + . . .)2 into
(16.1) we obtain(

z′′0 + εz′′1 + ε2z′′2 + . . .
)(

1 + 2γ1ε + (2γ2 + γ2
1)ε2 + . . .

)
+ ε
(
(z0 + εz1 + . . .)2 − 1

)
(z′0 + εz′1 + . . .)(1 + γ1ε + . . .)

+ (z0 + εz1 + ε2z2 + . . .) = 0.

(16.8)

We first compare the coefficients of ε0 and obtain

z′′0 + z0 = 0. (16.8;0)

We fix the initial value on the Poincaré section P , i.e., z′(0) = 0 , so that z0 =
A cos t with A , for the moment, a free parameter. Next, the coefficients of ε yield

z′′1 + z1 = −2γ1z
′′
0 − (z2

0 − 1)z′0

= 2γ1A cos t +
(A3

4
−A
)

sin t +
A3

4
sin 3t.

(16.8;1)
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Here, the crucial idea is that we are looking for periodic solutions, hence the terms
in cos t and sin t on the right-hand side of (16.8;1) must disappear, in order to
avoid that z1(t) contain terms of the form t · cos t and t · sin t (“ . . . et de faire
disparaı̂tre ainsi les termes dits séculaires . . .”). We thus obtain γ1 =0 and A=2 .
Then (16.8;1) can be solved and gives, together with z′1(0) = 0 ,

z1 = B cos t +
3
4

sin t− 1
4

sin 3t. (16.9)

The continuation of this process is now clear: the terms in ε2 in (16.8) lead to, after
insertion of (16.9) and simplification,

z′′2 +z2 =
(
4γ2 +

1
4

)
cos t+2B sin t+3B sin 3t− 3

2
cos 3t+

5
4

cos 5t. (16.8;2)

Secular terms are avoided if we set B = 0 and γ2 = −1/16 . Then

z2 = C cos t +
3
16

cos 3t− 5
96

cos 5t.

The next round will give C =−1/8 and γ3 =0 , so that we have: the periodic orbit
of the Van der Pol equation (16.1) for ε small is given by

y(x) = z(t), t = x(1− ε2/16 + . . .),

z(t) = 2 cos t + ε
(3

4
sin t− 1

4
sin 3t

)
+ ε2

(
−1

8
cos t +

3
16

cos 3t− 5
96

cos 5t
)

+ . . .

(16.10)

and is of period 2π(1 + ε2/16 + . . .) .

Chemical Reactions

The laws of chemical kinetics give rise to differential equations which, for multi-
molecular reactions, become nonlinear and have interesting properties. Some of
them possess periodic solutions (e.g. the Zhabotinski-Belousov reaction) and have
important applications to the interpretation of biological phenomena (e.g. Pri-
gogine, Lefever).

Let us examine in detail the model of Lefever and Nicolis (1971), the so-called
“Brusselator”: suppose that six substances A, B, D, E, X, Y undergo the follow-
ing reactions:

A
k1−−−−−→ X

B +X
k2−−−−−→ Y +D (bimolecular reaction)

2X +Y
k3−−−−−→ 3X (autocatalytic trimol. reaction)

X
k4−−−−−→ E

(16.11)



116 I. Classical Mathematical Theory

If we denote by A(x), B(x), . . . the concentrations of A, B, . . . as functions of
the time x , the reactions (16.11) become by the mass action law the following
differential equations

A′ = −k1A

B′ = −k2BX

D′ = k2BX

E′ = k4X

X ′ = k1A− k2BX + k3X
2Y − k4X

Y ′ = k2BX − k3X
2Y.

This system is now simplified as follows: the equations for D and E are left out,
because they do not influence the others; A and B are supposed to be maintained
constant (positive) and all reaction rates ki are set equal to 1 . We further set
y1(x) := X(x) , y2(x) := Y (x) and obtain

y′
1 = A + y2

1y2 − (B + 1)y1

y′
2 = By1 − y2

1y2.
(16.12)

The resulting system has one critical point y′
1 = y′

2 = 0 at y1 = A , y2 = B/A .
The linearized equation in the neighbourhood of this point is unstable iff B >
A2 + 1 . Further, a study of the domains where y′

1 , y′
2 , or (y1 + y2)′ is positive or

negative leads to the result that all solutions remain bounded. Thus, for B >A2 +1
there must be a limit cycle which, by numerical calculations, is seen to be unique
(Fig. 16.4).

Fig. 16.4. Solutions of the Brusselator, A = 1 , B = 3

An interesting phenomenon (Hopf bifurcation, see below) occurs, when B ap-
proaches A2 + 1 . Then the limit cycle becomes smaller and smaller and finally
disappears in the critical point. Another example of this type is given in Exercise 2.
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Limit Cycles in Higher Dimensions, Hopf Bifurcation

The Theorem of Poincaré-Bendixson is apparently true only in two dimensions.
Higher dimensional counter-examples are given by nearly every mechanical move-
ment without friction, as for example the spherical pendulum (6.20), see Fig. 6.2.
Therefore, in higher dimensions limit cycles are usually found by numerical studies
of the Poincaré section map Φ defined above.

There is, however, one situation where limit cycles occur quite naturally (Hopf
1942): namely when at a critical point of y′ = f(y, α) , y, f ∈ Rn , all eigenvalues
of (∂f/∂y)(y0, α) have strictly negative real part with the exception of one pair
which, by varying α , crosses the imaginary axis. The eigenspace of the stable
eigenvalues then continues into an analytic two dimensional manifold, inside which
a limit cycle appears. This phenomenon is called “Hopf bifurcation”. The proof of
this fact is similar to Poincaré’s parameter expansion method (16.7) (see Exercises
6 and 7 below), so that Hopf even hesitated to publish it (“ . . . ich glaube kaum,
dass an dem obigen Satz etwas wesentlich Neues ist . . .”).

As an example, we consider the “full Brusselator” (16.11): we no longer sup-
pose that B is kept constant, but that B is constantly added to the mixture with

y

y

y

y

Fig. 16.5. Hopf bifurcation
for the ”full”
Brusselator (16.13)
α = 1.22, 1.24, 1.26, 1.28, . . .
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rate α . When we set y3(x) := B(x) , we obtain instead of (16.12) (with A = 1 )

y′
1 = 1 + y2

1y2 − (y3 + 1)y1

y′
2 = y1y3 − y2

1y2

y′
3 = −y1y3 +α.

(16.13)

This system possesses a critical point at y1 = 1 , y2 = y3 = α with derivative

∂f

∂y
=

⎛⎝α− 1 1 −1
−α −1 1
−α 0 −1

⎞⎠ . (16.14)

This matrix has λ3 + (3−α)λ2 + (3− 2α)λ + 1 as characteristic polynomial and
satisfies the condition for stability iff α < (9−√

17)/4 = 1.21922 (see I.13, Ex-
ercise 1). Thus when α increases beyond this value, there arises a limit cycle
which exists for all values of α up to approximately 1.5 (see Fig. 16.5). When α
continues to grow, the limit cycle “explodes” and y1 → 0 while y2 and y3 →∞ .
So the system (16.13) has a behaviour completely different from the simplified
model (16.12).

A famous chemical reaction with a limit cycle in three dimensions is the “Oreg-
onator” reaction between HBrO2, Br− , and Ce (IV ) (Field & Noyes 1974)

y′
1 = 77.27

(
y2 + y1(1− 8.375× 10−6y1 − y2)

)
y′
2 =

1
77.27

(y3 − (1 + y1)y2)

y′
3 = 0.161(y1 − y3)

(16.15)

whose solutions are plotted in Fig. 16.6. This is an example of a “stiff” differential
equation whose solutions change rapidly over many orders of magnitude. It is thus
a challenging example for numerical codes and we shall meet it again in Volume II
of our book.

Our next example is taken from the theory of superconducting Josephson junc-
tions, coupled together by a mutual capacitance. Omitting all physical details, (see
Giovannini, Weiss & Ulrich 1978), we state the resulting equations as

c(y′′
1 −αy′′

2 ) = i1 − sin(y1)− y′
1

c(y′′
2 −αy′′

1 ) = i2 − sin(y2)− y′
2.

(16.16)

Here, y1 and y2 are angles (the “quantum phase difference across the junction”)
which are thus identified modulo 2π . Equation (16.16) is thus a system on the
torus T 2 for (y1, y2) , and on R2 for the voltages (y′

1, y
′
2) . It is seen by numerical

computations that the system (16.16) possesses an attracting limit cycle, which
describes the phenomenon of “phase locking” (see Fig. 16.7).
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x

y

x

y

Fig. 16.6. Limit cycle of the Oregonator

y

y

y

y

Fig. 16.7. Josephson junctions (16.16) for c = 2 , α = 0.5 , i1 = 1.11 , i2 = 1.08
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Strange Attractors

“Mr. Dahlquist, when is the spring coming ?”
“Tomorrow, at two o’clock.”

(Weather forecast, Stockholm 1955)

“We were so naı̈ve . . .”
(H.O. Kreiss, Stockholm 1985)

Concerning the discovery of the famous “Lorenz model”, we best quote from
Lorenz (1979):

“By the middle 1950’s “numerical weather prediction”, i.e., forecasting by
numerically integrating such approximations to the atmospheric equations as could
feasibly be handled, was very much in vogue, despite the rather mediocre results
which it was then yielding. A smaller but determined group favored statistical
prediction ( . . .) apparently because of a misinterpretation of a paper by Wiener
( . . .). I was skeptical, and decided to test the idea by applying the statistical method
to a set of artificial data, generated by solving a system of equations numerically
( . . .). The first task was to find a suitable system of equations to solve ( . . .).
The system would have to be simple enough ( . . . and) the general solution would
have to be aperiodic, since the statistical prediction of a periodic series would be
a trivial matter, once the periodicity had been detected. It was not obvious that
these conditions could be met. ( . . .) The break came when I was visiting Dr. Barry
Saltzman, now at Yale University. In the course of our talks he showed me some
work on thermal convection, in which he used a system of seven ordinary differ-
ential equations. Most of his numerical solutions soon acquired periodic behavior,
but one solution refused to settle down. Moreover, in this solution four of the
variables appeared to approach zero. Presumably the equations governing the re-
maining three variables, with the terms containing the four variables eliminated,
would also possess aperiodic solutions. Upon my return I put the three equations
on our computer, and confirmed the aperiodicity which Saltzman had noted. We
were finally in business.”

In a changed notation, the three equations with aperiodic solutions are

y′
1 =−σy1 +σy2

y′
2 =− y1y3 + ry1 − y2

y′
3 = y1y2 − by3

(16.17)

where σ , r and b are positive constants. It follows from (16.17) that

1
2

d

dx

(
y2
1 + y2

2 + (y3 −σ− r)2
)

= −
(
σy2

1 + y2
2 + b(y3 −

σ

2
− r

2
)2
)

+ b
(σ

2
+

r

2

)2

.

(16.18)
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Therefore the ball

R0 =
{
(y1, y2, y3) | y2

1 + y2
2 + (y3 −σ− r)2 ≤ c2

}
(16.19)

is mapped by the flow ϕ1 (see (14.22)) into itself, provided that c is sufficiently
large so that R0 wholly contains the ellipsoid defined by equating the right side
of (16.18) to zero. Hence, if x assumes the increasing values 1, 2, 3, . . . , R0 is
carried into regions R1 = ϕ1(R0) , R2 = ϕ2(R0) etc., which satisfy R0 ⊃ R1 ⊃
R2 ⊃R3 ⊃ . . . (applying ϕ1 to the inclusion R0 ⊃R1 gives R1 ⊃R2 and so on).

Since the trace of ∂f/∂y for the system (16.17) is the negative constant
−(σ + b + 1) , the volumes of Rk tend exponentially to zero (see Theorem 14.8).
Every orbit is thus ultimately trapped in a set R∞ = R0 ∩R1 ∩R2 . . . of zero
volume.

System (16.17) possesses an obvious critical point y1 = y2 = y3 = 0 ; this be-
comes unstable when r > 1 . In this case there are two additional critical points C
and C′ respectively given by

y1 = y2 = ±
√

b(r− 1), y3 = r− 1. (16.20)

These become unstable (e.g. by the Routh criterion, Exercise 1 of Section I.13)
when σ > b + 1 and

r ≥ rc =
σ(σ + b + 3)

σ − b− 1
. (16.21)

In the first example we shall use Saltzman’s values b = 8/3 , σ = 10 , and
r = 28 . (“Here we note another lucky break: Saltzman used σ = 10 as a crude
approximation to the Prandtl number (about 6) for water. Had he chosen to study
air, he would probably have let σ = 1 , and the aperiodicity would not have been
discovered”, Lorenz 1979). In Fig. 16.8 we have plotted the solution curve of
(16.17) with the initial value y1 = −8 , y2 = 8 , y3 = r− 1 , which, indeed, looks
pretty chaotic.

For a clearer understanding of the phenomenon, we choose the plane
y3 = r− 1 , especially the square region between the critical points C and C′ , as
Poincaré section Π . The critical point y1 =y2 =y3 =0 possesses (since r>1 ) one
unstable eigenvalue λ1 =(−1−σ+

√
(1−σ)2 + 4rσ)/2 and two stable eigenval-

ues λ2 =−b , λ3 = (−1−σ−√(1−σ)2 + 4rσ)/2 . The eigenspace of the stable
eigenvalues continues into a two-dimensional manifold of initial values, whose so-
lutions tend to 0 for x → ∞ . This “stable manifold” cuts Π in a curve Σ (see
Fig. 16.9). The one-dimensional unstable manifold (created by the unstable eigen-
value λ1 ) cuts Π in the points D and D′ (Fig. 16.9).

All solutions starting in Πu above Σ (the dark cat) surround the above criti-
cal point C and are, at the first return, mapped to a narrow stripe Su , while the
solutions starting in Πd below Σ surround C′ and go to the left stripe Sd . At
the second return, the two stripes are mapped into two very narrow stripes inside
Su and Sd . After the third return, we have 8 stripes closer and closer together,
and so on. The intersection of all these stripes is a Cantor-like set and, continued



122 I. Classical Mathematical Theory

initial value

y

y

C

C

y

y

CC

Fig. 16.8. Two views of a solution of (16.17)
(small circles indicate intersection of solution with plane y3 = r− 1)

Su
SdSd

u

d

d

u

y C

C

y

D

D

Fig. 16.9. Poincaré map for (16.17)

into 3-space by the flow, forms the strange attractor (“An attractor of the type just
described can therefore not be thrown away as non-generic pathology”, Ruelle &
Takens 1971).
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The Ups and Downs of the Lorenz Model

“Mr. Laurel and Mr. Hardy have many ups and downs — Mr. Hardy
takes charge of the upping, and Mr. Laurel does most of the downing
— ” (from “Another Fine Mess”, Hal Roach 1930)

If one watches the solution y1(x) of the Lorenz equation being calculated, one
wonders who decides for the solution to go up or down in an apparently unpre-
dictable fashion. Fig. 16.9 shows that Σ cuts both stripes Sd and Su . Therefore
the inverse image of Σ (see Fig. 16.10) consists of two lines Σ0 and Σ1 which
cut, together with Σ , the plane Π into four sets Πuu , Πud , Πdu , Πdd . If the
initial value is in one of these, the corresponding solution goes up-up, up-down,
down-up, down-down. Further, the inverse images of Σ0 and Σ1 lead to four lines
Σ00 , Σ01 , Σ10 , Σ11 . The plane Π is then cut into 8 stripes and we now know
the fate of the first three ups and downs. The more inverse images of these curves
we compute, the finer the plane Π is cut into stripes and all the future ups and
downs are coded in the position of the initial value with respect to these stripes
(see Fig. 16.10). It appears that a very small change in the initial value gives rise,
after a couple of rotations, to a totally different solution curve. This phenomenon,
discovered merely by accident by Lorenz (see Lorenz 1979), is highly interesting
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Fig. 16.10. Stripes deciding for the ups and downs
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and explains why the theorem of uniqueness (Theorem 7.4), of whose philosophical
consequences Laplace was so proud, has its practical limits.

Remark. It appears in Fig. 16.10 that not all stripes have the same width. The
sequences of “u”’s and “d”’s which repeat u or d a couple of times (but not
too often) are more probable than the others. More than 25 consecutive “ups”
or “downs” are (for the chosen constants and except for the initial phase) never
possible. This has to do with the position of D and D′ , the outermost frontiers of
the attractor, in the stripes of Fig. 16.10.

Feigenbaum Cascades

However nicely the beginning of Lorenz’ (1979) paper is written, the affirmations
of his last section are only partly true. As Lorenz did, we now vary the parameter
b in (16.17), letting at the same time r = rc (see (16.21)) and

σ = b + 1 +
√

2(b + 1)(b + 2). (16.22)

This is the value of σ for which rc is minimized. Numerical integration shows
that for b very small (say b ≤ 0.139 ), the solutions of (16.17) evidently converge
to a stable limit cycle, which cuts the Poincaré section y3 = r− 1 twice at two
different locations and surrounds both critical points C and C′ . Further, for b
large (for example b = 8/3 ) the coefficients are not far from those studied above
and we have a strange attractor. But what happens in between? We have computed
the solutions of the Lorenz model (16.17) for b varying from 0.1385 to 0.1475
with 1530 intermediate values. For each of these values, we have computed 1500
Poincaré cuts and represented in Fig. 16.11 the y1 -values of the intersections with
the Poincaré plane y3 = r−1 . After each change of b , the first 300 iterations were
not drawn so that only the attractor becomes visible.

For b small, there is one periodic orbit; then, at b = b1 = 0.13972 , it suddenly
splits into an orbit of period two, this then splits for b = b2 = 0.14327 into an orbit
of period four, then for b = b3 = 0.14400 into period eight, etc. There is a point
b∞ = 0.14422 after which the movement becomes chaotic. Beyond this value,
however, there are again and again intervals of stable attractors of periods 5, 3, etc.
The whole picture resembles what is obtained by the recursion

xn+1 = a(xn −x2
n) (16.23)

which is discussed in many papers (e.g. May 1976, Feigenbaum 1978, Collet &
Eckmann 1980).

But where does this resemblance come from? We study in Fig. 16.12 the
Poincaré map for the system (16.17) with b chosen as 0.146 of a region −0.095≤
y1 ≤ −0.078 and −0.087 ≤ y2 ≤ −0.07 . After one return, this region is com-
pressed to a thin line somewhere else on the plane (Fig. 16.12b), the second return
bends this line to U -shape and maps it into the original region (Fig. 16.12c).
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b1

b2
b3

b period 5
period 3 b

y1

Fig. 16.11. Poincaré cuts y1 for (16.17) as function of b

y

y

y

y

y

y

Fig. 16.12. Poincaré map for system (16.17) with b = 0.146

Therefore, the Poincaré map is essentially a map of the interval [0, 1] to itself
similar to (16.23). It is a great discovery of Feigenbaum that for all maps of a
similar shape, the phenomena are always the same, in particular that

lim
i→∞

bi − bi−1

bi+1 − bi

= 4.6692016091029906715 . . .

is a universal constant, the Feigenbaum number. The repeated doublings of the
periods at b1, b2, b3, . . . are called Feigenbaum cascades.
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Exercises

1. The Van der Pol equation (16.2) with ε = 1 possesses a limit cycle of pe-
riod T =6.6632868593231301896996820305 passing through y2 =0 , y1 =A
where A = 2.00861986087484313650940188 . Replace (16.2) by

y′
1 = y2(A− y1)

y′
2 =
(
(1− y2

1)y2 − y1

)
(A− y1)

so that the limit cycle receives a stationary point. Study the behaviour of a
solution starting in the interior, e.g. at y10 = 1 , y20 = 0 .

2. (Frommer 1934). Consider the system

y′
1 =−y2 +2y1y2 −y2

2 , y′
2 = y1 +(1+ ε)y2

1 +2y1y2 −y2
2 . (16.24)

Show, either by a stability analysis similar to Exercise 5 of Section I.13 or
by numerical computations, that for ε > 0 (16.24) possesses a limit cycle of
asymptotic radius r =

√
6ε/7 . (See also Wanner (1983), p. 15 and I.13, Exer-

cise 5).

3. Solve Hilbert’s 16th Problem: what is the highest possible number of limit
cycles that a quadratic system

y′
1 = α0 +α1y1 +α2y2 +α3y

2
1 +α4y1y2 +α5y

2
2

y′
2 = β0 +β1y1 +β2y2 +β3y

2
1 +β4y1y2 +β5y

2
2

can have? The mathematical community is waiting for you: nobody has been
able to solve this problem for more than 80 years. At the moment, the highest
known number is 4 , as for example in the system

y′
1 = λy1 − y2 − 10y2

1 + (5 + δ)y1y2 + y2
2

y′
2 = y1 + y2

1 + (−25 + 8ε− 9δ)y1y2,

δ = −10−13, ε = −10−52, λ = −10−200

(see Shi Songling 1980, Wanner 1983, Perko 1984).

4. Find a change of coordinates such that the equation

my′′ + (−A +B(y′)2)y′ + ky = 0

becomes the Van der Pol equation (16.2) (see Kryloff & Bogoliuboff (1947),
p. 5).

5. Treat the pendulum equation

y′′ + sin y = y′′ + y − y3

6
+

y5

120
± . . . = 0, y(0) = ε, y′(0) = 0,
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by the method of asymptotic expansions (16.6) and (16.7) and study the period
as a function of ε .

Result. The period is 2π(1 + ε2/16 + . . .) .

6. Compute the limit cycle (Hopf bifurcation) for

y′′ + y = ε2y′− (y′)3

for ε small by the method of Poincaré (16.6), (16.7) with z′(0) = 0 .

7. Treat in a similar way as in Exercise 6 the Brusselator (16.12) with A = 1 and
B = 2 + ε2 .

Hint. With the new variable y = y1 + y2 − 3 the differential equation (16.12)
becomes equivalent to y′ = 1− y1 and

y′′ + y = −ε2(y′− 1)− (y′)2(y + y′) + 2yy′.

Result. z(t) = ε(2/
√

3) cos t+ . . . , t = x(1− ε2/18+ . . .) , so that the period
is asymptotically 2π(1 + ε2/18 + . . .) .

8. (Liénard 1928). Prove that the limit cycle of the Van der Pol equation (16.1) is
unique for every ε > 0 .

Hint. The identity

y′′ + ε(y2 − 1)y′ =
d

dx

(
y′ + ε

(y3

3
− y
))

suggests the use of the coordinate system y1(x)=y(x) , y2(x)=y′+ε(y3/3−
y) . Write the resulting first order system, study the signs of y′

1 , y′
2 and the

increase of the “energy” function V (x) = (y2
1 + y2

2)/2 .

Also generalize the result to equations of the form y′′ +f(y)y′+g(y)=0 . For
more details see e.g. Simmons (1972), p. 349.

9. (Rayleigh 1883). Compute the periodic solution of

y′′ +κy′ +λ(y′)3 +n2y = 0

for κ and λ small.

Result. y = A sin(nx)+ (λnA3/32) cos(3nx)+ . . . where A is given by κ+
(3/4)λn2A2 = 0 .

10. (Bendixson 1901). If in a certain region Ω of the plane the expression

∂f1

∂y1

+
∂f2

∂y2

is always negative or always positive, then the system (16.4) cannot have closed
solutions in Ω .
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Hint. Apply Green’s formula∫ ∫ (∂f1

∂y1

+
∂f2

∂y2

)
dy1dy2 =

∫ (
f1 dy2 − f2 dy1

)
.



Chapter II. Runge-Kutta
and Extrapolation Methods

Numerical methods for ordinary differential equations fall naturally into two
classes: those which use one starting value at each step (“one-step methods”) and
those which are based on several values of the solution (“multistep methods” or
“multi-value methods”). The present chapter is devoted to the study of one-step
methods, while multistep methods are the subject of Chapter III. Both chapters
can, to a large extent, be read independently of each other.

We start with the theory of Runge-Kutta methods: the derivation of order con-
ditions with the help of labelled trees, error estimates, convergence proofs, imple-
mentation, methods of higher order, dense output. Section II.7 introduces implicit
Runge-Kutta methods. More attention will be drawn to these methods in Volume II
on stiff differential equations. Two sections then discuss the elegant idea of extrap-
olation (Richardson, Romberg, etc) and its use in obtaining high order codes. The
methods presented are then tested and compared on a series of problems. The po-
tential of parallelism is discussed in a separate section. We then turn our attention
to an algebraic theory of the composition of methods. This will be the basis for
the study of order properties for many general classes of methods in the follow-
ing chapter. The chapter ends with special methods for second order differential
equations y′′ = f(x, y) , for Hamiltonian systems (symplectic methods) and for
problems with delay.

We illustrate the methods of this chapter with an example from Astronomy, the
restricted three body problem. One considers two bodies of masses 1−μ and μ in
circular rotation in a plane and a third body of negligible mass moving around in
the same plane. The equations are (see e.g., the classical textbook Szebehely 1967)

y′′
1 = y1 + 2y′

2 −μ′ y1 +μ

D1

−μ
y1 −μ′

D2

,

y′′
2 = y2 − 2y′

1 −μ′ y2

D1

−μ
y2

D2

,

D1 = ((y1 +μ)2 + y2
2)

3/2, D2 = ((y1 −μ′)2 + y2
2)3/2,

μ = 0.012277471, μ′ = 1−μ .

(0.1)
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There exist initial values, for example

y1(0) = 0.994 , y′
1(0) = 0 , y2(0) = 0 ,

y′
2(0) = −2.00158510637908252240537862224 ,

xend = 17.0652165601579625588917206249 ,

(0.2)

such that the solution is periodic with period xend . Such periodic solutions have
fascinated astronomers and mathematicians for many decades (Poincaré; extensive
numerical calculations are due to Sir George Darwin (1898)) and are now often
called “Arenstorf orbits” (see Arenstorf (1963) who did numerical computations
“on high speed electronic computers”). The problem is C∞ with the exception of
the two singular points y1 =−μ and y1 = 1−μ , y2 = 0 , therefore the Euler poly-
gons of Section I.7 are known to converge to the solution. But are they really nu-
merically useful here? We have chosen 24000 steps of step length h=xend/24000
and plotted the result in Figure 0.1. The result is not very striking.

74 steps of DOPRI574 steps of DOPRI5
(polygonal and(polygonal and
interpolatory solution)interpolatory solution)

earthearth

moonmoon

RK solution

6000 RK steps6000 RK steps

2400024000
Euler stepsEuler steps

initialinitial
valuevalue

DOPRI5DOPRI5

Fig. 0.1. An Arenstorf orbit computed by equidistant Euler,
equidistant Runge-Kutta and variable step size Dormand & Prince

The performance of the Runge-Kutta method (left tableau of Table 1.2) is al-
ready much better and converges faster to the solution. We have used 6000 steps of
step size xend/6000 , so that the numerical work becomes equivalent. Clearly, most
accuracy is lost in those parts of the orbit which are close to a singularity. There-
fore, codes with automatic step size selection, described in Section II.4, perform
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much better and the code DOPRI5 (Table 5.2) computes the orbit with a precision
of 10−3 in 98 steps (74 accepted and 24 rejected). The step size becomes very
large in some regions and the graphical representation as polygons connecting the
solution points becomes unsatisfactory. The solid line is the interpolatory solution
(Section II.6), which is also precise for all intermediate values and useful for many
other questions such as delay differential equations, event location or discontinu-
ities in the differential equation.

For still higher precision one needs methods of higher order. For example,
the code DOP853 (Section II.5) computes the orbit faster than DOPRI5 for more
stringent tolerances, say smaller than about 10−6 . The highest possible order
is obtained by extrapolation methods (Section II.9) and the code ODEX (with
Kmax = 15 ) obtains the orbit with a precision of 10−30 with about 25000 function
evaluations, precisely the same amount of work as for the above Euler solution.



II.1 The First Runge-Kutta Methods

Die numerische Berechnung irgend einer Lösung einer gegebenen
Differentialgleichung, deren analytische Lösung man nicht kennt,
hat, wie es scheint, die Aufmerksamkeit der Mathematiker bisher
wenig in Anspruch genommen . . . (C. Runge 1895)

The Euler method for solving the initial value problem

y′ = f(x, y), y(x0) = y0 (1.1)

was described by Euler (1768) in his “Institutiones Calculi Integralis” (Sectio Se-
cunda, Caput VII). The method is easy to understand and to implement. We have
studied its convergence extensively in Section I.7 and have seen that the global er-
ror behaves like Ch , where C is a constant depending on the problem and h is
the maximal step size. If one wants a precision of, say, 6 decimals, one would thus
need about a million steps, which is not very satisfactory. On the other hand, one
knows since the time of Newton that much more accurate methods can be found, if
f in (1.1) is independent of y , i.e., if we have a quadrature problem

y′ = f(x), y(x0) = y0 (1.1’)

with solution

y(X) = y0 +
∫ X

x0

f(x) dx. (1.2)

As an example consider the midpoint rule (or first Gauss formula)

y(x0 +h0) ≈ y1 = y0 +h0f
(
x0 +

h0

2

)
y(x1 +h1) ≈ y2 = y1 +h1f

(
x1 +

h1

2

)
. . .

y(X) ≈ Y = yn−1 +hn−1f
(
xn−1 +

hn−1

2

)
,

(1.3’)

where hi = xi+1 −xi and x0, x1, . . . , xn−1, xn = X is a subdivision of the in-
tegration interval. Its global errror y(X)−Y is known to be bounded by Ch2 .
Thus for a desired precision of 6 decimals, a thousand steps will usually do, i.e.,
the method here is a thousand times faster. Therefore Runge (1895) asked whether
it would also be possible to extend method (1.3’) to problem (1.1). The first step
with h = h0 would read

y(x0 +h) ≈ y0 +hf
(
x0 +

h

2
, y
(
x0 +

h

2
))

, (1.3)
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but which value should we take for y(x0 +h/2)? In the absence of something
better, it is natural to use one small Euler step with step size h/2 and obtain from
(1.3) 1

k1 = f(x0, y0)

k2 = f
(
x0 +

h

2
, y0 +

h

2
k1

)
y1 = y0 +hk2.

(1.4)

One might of course be surprised that we propose an Euler step for the computation
of k2 , just half a page after preaching its inefficiency. The crucial point is, however,
that k2 is multiplied by h in the third expression and therefore its error becomes
less important. To be more precise, we compute the Taylor expansion of y1 in (1.4)
as a function of h ,

y1 = y0 +hf
(
x0 +

h

2
, y0 +

h

2
f0

)
= y0 +hf(x0, y0) +

h2

2

(
fx + fyf

)
(x0, y0)

+
h3

8

(
fxx + 2fxyf + fyyf

2
)
(x0, y0) + . . . .

(1.5)

This can be compared with the Taylor series of the exact solution, which is obtained
from (1.1) by repeated differentiation and replacing y′ by f every time it appears
(Euler (1768), Problema 86, §656, see also (8.12) of Chap. I)

y(x0 +h) = y0 +hf(x0, y0) +
h2

2

(
fx + fyf)(x0, y0

)
(1.6)

+
h3

6

(
fxx + 2fxyf + fyyf

2 + fyfx + f2
y f
)
(x0, y0) + . . . .

Subtracting these two equations, we obtain for the error of the first step

y(x0 +h)− y1 =
h3

24

(
fxx + 2fxyf + fyyf2 + 4(fyfx + f2

y f)
)
(x0, y0) + . . . .

(1.7)
When all second partial derivatives of f are bounded, we thus obtain
‖y(x0 +h)− y1‖ ≤ Kh3 .

In order to obtain an approximation of the solution of (1.1) at the endpoint
X , we apply formula (1.4) successively to the intervals (x0, x1) , (x1, x2), . . . ,
(xn−1, X) , very similarly to the application of Euler’s method in Section I.7.
Again similarly to the convergence proof of Section I.7, it will be shown in Section
II.3 that, as in the case (1.1’), the error of the numerical solution is bounded by
Ch2 (h the maximal step size). Method (1.4) is thus an improvement on the Euler
method. For high precision computations we need to find still better methods; this
will be the main task of what follows.

1 The analogous extension of the trapezoidal rule has been given in an early publication
by Coriolis in 1837; see Chapter II.4.2 of the thesis of D. Tournès, Paris VII, 1996.
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General Formulation of Runge-Kutta Methods

Runge (1895) and Heun (1900) constructed methods by including additional Euler
steps in (1.4). It was Kutta (1901) who then formulated the general scheme of what
is now called a Runge-Kutta method:

Definition 1.1. Let s be an integer (the “number of stages”) and a21, a31, a32, . . . ,
as1, as2, . . . , as,s−1, b1, . . . , bs, c2, . . . , cs be real coefficients. Then the method

k1 = f(x0, y0)

k2 = f(x0 + c2h, y0 +ha21k1)

k3 = f
(
x0 + c3h, y0 +h (a31k1 + a32k2)

)
. . .

ks = f
(
x0 + csh, y0 +h (as1k1 + . . .+ as,s−1ks−1)

)
y1 = y0 +h (b1k1 + . . .+ bsks)

(1.8)

is called an s -stage explicit Runge-Kutta method (ERK) for (1.1).

Usually, the ci satisfy the conditions

c2 = a21, c3 = a31 + a32, . . . cs = as1 + . . .+ as,s−1, (1.9)

or briefly,

ci =
i−1∑
j=1

aij . (1.9’)

These conditions, already assumed by Kutta, express that all points where f is
evaluated are first order approximations to the solution. They greatly simplify the
derivation of order conditions for high order methods. For low orders, however,
these assumptions are not necessary (see Exercise 6).

Definition 1.2. A Runge-Kutta method (1.8) has order p if for sufficiently smooth
problems (1.1),

‖y(x0 +h)− y1‖ ≤ Khp+1, (1.10)

i.e., if the Taylor series for the exact solution y(x0 +h) and for y1 coincide up to
(and including) the term hp .

With the paper of Butcher (1964b) it became customary to symbolize method
(1.8) by the tableau (1.8’).
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0
c2 a21

c3 a31 a32

...
...

...
. . .

cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

(1.8’)

Examples. The above method of Runge as well as methods of Runge and Heun of
order 3 are given in Table 1.1.

Table 1.1. Low order Runge-Kutta methods

0

1/2 1/2

0 1

Runge, order 2

0

1/2 1/2

1 0 1

1 0 0 1

1/6 2/3 0 1/6

Runge, order 3

0

1/3 1/3

2/3 0 2/3

1/4 0 3/4

Heun, order 3

Discussion of Methods of Order 4

Von den neueren Verfahren halte ich das folgende von Herrn Kutta
angegebene für das beste. (C. Runge 1905)

Our task is now to determine the coefficients of 4 -stage Runge-Kutta methods (1.8)
in order that they be of order 4 . We have seen above what we must do: compute
the derivatives of y1 = y1(h) for h = 0 and compare them with those of the true
solution for orders 1, 2, 3, and 4. In theory, with the known rules of differential
calculus, this is a completely trivial task and, by the use of (1.9), results in the
following conditions:∑

i bi = b1 + b2 + b3 + b4 = 1 (1.11a)∑
i bici = b2c2 + b3c3 + b4c4 = 1/2 (1.11b)∑
i bic

2
i = b2c

2
2 + b3c

2
3 + b4c

2
4 = 1/3 (1.11c)∑

i,j biaijcj = b3a32c2 + b4(a42c2 + a43c3) = 1/6 (1.11d)∑
i bic

3
i = b2c

3
2 + b3c

3
3 + b4c

3
4 = 1/4 (1.11e)∑

i,j biciaijcj = b3c3a32c2 + b4c4(a42c2 + a43c3) = 1/8 (1.11f)
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i,j biaijc

2
j = b3a32c

2
2 + b4

(
a42c

2
2 + a43c

2
3

)
= 1/12 (1.11g)∑

i,j,k biaijajkck = b4a43a32c2 = 1/24. (1.11h)

These computations, which are not reproduced in Kutta’s paper (they are, however,
in Heun 1900), are very tedious. And they grow enormously with higher orders.
We shall see in Section II.2 that by using an appropriate notation, they can become
very elegant.

Kutta gave the general solution of (1.11) without comment. A clear derivation
of the solutions is given in Runge & König (1924), p. 291. We shall follow here
the ideas of J.C. Butcher, which make clear the role of the so-called simplifying
assumptions, and will also apply to higher order cases.

Lemma 1.3. If

s∑
i=j+1

biaij = bj(1− cj), j = 1, . . . , s, (1.12)

then the equations (d), (g), and (h) in (1.11) follow from the others.

Proof . We demonstrate this for (g):∑
i,j

biaijc
2
j =
∑

j

bjc
2
j −
∑

j

bjc
3
j =

1
3
− 1

4
=

1
12

by (c) and (e). Equations (d) and (h) are derived similarly.

We shall now show that (1.12) is also necessary in our case:

Lemma 1.4. For s = 4 , the equations (1.11) and (1.9) imply (1.12).

The proof of this lemma will be based on the following:

Lemma 1.5. Let U and V be 3× 3 matrices such that

UV =

⎛⎝ a b 0
c d 0
0 0 0

⎞⎠ , det
(

a b
c d

)
�= 0. (1.13)

Then either V e3 = 0 or UT e3 = 0 where e3 = (0, 0, 1)T .

Proof of Lemma 1.5. If det U �= 0 , then UV e3 = 0 implies V e3 = 0 . If det U = 0 ,
there exists x = (x1, x2, x3)T �= 0 such that UT x = 0 , and therefore V T UT x = 0 .
But (1.13) implies that x must be a multiple of e3 .
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Proof of Lemma 1.4. Define

dj =
∑

i

biaij − bj(1− cj) for j = 1, . . . , 4,

so that we have to prove dj = 0 . We now introduce the matrices

U =

⎛⎝ b2 b3 b4

b2c2 b3c3 b4c4

d2 d3 d4

⎞⎠ , V =

⎛⎜⎝ c2 c2
2

∑
j a2jcj − c2

2/2

c3 c2
3

∑
j a3jcj − c2

3/2

c4 c2
4

∑
j a4jcj − c2

4/2

⎞⎟⎠ . (1.14)

Multiplication of these two matrices, using the conditions of (1.11), gives

UV =

⎛⎝ 1/2 1/3 0
1/3 1/4 0
0 0 0

⎞⎠ with det
(

1/2 1/3
1/3 1/4

)
�= 0.

Now the last column of V cannot be zero, since c1 = 0 implies∑
j

a2jcj − c2
2/2 = −c2

2/2 �= 0

by condition (h). Thus d2 =d3 =d4 =0 follows from Lemma 1.5. The last identity
d1 = 0 follows from d1 + d2 + d3 + d4 = 0 , which is a consequence of (1.11a,b)
and (1.9).

From Lemmas 1.3 and 1.4 we obtain

Theorem 1.6. Under the assumption (1.9) the equations (1.11) are equivalent to

b1 + b2 + b3 + b4 = 1 (1.15a)

b2c2 + b3c3 + b4c4 = 1/2 (1.15b)

b2c
2
2 + b3c

2
3 + b4c

2
4 = 1/3 (1.15c)

b2c
3
2 + b3c

3
3 + b4c

3
4 = 1/4 (1.15e)

b3c3a32c2 + b4c4(a42c2+a43c3) = 1/8 (1.15f)

b3a32 + b4a42 = b2(1− c2) (1.15i)

b4a43 = b3(1− c3) (1.15j)

0 = b4(1− c4). (1.15k)

It follows from (1.15j) and (1.11h) that

b3b4c2(1− c3) �= 0. (1.16)

In particular this implies c4 = 1 by (1.15k).
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Solution of equations (1.15). Equations (a)-(e) and (k) just state that bi and ci are
the coefficients of a fourth order quadrature formula with c1 = 0 and c4 = 1 . We
distinguish four cases for this:

1) c2 = u , c3 = v and 0, u, v, 1 are all distinct; (1.17)
then (a)-(e) form a regular linear system for b1, b2, b3, b4. This system has the so-
lution

b1 =
1− 2(u + v) + 6uv

12uv
, b2 =

2v− 1
12u(1−u)(v−u)

,

b3 =
1− 2u

12v(1− v)(v−u)
, b4 =

3− 4(u + v) + 6uv

12(1−u)(1− v)
.

Due to (1.16) we have to assume that u, v are such that b3 �= 0 and b4 �= 0 . The
three other cases with double nodes are built upon the Simpson rule:

2) c3 = 0 , c2 = 1/2 , b3 = w �= 0 , b1 = 1/6−w , b2 = 4/6 , b4 = 1/6 ;

3) c2 = c3 = 1/2 , b1 = 1/6 , b3 = w �= 0 , b2 = 4/6−w , b4 = 1/6 ;

4) c2 = 1 , c3 = 1/2 , b4 = w �= 0 , b2 = 1/6−w , b1 = 1/6 , b3 = 4/6 .
Once bi and ci are chosen, we obtain a43 from (j), and then (f) and (i) form a
linear system of two equations for a32 and a42 . The determinant of this system is

det
(

b3 b4

b3c3c2 b4c4c2

)
= b3b4c2(c4 − c3)

which is �= 0 by (1.16). Finally we obtain a21 , a31 , and a41 from (1.9).
Two particular choices of Kutta (1901) have become especially popular: case

(3) with w = 2/6 and case (1) with u = 1/3 , v = 2/3 . They are given in Table
1.2. Both methods generalize classical quadrature rules in keeping the same order.
The first is more popular, the second is more precise (“Wir werden diese Näherung
als im allgemeinen beste betrachten . . .”, Kutta).

Table 1.2. Kutta’s methods

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 2/6 2/6 1/6

“The” Runge-Kutta method

0

1/3 1/3

2/3 −1/3 1

1 1 −1 1

1/8 3/8 3/8 1/8

3/8–Rule
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“Optimal” Formulas

Much research has been undertaken, in order to choose the “best” possibilities from
the variety of possible 4 th order RK-formulas.

The first attempt in this direction was the very popular method of Gill (1951),
with the aim of reducing the need for computer storage (“registers”) as much as
possible. The first computers in the fifties largely used this method which is there-
fore of historical interest. Gill observed that most computer storage is needed for
the computation of k3 , where “registers are required to store in some form”

y0 + a31hk1 + a32hk2, y0 + a41hk1 + a42hk2, y0 + b1hk1 + b2hk2, hk3.

“Clearly, three registers will suffice for the third stage if the quantities to be stored
are linearly dependent, i.e., if”

det

⎛⎝ 1 a31 a32

1 a41 a42

1 b1 b2

⎞⎠= 0.

Gill observed that this condition is satisfied for the methods of type (3) if w =
(1+

√
0.5)/3. The resulting method can then be reformulated as follows (“As each

quantity is calculated it is stored in the register formerly holding the corresponding
quantity of the previous stage, which is no longer required”):

y := initial value, k := hf(y), y := y + 0.5k, q := k,

k := hf(y), y := y + (1−
√

0.5)(k− q),

q := (2−
√

2)k + (−2 + 3
√

0.5)q,

k := hf(y), y := y + (1 +
√

0.5)(k− q),

q := (2 +
√

2)k + (−2− 3
√

0.5)q,

k := hf(y), y := y +
k

6
− q

3
, (→ compute next step) .

(1.18)

Today, in large high-speed computers, this method is no longer used, but could still
be of interest for very high dimensional equations.

Other attempts have been made to choose u and v in (1.17), case (1), such that
the error terms (terms in h5 , see Section II.3) become as small as possible. We
shall discuss this question in Section II.3.
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Numerical Example

Zu grosses Gewicht darf man natürlich solchen Beispielen nicht
beilegen . . . (W. Kutta 1901)

We compare five different choices of 4 th order methods on the Van der Pol equation
(I.16.2) with ε = 1 . As initial values we take y1(0) = A , y2(0) = 0 on the limit
cycle and we integrate over one period T (the values of A and T are given in
Exercise I.16.1). For a comparison of these methods with lower order ones we have
also included the explicit Euler method, Runge’s method of order 2 and Heun’s
method of order 3 (see Table 1.1).

We have applied the methods with several fixed step sizes. The errors of both
components and the number of function evaluations ( fe) are displayed in logarith-
mic scales in Fig. 1.1. Whenever the error behaves like C · hp = C1 · (fe)−p , the
curves appear as straight lines with slope 1/p . We have chosen the scales such that
the theoretical slope of the 4 th order methods appears to be 45◦ .

These tests clearly show up the importance of higher order methods. Among
the various 4 th order methods there is usually no big difference. It is interesting to
note that in our example the method with the smallest error in y1 has the biggest
error in y2 and vice versa.

error of y

fe

EulerEuler

RungeRunge
HeunHeun

RK4RK4

error of y

fe

EulerEuler

RungeRunge
HeunHeun

RK4RK4

classical RK (left tableau of Table 1.2)
Kutta’s 3/8 rule (right tableau of Table 1.2)
optimal formula, Ex. 3a, II.3, u , v
Ralston (1962), Hull (1967), u , v
Gill’s Formula (1.18)

Fig. 1.1. Global errors versus number of function evaluations
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Exercises

1. Show that every s -stage explicit RK method of order s , when applied to the
problem y′ = λy (λ a complex constant), gives

y1 =
( s∑

j=0

zj

j!

)
y0, z = hλ.

Hint. Show first that y1/y0 must be a polynomial in z of degree s and then
determine its coefficients by comparing the derivatives of y1 , with respect to
h , to those of the true solution.

2. (Runge 1895, p. 175; see also the introduction to Adams methods in Chap.
III.1). The theoretical form of drops of fluids is determined by the differential
equation of Laplace (1805)

−z = α2 (K1 +K2)
2

(1.21)

where α is a constant, (K1 +K2)/2 the mean curvature, and z the height (see
Fig. 1.2). If we insert 1/K1 = r/ sin ϕ and K2 = dϕ/ds , the curvature of the
meridian curve, we obtain

−2z = α2
(sin ϕ

r
+

dϕ

ds

)
, (1.22)

where we put α = 1 . Add

dr

ds
= cos ϕ,

dz

ds
= − sin ϕ, (1.22’)

to obtain a system of three differential equations for ϕ(s) , r(s) , z(s) , s being
the arc length. Compute and plot different solution curves by the method of
Runge (1.4) with initial values ϕ(0) = 0 , r(0) = 0 and z(0) = z0 (z0 < 0
for lying drops; compute also hanging drops with appropriate sign changes in
(1.22)). Use different step sizes and compare the results.

Hint. Be careful at the singularity in the beginning: from (1.22) and (1.22’) we
have for small s that r = s , ϕ = ζs with ζ = −z0 , hence (sin ϕ)/r →−z0 .
A more precise analysis gives for small s the expansions (ζ = −z0 )

ϕ = ζs +
ζ

4
s3 +

( ζ

48
− ζ3

120

)
s5 + . . .

r = s− ζ2

6
s3 +

(
− ζ2

20
+

ζ4

120

)
s5 + . . .

z = −ζ − ζ

2
s2 +

(
− ζ

16
+

ζ3

24

)
s4 +

(
− ζ

288
+

ζ3

45
− ζ5

720

)
s6 + . . . .
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r

z

Fig. 1.2. Drops

3. Find the conditions for a 2-stage explicit RK-method to be of order two and
determine all such methods (“ . . . wozu eine weitere Erörterung nicht mehr
nötig ist”, Kutta).

4. Find all methods of order three with three stages (i.e., solve (1.11;a-d) with
b4 = 0 ).

Result. c2 = u , c3 = v , a32 = v(v−u)/(u(2− 3u)) , b2 = (2− 3v)/(6u(u−
v)) , b3 = (2− 3u)/(6v(v−u)) , b1 = 1− b2 − b3 , a31 = c3 − a32 , a21 = c2

(Kutta 1901, p. 438).

5. Construct all methods of order 2 of the form

0
c2 c2

c3 0 c3

0 0 1

Such methods “have the property that the corresponding Runge-Kutta pro-
cess requires relatively less storage in a computer” (Van der Houwen (1977),
§2.7.2). Apply them to y′ = λy and compare with Exercise 1.

6. Determine the conditions for order two of the RK methods with two stages
which do not satisfy the conditions (1.9):

k1 = f(x0 + c1h, y0)

k2 = f(x0 + c2h, y0 + a21hk1)

y1 = y0 +h (b1k1 + b2k2).

Discuss the use of this extra freedom for c1 and c2 (Oliver 1975).
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. . . I heard a lecture by Merson . . .
(J. Butcher’s first contact with RK methods)

In this section we shall derive the general structure of the order conditions (Merson
1957, Butcher 1963). The proof has evolved very much in the meantime, mainly
under the influence of Butcher’s later work, many personal discussions with him,
the proof of “Theorem 6” in Hairer & Wanner (1974), and our teaching experience.
We shall see in Section II.11 that exactly the same ideas of proof lead to a gen-
eral theorem of composition of methods (= B -series), which gives access to order
conditions for a much larger class of methods.

A big advantage is obtained by transforming (1.1) to autonomous form by ap-
pending x to the dependent variables as(

x
y

)′
=
(

1
f(x, y)

)
. (2.1)

The main difficulty in the derivation of the order conditions is to understand the
correspondence of the formulas to certain rooted labelled trees; this comes out
most naturally if we use well-chosen indices and tensor notation (as in Gill (1951),
Henrici (1962), p. 118, Gear (1971), p. 32). As is usual in tensor notation, we
denote (in this section) the components of vectors by superscript indices which, in
order to avoid confusion, we choose as capitals. Then (2.1) can be written as

(yJ)′ = fJ(y1, . . . , yn), J = 1, . . . , n. (2.2)

We next rewrite the method (1.8) for the autonomous differential equation (2.2).
In order to get a better symmetry in all formulas of (1.8), we replace ki by the
argument gi such that ki = f(gi) . Then (1.8) becomes

gJ
i = yJ

0 +
i−1∑
j=1

aijhfJ(g1
j , . . . , gn

j ), i = 1, . . . , s

yJ
1 = yJ

0 +
s∑

j=1

bjhfJ(g1
j , . . . , gn

j ).

(2.3)

If the system (2.2) originates from (2.1), then, for J = 1 ,

g1
i = y1

0 +
i−1∑
j=1

aijh = x0 + cih
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by (1.9). We see that (1.9) becomes a natural condition. If it is satisfied, then for
the derivation of order conditions only the autonomous equation (2.2) has to be
considered.

As indicated in Section II.1 we have to compare the Taylor series of yJ
1 with

that of the exact solution. Therefore we compute the derivatives of yJ
1 and gJ

i with
respect to h at h = 0 . Due to the similarity of the two formulas, it is sufficient to
do this for gJ

i . On the right hand side of (2.3) there appear expressions of the form
hϕ(h) , so we make use of Leibniz’ formula(

hϕ(h)
)(q)|h=0 = q · (ϕ(h)

)(q−1)|h=0. (2.4)

The reader is now asked to take a deep breath, take five sheets of reversed computer
paper, remember the basic rules of differential calculus, and begin the following
computations:

q = 0 : from (2.3)
(gJ

i )(0)|h=0 = yJ
0 . (2.5;0)

q = 1 : from (2.3) and (2.4)

(gJ
i )(1)|h=0 =

∑
j

aijf
J |y=y0

. (2.5;1)

q = 2 : because of (2.4) we shall need the first derivative of fJ(gj)(
fJ(gj)

)(1) =
∑
K

fJ
K(gj) · (gK

j )(1), (2.6;1)

where, as usual, fJ
K denotes ∂fJ/∂yK . Inserting formula (2.5;1) (with i, j, J

replaced by j, k, K ) into (2.6;1) we obtain with (2.4)

(gJ
i )(2)|h=0 = 2

∑
j,k

aijajk

∑
K

fJ
KfK |y=y0

. (2.5;2)

q = 3 : we differentiate (2.6;1) to obtain(
fJ(gj)

)(2) =
∑
K,L

fJ
KL(gj) · (gK

j )(1)(gL
j )(1) +

∑
K

fJ
K(gj)(g

K
j )(2). (2.6;2)

The derivatives (gK
j )(1) and (gK

j )(2) at h = 0 are already available in (2.5;1) and
(2.5;2). So we have from (2.3) and (2.4)

(gJ
i )(3)|h=0 = 3

∑
j,k,l

aijajkajl

∑
K,L

fJ
KLfKfL|y=y0

+ 3 · 2
∑
j,k,l

aijajkakl

∑
K,L

fJ
KfK

L fL|y=y0
.

(2.5;3)

The same formula holds for (yJ
1 )(3)|h=0 with aij replaced by bj .
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The Derivatives of the True Solution

The derivatives of the correct solution are obtained much more easily just by dif-
ferentiating equation (2.2): first

(yJ)(1) = fJ(y). (2.7;1)

Differentiating (2.2) and inserting (2.2) again for the derivatives we get

(yJ)(2) =
∑
K

fJ
K(y) · (yK)(1) =

∑
K

fJ
K(y)fK(y). (2.7;2)

Differentiating (2.7;2) again we obtain

(yJ)(3) =
∑
K,L

fJ
KL(y)fK(y)fL(y) +

∑
K,L

fJ
K(y)fK

L (y)fL(y). (2.7;3)

Conditions for Order 3

For order 3, the derivatives (2.5;1-3), (with aij replaced by bj ) must be equal to
the derivatives (2.7;1-3), and this for every differential equation. Thus, comparing
the corresponding expressions, we obtain:

Theorem 2.1. The RK method (2.3) (and thus (1.8)) is of order 3 iff∑
j

bj = 1,

3
∑
j,k,l

bjajkajl = 1,

2
∑
j,k

bjajk = 1,

6
∑
j,k,l

bjajkakl = 1.
(2.8)

Inserting
∑

k ajk = cj from (1.9), we can simplify these expressions still fur-
ther and obtain formulas (a)-(d) of (1.11).

Trees and Elementary Differentials

But without a more convenient notation, it would be difficult to
find the corresponding expressions . . . This, however, can be at
once effected by means of the analytical forms called trees . . .

(A. Cayley 1857)

The continuation of this process, although theoretically clear, soon leads to very
complicated formulas. It is therefore advantageous to use a graphical represen-
tation: indeed, the indices j, k, l and J, K, L in the terms of (2.5;3) are linked
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together as pairs of indices in ajk, ajl, . . . in exactly the same way as upper and
lower indices in the expressions fJ

KL , fJ
K , namely

t31 =
j

kl
and t32 =

j

k

l

(2.9)

for the first and second term respectively. We call these objects labelled trees, be-
cause they are connected graphs (trees) whose vertices are labelled with summation
indices. They can also be represented as mappings, e.g.,

l �→ j, k �→ j and l �→ k, k �→ j (2.9’)

for the above trees. This mapping indicates to which lower letter the corresponding
vertices are attached.

Definition 2.2. Let A be an ordered chain of indices A = {j < k < l < m < . . .}
and denote by Aq the subset consisting of the first q indices. A (rooted) labelled
tree of order q (q ≥ 1) is a mapping (the son-father mapping)

t : Aq \ {j}→ Aq

such that t(z) < z for all z ∈ Aq \ {j} . The set of all labelled trees of order q is
denoted by LTq . We call “z ” the son of “t(z)” and “t(z)” the father of “z ”. The
vertex “j ”, the forefather of the whole dynasty, is called the root of t . The order
q of a labelled tree is equal to the number of its vertices and is usually denoted by
q = �(t) .

Definition 2.3. For a labelled tree t ∈ LTq we call

F J(t)(y) =
∑

K,L,...

fJ
K,...(y)fK

... (y)fL
.. (y) · . . .

the corresponding elementary differential. The summation is over q− 1 indices
K, L, . . . (which correspond to Aq \ {j} ) and the summand is a product of q f ’s,
where the upper index runs through all vertices of t and the lower indices are the
corresponding sons. We denote by F (t)(y) the vector

(
F 1(t)(y), . . . , Fn(t)(y)

)
.

If the set Aq is written as

Aq = {j1 < j2 < . . . < jq}, (2.10)

then we can write the definition of F (t) as follows:

F J1(t) =
∑

J2,...,Jq

q∏
i=1

fJi

t−1(Ji)
, (2.11)

since the sons of an index are its inverse images under the map t .
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Examples of elementary differentials are∑
K,L

fJ
KLfKfL and

∑
K,L

fJ
KfK

L fL

for the labelled trees t31 and t32 above. These expressions appear in formulas
(2.5;3) and (2.7;3).

The three labelled trees

j

k

l

m

j

k

m

l

j

l

m

k (2.12)

all look topologically alike, moreover the corresponding elementary differentials∑
K,L,M

fJ
KMfMfK

L fL,
∑

K,L,M

fJ
KLfLfK

MfM ,
∑

K,L,M

fJ
LKfKfL

MfM (2.12’)

are the same, because they just differ by an exchange of the summation indices.
Thus we give

Definition 2.4. Two labelled trees t and u are equivalent, if they have the same
order, say q , and if there exists a permutation σ : Aq →Aq, such that σ(j)= j and
tσ = σu on Aq \ {j}.

This clearly defines an equivalence relation.

Definition 2.5. An equivalence class of q th order labelled trees is called a (rooted)
tree of order q . The set of all trees of order q is denoted by Tq . The order of a tree
is defined as the order of a representative and is again denoted by �(t) . Furthermore
we denote by α(t) (for t ∈ Tq ) the number of elements in the equivalence class t ;
i.e., the number of possible different monotonic labellings of t .

Geometrically, a tree is distinguished from a labelled tree by omitting the la-
bels. Often it is advantageous to include ∅ , the empty tree, as the only tree of
order 0 . The only tree of order 1 is denoted by τ . The number of trees of orders
1, 2, . . . , 10 are given in Table 2.1. Representatives of all trees of order ≤ 5 are
shown in Table 2.2.

Table 2.1. Number of trees up to order 10

q 1 2 3 4 5 6 7 8 9 10

card(Tq) 1 1 2 4 9 20 48 115 286 719
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Table 2.2. Trees and elementary differentials up to order 5

q t graph γ(t) α(t) FJ (t)(y) Φj (t)

0 ∅ ∅ 1 1 yJ

1 τ 1 1 fJ 1

2 t21 2 1
∑

K fJ
KfK ∑

k ajk

3 t31 3 1
∑

K,L fJ
KLfKfL ∑

k,l ajkajl

t32 6 1
∑

K,L fJ
KfK

L fL ∑
k,l ajkakl

4 t41 4 1
∑

K,L,M fJ
KLMfKfLfM ∑

k,l,m ajkajlajm

t42 8 3
∑

K,L,M fJ
KMfK

L fLfM ∑
k,l,m ajkaklajm

t43 12 1
∑

K,L,M fJ
KfK

LMfLfM
∑

k,l,m ajkaklakm

t44 24 1
∑

K,L,M fJ
KfK

L fL
MfM ∑

k,l,m ajkaklalm

5 t51 5 1
∑

fJ
KLMP fKfLfMfP ∑

ajkajlajmajp

t52 10 6
∑

fJ
KMP fK

L fLfMfP ∑
ajkaklajmajp

t53 15 4
∑

fJ
KP fK

MLfLfMfP ∑
ajkaklakmajp

t54 30 4
∑

fJ
KP fK

L fL
MfMfP ∑

ajkaklalmajp

t55 20 3
∑

fJ
KMfK

L fLfM
P fP ∑

ajkaklajmamp

t56 20 1
∑

fJ
KfK

LMP fLfMfP
∑

ajkaklakmakp

t57 40 3
∑

fJ
KfK

LP fL
MfMfP ∑

ajkaklalmakp

t58 60 1
∑

fJ
KfK

L fL
MP fMfP ∑

ajkaklalmalp

t59

j

j
k

l
j

k

j
k

l

m

j
kl

m

j
k

l

m

k
l

j

j
k

l
m

p

j

m kl

p

j
k

l
m

p

j
k

m l

p

j
k

l
m

p

m
j

k
l

p

k
lm

jp
k

l

m

j
p

l
m

k
j

j
k

l
m

p

120 1
∑

fJ
KfK

L fL
MfM

P fP
∑

ajkaklalmamp

The Taylor Expansion of the True Solution

We can now state the general result for the q th derivative of the true solution:

Theorem 2.6. The exact solution of (2.2) satisfies

(y)(q)(x0) =
∑

t∈LTq

F (t)(y0) =
∑
t∈Tq

α(t)F (t)(y0). (2.7;q)
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Proof. The theorem is true for q=1, 2, 3 (see (2.7;1-3) above). For the computation
of, say, the 4 th derivative, we have to differentiate (2.7;3). This consists of two
terms (corresponding to the two trees of (2.9)), each of which contains three factors
f ...

... (corresponding to the three nodes of these trees). The differentiation of these
by Leibniz’ rule and insertion of (2.2) for the derivatives is geometrically just the
addition of a new branch with a new summation letter to each vertex (Fig. 2.1).

j

j

k

l

j

k

j

k
l

m

j

kl l

j

k
m

k

j

l
m

m

j

k
l m

k

l

j j

k
l

m

Fig. 2.1. Derivatives of exact solution

It is clear that by this process all labelled trees of order q appear for the q th
derivative, each of them exactly once.

If we group together the terms with identical elementary differentials, we ob-
tain the second expression of (2.7;q).

Faà di Bruno’s Formula

Our next goal will be the computation of the q th derivative of the numerical solu-
tion y1 and of the gj . For this, we have first to generalize the formulas (2.6;1) (the
chain rule) and (2.6;2) for the q th derivative of the composition of two functions.
We represent these two formulas graphically in Fig. 2.2.

Formula (2.6;2) consists of two terms; the first term contains three factors,
the second contains only two. Here the node “ l” is a “dummy” node, not really
present in the formula, and just indicates that we have to take the second derivative.
The derivation of (2.6;2) will thus lead to five terms which we write down for the
convenience of the reader (but not for the convenience of the printer . . .)
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Fig. 2.2. Derivatives of fJ (g)

(fJ(g))(3) =
∑

K,L,M

fJ
KLM (g) · (gK)(1)(gL)(1)(gM)(1)

+
∑
K,L

fJ
KL(g) · (gK)(2)(gL)(1) +

∑
K,L

fJ
KL(g) · (gK)(1)(gL)(2)

+
∑
K,M

fJ
KM (g) · (gK)(2)(gM )(1) +

∑
K

fJ
K(g) · (gK)(3).

(2.6;3)

The corresponding trees are represented in the third line of Fig. 2.2. Each time we
differentiate, we have to
i) differentiate the first factor fJ

K... ; i.e., we add a new branch to the root j ;
ii) increase the derivative numbers of each of the g ’s by 1; we represent this by
lengthening the corresponding branch.
Each time we add a new label. All trees which are obtained in this way are those
“special” trees which have no ramifications except at the root.

Definition 2.7. We denote by LSq the set of special labelled trees of order q which
have no ramifications except at the root.

Lemma 2.8 (Faà di Bruno’s formula). For q ≥ 1 we have

(fJ(g))(q−1) =
∑

u∈LSq

∑
K1,...,Km

fJ
K1,...,Km

(g) · (gK1)(δ1) . . . (gKm)(δm) (2.6;q-1)

Here, for u ∈ LSq , m is the number of branches leaving the root and δ1, . . . , δm

are the numbers of nodes in each of these branches, such that q=1+δ1 + . . .+δm .

Remark. The usual multinomial coefficients are absent here, as we use labelled
trees.
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The Derivatives of the Numerical Solution

It is difficult to keep a cool head when discussing the various
derivatives . . . (S. Gill 1956)

In order to generalize (2.5;1-3), we need the following definitions:

Definition 2.9. Let t be a labelled tree with root j ; we denote by

Φj(t) =
∑
k,l,...

ajka... . . .

the sum over the q− 1 remaining indices k, l, . . . (as in Definition 2.3). The sum-
mand is a product of q− 1 a ’s, where all fathers stand two by two with their sons
as indices. If the set Aq is written as in (2.10), we have

Φj1
(t) =

∑
j2,...,jq

at(j2),j2
. . . at(jq),jq

. (2.13)

Definition 2.10. For t ∈ LTq let γ(t) be the product of �(t) and all orders of
the trees which appear, if the roots, one after another, are removed from t . (See
Fig. 2.3 or formula (2.17)).

t

Fig. 2.3. Example for the definition of γ(t)

The above expressions are of course independent of the labellings, so Φj(t) as
well as γ(t) also make sense in Tq . Examples are given in Table 2.2.

Theorem 2.11. The derivatives of gi satisfy

g
(q)
i |h=0 =

∑
t∈LTq

γ(t)
∑

j

aijΦj(t)F (t)(y0). (2.5;q)

The numerical solution y1 of (2.3) satisfies

y
(q)
1

∣∣
h=0

=
∑

t∈LTq

γ(t)
∑

j

bjΦj(t)F (t)(y0)

=
∑
t∈Tq

α(t)γ(t)
∑

j

bjΦj(t)F (t)(y0).
(2.14)
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Proof. Because of the similarity of y1 and gi (see (2.3)) we only have to prove
the first equation. We do this by induction on q , in exactly the same way as we
obtained (2.5;1-3): we first apply Leibniz’ formula (2.4) to obtain

(gJ
i )(q)

∣∣
h=0

= q
∑

j

aij

(
fJ(gj)

)(q−1)∣∣
y=y0

. (2.15)

Next we use Faà di Bruno’s formula (Lemma 2.8). Finally we insert for the deriva-
tives (gKs

j )(δs) , which appear in (2.6;q-1) with δs < q , the induction hypothesis
(2.5;1) - (2.5;q-1) and rearrange the sums. This gives

(gJ
i )(q)

∣∣
h=0

= q
∑

u∈LSq

∑
t1∈LTδ1

. . .
∑

tm∈LTδm

γ(t1) . . . γ(tm)·
∑

j

aij

∑
k1

ajk1
Φk1

(t1) . . .
∑
km

ajkm
Φkm

(tm)·
∑

K1,...,Km

fJ
K1,...,Km

(y0)F
K1(t1)(y0) . . . FKm(tm)(y0).

(2.16)

The main difficulty is now to understand that to each tuple

(u, t1, . . . , tm) with u ∈ LSq, ts ∈ LTδs

there corresponds a labelled tree t ∈ LTq such that

γ(t) = q · γ(t1) . . . γ(tm) (2.17)

F J (t)(y) =
∑

K1,...,Km

fJ
K1,...,Km

(y)FK1(t1)(y) . . .FKm(tm)(y) (2.18)

Φj(t) =
∑

k1,...,km

ajk1
. . . ajkm

Φk1
(t1) . . .Φkm

(tm). (2.19)

This labelled tree t is obtained if the branches of u are replaced by the trees
t1, . . . , tm and the corresponding labels are taken over in a natural way, i.e., in
the same order (see Fig. 2.4 for some examples).

In this way, all trees t ∈ LTq appear exactly once. Thus (2.16) becomes (2.5;q)
after inserting (2.17), (2.18) and (2.19).

The above construction of t can also be used for a recursive definition of trees.
We first observe that the equivalence class of t (in Fig. 2.4) depends only on the
equivalence classes of t1, . . . , tm .

Definition 2.12. We denote by

t = [t1, . . . , tm] (2.20)

the tree, which leaves over the trees t1, . . . , tm when its root and the adjacent
branches are chopped off (Fig. 2.5).
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Fig. 2.4. Example for the bijection (u, t1, . . . , tm) ↔ t

t t t t ,t

Fig. 2.5. Recursive definition of trees

With (2.20) all trees can be expressed in terms of τ ; e.g., t21 =[τ ] , t31 =[τ, τ ] ,
t32 = [[τ ]] , . . . , etc.

The Order Conditions

Comparing Theorems 2.6 and 2.11 we now obtain:

Theorem 2.13. A Runge-Kutta method (1.8) is of order p iff

s∑
j=1

bjΦj(t) =
1

γ(t)
(2.21)

for all trees of order ≤ p.

Proof. While the “if” part is clear from the preceding discussion, the “only if”
part needs the fact that the elementary differentials for different trees are actually
independent. See Exercises 3 and 4 below.
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From Table 2.1 we then obtain the following number of order conditions (see
Table 2.3). One can thus understand that the construction of higher order Runge
Kutta formulas is not an easy task.

Table 2.3. Number of order conditions

order p 1 2 3 4 5 6 7 8 9 10

no. of conditions 1 2 4 8 17 37 85 200 486 1205

Example. For the tree t42 of Table 2.2 we have (using (1.9) for the second expres-
sion) ∑

j,k,l,m

bjajkajlakm =
∑
j,k

bjajkcjck =
1
8
,

which is (1.11;f). All remaining conditions of (1.11) correspond to the other trees
of order ≤ 4 .

Exercises

1. Find all trees of order 6 and order 7.

Hint. Search for all representations of p− 1 as a sum of positive integers, and
then insert all known trees of lower order for each term in the sum. You may
also use a computer for general p .

2. (A. Cayley 1857). Denote the number of trees of order q by aq . Prove that

a1 + a2x + a3x
2 + a4x

3 + . . . = (1−x)−a1(1−x2)−a2(1−x3)−a3 . . . .

Compare the result with Table 2.1.

3. Compute the elementary differentials of Table 2.2 for the case of the scalar
non-autonomous equation (2.1), i.e., f1 = 1 , f2 = f(x, y) . One imagines the
complications met by the first authors (Kutta, Nyström, Huťa) in looking for
higher order conditions. Observe also that in this case the expressions for t54
and t57 are the same, so that here Theorem 2.13 is sufficient, but not necessary
for order 5.

Hint. For, say, t54 we have non-zero derivatives only if K = L = 2 . Letting
M and P run from 1 to 2 we then obtain

F 2(t) = (fx + ffy)(fyx + ffyy)fy

(see also Butcher 1963a).
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4. Show that for every t ∈ Tq there is a system of differential equations such that
F 1(t)(y0) = 1 and F 1(u)(y0) = 0 for all other trees u .

Hint. For t54 this system would be

y′
1 = y2y5, y′

2 = y3, y′
3 = y4, y′

4 = 1, y′
5 = 1

with all initial values = 0 . Understand this and the general formula

y′
father =

∏
ysons.

5. Kutta (1901) claimed that the scheme given in Table 2.4 is of order 5. Was he
correct in his statement? Try to correct these values.

Result. The values for a6j(j = 1, . . . , 5) should read (6, 36, 10, 8, 0)/75 ; the
correct values for bj are (23, 0, 125, 0,−81, 125)/192 (Nyström 1925).

Table 2.4. A method of Kutta

0

1
3

1
3

2
5

4
25

6
25

1
1
4

−3
15
4

2
3

6
81

90
81

−50
81

8
81

4
5

7
30

18
30

− 5
30

4
30

0

48
192

0
125
192

0 − 81
192

100
192

6. Verify
∑

�(t)=p

α(t) = (p− 1)!

7. Prove that a Runge-Kutta method, when applied to a linear system

y′ = A(x)y + g(x), (2.22)

is of order p iff ∑
j bjc

q−1
j = 1/q for q ≤ p∑

j,k bjc
q−1
j ajkcr−1

k = 1/
(
(q + r)r

)
for q + r ≤ p∑

j,k,l bjc
q−1
j ajkcr−1

k aklc
s−1
l = 1/

(
(q + r + s)(r + s)s

)
for q + r + s ≤ p

. . . etc (write (2.22) in autonomous form and investigate which elementary
differentials vanish identically; see also Crouzeix 1975).



II.3 Error Estimation and Convergence
for RK Methods

Es fehlt indessen noch der Beweis dass diese Näherungs-Ver-
fahren convergent sind oder, was practisch wichtiger ist, es fehlt
ein Kriterium, um zu ermitteln, wie klein die Schritte gemacht
werden müssen, um eine vorgeschriebene Genauigkeit zu erre-
ichen. (Runge 1905)

Since the work of Lagrange (1797) and, above all, of Cauchy, a numerically es-
tablished result should be accompanied by a reliable error estimation (“ . . . l’erreur
commise sera inférieure à . . .”). Lagrange gave the well-known error bounds for
the Taylor polynomials and Cauchy derived bounds for the error of the Euler poly-
gons (see Section I.7). A couple of years after the first success of the Runge-Kutta
methods, Runge (1905) also required error estimates for these methods.

Rigorous Error Bounds

Runge’s device for obtaining bounds for the error in one step (“local error”) can be
described in a few lines (free translation):

“For a method of order p consider the local error

e(h) = y(x0 +h)− y1 (3.1)

and use its Taylor expansion

e(h) = e(0) +he′(0) + . . .+
hp

p!
e(p)(θh) (3.2)

with 0 < θ < 1 and e(0) = e′(0) = . . . = e(p)(0) = 0. Now compute explicitly
e(p)(h) , which will be of the form

e(p)(h) = E1(h) +hE2(h), (3.3)

where E1(h) and E2(h) contain partial derivatives of f up to order p− 1 and
p respectively. Further, because of e(p)(0) = 0 , we have E1(0) = 0 . Thus, if all
partial derivatives of f up to order p are bounded, we have E1(h) = O(h) and
E2(h) = O(1) . So there is a constant C such that |e(p)(h)| ≤ Ch and

|e(h)| ≤ C
hp+1

p!
. ” (3.4)
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A slightly different approach is adopted by Bieberbach (1923, 1. Abschn., Kap.
II, §7), explained in more detail in Bieberbach (1951): we write

e(h) = y(x0 +h)− y1 = y(x0 +h)− y0 −h

s∑
i=1

biki (3.5)

and use the Taylor expansions

y(x0 +h) = y0 + y′(x0)h + y′′(x0)
h2

2!
+ . . .+ y(p+1)(x0 + θh)

hp+1

(p + 1)!

ki(h) = ki(0) + k′
i(0)h + . . .+ k

(p)
i (θih)

hp

p!
, (3.6)

where, for vector valued functions, the formula is valid componentwise with possi-
bly different θ ’s. The first terms in the h expansion of (3.5) vanish because of the
order conditions. Thus we obtain

Theorem 3.1. If the Runge-Kutta method (1.8) is of order p and if all partial
derivatives of f(x, y) up to order p exist (and are continuous), then the local error
of (1.8) admits the rigorous bound

‖y(x0 +h)− y1‖ ≤ hp+1
( 1

(p + 1)!
max
t∈[0,1]

‖y(p+1)(x0 + th)‖

+
1
p!

s∑
i=1

|bi| max
t∈[0,1]

‖k(p)
i (th)‖

) (3.7)

and hence also
‖y(x0 +h)− y1‖ ≤ Chp+1. (3.8)

Let us demonstrate this result on Runge’s first method (1.4), which is of order
p = 2 , applied to a scalar differential equation. Differentiating (1.1) we obtain

y(3)(x) =
(
fxx + 2fxyf + fyyf2 + fy(fx + fyf)

)(
x, y(x)

)
(3.9)

while the second derivative of k2(h) = f(x0 + h
2 , y0 + h

2 f0) is given by

k
(2)
2 (h) =

1
4

(
fxx

(
x0 +

h

2
, y0 +

h

2
f0

)
+ 2fxy(...)f0 + fyy(...)f2

0

)
(3.10)

(f0 stands for f(x0, y0) ). Under the assumptions of Theorem 3.1 we see that the
expressions (3.9) and (3.10) are bounded by a constant independent of h , which
gives (3.8).
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The Principal Error Term

For higher order methods rigorous error bounds, like (3.7), become very unprac-
tical. It is therefore much more realistic to consider the first non-zero term in the
Taylor expansion of the error. For autonomous systems of equations (2.2), the error
term is best obtained by subtracting the Taylor series and using (2.14) and (2.7;q).

Theorem 3.2. If the Runge-Kutta method is of order p and if f is (p + 1) -times
continuously differentiable, we have

yJ(x0 +h)− yJ
1 =

hp+1

(p + 1)!

∑
t∈Tp+1

α(t)e(t)F J(t)(y0) +O(hp+2) (3.11)

where

e(t) = 1− γ(t)
s∑

j=1

bjΦj(t). (3.12)

γ(t) and Φj(t) are given in Definitions 2.9 and 2.10; see also formulas (2.17)
and (2.19). The expressions e(t) are called the error coefficients.

Example 3.3. For the two-parameter family of 4 th order RK methods (1.17) the
error coefficients for the 9 trees of Table 2.2 are (c2 = u , c3 = v ):

e(t51) = −1
4

+
5
12

(u + v)− 5
6

uv, e(t52) =
5
12

v− 1
4
,

e(t53) =
5
8

u− 1
4
, e(t54) = −1

4
,

e(t55) = 1− 5(b4 + b3(3− 4v)2)
144b3b4(1− v)2

,

e(t56) = −4e(t51), e(t57) = −4e(t52),

e(t58) = −4e(t53), e(t59) = −4e(t54).

(3.13)

Proof. The last four formulas follow from (1.12). e(t59) is trivial, e(t58) and
e(t57) follow from (1.11h). Further

e(t51) = 5
∫ 1

0

t(t− 1)(t−u)(t− v) dt

expresses the quadrature error. For e(t55) one best introduces c′i =
∑

j aijcj such
that e(t55) = 1− 20

∑
i bic

′
ic

′
i . Then from (1.11d,f) one obtains

c′1 = c′2 = 0, b3c
′
3 =

1
24(1− v)

, b4c
′
4 =

3− 4v

24(1− v)
.
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For the classical 4 th order method (Table 1.2a) these error coefficients are
given by Kutta (1901), p. 448 (see also Lotkin 1951) as follows(

− 1
24

,− 1
24

,
1
16

,−1
4
,−2

3
,

1
6
,

1
6
,−1

4
, 1
)

Kutta remarked that for the second method (Table 1.2b) (“Als besser noch erweist
sich . . .”) the error coefficients become(

− 1
54

,
1
36

,− 1
24

,−1
4
,−1

9
,

2
27

,−1
9
,

1
6
, 1
)

which, with the exception of the 4 th and 9 th term, are all smaller than for the above
method. A tedious calculation was undertaken by Ralston (1962) (and by many
others) to determine optimal coefficients of (1.17). For solutions which minimize
the constants (3.13), see Exercise 3 below.

Estimation of the Global Error

Das war auch eine aufregende Zeit . . . (P. Henrici 1983)

The global error is the error of the computed solution after several steps. Suppose
that we have a one-step method which, given an initial value (x0, y0) and a step
size h , computes a numerical solution y1 approximating y(x0 +h) . We shall
denote this process by Henrici’s notation

y1 = y0 +hΦ(x0, y0, h) (3.14)

and call Φ the increment function of the method.
The numerical solution for a point X > x0 is then obtained by a step-by-step

procedure

yi+1 = yi +hiΦ(xi, yi, hi), hi = xi+1 −xi, xN = X (3.15)

and our task is to estimate the global error

E = y(X)− yN . (3.16)

This estimate is found in a simple way, very similar to Cauchy’s convergence proof
for Theorem 7.3 of Chapter I: the local errors are transported to the final point xN

and then added up. This “error transport” can be done in two different ways:
a) either along the exact solution curves (see Fig. 3.1); this method can yield

sharp results when sharp estimates of error propagation for the exact solutions
are known, e.g., from Theorem 10.6 of Chapter I based on the logarithmic norm
μ(∂f/∂y).

b) or along N − i steps of the numerical method (see Fig. 3.2); this is the
method used in the proofs of Cauchy (1824) and Runge (1905), it generalizes eas-
ily to multistep methods (see Chapter III) and will be an important tool for the
existence of asymptotic expansions (see II.8).
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Fig. 3.1. Global error estimation, Fig. 3.2. Global error estimation,
method (a) method (b)

In both cases we first estimate the local errors ei with the help of Theorem 3.1
to obtain

‖ei‖ ≤ C · hp+1
i−1 . (3.17)

Warning. The ei of Fig. 3.1 and Fig. 3.2, for i �= 1 , are not the same, but they
allow similar estimates.

We then estimate the transported errors Ei : for method (a) we use the known
results from Chapter I, especially Theorem I.10.6, Theorem I.10.2, or formula
(I.7.17). The result is

Theorem 3.4. Let U be a neighbourhood of {(x, y(x))|x0 ≤ x ≤ X} where y(x)
is the exact solution of (1.1). Suppose that in U∥∥∥∂f

∂y

∥∥∥≤ L or μ
(∂f

∂y

)
≤ L, (3.18)

and that the local error estimates (3.17) are valid in U. Then the global error (3.16)
can be estimated by

‖E‖ ≤ hp C′

L

(
exp
(
L(X −x0)

)− 1
)

(3.19)

where h = maxhi ,

C′ =
{

C L ≥ 0
C exp(−Lh) L < 0 ,

and h is small enough for the numerical solution to remain in U .

Remark. For L → 0 the estimate (3.19) tends to hp C (xN −x0).
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Proof. From Theorem I.10.2 (with ε = 0 ) or Theorem I.10.6 (with δ = 0 ) we
obtain

‖Ei‖ ≤ exp
(
L(xN −xi)

)‖ei‖. (3.20)

We then insert this together with (3.17) into

‖E‖ ≤
N∑

i=1

‖Ei‖.

Using hp+1
i−1 ≤ hp · hi−1 this leads to

‖E‖ ≤ hpC
(
h0 exp

(
L(xN −x1)

)
+h1 exp

(
L(xN −x2)

)
+ . . .

)
.

The expression in large brackets can be bounded by∫ xN

x0

exp(L(xN −x))dx for L ≥ 0 (3.21)

∫ xN

x0

exp(L(xN −h−x))dx for L < 0 (3.22)

(see Fig. 3.3). This gives (3.19).

x x x  . . . xN xN

x

e L xN - x

x x x  . . . xN xN

x

e L xN - h - x

e L xN - x

Fig. 3.3. Estimation of Riemann sums

For the second method (b) we need an estimate for ‖zi+1 − yi+1‖ in terms of
‖zi − yi‖ , where, besides (3.15),

zi+1 = zi +hiΦ(xi, zi, hi)

is a second pair of numerical solutions. For RK-methods zi+1 is defined by

	1 = f(xi, zi),

	2 = f(xi + c2hi, zi +hia21	1), etc.
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We now subtract formulas (1.8) from this and obtain

‖	1 − k1‖ ≤ L‖zi − yi‖,
‖	2 − k2‖ ≤ L(1 + |a21|hiL)‖zi − yi‖, etc.

This leads to the following

Lemma 3.5. Let L be a Lipschitz constant for f and let hi ≤ h . Then the incre-
ment function Φ of method (1.8) satisfies

‖Φ(xi, zi, hi)−Φ(xi, yi, hi)‖ ≤ Λ‖zi − yi‖ (3.23)

where

Λ = L
(∑

i

|bi|+hL
∑
i,j

|biaij |+h2L2
∑
i,j,k

|biaijajk|+ . . .
)
. (3.24)

From (3.23) we obtain

‖zi+1 − yi+1‖ ≤ (1 +hiΛ)‖zi − yi‖ ≤ exp(hiΛ)‖zi − yi‖ (3.25)

and for the errors in Fig. 3.2,

‖Ei‖ ≤ exp
(
Λ(xN −xi)

)‖ei‖ (3.26)

instead of (3.20). The same proof as for Theorem 3.4 now gives us

Theorem 3.6. Suppose that the local error satisfies, for initial values on the exact
solution,

‖y(x +h)− y(x)−hΦ(x, y(x), h)‖≤ Chp+1, (3.27)

and suppose that in a neighbourhood of the solution the increment function Φ
satisfies

‖Φ(x, z, h)−Φ(x, y, h)‖≤ Λ‖z− y‖. (3.28)

Then the global error (3.16) can be estimated by

‖E‖ ≤ hp C

Λ

(
exp
(
Λ(xN −x0)

)− 1
)

(3.29)

where h = maxhi .
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Exercises

1. (Runge 1905). Show that for explicit Runge Kutta methods with bi≥0 , aij ≥0
(all i, j ) of order s the Lipschitz constant Λ for Φ satisfies

1 +hΛ < exp(hL)

and that (3.29) is valid with Λ replaced by L .

2. Show that e(t55) of (3.13) becomes

e(t55) = 1− 5
(4v2 − 15v + 9)−u(6v2 − 42v + 27)−u2(26v− 18)

12(1− 2u)(6uv− 4(u + v) + 3)

after inserting (1.17).

3. Determine u and v in (1.17) such that in (3.13)

a) maxi=5,6,7,8 |e(t5i)| = min b)
∑9

i=1 |e(t5i)| = min

c) maxi=5,6,7,8 α(t5i) |e(t5i)| = min d)
∑9

i=1 α(t5i) |e(t5i)| = min

Results.
a) u = 0.3587, v = 0.6346, min = 0.1033;
b) u = 0.3995, v = 0.6, min = 1.55;
c) u = 0.3501, v = 0.5839, min = 0.1248;
d) u = 0.3716, v = 0.6, min = 2.53.

Such optimal formulas were first studied by Ralston (1962), Hull & Johnston
(1964), and Hull (1967).

4. Apply an explicit Runge-Kutta method to the problem y′ = f(x, y) , y(0) = 0 ,
where

f(x, y) =

⎧⎨⎩
λ

x
y + g(x) if x > 0

(1−λ)−1g(0) if x = 0,

λ ≤ 0 and g(x) is sufficiently differentiable (see Exercise 10 of Section I.5).

a) Show that the error after the first step is given by

y(h)− y1 = C2h
2g′(0) +O(h3)

where C2 is a constant depending on λ and on the coefficients of the
method. Also for high order methods we have in general C2 �= 0 .

b) Compute C2 for the classical 4 th order method (Table 1.2).
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Ich glaube indessen, dass ein practischer Rechner sich meistens
mit der geringeren Sicherheit begnügen wird, die er aus der Ue-
bereinstimmung seiner Resultate für grössere und kleinere Schritte
gewinnt. (C. Runge 1895)

Even the simplified error estimates of Section II.3, which are content with the lead-
ing error term, are of little practical interest, because they require the computation
and majorization of several partial derivatives of high orders. But the main advan-
tage of Runge-Kutta methods, compared with Taylor series, is precisely that the
computation of derivatives should be no longer necessary. However, since prac-
tical error estimates are necessary (on the one hand to ensure that the step sizes
hi are chosen sufficiently small to yield the required precision of the computed
results, and on the other hand to ensure that the step sizes are sufficiently large to
avoid unnecessary computational work), we shall now discuss alternative methods
for error estimates.

The oldest device, used by Runge in his numerical examples, is to repeat the
computations with halved step sizes and to compare the results: those digits which
haven’t changed are assumed to be correct (“ . . . woraus ich schliessen zu dürfen
glaube . . .”).

Richardson Extrapolation

. . . its usefulness for practical computations can hardly be over-
estimated. (G. Birkhoff & G.C. Rota)

The idea of Richardson, announced in his classical paper Richardson (1910) which
treats mainly partial differential equations, and explained in full detail in Richard-
son (1927), is to use more carefully the known behaviour of the error as a function
of h .

Suppose that, with a given initial value (x0, y0) and step size h , we compute
two steps, using a fixed Runge-Kutta method of order p , and obtain the numerical
results y1 and y2 . We then compute, starting from (x0, y0) , one big step with step
size 2h to obtain the solution w . The error of y1 is known to be (Theorem 3.2)

e1 = y(x0 +h)− y1 = C · hp+1 +O(hp+2) (4.1)

where C contains the error coefficients of the method and the elementary differ-
entials F J (t)(y0) of order p + 1 . The error of y2 is composed of two parts: the
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transported error of the first step, which is(
I +h

∂f

∂y
+O(h2)

)
e1,

and the local error of the second step, which is the same as (4.1), but with the
elementary differentials evaluated at y1 = y0 +O(h) . Thus we obtain

e2 = y(x0 + 2h)− y2 =
(
I +O(h)

)
Chp+1 +

(
C +O(h)

)
hp+1 +O(hp+2)

= 2Chp+1 +O(hp+2). (4.2)

Similarly to (4.1), we have for the big step

y(x0 + 2h)−w = C(2h)p+1 +O(hp+2). (4.3)

Neglecting the terms O(hp+2) , formulas (4.2) and (4.3) allow us to eliminate the
unknown constant C and to “extrapolate” a better value ŷ2 for y(x0 + 2h) , for
which we obtain:

Theorem 4.1. Suppose that y2 is the numerical result of two steps with step size h
of a Runge-Kutta method of order p , and w is the result of one big step with step
size 2h . Then the error of y2 can be extrapolated as

y(x0 + 2h)− y2 =
y2 −w

2p − 1
+O(hp+2) (4.4)

and

ŷ2 = y2 +
y2 −w

2p − 1
(4.5)

is an approximation of order p + 1 to y(x0 + 2h) .

Formula (4.4) is a very simple device to estimate the error of y2 and formula
(4.5) allows one to increase the precision by one additional order (“ . . . The better
theory of the following sections is complicated, and tends thereby to suggest that
the practice may also be complicated; whereas it is really simple.” Richardson).

Embedded Runge-Kutta Formulas

Scraton is right in his criticism of Merson’s process, although
Merson did not claim as much for his process as some people
expect. (R. England 1969)

The idea is, rather than using Richardson extrapolation, to construct Runge-Kutta
formulas which themselves contain, besides the numerical approximation y1 , a
second approximation ŷ1 . The difference then yields an estimate of the local error
for the less precise result and can be used for step size control (see below). Since
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it is at our disposal at every step, this gives more flexibility to the code and makes
step rejections less expensive.

We consider two Runge-Kutta methods (one for y1 and one for ŷ1 ) such that
both use the same function values. We thus have to find a scheme of coefficients
(see (1.8’)),

0
c2 a21

c3 a32 a32

...
...

. . .

cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

b̂1 b̂2 . . . b̂s−1 b̂s

(4.6)

such that
y1 = y0 +h(b1k1 + . . .+ bsks) (4.7)

is of order p , and
ŷ1 = y0 +h(b̂1k1 + . . .+ b̂sks) (4.7’)

is of order p̂ (usually p̂ = p− 1 or p̂ = p + 1 ). The approximation y1 is used to
continue the integration.

From Theorem 2.13, we have to satisfy the conditions
s∑

j=1

bjΦj(t) =
1

γ(t)
for all trees of order ≤ p , (4.8)

s∑
j=1

b̂jΦj(t) =
1

γ(t)
for all trees of order ≤ p̂ . (4.8’)

The first methods of this type were proposed by Merson (1957), Ceschino (1962),
and Zonneveld (1963). Those of Merson and Zonneveld are given in Tables 4.1 and
4.2. Here, “name p(p̂)” means that the order of y1 is p and the order of the error
estimator ŷ1 is p̂ . Merson’s ŷ1 is of order 5 only for linear equations with constant
coefficients; for nonlinear problems it is of order 3 . This method works quite well
and has been used very often, especially by NAG users. Further embedded methods
were then derived by Sarafyan (1966), England (1969), and Fehlberg (1964, 1968,
1969). Let us start with the construction of some low order embedded methods.

Methods of order 3(2). It is a simple task to construct embedded formulas of order
3(2) with s = 3 stages. Just take a 3 -stage method of order 3 (Exercise II.1.4) and
put b̂3 = 0 , b̂2 = 1/2c2 , b̂1 = 1− 1/2c2 .
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Table 4.1. Merson 4(“5”)

0

1
3

1
3

1
3

1
6

1
6

1
2

1
8

0
3
8

1
1
2

0 −3
2

2

y1
1
6

0 0
2
3

1
6

ŷ1
1
10

0
3
10

2
5

1
5

Table 4.2. Zonneveld 4(3)

0

1
2

1
2

1
2

0
1
2

1 0 0 1

3
4

5
32

7
32

13
32

− 1
32

y1
1
6

1
3

1
3

1
6

ŷ1 −1
2

7
3

7
3

13
6

−16
3

Methods of order 4(3). With s = 4 it is impossible to find a pair of order 4(3)
(see Exercise 2). The idea is to add y1 as 5 th stage of the process (i.e., a5i = bi

for i = 1, . . . , 4 ) and to search for a third order method which uses all five func-
tion values. Whenever the step is accepted this represents no extra work, because
f(x0 +h, y1) has to be computed anyway for the following step. This idea is called
FSAL (First Same As Last). Then the order conditions (4.8’) with p̂ = 3 represent
4 linear equations for the five unknowns b̂1, . . . , b̂5 . One can arbitrarily fix b̂5 �= 0
and solve the system for the remaining parameters. With b̂5 chosen such that b̂4 =0
the result is

b̂1 = 2b1 − 1/6, b̂2 = 2(1− c2)b2,

b̂3 = 2(1− c3)b3, b̂4 = 0, b̂5 = 1/6.
(4.9)

Automatic Step Size Control

D’ordinaire, on se contente de multiplier ou de diviser par 2 la
valeur du pas . . . (Ceschino 1961)

We now want to write a code which automatically adjusts the step size in order to
achieve a prescribed tolerance of the local error.

Whenever a starting step size h has been chosen, the program computes two
approximations to the solution, y1 and ŷ1 . Then an estimate of the error for the
less precise result is y1 − ŷ1 . We want this error to satisfy componentwise

|y1i − ŷ1i| ≤ sci, sci = Atoli + max(|y0i|, |y1i|) ·Rtoli (4.10)

where Atoli and Rtoli are the desired tolerances prescribed by the user (relative
errors are considered for Atoli = 0 , absolute errors for Rtoli = 0 ; usually both
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tolerances are different from zero; they may depend on the component of the solu-
tion). As a measure of the error we take

err =

√√√√ 1
n

n∑
i=1

(y1i − ŷ1i

sci

)2

; (4.11)

other norms, such as the max norm, are also of frequent use. Then err is compared
to 1 in order to find an optimal step size. From the error behaviour err ≈ C · hq+1

and from 1 ≈ C · hq+1
opt (where q = min(p, p̂) ) the optimal step size is obtained as

(“ . . . le procédé connu”, Ceschino 1961)

hopt = h · (1/err)1/(q+1). (4.12)

Some care is now necessary for a good code: we multiply (4.12) by a safety factor
fac , usually fac = 0.8 , 0.9 , (0.25)1/(q+1) , or (0.38)1/(q+1) , so that the error will
be acceptable the next time with high probability. Further, h is not allowed to
increase nor to decrease too fast. For example, we may put

hnew = h ·min
(
facmax, max

(
facmin, fac · (1/err)1/(q+1)

))
(4.13)

for the new step size. Then, if err ≤ 1 , the computed step is accepted and the
solution is advanced with y1 and a new step is tried with hnew as step size. Else,
the step is rejected and the computations are repeated with the new step size hnew .
The maximal step size increase facmax , usually chosen between 1.5 and 5 , pre-
vents the code from too large step increases and contributes to its safety. It is clear
that, when chosen too small, it may also unnecessarily increase the computational
work. It is also advisable to put facmax = 1 in the steps right after a step-rejection
(Shampine & Watts 1979).

Whenever y1 is of lower order than ŷ1 , then the difference y1 − ŷ1 is (at least
asymptotically) an estimate of the local error and the above algorithm keeps this
estimate below the given tolerance. But isn’t it more natural to continue the integra-
tion with the higher order approximation? Then the concept of “error estimation”
is abandoned and the difference y1 − ŷ1 is only used for the purpose of step size
selection. This is justified by the fact that, due to unknown stability and instability
properties of the differential system, the local errors have in general very little in
common with the global errors. The procedure of continuing the integration with
the higher order result is called “local extrapolation”.

A modification of the above procedure (PI step size control), which is particu-
larly interesting when applied to mildly stiff problems, is described in Section IV.2
(Volume II).
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Starting Step Size

If anything has been made foolproof, a better fool will be devel-
oped. (Heard from Dr. Pirkl, Baden)

For many years, the starting step size had to be supplied to a code. Users were
assumed to have a rough idea of a good step size from mathematical knowledge
or previous experience. Anyhow, a bad starting choice for h was quickly repaired
by the step size control. Nevertheless, when this happens too often and when the
choices are too bad, much computing time can be wasted. Therefore, several people
(e.g., Watts 1983, Hindmarsh 1980) developed ideas to let the computer do this
choice. We take up an idea of Gladwell, Shampine & Brankin (1987) which is
based on the hypothesis that

local error ≈ Chp+1y(p+1)(x0).

Since y(p+1)(x0) is unknown we shall replace it by approximations of the first and
second derivative of the solution. The resulting algorithm is the following one:

a) Do one function evaluation f(x0, y0) at the initial point. It is in any case
needed for the first RK step. Then put d0 = ‖y0‖ and d1 = ‖f(x0, y0)‖ , where
the norm is that of (4.11) with sci = Atoli + |y0i| ·Rtoli .

b) As a first guess for the step size let

h0 = 0.01 · (d0/d1)

so that the increment of an explicit Euler step is small compared to the size of
the initial value. If either d0 or d1 is smaller than 10−5 we put h0 = 10−6 .

c) Perform one explicit Euler step, y1 = y0 +h0f(x0, y0) , and compute f(x0 +
h0, y1) .

d) Compute d2 = ‖f(x0 +h0, y1)− f(x0, y0)‖/h0 as an estimate of the second
derivative of the solution; the norm being the same as in (a).

e) Compute a step size h1 from the relation

hp+1
1 ·max(d1, d2) = 0.01.

If max(d1, d2) ≤ 10−15 we put h1 = max(10−6, h0 · 10−3) .

f) Finally we propose as starting step size

h = min(100 · h0, h1). (4.14)

An algorithm like the one above, or a similar one, usually gives a good guess for the
initial step size (or at least avoids a very bad choice). Sometimes, more informa-
tion about h is known, e.g., from previous experience or computations of similar
problems.
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Numerical Experiments

As a representative of 4 -stage 4 th order methods we consider the “3/8 Rule” of
Table 1.2. We equipped it with the embedded formula (4.9) of order 3 .

solutions

y

y

accepted step sizes

rejected step sizes

initial h (4.14)

local error estimate exact local error

global error

Fig. 4.1. Step size control, Rtol = Atol = 10−4 , 96 steps + 32 rejected

Step control mechanism. Fig. 4.1 presents the results of the step control mecha-
nism (4.13) described above. As an example we choose the Brusselator (see Sec-
tion I.16).

y′
1 = 1 + y2

1y2 − 4y1

y′
2 = 3y1 − y2

1y2

(4.15)

with initial values y1(0) = 1.5 , y2(0) = 3 , integration interval 0 ≤ x ≤ 20 and
Atol = Rtol = 10−4 . The following results are plotted in this figure:
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i) At the top, the solutions y1(x) and y2(x) with all accepted integration steps;

ii) then all step sizes used; the accepted ones are connected by a polygon; the
rejected ones are indicated by × ;

iii) the third graph shows the local error estimate err , the exact local error and the
global error; the desired tolerance is indicated by a broken horizontal line.

It can be seen that, due to the instabilities of the solutions with respect to the initial
values, quite large global errors occur during the integration with small local toler-
ances everywhere. Further many step rejections can be observed in regions where
the step size has to be decreased. This cannot easily be prevented, because right
after an accepted step, the step size proposed by formula (4.13) is (apart from the
safety factor) always increasing.

Numerical comparison. We are now curious to see the behaviour of the variable
step size code, when compared to a fixed step size implementation. We applied
both implementations to the Brusselator problem (4.15) with the initial values used
there. The tolerances (Atol = Rtol ) are chosen between 10−2 and 10−10 with ratio
3
√

10 . The results are then plotted in Fig. 4.2. There, the abscissa is the global error
at the endpoint of integration (the “precision”), and the ordinate is the number of
function evaluations (the “work”). We observe that for this problem the variable
step size code is about twice as fast as the fixed step size code. There are, of
course, problems (such as equation (0.1)) where variable step sizes are much more
important than here.

DOP853

DOPRI5
RK4 (const. steps)

RK4 (var. steps)
RKF45

error

fe

Fig. 4.2. Precision-Work diagram

In this comparison we have included some higher order methods, which will
be dicussed in Section II.5. The code RKF45 (written by H.A. Watts and L.F.
Shampine) is based on an embedded method of order 5(4) due to Fehlberg. The
codes DOPRI5 (order 5(4)) and DOP853 (order 8(5,3)) are based on methods of
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Dormand & Prince. They will be discussed in the following section. It can clearly
be seen that higher order methods are, especially for higher precision, more ef-
ficient than lower order methods. We shall also understand why the 5 th order
method of Dormand & Prince is clearly superior to RKF45.

Exercises

1. Show that Runge’s method (1.4) can be interpreted as two Euler steps (with
step size h/2 ), followed by a Richardson extrapolation.

2. Prove that no 4 -stage Runge-Kutta method of order 4 admits an embedded
formula of order 3 .

Hint. Replace dj by b̂j −bj in the proof of Lemma 1.4 and deduce that b̂j = bj

for all j , which is a contradiction.

3. Show that the step size strategy (4.13) is invariant with respect to a rescaling
of the independent variable. This means that it produces equivalent step size
sequences when applied to the two problems

y′ = f(x, y), y(0) = y0, y(xend) =?

z′ = σ · f(σt, z), z(0) = y0, z(xend/σ) =?

with initial step sizes h0 and h0/σ , respectively.

Remark. This is no longer the case if one replaces err in (4.13) by err/h and
q by q− 1 (“error per unit step”).
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Gehen wir endlich zu Näherungen von der fünften Ordnung über,
so werden die Verhältnisse etwas andere. (W. Kutta 1901)

This section describes the construction of Runge-Kutta methods of higher orders,
particularly of orders p = 5 and p = 8 . As can be seen from Table 2.3, the com-
plexity and number of the order conditions to be solved increases rapidly with p .
An increasingly skilful use of simplifying assumptions will be the main tool for
this task.

The Butcher Barriers

For methods of order 5 there are 17 order conditions to be satisfied (see Table 2.2).
If we choose s = 5 we have 15 free parameters. Already Kutta raised the ques-
tion whether there might nevertheless exist a solution (“Nun wäre es zwar möglich
. . .”), but he had no hope for this and turned straight away to the case s = 6 (see
II.2, Exercise 5). Kutta’s question remained open for more than 60 years and was
answered around 1963 by three authors independently (Ceschino & Kuntzmann
1963, p. 89, Shanks 1966, Butcher 1964b, 1965b). Butcher’s work is the farthest
reaching and we shall mainly follow his ideas in the following:

Theorem 5.1. For p ≥ 5 no explicit Runge-Kutta method exists of order p with
s = p stages.

Proof. We first treat the case s = p = 5 : define the matrices U and V by

U=

⎛⎜⎝
∑

i biai2

∑
i biai3

∑
i biai4∑

i biai2c2

∑
i biai3c3

∑
i biai4c4

g2 g3 g4

⎞⎟⎠ , V =

⎛⎜⎜⎝
c2 c2

2

∑
j a2jcj−c2

2/2

c3 c2
3

∑
j a3jcj−c2

3/2

c4 c2
4

∑
j a4jcj−c2

4/2

⎞⎟⎟⎠
(5.1)

where

gk =
∑
i,j

biaijajk −
1
2

∑
i

biaik(1− ck). (5.2)
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Then the order conditions for order 5 imply

UV =

⎛⎝ 1/6 1/12 0
1/12 1/20 0

0 0 0

⎞⎠ . (5.3)

Lemma 1.5 gives g4 = 0 and consequently c4 = 1 as in Lemma 1.4. Next we put
in (5.1)

gj =
(∑

i

biaij − bj(1− cj)
)
(cj − c5). (5.4)

Again it can be verified by trivial computations that UV is the same as above. This
time it follows that c4 = c5 , hence c5 = 1 . Consequently, the expression∑

i,j,k

bi(1− ci)aijajkck (5.5)

must be zero (because of 2 ≤ k < j < i). However, by multiplying out and using
two fifth-order conditions, the expression in (5.5) should be 1/120, a contradiction.

The case p = s = 6 is treated by considering all “one-leg trees”, i.e., the trees
which consist of one leg above the root and the 5 th order trees grafted on. The
corresponding order conditions have the form∑

i,j,...

biaij(aj... . . . expressions for order 5) =
1

γ(t)
.

If we let b′j =
∑

i biaij we are back in the 5 th order 5 -stage business and can
follow the above ideas again. However, the γ(t) values are not the same as before;
as a consequence, the product UV in (5.3) now becomes

UV =

⎛⎜⎜⎜⎜⎝
1!

(s− 2)!
2!

(s− 1)!
0

2!
(s− 1)!

3!
s!

0

0 0 0

⎞⎟⎟⎟⎟⎠ (s = 6). (5.3’)

Further, for p = s = 7 we use the “stork-trees” with order conditions∑
i,j,...

biaijajk(ak... . . . expressions for order 5) =
1

γ(t)

and let b′′k =
∑

i,j biaijajk and so on. The general case p = s ≥ 5 is now clear.
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6-Stage, 5th Order Processes

We now demonstrate the construction of 5 th order processes with 6 stages in full
detail following the ideas which allowed Butcher (1964b) to construct 7-stage, 6 th
order formulas.

“In searching for such processes we are guided by the analysis of the previous
section to make the following assumptions:”

6∑
i=1

biaij = bj(1− cj) j = 1, . . . , 6, (5.6)

i−1∑
j=1

aijcj =
c2
i

2
i = 3, . . . , 6, (5.7)

b2 = 0. (5.8)

The advantage of condition (5.6) is known to us already from Section II.1 (see
Lemma 1.3): we can disregard all one-leg trees other than t21 .

t tm. . . t tm. . .

Fig. 5.1. Use of simplifying assumptions

Condition (5.7) together with (5.8) has a similar effect: for [[τ ], t2, . . . , tm]
and [τ, τ, t2, . . . , tm] of Fig. 5.1 (with identical but arbitrary subtrees t2, . . . , tm )
the order conditions read∑

i,j

biaijcjΦi =
1

r · 2 and
∑

i

bic
2
i Φi =

1
r

(5.9)

with known values for Φi and r . Since b2 = 0 by (5.8) it follows from (5.7) that
both conditions of (5.9) are equivalent (the condition b2 = 0 is necessary for this
reduction, because (5.7) cannot be satisfied for i = 2 ; otherwise we would have
c2 = 0 and the method would be equivalent to one of fewer stages).

The only trees left after the above reduction are the quadrature conditions
6∑

i=1

bic
q−1
i =

1
q

q = 1, 2, 3, 4, 5 (5.10)

and the two equations ∑
i,j,k

biciaijajkck =
1

5 · 3 · 2 , (5.11)

∑
i,j

biciaijc
2
j =

1
5 · 3 . (5.12)
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We multiply (5.12) by 1/2 and then subtract both equations to obtain∑
i,j

biciaij

(∑
k

ajkck − c2
j/2
)

= 0.

From (5.7) the parenthesis is zero except when j = 2 , and therefore
6∑

i=3

biciai2 = 0 (5.13)

replaces (5.11). Our last simplification is to subtract other order conditions from
(5.12) to obtain ∑

i,j

bi(1− ci)aijcj(cj − c3) =
1
60

− c3

24
, (5.14)

which has fewer terms than before, in particular because c6 =1 by (5.6) with j =6 .
The resulting reduced system (5.6)-(5.8), (5.10), (5.13), (5.14) can easily be solved
as follows:

Algorithm 5.2 (construction of 6-stage 5 th order Runge-Kutta methods).

a) c1 = 0 and c6 = 1 from (5.6) with j = 6 ; c2 , c3 , c4 , c5 can be chosen as free
parameters subject only to some trivial exceptions;

b) b2 = 0 from (5.8) and b1, b3, b4, b5, b6 from the linear system (5.10);

c) a32 from (5.7), i = 3 ; a42 = λ arbitrary; a43 from (5.7), i = 4 ;

d) a52 and a62 from the two linear equations (5.13) and (5.6), j = 2 ;

e) a54 from (5.14) and a53 from (5.7), i = 5 ;

f) a63, a64, a65 from (5.6), j = 3, 4, 5 ;

g) finally ai1 (i = 2, . . . , 6 ) from (1.9).

Condition (5.6) for j = 1 and (5.7) for i = 6 are automatically satisfied. This
follows as in the proof of Lemma 1.4.

Embedded Formulas of Order 5

Methods of Fehlberg. The methods obtained from Algorithm 5.2 do not all pos-
sess an embedded formula of order 4 . Fehlberg, interested in the construction of
Runge-Kutta pairs of order 4(5), looked mainly for simplifying assumptions which
depend only on ci and aij , but not on the weights bi . In this case the simplifying
assumptions are useful for the embedded method too. Therefore Fehlberg (1969)
considered (5.7), (5.8) and replaced (5.6) by

i−1∑
j=1

aijc
2
j =

c3
i

3
, i = 3, . . . , 6. (5.15)
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As with (5.9) this allows us to disregard all trees of the form [[τ, τ ], t2, . . . , tm] . In
order that the reduction process of Fig. 5.1 also work on a higher level, we suppose,
in addition to b2 = 0 , that∑

i

biai2 = 0,
∑

i

biciai2 = 0,
∑
i,j

biaijaj2 = 0 . (5.16)

Then the last equations to be satisfied are∑
i,j

biaijc
3
j =

1
20

(5.17)

and the quadrature conditions (5.10). We remark that the equations (5.7) and (5.15)
for i = 3 imply

c3 =
3
2

c2. (5.18)

We now want the method to possess an embedded formula of order 4 . Analo-
gously to (5.8) we set b̂2 = 0 . Then conditions (5.7) and (5.15) simplify the condi-
tions of order 4 to 5 linear equations (the 4 quadrature conditions and

∑
i b̂iai2 =0 )

for the 5 unknowns b̂1, b̂3, b̂4, b̂5, b̂6 . This system has a second solution (other than
the bi ) only if it is singular, which is the case if (see Exercise 1 below)

c4 =
3c2

4− 24c2 + 45c2
2

. (5.19)

With c2, c5, c6 as free parameters, the above system can be solved and yields an
embedded formula of order 4(5). The coefficients of a very popular method, con-
structed by Fehlberg (1969), are given in Table 5.1.

Table 5.1. Fehlberg 4(5)

0

1
4

1
4

3
8

3
32

9
32

12
13

1932
2197

−7200
2197

7296
2197

1
439
216

−8
3680
513

− 845
4104

1
2

− 8
27

2 −3544
2565

1859
4104

−11
40

y1
25
216

0
1408
2565

2197
4104

−1
5

0

ŷ1
16
135

0
6656

12825
28561
56430

− 9
50

2
55
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All of the methods of Fehlberg are of the type p(p̂) with p < p̂ . Hence, the
lower order approximation is intended to be used as initial value for the next step. In
order to make his methods optimal, Fehlberg tried to minimize the error coefficients
for the lower order result y1 . This has the disadvantage that the local extrapolation
mode (continue the integration with the higher order result) does not make sense
and the estimated “error” can become substantially smaller than the true error.

It is possible to do a lot better than the pair of Fehlberg currently
regarded as “best.” (L.F. Shampine 1986)

Table 5.2. Dormand-Prince 5(4) (DOPRI5)

0

1
5

1
5

3
10

3
40

9
40

4
5

44
45

−56
15

32
9

8
9

19372
6561

−25360
2187

64448
6561

−212
729

1
9017
3168

−355
33

46732
5247

49
176

− 5103
18656

1
35
384

0
500

1113
125
192

−2187
6784

11
84

y1
35
384

0
500

1113
125
192

−2187
6784

11
84

0

ŷ1
5179
57600

0
7571
16695

393
640

− 92097
339200

187
2100

1
40

Dormand & Prince pairs. The first efforts at minimizing the error coefficients of
the higher order result, which is then used as numerical solution, were undertaken
by Dormand & Prince (1980). Their methods of order 5 are constructed with the
help of Algorithm 5.2 under the additional hypothesis (5.15). This condition is
achieved by fixing the parameters c3 and a42 in such a way that (5.15) holds for
i = 3 and i = 4 . The remaining two relations (i = 5, 6 ) are then automatically
satisfied. To see this, multiply the difference ei =

∑i−1
j=1 aijc

2
j − c3

i /3 by bi and
bici , respectively, sum up and deduce that all ei must vanish.

In order to equip the method with an embedded formula, Dormand & Prince
propose to use the FSAL idea (i.e., add y1 as 7 th stage). In this way the restriction
(5.19) for c4 is no longer necessary. We fix arbitrarily b̂7 �= 0 , put b̂2 = 0 (as in
(5.8)) and compute the remaining b̂i , as above for the Fehlberg case from the 4
quadrature conditions and from

∑
i b̂iai2 = 0 .

We have thus obtained a family of 5 th order Runge-Kutta methods with 4 th
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order embedded solution with c2, c4, c5 as free parameters. Dormand & Prince
(1980) have undertaken an extensive search to determine these parameters in or-
der to minimize the error coefficients for y1 and found that c2 = 1/5 , c4 = 4/5
and c5 = 8/9 was a close rational approximation to an optimal choice. Table 5.2
presents the coefficients of this method. The corresponding code of the Appendix
is called DOPRI5.

Higher Order Processes

Order 6. By Theorem 5.1 at least 7 stages are necessary for order 6 . A. Huťa
(1956) constructed 6 th order processes with 8 stages. Finally, methods with s=7 ,
the optimal number, were derived by Butcher (1964b) along similar lines as above.
He arrived at an algorithm where c2, c3, c5, c6 are free parameters.

Order 7. The existence of such a method with 8 stages is impossible by the fol-
lowing barrier:

Theorem 5.3 (Butcher 1965b). For p≥ 7 no explicit Runge-Kutta method exists of
order p with s = p + 1 stages.

Since the proof of this theorem is much more complicated than that of Theo-
rem 5.1, we do not reproduce it here.

This raises the question, whether 7 th order methods with 9 stages exist. Such
methods, announced by Butcher (1965b), do exist; see Verner (1971).

Order 8. As to methods of order 8, Curtis (1970) and Cooper & Verner (1972) have
constructed such processes with s = 11 . It was for a long time an open question
whether there exist methods with 10 stages. John Butcher’s dream of settling this
difficult question before his 50 th birthday did not become true. But he finally
succeeded in proving the non-existence for Dahlquist’s 60 th birthday:

Theorem 5.4 (Butcher 1985b). For p≥ 8 no explicit Runge-Kutta method exists of
order p with s = p + 2 stages.

For the proof, which is still more complicated, we again refer to Butcher’s
original paper.

Order 10. These are the highest order explicitly constructed explicit Runge-Kutta
methods. Curtis (1975) constructed an 18 -stage method of order 10 . His con-
struction was based solely on simplifying assumptions of the type (5.7), (5.8) and
their extensions. Hairer (1978) then constructed a 17 -stage method by using the
complete arsenal of simplifying ideas. For more details, see the first edition, p. 189.
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Embedded Formulas of High Order

It was mainly the formula manipulation genius Fehlberg who first derived high
order embedded formulas. His greatest success was his 7 th order formula with 8th
order error estimate (Fehlberg 1968) which is of frequent use in all high precision
computations, e.g., in astronomy. The coefficients are reproduced in Table 5.3.

Table 5.3. Fehlberg 7(8)
0

2
27

2
27

1
9

1
36

1
12

1
6

1
24

0
1
8

5
12

5
12

0 −25
16

25
16

1
2

1
20

0 0
1
4

1
5

5
6

− 25
108

0 0
125
108

−65
27

125
54

1
6

31
300

0 0 0
61

225
−2

9
13

900
2
3

2 0 0 −53
6

704
45

−107
9

67
90

3

1
3

− 91
108

0 0
23
108

−976
135

311
54

−19
60

17
6

− 1
12

1
2383
4100

0 0 −341
164

4496
1025

−301
82

2133
4100

45
82

45
164

18
41

0
3

205
0 0 0 0 − 6

41
− 3

205
− 3

41
3

41
6
41

0

1 −1777
4100

0 0 −341
164

4496
1025

−289
82

2193
4100

51
82

33
164

19
41

0 1

y1
41
840

0 0 0 0
34
105

9
35

9
35

9
280

9
280

41
840

0 0

ŷ1 0 0 0 0 0
34
105

9
35

9
35

9
280

9
280

0
41
840

41
840

Fehlberg’s methods suffer from the fact that they give identically zero error es-
timates for quadrature problems y′ = f(x) . The first high order embedded formu-
las which avoid this drawback were constructed by Verner (1978). One of Verner’s
methods (see Table 5.4) has been implemented by T.E. Hull, W.H. Enright and
K.R. Jackson as DVERK and is widely used.
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Table 5.4. Verner’s method of order 6(5) (DVERK)

0

1
6

1
6

4
15

4
75

16
75

2
3

5
6

−8
3

5
2

5
6

−165
64

55
6

−425
64

85
96

1
12
5

−8
4015
612

−11
36

88
255

1
15

− 8263
15000

124
75

−643
680

− 81
250

2484
10625

0

1
3501
1720

−300
43

297275
52632

− 319
2322

24068
84065

0
3850
26703

y1
3

40
0

875
2244

23
72

264
1955

0
125

11592
43
616

ŷ1
13
160

0
2375
5984

5
16

12
85

3
44

0 0

An 8th Order Embedded Method

The first high order methods with small error constants of the higher order solution
were constructed by Prince & Dormand (1981, Code DOPRI8 of the first edition).
In the following we describe the construction of a new Dormand & Prince pair of
order 8(6) which will also allow a cheap and accurate dense output (see Section
II.6). This method has been announced, but not published, in Dormand & Prince
(1989, p. 983). We are grateful to P. Prince for mailing us the coefficients and for
his help in recovering their construction.

The essential difficulty for the construction of a high order Runge-Kutta me-
thod is to set up a “good” reduced system which implies all order conditions of
Theorem 2.13. At the same time it should be simple enough to be easily solved.
In extending the ideas for the construction of a 5 th order process (see above),
Dormand & Prince proceed as follows:

Reduced system. Suppose s = 12 and consider for the coefficients ci , bi and aij

the equations:∑s
i=1 bic

q−1
i = 1/q, q = 1, . . . , 8 (5.20a)∑i−1

j=1 aij = ci, i = 1, . . . , s (5.20b)∑i−1
j=1 aijcj = c2

i /2, i = 3, . . . , s (5.20c)
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j=1 aijc

2
j = c3

i /3, i = 3, . . . , s (5.20d)∑i−1
j=1 aijc

3
j = c4

i /4, i = 6, . . . , s (5.20e)∑i−1
j=1 aijc

4
j = c5

i /5, i = 6, . . . , s (5.20f)

b2 = b3 = b4 = b5 = 0 (5.20g)

ai2 = 0 for i ≥ 4, ai3 = 0 for i ≥ 6 (5.20h)∑s
i=j+1 biaij = bj(1− cj), j = 4, 5, 10, 11, 12 (5.20i)∑s
i=j+1 biciaij = 0, j = 4, 5 (5.20j)∑s
i=j+1 bic

2
i aij = 0, j = 4, 5 (5.20k)∑s

i=k+2 bici

∑i−1
j=k+1 aijajk = 0, k = 4, 5 (5.20l)∑s

i=1 bici

∑i−1
j=1 aijc

5
j = 1/48. (5.20m)

Verification of the order conditions. The equations (5.20a) are the order condi-
tions for the bushy trees [τ, . . . , τ ] and (5.20m) is that for the tree [τ, [τ, τ, τ, τ, τ ]] .
For the verification of further order conditions we shall show that the reduced sys-
tem implies

s∑
i=j+1

biaij = bj(1− cj) for all j . (5.21)

If we denote the difference by dj =
∑s

i=j+1 biaij −bj(1−cj) then d2 =d3 =0 by
(5.20g,h) and d4 = d5 = d10 = d11 = d12 = 0 by (5.20i). The conditions (5.20a-g)
imply

s∑
j=1

djc
q−1
j = 0 for q = 1, . . . , 5. (5.22)

Hence, the remaining 5 values must also vanish if c1, c6, c7, c8, c9 are distinct.
The significance of condition (5.21) is already known from Lemma 1.3 and from
formula (5.6). It implies that all one-leg trees t = [t1] can be disregarded.

... ...

Fig. 5.2. Use of simplifying assumptions

Conditions (5.20c-f) are an extension of (5.6) and (5.15). Their importance
will be, once more, demonstrated on an example. Consider the two trees of Fig. 5.2
and suppose that their encircled parts are identical. Then the corresponding order
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conditions are
s∑

i,j=1

Θiaijc
3
j =

1
r · 5 · 4 and

s∑
i=1

Θic
4
i =

1
r · 5 (5.23)

with known values for Θi and r . If (5.20e) is satisfied and if

Θ2 = Θ3 = Θ4 = Θ5 = 0 (5.24)

then both conditions are equivalent so that the left-hand tree can be neglected. The
conditions (5.20g,i-l) correspond to (5.24) for certain trees. Finally the assumption
(5.20h) together with (5.20g,i-k) implies that for arbitrary Φi , Ψj and for q ∈
{1, 2, 3} ,∑

i biΦiai2 = 0∑
i,j biΦiaijΨjaj2 = 0∑
i,j,k bic

q−1
i aijΦjajkΨkak2 = 0

and

∑
i biΦiai3 = 0∑
i,j bic

q−1
i aijΦjaj3 = 0

which are again conditions of type (5.24). Using these relations the verification
of the order conditions (order 8 ) is straightforward; all trees are reduced to those
corresponding to (5.20a) and (5.20m).

Solving the reduced system. Compared to the original 200 order conditions of
Theorem 2.13 for the 78 coefficients bi, aij (the ci are defined by (5.20b)), the
74 conditions of the reduced system present a considerable simplification. We can
hope for a solution with 4 degrees of freedom.

We start by expressing the coefficients bi, aij in terms of the ci . Because
of (5.20g), condition (5.20a) represents a linear system for b1, b6, . . . , b12 , which
has a unique solution if c1, c6, . . . , c12 are distinct. For a fixed i (1 ≤ i ≤ 8 )
conditions (5.20b-f) represent a linear system for ai1, . . . , ai,i−1 . Since there are
sometimes less unknowns than equations (mainly due to (5.20h)) restrictions have
to be imposed on the ci . One verifies (similarly to (5.18)) that the relations

c1 = 0, c2 =
2
3

c3, c3 =
2
3

c4,

c4 =
6−√

6
10

c6, c5 =
6 +

√
6

10
c6, c6 =

4
3

c7

(5.25a)

allow the computation of the aij with i ≤ 8 (Step 1 in Fig. 5.3).
If b12 �= 0 (which will be assumed in our construction), condition (5.20i) for

j = 12 implies
c12 = 1, (5.25b)

and for j = 11 it yields the value for a12,11 . We next compute the expressions

ej =
s∑

i=j+1

biciaij −
bj

2
(1− c2

j), j = 1, . . . , s. (5.26)
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i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

Fig. 5.3. Steps in the construction of an 8th order RK method;
the entries 0 indicate vanishing coefficients;

the stages i = 14, 15, 16 will be used for dense output, see II.6.

We have e12 = 0 by (5.25b), e11 = b12a12,11 − b11(1− c2
11)/2 is known and e2 =

e3 = e4 = e5 = 0 by (5.20g,h,j). The remaining 6 values are determined by the
system

s∑
j=1

ejc
q−1
j = 0, q = 1, . . . , 6 (5.27)

which follows from (5.20a-f,m). The conditions (5.20i) and (5.26) for j = 10 then
yield a12,10 and a11,10 (Step 2 in Fig. 5.3).

We next compute aij (i = 9, 10, 11, 12; j = 4, 5 ) from the remaining 8 equa-
tions of (5.20i-l). This is indicated as Step 3 in Fig. 5.3. Finally, we use the
conditions (5.20b-f) with i ≥ 9 for the computation of the remaining coefficients
(Step 4 ). A difficulty still arises from the case i = 9 , where only 4 parameters for
five equations are at our disposal. A tedious computation shows that this system
has a solution if (see Exercise 6 below)

2c9=
3σ1−28σ2+189σ3+14σ1σ2−168σ1σ3+98σ2σ3

6−21σ1+35σ2−42σ3+21σ2
1+98σ2

2+735σ2
3−84σ1σ2+168σ1σ3−490σ2σ3

(5.25c)
where

σ1 = c6 + c7 + c8, σ2 = c6c7 + c6c8 + c7c8, σ3 = c6c7c8. (5.28)

The reduced system (5.20) leaves c7, c8, c10, c11 as free parameters. Dormand
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& Prince propose the following numerical values:

c7 = 1/4, c8 = 4/13, c10 = 3/5, c11 = 6/7 .

All remaining coefficients are then determined by the above procedure. Since c4

and c5 (see (5.25a)) are not rational, there is no easy way to present the coefficients
in a tableau.

Embedded method. We look for a second method with the same ci, aij but with

different weights, say b̂i . If we require that∑s
i=1 b̂ic

q−1
i = 1/q, q = 1, . . . , 6 (5.29a)

b̂2 = b̂3 = b̂4 = b̂5 = 0 (5.29b)∑s
i=j+1 b̂iaij = 0, j = 4, 5 (5.29c)

then one can verify (similarly as above for the 8 th order method) that the corre-
sponding Runge-Kutta method is of order 6 . The system (5.29) consists of 12 lin-
ear equations for 12 unknowns. A comparison with (5.20) shows that b1, . . . , b12

is a solution of (5.29). Furthermore, the corresponding homogeneous system has
the nontrivial solution e1, . . . , e12 (see (5.27) and (5.20l)). Therefore

b̂i = bi +αei (5.30)

is a solution of (5.29) for all values of α . Dormand & Prince suggest taking α in
such a way that b̂6 = 2 .

A program based on this method (with a different error estimator, see Section
II.10) has been written and is called DOP853. It is documented in the Appendix.
The performance of this code, compared to methods of lower order, is impressive.
See for example the results for the Brusselator in Fig. 4.2.

Exercises

1. Consider a Runge-Kutta method with s stages that satisfies (5.7)-(5.8), (5.15),
(5.17) and the first two relations of (5.16).

a) If the relation (5.19) holds, then the method possesses an embedded for-
mula of order 4 .

b) The condition (5.19) implies that the last relation of (5.16) is automatically
satisfied.

Hint. The order conditions for the embedded method constitute a linear system
for the b̂i which has to be singular. This implies that

ai2 = αci +βc2
i + γc3

i for i �= 2. (5.31)
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Multiplying (5.31) with bi and bici and summing up, yields two relations for
α, β, Jγ . These together with (5.31) for i = 3, 4 yield (5.19).

2. Construct a 6 -stage 5 th order formula with c3 = 1/3 , c4 = 1/2 , c5 = 2/3
possessing an embedded formula of order 4 .

3. (Butcher). Show that for any Runge-Kutta method of order 5,∑
i

bi

(∑
j

aijcj −
c2
i

2

)2

= 0.

Consequently, there exists no explicit Runge-Kutta method of order 5 with all
bi > 0.

Hint. Multiply out and use order conditions.

4. Write a code with a high order Runge-Kutta method (or take one) and solve
numerically the Arenstorf orbit of the restricted three body problem (0.1) (see
the introduction) with initial values

y1(0) = 0.994, y′
1(0) = 0, y2(0) = 0,

y′
2(0) = −2.0317326295573368357302057924,

Compute the solutions for

xend = 11.124340337266085134999734047.

The initial values are chosen such that the solution is periodic to this precision.
The plotted solution curve has one loop less than that of the introduction.

5. (Shampine 1979). Show that the storage requirement of a Runge-Kutta method
can be substantially decreased if s is large.

Hint. Suppose, for example, that s = 15 .
After computing (see (1.8)) k1, k2, . . . , k9 , compute the sums

9∑
j=1

aijkj for i = 10, 11, 12, 13, 14, 15,
9∑

j=1

bjkj ,
9∑

j=1

b̂jkj ;

then the memories occupied by k2, k3, . . . , k9 are not needed any longer. An-
other possibility for reducing the memory requirement is offered by the zero-
pattern of the coefficients.

6. Show that the reduced system (5.20) implies (5.25c).

Hint. The equations (5.20b-f) imply that for i ∈ {1, 6, 7, 8, 9}

αai4 +βai5 = σ3

c2
i

2
−σ2

c3
i

3
+σ1

c4
i

4
− c5

i

5
(5.32)
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with σj given by (5.28). The constants α and β are not important. Further,
for the same values of i one has

0 = ci(ci − c6)(ci − c7)(ci − c8)(ci − c9) (5.33)

= σ3c9ci − (σ3 + c9σ2)c
2
i + (σ2 + c9σ1)c

3
i − (σ1 + c9)c

4
i + c5

i .

Multiplying (5.32) and (5.33) by ei, bi, bici, bic
2
i , summing up from i = 1 to

s and using (5.20) gives the relation⎛⎝× × ×
× × ×
0 0 b−1

12

⎞⎠⎛⎝ e10 b10 b10c10 b10c
2
10

e11 b11 b11c11 b11c
2
11

0 b12 b12 b12

⎞⎠=

⎛⎝ 0 γ1 γ2 γ3

0 δ1 δ2 δ3

0 1 1 1

⎞⎠
(5.34)

where

γj =
σ3

2 · (j + 2)
− σ2

3 · (j + 3)
+

σ1

4 · (j + 4)
− 1

5 · (j + 5)

δj =
σ3c9

j + 1
− σ3 + c9σ2

j + 2
+

σ2 + c9σ1

j + 3
− σ1 + c9

j + 4
+

1
j + 5

and the “×” indicate certain values. Deduce from (5.34) and e11 �= 0 that the
most left matrix of (5.34) is singular. This implies that the right-hand matrix
of (5.34) is of rank 2 and yields equation (5.25c).

7. Prove that the 8 th order method given by (5.20;s = 12 ) does not possess a 6 th
order embedding with b̂12 �= b12 , not even if one adds the numerical result y1

as 13 th stage (FSAL).
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. . . providing “interpolation” for Runge-Kutta methods. . . . this
capability and the features it makes possible will be the hallmark
of the next generation of Runge-Kutta codes.

(L.F. Shampine 1986)

The present section is mainly devoted to the construction of dense output formulas
for Runge-Kutta methods. This is important for many practical questions such as
graphical output, event location or the treatment of discontinuities in differential
equations. Further, the numerical computation of derivatives with respect to initial
values and parameters is discussed, which is particularly useful for the integration
of boundary value problems.

Dense Output

Classical Runge-Kutta methods are inefficient, if the number of output points be-
comes very large (Shampine, Watts & Davenport 1976). This motivated the con-
struction of dense output formulas (Horn 1983). These are Runge-Kutta methods
which provide, in addition to the numerical result y1 , cheap numerical approxima-
tions to y(x0 + θh) for the whole integration interval 0 ≤ θ ≤ 1 . “Cheap” means
without or, at most, with only a few additional function evaluations.

We start from an s -stage Runge-Kutta method with given coefficients ci, aij

and bj , eventually add s∗ − s new stages, and consider formulas of the form

u(θ) = y0 +h

s∗∑
i=1

bi(θ)ki, (6.1)

where

ki = f
(
x0 + cih, y0 +h

i−1∑
j=1

aijkj

)
, i = 1, . . . , s∗ (6.2)

and bi(θ) are polynomials to be determined such that

u(θ)− y(x0 + θh) = O(hp∗+1). (6.3)

Usually s∗ ≥ s + 1 since we include (at least) the first function evaluation of the
subsequent step ks+1 = hf(x0 +h, y1) in the formula with as+1,j = bj for all j .
A Runge-Kutta method, provided with a formula (6.1), will be called a continuous
Runge-Kutta method.
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Theorem 6.1. The error of the approximation (6.1) is of order p∗ (i.e., the local
error satisfies (6.3)), if and only if

s∗∑
j=1

bj(θ)Φj(t) =
θ�(t)

γ(t)
for �(t) ≤ p∗ (6.4)

with Φj(t) , �(t) , γ(t) given in Section II.2.

Proof. The q th derivative (with respect to h) of the numerical approximation is
given by (2.14) with bj replaced by bj(θ) ; that of the exact solution y(x0 + θh) is

θqy(q)(x0) . The statement thus follows as in Theorem 2.13.

Corollary 6.2. Condition (6.4) implies that the derivatives of (6.1) approximate
the derivatives of the exact solution as

h−ku(k)(θ)− y(k)(x0 + θh) = O(hp∗−k+1). (6.5)

Proof. Comparing the q th derivative (with respect to h) of u′(θ) with that of
hy′(x0 + θh) we find that (6.5) (for k = 1 ) is equivalent to

s∗∑
j=1

b′j(θ)Φj(t) =
�(t)θ�(t)−1

γ(t)
for �(t) ≤ p∗.

This, however, follows from (6.4) by differentiation. The case k > 1 is obtained
similarly.

We write the polynomials bj(θ) as

bj(θ) =
p∗∑

q=1

bjqθ
q , (6.6)

so that the equations (6.4) become a system of simultaneous linear equations of the
form⎛⎜⎝

1 1 . . 1
Φ1(t21) Φ2(t21) . . Φs∗ (t21)
Φ1(t31) Φ2(t31) . . Φs∗ (t31)

...
...

...

⎞⎟⎠
︸ ︷︷ ︸

Φ

⎛⎜⎝
b11 b12 b13 . .
b21 b22 b23 . .

...
...

...
bs∗1 bs∗2 bs∗3 . .

⎞⎟⎠
︸ ︷︷ ︸

B

=

⎛⎜⎜⎜⎜⎝
1 0 0 . .
0 1

2 0 . .

0 0 1
3 . .

0 0 1
6 . .

...
...

...

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

G

(6.4’)

where the Φj(t) are known numbers depending on aij and ci . Using standard
linear algebra the solution of this system can easily be discussed. It may happen,
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however, that the order p∗ of the dense output is smaller than the order p of the
underlying method.

Example. For “the” Runge-Kutta method of Table 1.2 (with s∗ = s = 4 ) equations
(6.4’) with p∗ = 3 produce a unique solution

b1(θ) = θ− 3θ2

2
+

2θ3

3
, b2(θ) = b3(θ) = θ2 − 2θ3

3
, b4(θ) =−θ2

2
+

2θ3

3
which constitutes a dense output solution which is globally continuous but not C1 .

Hermite interpolation. A much easier way (than solving (6.4’)) and more efficient
for low order dense output formulas is the use of Hermite interpolation (Shampine
1985). Whatever the method is, we have two function values y0 , y1 and two
derivatives f0 = f(x0, y0) , f1 = f(x0 +h, y1) at our disposal and can thus do
cubic polynomial interpolation. The resulting formula is

u(θ)=(1−θ)y0 +θy1 +θ(θ−1)
(
(1−2θ)(y1−y0)+(θ−1)hf0 +θhf1

)
. (6.7)

Inserting the definition of y1 into (6.7) shows that Hermite interpolation is a special
case of (6.1). Whenever the underlying method is of order p ≥ 3 we thus obtain a
continuous Runge-Kutta method of order 3 .

Since the function and derivative values on the right side of the first interval
coincide with those on the left side of the second interval, Hermite interpolation
leads to a globally C1 approximation of the solution.

The 4 -stage 4 th order methods of Section II.1 do not possess a dense output
of order 4 without any additional function evaluations (see Exercise 1). Therefore
the question arises whether it is really important to have a dense output of the same
order. Let us consider an interval far away from the initial value, say [xn, xn+1] ,
and denote by z(x) the local solution, i.e., the solution of the differential equation
which passes through (xn, yn) . Then the error of the dense output is composed of
two terms:

u(θ)− y(xn + θh) =
(
u(θ)− z(xn + θh)

)
+
(
z(xn + θh)− y(xn + θh)

)
.

The term to the far right reflects the global error of the method and is of size O(hp) .
In order that both terms be of the same order of magnitude it is thus sufficient to
require p∗ = p− 1 .

The situation changes, if we also need accurate values of the derivative y′(xn +
θh) (see Section 5 of Enright, Jackson, Nørsett & Thomsen (1986) for a discussion
of problems where this is important). We have

h−1u′(θ)−y′(xn+θh)=
(
h−1u′(θ)−z′(xn+θh)

)
+
(
z′(xn+θh)−y′(xn+θh)

)
and the term to the far right is of size O(hp) if f(x, y) satisfies a Lipschitz condi-
tion. A comparison with (6.5) shows that we need p∗ = p in order that both error
terms be of comparable size.
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Boot-strapping process (Enright, Jackson, Nørsett & Thomsen 1986). This is a
general procedure for increasing iteratively the order of dense output formulas.

Suppose that we already have a 3 rd order dense output at our disposal (e.g.,
from Hermite interpolation). We then fix arbitrarily an α ∈ (0, 1) and denote the
3 rd order approximation at x0 +αh by yα . The idea is now that hf(x0 +αh, yα)
is a 4 th order approximation to hy′(x0 +αh) . Consequently, the 4 th degree poly-
nomial u(θ) defined by

u(0) = y0, u′(0) = hf(x0, y0)

u(1) = y1, u′(1) = hf(x0 +h, y1)

u′(α) = hf(x0 +αh, yα)

(6.8)

(which exists uniquely for α �= 1/2 ) yields the desired formula. The interpolation
error is O(h5) and each quantity of (6.8) approximates the corresponding exact
solution value with an error of O(h5) .

The extension to arbitrary order is straightforward. Suppose that a dense output
formula u0(θ) of order p∗ < p is known. We then evaluate this polynomial at
p∗ − 2 distinct points αi ∈ (0, 1) and compute the values f

(
x0 +αih, u0(αi)

)
.

The interpolation polynomial u1(θ) of degree p∗ + 1 , defined by

u1(0) = y0, u′
1(0) = hf(x0, y0)

u1(1) = y1, u′
1(1) = hf(x0 +h, y1)

u′
1(αi) = hf

(
x0 +αih, u0(αi)

)
, i = 1, . . . p∗ − 2,

(6.9)

yields an interpolation formula of order p∗ + 1 . Obviously, the αi in (6.9) have to
be chosen such that the corresponding interpolation problem admits a solution.

Continuous Dormand & Prince Pairs

The method of Dormand & Prince (Table 5.2) is of order 5(4) so that we are mainly
interested in dense output formulas with p∗ = 4 and p∗ = 5 .

Order 4. A continuous formula of order 4 can be obtained without any additional
function evaluation. Since the coefficients satisfy (5.7), it follows from the dif-
ference of the order conditions for the trees t31 and t32 (notation of Table 2.2)
that

b2(θ) = 0 (6.10)

is necessary. This condition together with (5.7) and (5.15) then implies that the
order conditions are equivalent for the following pairs of trees: t31 and t32 , t41
and t42 , t41 and t43 . Hence, for order 4 , only 5 conditions have to be considered
(the four quadrature conditions and

∑
i bi(θ)ai2 = 0 ). We can arbitrarily choose

b7(θ) and the coefficients b1(θ), b3(θ), . . . , b6(θ) are then uniquely determined.
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As for the choice of b7(θ) , Shampine (1986) proposed minimizing, for each θ , the
error coefficients (Theorem 3.2)

e(t) = θ5 − γ(t)
7∑

j=1

bj(θ)Φj(t) for t ∈ T5, (6.11)

weighted by α(t) of Definition 2.5, in the square norm. These expressions can be
seen to depend linearly on b7(θ) ,

α(t)e(t) = ζ(t, θ)− b7(θ)η(t),

thus the minimal value is found for

b7(θ) =
∑
t∈T5

ζ(t, θ)η(t)
/∑

t∈T5

η2(t).

The resulting formula, given by Dormand & Prince (1986), is

b7(θ) = θ2(θ− 1) + θ2(θ− 1)210 · (7414447− 829305θ)/29380423. (6.12)

The other coefficients, written in a fashion which makes the Hermite-part clearly
visible, are then given by

b1(θ) = θ2(3− 2θ) · b1 + θ(θ− 1)2

− θ2(θ− 1)25 · (2558722523− 31403016θ)/11282082432

b3(θ) = θ2(3− 2θ) · b3 + θ2(θ− 1)2100 · (882725551− 15701508θ)/32700410799

b4(θ) = θ2(3− 2θ) · b4 − θ2(θ− 1)225 · (443332067− 31403016θ)/1880347072

b5(θ) = θ2(3− 2θ) · b5 + θ2(θ− 1)232805 · (23143187− 3489224θ)/199316789632

b6(θ) = θ2(3− 2θ) · b6 − θ2(θ− 1)255 · (29972135− 7076736θ)/822651844.
(6.13)

It can be directly verified that the interpolation polynomial u(θ) defined by (6.10),
(6.12) and (6.13) satisfies

u(0) = y0, u′(0) = hf(x0, y0),

u(1) = y1, u′(1) = hf(x0 +h, y1),
(6.14)

so that it produces globally a C1 approximation of the solution.
Instead of using the above 5 th degree polynomial u(θ) , Shampine (1986) sug-

gests evaluating it only at the midpoint, y1/2 = u(1/2) , and then doing quartic
polynomial interpolation with the five values y0 , hf(x0, y0) , y1 , hf(x0 +h, y1) ,
y1/2 . This dense output is also C1 , is easier to implement and the difference to the
above formula “ . . . is not significant” (Dormand & Prince 1986).

We have implemented Shampine’s dense output in the code DOPRI5 (see Ap-
pendix). The advantages of such a dense output for graphical representations of the
solution can already be seen from Fig. 0.1 of the introduction to Chapter II. For a
more thorough study we have applied DOPRI5 to the Brusselator (4.15) with initial
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values y1(0) = 1.5 , y2(0) = 3 , integration interval 0≤ x≤ 10 and error tolerance
Atol = Rtol = 10−4 . The global error of the above 4 th order continuous solution
is displayed in Fig. 6.1 for both components. The error shows the same quality
throughout; the grid points, which are represented by the symbols and , are
by no means outstanding.

x

global error

y

y

Fig. 6.1. Error of dense output of DOPRI5

Order 5. For a dense output of order p∗ = 5 for the Dormand & Prince method
the linear system (6.4’) has no solution since

rank
(
Φ|G)= 9 and rank (Φ) = 7 (6.15)

as can be verified by Gaussian elimination. Such a linear system has a solution
if and only if the two ranks in (6.15) are equal . So we must append additional
stages to the method. Each new stage adds a new column to the matrix Φ , thus
may increase the rank of Φ by one without changing rank (Φ|G) . Therefore we
obtain

Lemma 6.3 (Owren & Zennaro 1991). Consider a Runge-Kutta method of order
p . For the construction of a continuous extension of order p∗ = p one has to add
at least

δ := rank
(
Φ|G)− rank (Φ) (6.16)

stages.

For the Dormand & Prince method we thus need at least two additional stages.
There are several possibilities for constructing such dense output formulas:

a) Shampine (1986) shows that one new function evaluation allows one to com-
pute a 5 th order approximation at the midpoint x0 +h/2 . If one evaluates
anew the function at this point to get an approximation of y′(x0 +h/2) , one
can do quintic Hermite interpolation to get a dense output of order 5 .
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b) Use the 4 th order formula constructed above at two different output points and
do boot-strapping. This has been done by Calvé & Vaillancourt (1990).

c) Add two arbitrary new stages and solve the order conditions. This leads to
methods with 10 free parameters (Calvo, Montijano & Rández 1992) which
can then be used to minimize the error terms. This seems to give the best
output formulas.

New methods. If anyhow the Dormand & Prince pair needs two additional func-
tion evaluations for a 5 th order dense output, the suggestion lies at hand to search
for completely new methods which use all stages for the solution y1 and ŷ1 as
well. Owren & Zennaro (1992) constructed an 8 -stage continuous Runge-Kutta
method of order 5(4) . It uses the FSAL idea so that the effective cost is 7 function
evaluations ( fe) per step. Bogacki & Shampine (1989) present a 7 -stage method
of order 5(4) with very small error coefficients, so that it nearly behaves like a 6 th
order method. The effective cost of its dense output is 10 fe . A method of order
6(5) with a dense output of order p∗ = 5 is given by Calvo, Montijano & Rández
(1990).

Dense Output for DOP853

We are interested in a continuous extension of the 8 th order method of Section
II.5 (formula (5.20)). A dense output of order 6 can be obtained for free (add y1

as 13 th stage and solve the linear system (6.19a-c) below with s∗ = s + 1 = 13 ).
Following Dormand & Prince we shall construct a dense output of order p∗ = 7 .
We add three further stages (by Lemma 6.3 this is the minimal number of additional
stages). The values for c14, c15, c16 are chosen arbitrarily as

c14 = 0.1, c15 = 0.2, c16 = 7/9 (6.17)

and the coefficients aij are assumed to satisfy, for i ∈ {14, 15, 16} ,∑i−1
j=1 aijc

q−1
j = cq

i /q, q = 1, . . . , 6 (6.18a)

ai2 = ai3 = ai4 = ai5 = 0 (6.18b)∑i−1
j=k+1 aijajk = 0, k = 4, 5. (6.18c)

This system can easily be solved (step 5 of Fig. 5.3). We are still free to set some
coefficients equal to 0 (see Fig. 5.3).

We next search for polynomials bi(θ) such that the conditions (6.4) are satis-
fied for all trees of order ≤7 . We find the following necessary conditions (s∗ =16 )∑s∗

i=1 bi(θ)cq−1
i = θq/q, q = 1, . . . , 7 (6.19a)

b2(θ) = b3(θ) = b4(θ) = b5(θ) = 0 (6.19b)∑s∗

i=j+1 bi(θ)aij = 0, j = 4, 5 (6.19c)
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i=j+1 bi(θ)ciaij = 0, j = 4, 5 (6.19d)∑s∗

i,j=1 bi(θ)aijc
5
j = θ7/42. (6.19e)

Here (6.19a,e) are order conditions for [τ, . . . , τ ] and [[τ, τ, τ, τ, τ ]] . The property
b2(θ) = 0 follows from 0 =

∑
i bi(θ)

(∑
j aijcj − c2

i /2) = −b2(θ)c2
2/2

and the other three conditions of (6.19b) are a consequence of the relations 0 =∑
i bi(θ)cq−1

i

(∑
j aijc

3
j − c4

i /4) = 0 for q = 1, 2, 3 . The necessity of the condi-
tions (6.19c,d) is seen similarly.

On the other hand, the conditions (6.19) are also sufficient for the dense output
to be of order 7 . We first remark that (6.19), (6.18) and (5.20) imply

s∗∑
i,j=k+1

bi(θ)aijajk = 0, k = 4, 5 (6.20)

(see Exercise 3). The verification of the order conditions (6.4) is then possible
without difficulty.

System (6.19) consists of 16 linear equations for 16 unknowns which possess
a unique solution. An interesting property of the continuous solution (6.1) obtained
in this manner is that it yields a global C1 -approximation to the solution, i.e.,

u(0) = y0, u(1) = y1, u′(0) = hf(y0), u′(1) = hf(y1). (6.21)

For the verification of this property we define a polynomial q(θ) of degree 7 by the
relations (6.21) and by q(θi) = u(θi) for 4 distinct values θi which are different
from 0 and 1 . Obviously, q(θ) is of the form (6.1) and defines a dense output of
order 7 . Due to the uniqueness of the bi(θ) we must have q(θ) ≡ u(θ) so that
(6.21) is verified.

Event Location

Often the output value xend for which the solutions are wanted is not known in
advance, but depends implicitly on the computed solutions. An example of such a
situation is the search for periodic solutions and limit cycles discussed in Section
I.16, where we wanted to know when the solution reaches the Poincaré-section for
the first time.

Such problems are very easily treated when a dense output u(x) is available.
Suppose we want to determine x such that

g
(
x, y(x)

)
= 0. (6.22)

Algorithm 6.4. Compute the solution step-by-step until a sign change appears be-
tween g(xi, yi) and g(xi+1, yi+1) (this is, however, not completely safe because
g may change sign twice in an integration interval; use the dense output at in-
termediate values if more safety is needed). Then replace y(x) in (6.22) by the
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approximation u(x) and solve the resulting equation numerically, e.g. by bisection
or Newton iterations.

This algorithm can be conveniently done in the subroutine SOLOUT, which is
called after every accepted step (see Appendix). If the value of x , satisfying (6.22),
has been found, the integration is stopped by setting IRTRN= −1 .

Whenever the function g of (6.22) also depends on y′(x) , it is advisable to use
a dense output of order p∗ = p .

Discontinuous Equations

If you write some software which is half-way useful, sooner or
later someone will use it on discontinuities. You have to scope
about . . . (A.R. Curtis 1986)

In many applications the function defining a differential equation is not analytic or
continuous everywhere. A common example is a problem which (at least locally)
can be written in the form

y′ =
{

fI(y) if g(y) > 0
fII (y) if g(y) < 0 (6.23)

with sufficiently differentiable functions g , fI and fII . The derivative of the
solution is thus in general discontinuous on the surface

S = {y; g(y) = 0}.
The function g(y) is called a switching function.

In order to understand the situations which can occur when the solution of
(6.23) meets the surface S in a point y0 (i.e., g(y0) = 0 ), we consider the scalar
products

aI = 〈grad g(y0), fI(y0)〉
aII = −〈grad g(y0), fII(y0)〉

(6.24)

which can be approximated numerically by aI ≈ g
(
y0 + δfI(y0)

)
/δ with small

enough δ . Since the vector grad g(y0) points towards the domain of fI , the in-
equality aI < 0 tells us that the flow for fI is “pushing” against S , while for
aI > 0 the flow is “pulling”. The same argument holds for aII and the flow for
fII . Therefore, apart from degenerate cases where either aI or aII vanishes, we
can distinguish the following four cases (see Fig. 6.2):

1) aI > 0, aII < 0 : the flow traverses S from g < 0 to g > 0 .

2) aI < 0, aII > 0 : the flow traverses S from g > 0 to g < 0 .

3) aI > 0, aII > 0 : the flow “pulls” on both sides; the solution is not unique;
except in the case of an unhappily chosen initial value, this situation would
normally not occur.



II.6 Dense Output, Discontinuities, Derivatives 197

4) aI < 0, aII < 0 : here both flows push against S ; the solution is trapped in S
and the problem no longer has a classical solution.

fIfI

fIIfII

grad ggrad g

aI , aII

fIfI

fIIfII

grad ggrad g

aI , aII

fIfI

fIIfII

grad ggrad g

aI , aII

fIfI

fIIfII

grad ggrad g

aI , aII

Fig. 6.2. Solutions near the surface of discontinuity

Crossing a discontinuity. The numerical computation of a solution crossing a
discontinuity (cases 1 and 2) can be performed as follows:

a) Ignoring the discontinuity: apply a variable step size code with local error
control (such as DOPRI5) and hope that the step size mechanism would handle
the discontinuity appropriately. Consider the example (which represents the
flow of the second picture of Fig. 6.2)

y′ =
{

x2 + 2y2 if (x + 0.05)2 + (y + 0.15)2 ≤ 1
2x2 + 3y2 − 2 if (x + 0.05)2 + (y + 0.15)2 > 1

(6.25)

with initial value y(0) = 0.3 . The discontinuity for this problem occurs at
x ≈ 0.6234 and the code, applied with Atol = Rtol = 10−5 , detects the dis-
continuity fairly well by means of numerous rejected steps (see Fig. 6.3; this
figure, however, is much less dramatic than an analogous drawing (see Gear &
Østerby 1984) for multistep methods). The numerical solution for x = 1 then
has an error of 5.9 · 10−4 .

accepted step

rejected step

step number

x

Fig. 6.3. Ignoring the discontinuity at problem (6.23)
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b) Singularity detecting codes. Concepts have been developed (Gear & Østerby
(1984) for multistep methods, Enright, Jackson, Nørsett & Thomsen (1988) for
Runge-Kutta methods) to modify existing codes in such a way that singularities
are detected more precisely and handled more appropriately. These concepts
are mainly based on the behaviour of the local error estimate compared to the
step size.

c) Use the switching function: stop the computation at the surface of discontinuity
using Algorithm 6.4 and restart the integration with the new right-hand side.
One has to take care that during one integration step only function values of
either fI or fII are used. This algorithm, applied to Example (6.25), uses less
than half of the function evaluations as the “ignoring algorithm” and gives an
error of 6.6 · 10−6 at the point x = 1 . It is thus not only faster, but also much
more reliable.

Example 6.5. Coulomb’s law of friction (Coulomb 1785), which states that the
force of friction is independent of the speed, gives rise to many situations with
discontinuous differential equations. Consider the example (see Den Hartog 1930,
Reissig 1954, Taubert 1976)

y′′ + 2Dy′ +μ sign y′ + y = A cos(ωx). (6.26)

where the Coulomb-force μ sign y′ is accompanied by a viscosity term Dy′ . We
fix the parameters as D = 0.1 , μ = 4 , A = 2 and ω = π , and choose the initial
values

y(0) = 3, y′(0) = 4. (6.27)

Equation (6.26), written in the form (6.23), is

y′ = v

v′ = −0.2v− y + 2 cos(πx)−
{ 4 if v > 0
−4 if v < 0.

(6.28)

Its solution is plotted in Fig. 6.4.
The initial value (6.27) is in the region v > 0 and we follow the solution until

it hits the manifold v = 0 for the first time. This happens for x1 ≈ 0.5628 . An
investigation of the values

aI = −y(x1) + 2 cos(πx1)− 4, aII = y(x1)− 2 cos(πx1)− 4 (6.29)

shows that aI < 0 , aII > 0 , so that we have to continue the integration into the
region v < 0 . The next intersection of the solution with the manifold of disconti-
nuity is at x2 ≈ 2.0352 . Here aI < 0 , aII < 0 , so that a classical solution does not
exist beyond this point and the solution remains “trapped” in the manifold (v = 0 ,
y = Const = y(x2) ) until one of the values aI or aII changes sign. This happens
for aII at the point x3 ≈ 2.6281 and we can continue the integration of (6.28) in
the region v < 0 (see Fig. 6.4). The same situation then repeats periodically.
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y x

v xx x x

y x

v xx x x

Fig. 6.4. Solutions of (6.28)

Solutions in the manifold. In the case aI < 0 , aII < 0 the solution of (6.23) can
neither be continued along the flow of y′ = fI(y) nor along that of y′ = fII(y) .
However, the physical process, described by the differential equation (6.23), pos-
sesses a solution (see Example 6.5). Early papers on this subject studied the con-
vergence of Euler polygons, pushed across the border again and again by the con-
flicting vector fields (see, e.g., Taubert 1976). Later it became clear that it is much
more advantageous to pursue the solution in the manifold S , i.e., solve a so-called
differential algebraic problem. This approach is advocated by Eich (1992), who
attributes the ideas to the thesis of G. Bock, by Eich, Kastner-Maresch & Reich
(unpublished manuscript, 1991), and by Stewart (1990). We must decide, however,
which vector field in S should determine the solution. Several motivations (see
Exercises 8 and 9 below) suggest to search this field in the convex hull

f(y, λ) = (1−λ)fI(y) +λfII(y), (6.30)

of fI and fII . This coincides, for the special problem (6.23), with Filippov’s
“generalized solution” (Filippov 1960); but other homotopies may be of interest as
well. The value of λ must be chosen in such a way that the solution remains in S .
This means that we have to solve the problem

y′ = f(y, λ) (6.31a)

0 = g(y). (6.31b)

Differentiating (6.31b) with respect to time yields

0 = grad g(y)y′ = grad g(y)f(y, λ). (6.32)

If this relation allows λ to be expressed as a function of y , say as λ = G(y) , then
(6.31a) becomes the ordinary differential equation

y′ = f
(
y, G(y)

)
(6.33)

which can be solved by standard integration methods. Obviously, the solution of
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(6.33) together with λ = G(y) satisfy (6.32) and after integration also (6.31b) (be-
cause the initial value satisfies g(y0) = 0 ).

For the homotopy (6.30) the relation (6.32) becomes

(1−λ)aI(y)−λaII(y) = 0, i.e., λ =
aI(y)

aI(y) + aII(y)
, (6.34)

where aI(y) and aII(y) are given in (6.24).

Remark . Problem (6.31) is a “differential-algebraic system of index 2” and di-
rect numerical methods are discussed in Chapter VI of Volume II. The instances
where aI or aII change sign can again be computed by using a dense output and
Algorithm 6.4.

Numerical Computation of Derivatives with Respect
to Initial Values and Parameters

For the efficient computation of boundary value problems by a shooting technique
as explained in Section I.15, we need to compute the derivatives of the solutions
with respect to (the missing) initial values. Also, if we want to adjust unknown
parameters from given data, say by a nonlinear least squares procedure, we have to
compute the derivatives of the solutions with respect to parameters in the differen-
tial equation.

We shall restrict our discussion to the problem

y′ = f(x, y, B), y(x0) = y0(B) (6.35)

where the right-hand side function and the initial values depend on a real parameter
B . The generalization to more than one parameter is straightforward. There are
several possibilities for computing the derivative ∂y/∂B .

External differentiation. Denote the numerical solution, obtained by a variable
step size code with a fixed tolerance, by yTol (xend, x0, B) . Then the most simple
device is to approximate the derivative by a finite difference

1
ΔB

(
yTol (xend, x0, B + ΔB)− yTol (xend, x0, B)

)
. (6.36)

However, due to the error control mechanism with its IF’s and THEN’s and step
rejections, the function yTol (xend, x0, B) is by no means a smooth function of the
parameter B . Therefore, the errors of the two numerical results in (6.36) are not
correlated, so that the error of (6.36) as an approximation to ∂y/∂B(xend, x0, B)
is of size O(Tol/ΔB) +O(ΔB) , the second term coming from the discretization
(6.36). This suggests taking for ΔB something like

√
Tol , and the error of (6.36)

becomes of size O(
√

Tol) .
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Internal differentiation. We know from Section I.14 that Ψ = ∂y/∂B is the
solution of the variational equation

Ψ′ =
∂f

∂y
(x, y, B)Ψ +

∂f

∂B
(x, y, B), Ψ(x0) =

∂y0

∂B
(B). (6.37)

Here y is the solution of (6.35). Hence, (6.35) and (6.37) together constitute a dif-
ferential system for y and Ψ , which can be solved simultaneously by any code. If
the partial derivatives ∂f/∂y and ∂f/∂B are available analytically, then the error
of ∂y/∂B , obtained by this procedure, is obviously of size Tol . This algorithm is
equivalent to “internal differentiation” as introduced by Bock (1981).

If ∂f/∂y and ∂f/∂B are not available one can approximate them by finite
differences so that (6.37) becomes

Ψ′ =
1

ΔB

(
f(x, y + ΔB ·Ψ, B + ΔB)− f(x, y, B)

)
. (6.38)

The solution of (6.38), when inserted into (6.37), gives raise to a defect of size
O(ΔB) +O(eps/ΔB) , where eps is the precision of the computer (independent
of Tol ). By Theorem I.10.2, the difference of the solutions of (6.38) and (6.37)
is of the same size. Choosing ΔB ≈ √

eps the error of the approximation to
∂y/∂B , obtained by solving (6.35), (6.38), will be of order Tol +

√
eps , so that

for Tol ≥ √
eps the result is as precise as that obtained by integration of (6.37).

Observe that external differentiation and the numerical solution of (6.35), (6.38)
need about the same number of function evaluations.

ΔB = 4Tol ΔB =
√

Tol internal
differentiation

Fig. 6.5. Derivatives of the solution of (6.39) with respect to B

As an example we consider the Brusselator

y′
1 = 1 + y2

1y2 − (B + 1)y1 y1(0) = 1.3

y′
2 = By1 − y2

1y2 y2(0) = B
(6.39)

and compute ∂y/∂B at x = 20 for various B ranging from B = 2.88 to B =
3.08 . We applied the code DOPRI5 with Atol = Rtol = Tol = 10−4 . The numerical
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result is displayed in Fig. 6.5. External differentiation has been applied, once with
ΔB =

√
Tol and a second time with ΔB = 4Tol . This numerical example clearly

demonstrates that internal differentiation is to be preferred.

Exercises

1. (Owren & Zennaro 1991, Carnicer 1991). The 4 -stage 4 th order methods of
Section II.1 do not possess a dense output of order 4 (also if the numerical
solution y1 is included as 5 th stage). Prove this statement.

2. Consider a Runge-Kutta method of order p and use Richardson extrapolation
for step size control. Besides the numerical solution y0, y1, y2 we consider the
extrapolated values (see Section II.4)

ŷ1 = y1 +
y2 −w

(2p − 1)2
, ŷ2 = y2 +

y2 −w

2p − 1

and do quintic polynomial interpolation based on y0 , f(x0, y0) , ŷ1 , f(x0 +
h, y1) , ŷ2 , f(x0 +2h, ŷ2) . Prove that the resulting dense output formula is of
order p∗ = min(5, p + 1) .

Remark. It is not necessary to evaluate f at ŷ1 .

3. Prove that the conditions (6.19), (6.18) and (5.20) imply (6.20).

Hint. The system (6.19) together with one relation of (6.20) is overdetermined.
However, it possesses the solution bi for θ = 1 . Further, the values bici also
solve this system if the right-hand side of (6.19a) is adapted. These properties
imply that for k ∈ {4, 5} and for i ∈ {1, 6, . . . , 16}

i−1∑
j=k+1

aijajk = αai4 +βai5 + γciai4 + δciai5 + ε
(i−1∑

j=1

aijc
5
j −

c6
i

6

)
,

where the parameters α, β, γ, δ, ε may depend on k .

4. (Butcher). Try your favorite code on the example

y′
1 = f1(y1, y2), y1(0) = 1

y′
2 = f2(y1, y2), y2(0) = 0

where f is defined as follows.
If (|y1| > |y2|) then

f1 = 0, f2 = sign (y1)
Else

f2 = 0, f1 = −sign (y2)
End If .

Compute y1(8), y2(8) . Show that the exact solution is periodic.
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5. Do numerical computations for the problem y′ = f(y) , y(0) = 1 , y(3) =?
where

f(y) =

⎧⎪⎪⎨⎪⎪⎩
y2 if 0 ≤ y ≤ 2

a) 1
b) 4
c) − 4 + 4y

⎫⎬⎭ if 2 < y

Remark. The correct answer would be (a) 4.5 , (b) 12 , (c) exp(10) + 1 .

6. Consider an s -stage Runge-Kutta method and denote by s̃ the number of dis-
tinct ci . Prove that the order of any continuous extension is ≤ s̃ .

Hint. Let q(x) be a polynomial of degree s̃ satisfying q(ci) = 0 (for i =
1, . . . , s ) and investigate the expression

∑
i bi(θ)q(ci) .

7. (Step size freeze). Consider the following algorithm for the computation of
∂y/∂B : first compute numerically the solution of (6.35) and denote it by
yh(xend, B) . At the same time memorize all the selected step sizes. This
step size sequence is then used to solve (6.35) with B replaced by B + ΔB .
The result is denoted by yh(xend, B + ΔB) . Then approximate the derivative
∂y/∂B by

1
ΔB

(
yh(xend, B + ΔB)− yh(xend, B)

)
.

Prove that this algorithm is equivalent to the solution of the system (6.35),
(6.38), if only the components of y are considered for error control and step
size selection.

Remark. For large systems this algorithm needs less storage requirements than
internal differentiation, in particular if the derivative with respect to several
parameters is computed.

8. (Taubert 1976). Show that for the discontinuous problem (6.23) the Euler poly-
gons converge to Filippov’s solution (6.30), (6.31).

Hint. The difference quotient of a piece of the Euler polygon lies in the convex
hull of points fI(y) and fII(y) .

Remark. This result can either be interpreted as pleading for myriads of Euler
steps, or as a motivation for the homotopy (6.30).

9. Another motivation for formula (6.30): suppose that a small particle of radius
ε is transported in a possibly discontinuous flow. Then its movement might be
described by the mean of f

fε(y) =
∫

Bε(y)
f(z) dz

/ ∫
Bε(y)

dz

which is continuous in y . Show that the solution of y′
ε = fε(y) becomes, for

ε → 0 , that of (6.33) and (6.34).
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It has been traditional to consider only explicit processes
(J.C. Butcher 1964a)

The high speed computing machines make it possible to enjoy
the advantage of intricate methods

(P.C. Hammer & J.W. Hollingsworth 1955)

The first implicit RK methods were used by Cauchy (1824) for the sake of — you
have guessed correctly — error estimation (Méthodes diverses qui peuvent être
employées au Calcul numérique . . .; see Exercise 5). Cauchy inserted the mean
value theorem into the integral studied in Sections I.8 and II.1,

y(x1) = y(x0) +
∫ x1

x0

f
(
x, y(x)

)
dx, (7.1)

to obtain
y1 = y0 +hf

(
x0 + θh, y0 + Θ(y1 − y0)

)
(7.2)

with 0≤ θ, Θ≤ 1 (the “θ -method”). The extreme cases are θ =Θ=0 (the explicit
Euler method) and θ = Θ = 1

y1 = y0 +hf(x1, y1), (7.3)

which we call the implicit or backward Euler method.
For the sake of more efficient numerical processes, we apply, as we did in

Section II.1, the midpoint rule (θ = Θ = 1/2) and obtain from (7.2) by setting
k1 = (y1 − y0)/h :

k1 = f
(
x0 +

h

2
, y0 +

h

2
k1

)
,

y1 = y0 +hk1.
(7.4)

This method is called the implicit midpoint rule.
Still another possibility is to approximate (7.1) by the trapezoidal rule and to

obtain

y1 = y0 +
h

2

(
f(x0, y0) + f(x1, y1)

)
. (7.5)

Let us also look at the Radau scheme

y(x1)− y(x0) =
∫ x0+h

x0

f
(
x, y(x)

)
dx

≈ h

4

(
f(x0, y0) + 3f

(
x0 +

2
3

h, y(x0 +
2
3

h)
))

.
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Here we need to approximate y(x0 + 2h/3). One idea would be the use of qua-
dratic interpolation based on y0, y′

0 and y(x1) ,

y
(
x0 +

2
3

h
)≈ 5

9
y0 +

4
9

y(x1) +
2
9

hf(x0, y0).

The resulting method, given by Hammer & Hollingsworth (1955), is

k1 = f(x0, y0)

k2 = f
(
x0 +

2
3

h, y0 +
h

3
(k1 + k2)

)
y1 = y0 +

h

4
(k1 + 3k2).

(7.6)

All these schemes are of the form (1.8) if the summations are extended up to “s”.

Definition 7.1. Let bi, aij (i, j = 1, . . . , s) be real numbers and let ci be defined
by (1.9). The method

ki = f
(
x0 + cih, y0 +h

s∑
j=1

aijkj

)
i = 1, . . . , s

y1 = y0 +h
s∑

i=1

biki

(7.7)

is called an s -stage Runge-Kutta method. When aij = 0 for i ≤ j we have an
explicit (ERK) method. If aij = 0 for i < j and at least one aii �= 0, we have a
diagonal implicit Runge-Kutta method (DIRK). If in addition all diagonal elements
are identical (aii = γ for i = 1, . . . , s ), we speak of a singly diagonal implicit
(SDIRK) method. In all other cases we speak of an implicit Runge-Kutta method
(IRK).

The tableau of coefficients used above for ERK-methods is obviously extended
to include all the other non-zero aij ’s above the diagonal. For methods (7.3), (7.4)
and (7.6) it is given in Table 7.1.

Renewed interest in implicit Runge-Kutta methods arose in connection with
stiff differential equations (see Volume II).

Table 7.1. Implicit Runge-Kutta methods

1 1

1

1/2 1/2

1

0 0 0

2/3 1/3 1/3

1/4 3/4

Implicit Euler Implicit midpoint rule Hammer & Hollingsworth
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Existence of a Numerical Solution

For implicit methods, the ki ’s can no longer be evaluated successively, since (7.7)
constitutes a system of implicit equations for the determination of ki. For DIRK-
methods we have a sequence of implicit equations of dimension n for k1, then
for k2, etc. For fully implicit methods s ·n unknowns (ki , i = 1, . . . , s ; each of
dimension n ) have to be determined simultaneously, which still increases the dif-
ficulty. A natural question is therefore (the reason for which the original version of
Butcher (1964a) was returned by the editors): do equations (7.7) possess a solution
at all?

Theorem 7.2. Let f :R×R
n →R

n be continuous and satisfy a Lipschitz condition
with constant L (with respect to y ). If

h <
1

L maxi

∑
j |aij |

(7.8)

there exists a unique solution of (7.7), which can be obtained by iteration. If f(x, y)
is p times continuously differentiable, the functions ki (as functions of h) are also
in Cp .

Proof. We prove the existence by iteration (“ . . . on la résoudra facilement par des
approximations successives . . .”, Cauchy 1824)

k
(m+1)
i = f

(
x0 + cih, y0 +h

s∑
j=1

aijk
(m)
j

)
.

We define K ∈ Rsn as K = (k1, . . . , ks)T and use the norm ‖K‖= maxi(‖ki‖).
Then (7.7) can be written as K = F (K) where

Fi(K) = f
(
x0 + cih, y0 +h

s∑
j=1

aijkj

)
, i = 1, . . . , s.

The Lipschitz condition and a repeated use of the triangle inequality then show that

‖F (K1)−F (K2)‖ ≤ hL max
i=1,...,s

s∑
j=1

|aij | · ‖K1 −K2‖

which from (7.8) is a contraction. The contraction mapping principle then ensures
the existence and uniqueness of the solution and the convergence of the fixed-point
iteration.

The differentiability result is ensured by the Implicit Function Theorem of clas-
sical analysis: (7.7) is written as Φ(h, K) = K −F (K) = 0 . The matrix of partial
derivatives ∂Φ/∂K for h = 0 is the identity matrix and therefore the solution of
Φ(h, K) = 0, which for h = 0 is ki = f(x0, y0), is continuously differentiable in
a neighbourhood of h = 0.
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If the assumptions on f in Theorem 7.2 are only satisfied in a neighbourhood
of the initial value, then further restrictions on h are needed in order that the argu-
ment of f remains in this neighbourhood. Uniqueness is then only of local nature.

The step size restriction (7.8) becomes useless for stiff problems (L large). We
return to this question in Vol. II, Sections IV.8 and IV.14.

The definition of order is the same as for explicit methods and the order con-
ditions are derived in precisely the same way as in Section II.2.

Example 7.3. Let us study implicit two-stage methods of order 3: the order condi-
tions become (see Theorem 2.1)

b1 + b2 =1, b1c1 + b2c2 =
1
2
, b1c

2
1 + b2c

2
2 =

1
3

b1(a11c1 + a12c2) + b2(a21c1 + a22c2) =
1
6
.

(7.9)

The first three equations imply the following orthogonality relation (from the theory
of Gaussian integration):∫ 1

0

(x− c1)(x− c2) dx = 0, i.e., c2 =
2− 3c1

3− 6c1

(c1 �= 1/2) (7.10)

and
b1 =

c2 − 1/2
c2 − c1

, b2 =
c1 − 1/2
c1 − c2

.

In the fourth equation we insert a21 = c2 − a22, a11 = c1 − a12 and consider a12

and c1 as free parameters. This gives

a22 =
1/6− b1a12(c2 − c1)− c1/2

b2(c2 − c1)
. (7.11)

For a12 = 0 we obtain a one-parameter family of DIRK-methods of order 3. An
SDIRK-method is obtained if we still require a11 = a22 (Nørsett 1974b, Crouzeix
1975, see Table 7.2). For order 4 we have 4 additional conditions, with only two
free parameters left. Nevertheless there exists a unique solution (see Table 7.3).

Table 7.2. SDIRK method, order 3

γ γ 0

1− γ 1− 2γ γ

1/2 1/2

γ = 3±√
3

6

Table 7.3. Hammer & Hollingsworth, order 4

1
2
−

√
3

6
1
4

1
4
−

√
3

6
1
2

+

√
3

6
1
4

+

√
3

6
1
4

1/2 1/2
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The Methods of Kuntzmann and Butcher of Order 2s

It is clear that formula (7.4) and the method of Table 7.3 extend the one-point
and two-point Gaussian quadrature formulas, respectively. Kuntzmann (1961) (see
Ceschino & Kuntzmann 1963, p. 106) and Butcher (1964a) then discovered that
for all s there exist IRK-methods of order 2s . The main tools of proof are the
following simplifying assumptions

B(p) :
s∑

i=1

bic
q−1
i =

1
q

q = 1, . . . , p,

C(η) :
s∑

j=1

aijc
q−1
j =

cq
i

q
i = 1, . . . , s, q = 1, . . . , η,

D(ζ) :
s∑

i=1

bic
q−1
i aij =

bj

q
(1− cq

j) j = 1, . . . , s, q = 1, . . . , ζ.

Condition B(p) simply means that the quadrature formula (bi, ci) is of order p
or, equivalently, that the order conditions (2.21) are satisfied for the bushy trees
[τ, . . . , τ ] up to order p .

The assumption C(η) implies that the pairs of trees in Fig. 7.1 give identical
order conditions for q ≤ η . In contrast to explicit Runge-Kutta methods (see (5.7)
and (5.15)) there is no need to require conditions such as b2 =0 (see (5.8)), because∑

j aijc
q−1
j = cq

i /q is valid for all i .
The assumption D(ζ) is an extension of (1.12). It means that the order condi-

tion of the left-hand tree of Fig. 7.2 is implied by those of the two right-hand trees
if q ≤ ζ .

q
  q

q
  q

Fig. 7.1. Reduction with C(q) Fig. 7.2. Reduction with D(q)

Theorem 7.4 (Butcher 1964a). If B(p) , C(η) and D(ζ) are satisfied with p ≤
2η + 2 and p ≤ ζ + η + 1 , then the method is of order p .

Proof. The above reduction by C(η) implies that it is sufficient to consider trees
t = [t1, . . . , tm] of order ≤ p , where the subtrees t1, . . . , tm are either equal to τ
or of order ≥ η + 1 . Since p ≤ 2η + 2 either all subtrees are equal to τ or there
is exactly one subtree different from τ . In the second case the number of τ ’s is
≤ ζ − 1 by p ≤ η + ζ + 1 and the reduction by D(ζ) can be applied. Therefore,
after all these reductions, only the bushy trees are left and they are satisfied by
B(p) .
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To obtain the formulas of order 2s , Butcher assumed B(2s) (i.e., the ci and
bi are the coefficients of the Gaussian quadrature formula) and C(s) . This implies
D(s) (see Exercise 7) so that Theorem 7.4 can be applied with p = 2s , η = s and
ζ = s . Hence the method, obtained in this way, is of order 2s . For s = 3 and 4 the
coefficients are given in Tables 7.4 and 7.5. They can still be expressed by radicals
for s = 5 and are given in Butcher (1964a), p. 57.

Impressive numerical results from celestial mechanics for these methods were
first reported in the thesis of D. Sommer (see Sommer 1965).

Table 7.4. Kuntzmann & Butcher method, order 6

1
2
−

√
15

10
5
36

2
9
−

√
15

15
5
36

−
√

15
30

1
2

5
36

+

√
15

24
2
9

5
36

−
√

15
24

1
2

+

√
15

10
5
36

+

√
15

30
2
9

+

√
15

15
5

36

5
18

4
9

5
18

Table 7.5. Kuntzmann & Butcher method, order 8

1
2 −ω2 ω1 ω′

1 −ω3 + ω′
4 ω′

1 −ω3 −ω′
4 ω1 −ω5

1
2 −ω′

2 ω1 −ω′
3 + ω4 ω′

1 ω′
1 −ω′

5 ω1 −ω′
3 −ω4

1
2 + ω′

2 ω1 + ω′
3 + ω4 ω′

1 + ω′
5 ω′

1 ω1 + ω′
3 −ω4

1
2 + ω2 ω1 + ω5 ω′

1 + ω3 + ω′
4 ω′

1 + ω3 −ω′
4 ω1

2ω1 2ω′
1 2ω′

1 2ω1

ω1 = 1
8
−

√
30

144
,

ω2 = 1
2

√
15 + 2

√
30

35
,

ω3 = ω2

(1
6

+

√
30

24

)
,

ω4 = ω2

( 1
21

+
5
√

30
168

)
,

ω5 = ω2 − 2ω3,

ω′
1 = 1

8
+

√
30

144
,

ω′
2 = 1

2

√
15− 2

√
30

35
,

ω′
3 = ω′

2

(1
6
−

√
30

24

)
,

ω′
4 = ω′

2

( 1
21

− 5
√

30
168

)
,

ω′
5 = ω′

2 − 2ω′
3.

An important interpretation of the assumption C(η) is the following:
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Lemma 7.5. The assumption C(η) implies that the internal stages

gi = y0 +h
s∑

j=1

aijkj , kj = f(x0 + cjh, gj) (7.12)

satisfy for i = 1, . . . , s

gi − y(x0 + cih) = O(hη+1). (7.13)

Proof. Because of C(η) the exact solution satisfies (Taylor expansion)

y(x0 + cih) = y0 +h
s∑

j=1

aijy
′(x0 + cjh) +O(hη+1). (7.14)

Subtracting (7.14) from (7.12) yields

gi − y(x0 + cih) = h

s∑
j=1

aij

(
f
(
x0 + cjh, gj

)− f
(
x0 + cjh, y(x0 + cjh)

))
+O(hη+1)

and Lipschitz continuity of f proves (7.13).

IRK Methods Based on Lobatto Quadrature

Lobatto quadrature rules (Lobatto 1852, Radau 1880, p. 307) modify the idea of
Gaussian quadrature by requiring that the first and the last node coincide with the
interval ends, i.e., c1 = 0, cs = 1. These points are easier to handle and, in a
step-by-step procedure, can be used twice. The remaining c’s are then adjusted
optimally, i.e., as the zeros of the Jacobi orthogonal polynomial P

(1,1)
s−2 (x) or of

P ′
s−1(x) (see e.g., Abramowitz & Stegun 1964, 25.4.32 for the interval [-1,1]) and

lead to formulas of order 2s− 2.

J.C. Butcher (1964a, p. 51, 1964c) then found that Lobatto quadrature rules can
be extended to IRK-methods whose coefficient matrix is zero in the first line and
the last column. The first and the last stage then become explicit and the number
of implicit stages reduces to s− 2 . The methods are characterized by B(2s− 2)
and C(s− 1) . As in Exercise 7 this implies D(s− 1) so that by Theorem 7.4 the
method is of order 2s−2 . For s = 3 and 4 , the coefficients are given in Table 7.6.

We shall see in Volume II (Section IV.3, Table 3.1) that these methods, al-
though preferable as concerns the relation between order and implicit stages, are
not sufficiently stable for stiff differential equations.
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Table 7.6. Butcher’s Lobatto formulas of orders 4 and 6

0 0 0 0

1
2

1
4

1
4

0

1 0 1 0

1
6

2
3

1
6

0 0 0 0 0

5−√
5

10
5 +

√
5

60
1
6

15− 7
√

5
60

0

5 +
√

5
10

5−√
5

60
15 + 7

√
5

60
1
6

0

1
1
6

5−√
5

12
5 +

√
5

12
0

1
12

5
12

5
12

1
12

Collocation Methods

Es ist erstaunlich dass die Methode trotz ihrer Primitivität und
der geringen Rechenarbeit in vielen Fällen . . . sogar gute Ergeb-
nisse liefert. (L. Collatz 1951)

Nous allons montrer l’équivalence de notre définition avec la
définition traditionnelle de certaines formules de Runge Kutta
implicites. (Guillou & Soulé 1969)

The concept of collocation is old and universal in numerical analysis (see e.g.,
pp. 28,29,32,181,411,453,483,495 of Collatz 1960, Frazer, Jones & Skan 1937).
For ordinary differential equations it consists in searching for a polynomial of de-
gree s whose derivative coincides (“co-locates”) at s given points with the vector
field of the differential equation (Guillou & Soulé 1969, Wright 1970). Still an-
other approach is to combine Galerkin’s method with numerical quadrature (see
Hulme 1972).

Definition 7.6. For s a positive integer and c1, . . . , cs distinct real numbers (ty-
pically between 0 and 1 ), the corresponding collocation polynomial u(x) of de-
gree s is defined by

u(x0) = y0 (initial value) (7.15a)
u′(x0 + cih) = f

(
x0 + cih, u(x0 + cih)

)
, i = 1, . . . , s. (7.15b)

The numerical solution is then given by

y1 = u(x0 +h). ( 7.15c)

If some of the ci coincide, the collocation condition (7.15b) will contain higher
derivatives and lead to multi-derivative methods (see Section II.13). Accordingly,
for the moment, we suppose them all distinct.
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Theorem 7.7 (Guillou & Soulé 1969, Wright 1970). The collocation method (7.15)
is equivalent to the s-stage IRK-method (7.7) with coefficients

aij =
∫ ci

0

	j(t) dt, bj =
∫ 1

0

	j(t) dt i, j = 1, . . . , s, (7.16)

where the 	j(t) are the Lagrange polynomials

	j(t) =
∏
k �=j

(t− ck)
(cj − ck)

. (7.17)

Proof. Put u′(x0 + cih) = ki, so that

u′(x0 + th) =
s∑

j=1

kj · 	j(t) (Lagrange).

Then integrate

u(x0 + cih) = y0 +h

∫ ci

0

u′(x0 + th) dt (7.18)

and insert into (7.15b) together with (7.16). The IRK-method (7.7) then comes out.

As a consequence of this result, the existence and uniqueness of the collocation
polynomial (for sufficiently small h) follows from Theorem 7.2.

Theorem 7.8. An implicit Runge-Kutta method with all ci different and of order at
least s is a collocation method iff C(s) is true.

Proof. C(s) determines the aij uniquely. We write it as

s∑
j=1

aijp(cj) =
∫ ci

0

p(t) dt (7.19)

for all polynomials p of degree ≤ s− 1 . The aij given by (7.16) satisfy this rela-
tion, because (7.16) inserted into (7.19) is just the Lagrange interpolation formula.

Theorem 7.9. Let M(t) =
∏s

i=1(t− ci) and suppose that M is orthogonal to
polynomials of degree r− 1 ,∫ 1

0

M(t)tq−1 dt = 0, q = 1, . . . , r, (7.20)

then method (7.15) has order p = s + r .
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Proof. The following proof uses the Gröbner & Alekseev Formula, which gives
nice insight in the background of the result. An alternative proof is indicated in
Exercise 7 below. One can also linearize the equation, apply the linear variation-
of-constants formula and estimate the error (Guillou & Soulé 1969).

The orthogonality condition (7.20) means that the quadrature formula∫ x0+h

x0

g(t) dt = h
s∑

j=1

bjg(x0 + cjh) + err(g) (7.21)

is of order s + r = p , and its error is bounded by

|err(g)| ≤ Chp+1 ·max |g(p)(x)|. (7.22)

The principal idea of the proof is now the following: we consider

u′(x) = f
(
x, u(x)

)
+
(
u′(x)− f(x, u(x))

)
as a perturbation of

y′(x) = f
(
x, y(x)

)
and integrate the Gröbner & Alekseev Formula (I.14.18) with the quadrature for-
mula (7.21). Due to (7.15b), the result is identically zero, since at the collocation
points the defect is zero. Thus from (7.21) and (7.22)

‖y(x0 +h)−u(x0 +h)‖ = ‖err(g)‖ ≤ C · hp+1 · max
x0≤t≤x0+h

‖g(p)(t)‖, (7.23)

where

g(t) =
∂y

∂y0

(
x, t, u(t)

) · (u′(t)− f(t, u(t))
)

,

and we see that the local error behaves like O(hp+1) .
There remains, however, a small technical detail: to show that the derivatives

of g(t) remain bounded for h → 0 . These derivatives contain partial derivatives
of f(t, y) and derivatives of u(t) . We shall see in the next theorem that these
derivatives remain bounded for h → 0 .

Theorem 7.10. The collocation polynomial u(x) gives rise to a continuous IRK
method of order s , i.e., for all x0 ≤ x ≤ x0 +h we have

‖y(x)−u(x)‖ ≤ C · hs+1. (7.24)

Moreover, for the derivatives of u(x) we have

‖y(k)(x)−u(k)(x)‖ ≤ C · hs+1−k k = 0, . . . , s. (7.25)

Proof. The exact solution y(x) satisfies the collocation condition everywhere,
hence also at the points x0 + cih . So, in exactly the same way as in the proof
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of Theorem 7.7, we apply the Lagrange interpolation formula to y′(x) :

y′(x0 + th) =
s∑

j=1

f
(
x0 + cjh, y(x0 + cjh)

)
	j(t) +hsR(t, h)

where R(t, h) is a smooth function of both variables. Integration and subtraction
from (7.18) gives

y(x0 + th)−u(x0 + th)=h

s∑
j=1

Δfj ·
∫ t

0

	j(τ) dτ +hs+1

∫ t

0

R(τ, h) dτ, (7.26)

where

Δfj = f
(
x0 + cjh, y(x0 + cjh)

)− f
(
x0 + cjh, u(x0 + cjh)

)
.

The k th derivative of (7.26) with respect to t is

hk
(
y(k)(x0 + th)−u(k)(x0 + th)

)
= h

s∑
j=1

Δfj · 	(k−1)
j (t) +hs+1 ∂k−1R

∂tk−1
(t, h),

so that the result follows from the boundedness of the derivatives of R(t, h) and
from Δfj = O(hs+1) which is a consequence of Lemma 7.5.

Remark. Only some IRK methods are collocation methods. An extension of the
collocation idea (“Perturbed Collocation”, see Nørsett & Wanner 1981) applies to
all IRK methods.

Exercises

1. Compute the one-point collocation method (s = 1) with ci = θ and compare
with (7.2). Determine its order in dependence of θ .

2. Compute all collocation methods with s = 2 of order 2 in dependence of c1

and c2 .

3. Specify in the method of Exercise 2 c1 = 1/3, c2 = 1 as well as c1 = 0, c2 =
2/3 . Determine the orders of the obtained methods and explain.

4. Interpret the implicit midpoint rule (7.4) and the explicit Euler method as col-
location methods. Is method (7.5) a collocation method? Method (7.6)?

5. (Cauchy 1824). Find from equation (7.2) conditions for the function f(x, y)
such that for scalar differential equations

y1(explicit Euler) ≥ y(x1) ≥ y1(implicit Euler).
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Compute five steps with h = 0.2 with both methods to obtain upper and lower
bounds for y(1) , the solution of

y′ = cos
x + y

5
, y(0) = 0.

Cauchy’s result: 0.9659 ≤ y(1) ≤ 0.9810. For one single step with h = 1 he
obtained 0.926 ≤ y(1) ≤ 1.

Compute the exact solution by elementary integration.

6. Determine the orders of the methods of Table 7.7. Generalize to arbitrary s
(Ehle 1968).

Hint. Use Theorems 7.8 and 7.9.

Table 7.7. Methods of Ehle

Radau IIA, order 5

4−√
6

10
88− 7

√
6

360
296− 169

√
6

1800
−2 + 3

√
6

225
4 +

√
6

10
296 + 169

√
6

1800
88 + 7

√
6

360
−2− 3

√
6

225

1
16−√

6
36

16 +
√

6
36

1
9

16−√
6

36
16 +

√
6

36
1
9

Lobatto IIIA, order 4

0 0 0 0

1
2

5
24

1
3

− 1
24

1
1
6

2
3

1
6

1
6

2
3

1
6

7. (Butcher 1964a). Give an algebraic proof of Theorem 7.9.

Hint. From Theorem 7.8 we have C(s) .
Next the condition B(p) with p = s + r (theory of Gaussian quadrature for-
mulas) implies D(r) . To see this, multiply the two vectors uj =

∑
i bic

q−1
i aij

and vj = bj(1− cq
j)/q (j = 1, . . . , s ) by the Vandermonde matrix

V =

⎛⎜⎜⎝
1 1 . . . 1
c1 c2 . . . cs
...

...
...

cs−1
1 cs−1

2 . . . cs−1
s

⎞⎟⎟⎠ .

Finally apply Theorem 7.4.
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Mein Verzicht auf das Restglied war leichtsinnig . . .
(W. Romberg 1979)

Our next goal will be to perfect Richardson’s extrapolation method (see Section
II.4) by doing repeated extrapolation and eliminating more and more terms Chp+k

of the error. A sound theoretical basis for this procedure is given by the study
of the asymptotic behaviour of the global error. For problems of the type y′ =
f(x) , which lead to integration, the answer is given by the Euler-Maclaurin formula
and has been exploited by Romberg (1955) and his successors. The first rigorous
treatments for differential equations are due to Henrici (1962) and Gragg (1964)
(see also Stetter 1973). We shall follow here the successive elimination of the
error terms given by Hairer & Lubich (1984), which also generalizes to multistep
methods.

Suppose we have a one-step method which we write, in Henrici’s notation, as

yn+1 = yn +hΦ(xn, yn, h). (8.1)

If the method is of order p , it possesses at each point of the solution y(x) a local
error of the form

y(x +h)− y(x)−hΦ(x, y(x), h) =

dp+1(x)hp+1 + . . .+ dN+1(x)hN+1 +O(hN+2)
(8.2)

whenever the differential equation is sufficiently differentiable. For Runge-Kutta
methods these error terms were computed in Section II.2 (see also Theorem 3.2).

The Global Error

Let us now set yn =: yh(x) for the numerical solution at x = x0 +nh . We then
know from Theorem 3.6 that the global error behaves like hp . We shall search for
a function ep(x) such that

y(x)− yh(x) = ep(x)hp + o(hp). (8.3)

The idea is to consider
yh(x) + ep(x)hp =: ŷh(x) (8.4a)
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as the numerical solution of a new method

ŷn+1 = ŷn +hΦ̂(xn, ŷn, h). (8.4b)

By comparison with (8.1), we see that the increment function for the new method
is

Φ̂(x, ŷ, h) = Φ
(
x, ŷ− ep(x)hp, h

)
+
(
ep(x +h)− ep(x)

)
hp−1. (8.5)

Our task is to find a function ep(x) , with ep(x0) = 0 , such that the method with

increment function Φ̂ is of order p + 1 .
Expanding the local error of the one-step method Φ̂ into powers of h we obtain

y(x +h)− y(x)−hΦ̂(x, y(x), h)

=
(
dp+1(x) +

∂f

∂y

(
x, y(x)

)
ep(x)− e′p(x)

)
hp+1 +O(hp+2)

(8.6)

where we have used
∂Φ
∂y

(x, y, 0) =
∂f

∂y
(x, y). (8.7)

The term in hp+1 vanishes if ep(x) is defined as the solution of

e′p(x) =
∂f

∂y

(
x, y(x)

)
ep(x) + dp+1(x), ep(x0) = 0. (8.8)

By Theorem 3.6, applied to the method Φ̂ , we now have

y(x)− yh(x) = ep(x)hp +O(hp+1) (8.9)

and the first term of the desired asymptotic expansion has been determined.
We now repeat the procedure with the method with increment function Φ̂ . It is

of order p+1 and again satisfies condition (8.7). The final result of this procedure
is the following

Theorem 8.1 (Gragg 1964). Suppose that a given method with sufficiently smooth
increment function Φ satisfies the consistency condition Φ(x, y, 0) = f(x, y) and
possesses an expansion (8.2) for the local error. Then the global error has an
asymptotic expansion of the form

y(x)− yh(x) = ep(x)hp + . . .+ eN (x)hN +Eh(x)hN+1 (8.10)

where the ej(x) are solutions of inhomogeneous differential equations of the form
(8.8) with ej(x0) = 0 and Eh(x) is bounded for x0 ≤ x ≤ xend and 0 ≤ h ≤ h0 .

The differentiability properties of the ej(x) depend on those of f and Φ (see
(8.8) and (8.2)). The expansion (8.10) will be the theoretical basis for all discus-
sions of extrapolation methods.
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Examples. 1. For the equation y′ = y and Euler’s method we have with h = 1/n
and x = 1 , using the binomial theorem,

yh(1) =
(
1 +

1
n

)n

= 1 + 1 +
(
1− 1

n

) 1
2!

+
(
1− 1

n

)(
1− 2

n

) 1
3!

+ . . . .

By multiplying out, this gives

y(1)− yh(1) = −
∞∑

i=1

hi
∞∑

j=1

S
(j)
i+j

(i + j)!
= 1.359h− 1.246h2 ± . . .

where the S
(j)
i are the Stirling numbers of the first kind (1730, see Abramowitz &

Stegun 1964, Section 24.1.3). This is, of course, the Taylor series for the function

e− (1 +h)1/h = e− exp
(
1− h

2
+

h2

3
± . . .

)
= e
(1

2
h− 11

24
h2 +

7
16

h3 ± . . .
)

with convergence radius r = 1.

2. For the differential equation y′ = f(x) and the trapezoidal rule (7.5), the
expansion (8.10) becomes∫ 1

0

f(x) dx− yh(1) =−
N∑

k=1

h2k

(2k)!
B2k

(
f (2k−1)(1)− f (2k−1)(0)

)
+O(h2N+1),

the well known Euler-Maclaurin formula (1736). For N → ∞ , the series will
usually diverge, due to the fast growth of the Bernoulli numbers for large k . It may,
however, be useful for small values of N and we call it an asymptotic expansion
(Poincaré 1893).

Variable h

Theorem 8.1 is not only valid for equal step sizes. A reasonable assumption for the
case of variable step sizes is the existence of a function τ(x) > 0 such that the step
sizes depend as

xn+1 −xn = τ(xn) h (8.11)

on a parameter h . Then the local error expansion (8.2) becomes

y(x + τ(x)h)− y(x)−hτ(x)Φ(x, y(x), τ(x)h)= dp+1(x)τp+1(x)hp+1 + . . .

and instead of (8.5) we have

Φ̂(x, ŷ, τ(x)h) = Φ(x, ŷ− ep(x)hp, τ(x)h) +
hp

hτ(x)

(
ep(x + τ(x)h)− ep(x)

)
.

With this the local error expansion for the new method becomes, instead of (8.6),

y(x + τ(x)h)− y(x)−hτ(x)Φ̂(x, y(x), τ(x)h)
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= τ(x)
(
dp+1(x)τp(x) +

∂f

∂y

(
x, y(x)

)
ep(x)− e′p(x)

)
hp+1 +O(hp+2)

and the proof of Theorem 8.1 generalizes with slight modifications.

Negative h

The most important extrapolation algorithms will use asymptotic expansions with
even powers of h . In order to provide a theoretical basis for these methods, we
need to explain the meaning of yh(x) for h negative.

Motivation. We write (8.1) as

yh(x +h) = yh(x) +hΦ(x, yh(x), h) (8.1’)

and replace h by −h to obtain

y−h(x−h) = y−h(x)−hΦ(x, y−h(x),−h).

Next we replace x by x +h which gives

y−h(x) = y−h(x +h)−hΦ(x +h, y−h(x +h),−h). (8.12)

This is an implicit equation for y−h(x+h) , which possesses a unique solution for
sufficiently small h (by the implicit function theorem). We write this solution in
the form

y−h(x +h) = y−h(x) +hΦ∗(x, y−h(x), h). (8.13)

The comparison of (8.12) and (8.13) (with A = y−h(x +h) , B = y−h(x) ) leads
us to the following definition.

Definition 8.2. Let Φ(x, y, h) be the increment function of a method. Then we
define the increment function Φ∗(x, y, h) of the adjoint method by the pair of
formulas

B = A−hΦ(x +h, A,−h)

A = B +hΦ∗(x, B, h).
(8.14)

Example. The adjoint method of explicit Euler is implicit Euler.

Theorem 8.3. Let Φ be the Runge-Kutta method (7.7) with coefficients aij , bj ,
ci (i, j = 1, . . . , s) . Then the adjoint method Φ∗ is equivalent to a Runge-Kutta
method with s stages and with coefficients

c∗i = 1− cs+1−i

a∗
ij = bs+1−j − as+1−i,s+1−j

b∗j = bs+1−j.
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Proof. The formulas (8.14) indicate that for the definition of the adjoint method we
have, starting from (7.7), to exchange y0 ↔ y1 , h↔−h and replace x0 → x0 +h.
This then leads to

ki = f
(
x0 + (1− ci)h, y0 +h

s∑
j=1

(bj − aij)kj

)
y1 = y0 +h

s∑
j=1

bjkj.

In order to preserve the usual natural ordering of c1, . . . , cs, we also permute the
ki -values and replace all indices i by s + 1− i .

Properties of the Adjoint Method

Theorem 8.4. Φ∗∗ = Φ .

Proof. This property, which is the reason for the name “adjoint”, is seen by replac-
ing h →−h and then x → x +h , B → A , A → B in (8.14).

Theorem 8.5. The adjoint method has the same order as the original method. Its
principal error term is the error term of the first method multiplied by (−1)p .

Proof. We replace h by −h in (8.2), then x→ x+h and rearrange the terms. This
gives (using dp+1(x +h) = dp+1(x) +O(h) )

y(x) + dp+1(x)hp+1(−1)p +O(hp+2)

= y(x +h)−hΦ(x +h, y(x +h),−h).

Here we let B be the left-hand side of this identity, A = y(x +h) , and use (8.14).
This leads to

y(x +h) = y(x) + dp+1(x)hp+1(−1)p +hΦ∗(x, y(x), h) +O(hp+2),

which expresses the statement of the theorem.

Theorem 8.6. The adjoint method has exactly the same asymptotic expansion
(8.10) as the original method, with h replaced by −h .

Proof. We repeat the procedure which led to the proof of Theorem 8.1, with h
negative. The first separated term corresponding to (8.9) will be

y(x)− y−h(x) = ep(x)(−h)p +O(hp+1). (8.9’)
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This is true because the solution of (8.8) with initial value ep(x0) = 0 has the same
sign change as the inhomogenity dp+1(x). This settles the first term. To continue,
we prove that the transformation (8.4b) commutes with the adjunction operation,
i.e., that

(Φ̂)∗ = (Φ∗)̂ . (8.15)

In order to prove (8.15), we obtain from (8.4a) and the definition of Φ̂

yh(x +h) + ep(x +h)hp = yh(x) + ep(x)hp +hΦ̂
(
x, yh(x) + ep(x)hp, h

)
.

Here again, we substitute h → −h followed by x → x +h . Finally, we apply
(8.14) with B = y−h(x)+ ep(x)(−h)p and A = y−h(x+h)+ ep(x+h)(−h)p to
obtain

y−h(x +h) + ep(x +h)(−h)p

= y−h(x) + ep(x)(−h)p +h(Φ̂)∗
(
x, y−h(x) + ep(x)(−h)p, h

)
.

(8.16)

On the other hand, if we perform the transformation (see Theorem 8.5)

ŷ−h(x) = y−h(x) + ep(x)(−h)p (8.4’)

and insert this into (8.13), we obtain (8.16) again, but this time with (Φ∗)̂ instead
of (Φ̂)∗. This proves (8.15).

Symmetric Methods

Definition 8.7. A method is symmetric if Φ = Φ∗.

Example. The trapezoidal rule (7.5) and the implicit mid-point rule (7.4) are sym-
metric: the exchanges y1 ↔ y0 , h ↔−h and x0 ↔ x0 +h leave these methods
invariant. The following two theorems (Wanner 1973) characterize symmetric IRK
methods.

Theorem 8.8. If

as+1−i,s+1−j + aij = bs+1−j = bj , i, j = 1, . . . , s, (8.17)

then the corresponding Runge-Kutta method is symmetric. Moreover, if the bi are
nonzero and the ci distinct and ordered as c1 <c2 <. . .<cs , then condition (8.17)
is also necessary for symmetry.

Proof. The sufficiency of (8.17) follows from Theorem 8.3. The condition ci =
1− cs+1−i can be verified by adding up (8.17) for j = 1, . . . , s.
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Symmetry implies that the original method (with coefficients ci, aij, bj ) and
the adjoint method (c∗i , a

∗
ij, b

∗
j ) give identical numerical results. If we apply both

methods to y′ = f(x) we obtain

s∑
i=1

bif(ci) =
s∑

i=1

b∗i f(c∗i )

for all f(x) . Our assumption on bi and ci thus yields

b∗i = bi, c∗i = ci for all i.

We next apply both methods to y′
1 = f(x) , y′

2 = xqy1 and obtain

s∑
i,j=1

bic
q
i aijf(cj) =

s∑
i,j=1

b∗i c
∗q
i a∗

ijf(c∗j ).

This implies
∑

i bic
q
i aij =

∑
i bic

q
i a

∗
ij for q = 0, 1, . . . and hence also a∗

ij = aij

for all i, j .

Theorem 8.9. A collocation method based on symmetrically distributed colloca-
tion points is symmetric.

Proof. If ci = 1− cs+1−i , the Lagrange polynomials satisfy 	i(t) = 	s+1−i(1− t).
Condition (8.17) is then an easy consequence of (7.19).

The following important property of symmetric methods, known intuitively for
many years, now follows from the above results.

Theorem 8.10. If in addition to the assumptions of Theorem 8.1 the underly-
ing method is symmetric, then the asymptotic expansion (8.10) contains only even
powers of h:

y(x)− yh(x) = e2q(x)h2q + e2q+2(x)h2q+2 + . . . (8.18)

with e2j(x0) = 0 .

Proof. If Φ∗ = Φ, we have y−h(x) = yh(x) from (8.13) and the result follows
from Theorem 8.6.
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Exercises

1. Assume the one-step method (8.1) to be of order p ≥ 2 and in addition to
Φ(x, y, 0) = f(x, y) assume

∂Φ
∂h

(x, y, 0) =
1
2

(∂f

∂x
(x, y) +

∂f

∂y
(x, y) · f(x, y)

)
. (8.19)

Show that the principal local error term of the method Φ̂ defined in (8.5) is
then given by

d̂p+2(x) = dp+2(x)− 1
2

∂f

∂y

(
x, y(x)

)
dp+1(x)− 1

2
d′

p+1(x).

Verify that (8.19) is satisfied for all RK-methods of order ≥ 2 .

2. Consider the second order method

0

1 1

1/2 1/2

applied to the problem y′ = y , y(0) = 1. Show that

d3(x) =
1
6

ex, d4(x) =
1
24

ex, e2(x) =
1
6

xex, d̂4(x) = −1
8

ex.

3. Consider the second order method

0

1/2 1/2

1 0 1

1/4 1/2 1/4

Show that for this method

d3(x) =
1
24

(
F (t32)(y(x))− 1

2
F (t31)(y(x))

)
d4(x) =

1
24

(
F (t44)(y(x)) +

1
4

F (t43)(y(x))− 1
4

F (t41)(y(x))
)

in the notation of Table 2.2. Show that this implies

d̂4(x) = 0 and e3(x) = 0,

so that one step of Richardson extrapolation increases the order of the method
by two. Find a connection between this method and the GBS-algorithm of
Section II.9.

4. Discuss the symmetry of the IRK methods of Section II.7.
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The following method of approximation may or may not be new,
but as I believe it to be of practical importance . . .

(S.A. Corey 1906)

The h2 -extrapolation was discovered by a hint from theory fol-
lowed by arithmetical experiments, which gave pleasing results.

(L.F. Richardson 1927)

Extrapolation constitutes a powerful means . . .
(R. Bulirsch & J. Stoer 1966)

Extrapolation does not appear to be a particularly effective way
. . . , our tests raise the question as to whether there is any point to
pursuing it as a separate method.

(L.F. Shampine & L.S. Baca 1986)

Definition of the Method

Let y′ = f(x, y) , y(x0) = y0 be a given differential system and H > 0 a basic step
size. We choose a sequence of positive integers

n1 < n2 < n3 < . . . (9.1)

and define the corresponding step sizes h1 > h2 > h3 > . . . by hi = H/ni. We
then choose a numerical method of order p and compute the numerical results of
our initial value problem by performing ni steps with step size hi to obtain

yhi
(x0 +H) =: Ti,1 (9.2)

(the letter “T ” stands historically for “trapezoidal rule”). We then eliminate as
many terms as possible from the asymptotic expansion (8.10) by computing the
interpolation polynomial

p(h) = ŷ− eph
p − ep+1h

p+1 − . . .− ep+k−2h
p+k−2 (9.3)

such that
p(hi) = Ti,1 i = j, j − 1, . . . , j− k + 1. (9.4)

Finally we “extrapolate to the limit” h → 0 and use

p(0) = ŷ =: Tj,k

as numerical result. Conditions (9.4) consist of k linear equations for the k un-
knowns ŷ, ep, . . . , ep+k−2.

Example. For k = 2 , n1 = 1 , n2 = 2 the above definition is identical to Richard-
son’s extrapolation discussed in Section II.4.
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Theorem 9.1. The value Tj,k represents a numerical method of order p + k− 1 .

Proof. We compare (9.4) and (9.3) with the asymptotic expansion (8.10) which we
write in the form (with N = p + k− 1 )

Ti,1 = y(x0+H)− ep(x0+H)hp
i − . . .− ep+k−2(x0+H)hp+k−2

i −Δi , (9.4’)

where

Δi = ep+k−1(x0+H)hp+k−1
i +Ehi

(x0+H)hp+k
i = O(Hp+k)

because ep+k−1(x0) = 0 and hi ≤ H . This is a linear system for the unknowns

y(x0+H) , Hpep(x0+H), . . . , Hp+k−2ep+k−2(x0+H) with the Vandermonde-
like matrix

A =

⎛⎜⎜⎜⎜⎜⎝
1

1
np

j

. . .
1

np+k−2
j

...
...

...

1
1

np
j−k+1

. . .
1

np+k−2
j−k+1

⎞⎟⎟⎟⎟⎟⎠ .

It is the same as (9.4), just with the right-hand side perturbed by the O(Hp+k) -
terms Δi . The matrix A is invertible (see Exercise 6). Therefore by subtraction
we obtain

|y(x0+H)− ŷ| ≤ ‖A−1‖∞ ·max |Δi| = O(Hp+k).

Remark. The case p = 1 (as well as p = 2 with expansions in h2 ) can also be
treated by interpreting the difference y(x0 +H)− ŷ as an interpolation error (see
(9.21)).

A great advantage of the method is that it provides a complete table of numer-
ical results

T11

T21 T22

T31 T32 T33

T41 T42 T43 T44

. . . . . . . . . . . . . . .

(9.5)

which form a sequence of embedded methods and allow easy estimates of the local
error and strategies for variable order. Several step-number sequences are in use
for (9.1):

The “Romberg sequence” (Romberg 1955):

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, . . . (9.6)
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The “Bulirsch sequence” (see also Romberg 1955):

1, 2, 3, 4, 6, 8, 12, 16, 24, 32, . . . (9.7)

alternating powers of 2 with 1.5 times 2k. This sequence needs fewer function
evaluations for higher orders than the previous one and became prominent through
the success of the “Gragg-Bulirsch-Stoer algorithm” (Bulirsch & Stoer 1966).

The above sequences have the property that for integration problems y′ =
f(x) many function values can be saved and re-used for smaller hi. Further,
lim inf(ni+1/ni) remains bounded away from 1 (“Toeplitz condition”) which al-
lows convergence proofs for j =k→∞ (Bauer, Rutishauser & Stiefel 1963). How-
ever, if we work with differential equations and with fixed or bounded order, the
most economic sequence is the “harmonic sequence” (Deuflhard 1983)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . . . (9.8)

The Aitken - Neville Algorithm

For the case p = 1 , (9.3) and (9.4) become a classical interpolation problem and
we can compute the values of Tj,k economically by the use of classical methods.
Since we need only the values of the interpolation polynomials at the point h = 0 ,
the most economical algorithm is that of “Aitken - Neville” (Aitken 1932, Neville
1934, based on ideas of Jordan 1928) which leads to

Tj,k+1 = Tj,k +
Tj,k −Tj−1,k

(nj/nj−k)− 1
. (9.9)

If the basic method used is symmetric, we know that the underlying asymptotic
expansion is in powers of h2 (Theorem 8.9), and each extrapolation eliminates two
powers of h. We may thus simply replace in (9.3) h by h2 and for p=2 (i.e., q =1
in (8.18)) also use the Aitken - Neville algorithm with this modification. This leads
to

Tj,k+1 = Tj,k +
Tj,k −Tj−1,k

(nj/nj−k)2 − 1
(9.10)

instead of (9.9).

Numerical example. We solve the problem

y′ = (−y sin x + 2 tanx)y, y(π/6) = 2/
√

3 (9.11)

with true solution y(x) = 1/ cos x and basic step size H = 0.2 by Euler’s method.
Fig. 9.1 represents, for each of the entries Tj,k of the extrapolation tableau, the
numerical work (1+nj −1+nj−1 −1+ . . .+nj−k+1 −1) compared to the pre-
cision (|Tj,k −y(x0 +H)|) in double logarithmic scale. The first picture is for the
Romberg sequence (9.6), the second for the Bulirsch sequence (9.7), and the last
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err
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T
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err
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T
T
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T
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expl. Euler
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ghost: Bulirsch

err

fcn

T

T

T

T

T

impl. midpoint
harmonic (9.8)
ghost: Bulirsch

Fig. 9.1. h -extrap. expl. Euler Fig. 9.2. h2 -extrap. impl. midpoint

for the harmonic sequence (9.8). In pictures 2 and 3 the results of the foregoing
graphics are repeated as a shaded “ghost” ( . . . of Canterville) in order to demon-
strate how the results are better than those for the predecessor. Nobody is perfect,
however. The “best” method in these comparisons, the harmonic sequence, suffers
for high orders from a strong influence of rounding errors (see Exercise 5 below;
the computations of Fig. 9.1, 9.2 and 9.4 have been made in quadruple precision).

The analogous results for the symmetric implicit mid-point rule (7.4) are pre-
sented in Fig. 9.2. Although implicit, this method is easy to implement for this
particular example. We again use the same basic step size H = 0.2 as above and
the same step-number sequences (9.6), (9.7), (9.8). Here, the “numerical work”
(nj +nj−1 + . . .+nj−k+1) represents implicit stages and therefore can not be
compared to the values of the explicit method. The precisions, however, show a
drastic improvement.

Rational Extrapolation. Many authors in the sixties claimed that it is better to use
rational functions instead of polynomials in (9.3). In this case the formula (9.9)
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must be replaced by (Bulirsch & Stoer 1964)

Tj,k+1 = Tj,k +
Tj,k −Tj−1,k(

nj

nj−k

)(
1− Tj,k−Tj−1,k

Tj,k−Tj−1,k−1

)
− 1

(9.12)

where
Tj,0 = 0.

For systems of differential equations the division of vectors is to be understood
componentwise.

Later numerical experiments (Deuflhard 1983) showed that rational extrapola-
tion is nearly never more advantageous than polynomial extrapolation.

The Gragg or GBS Method

Since it is fully explicit GRAGG’s algorithm is so ideally suited as
a basis for RICHARDSON extrapolation that no other symmetric
two-step algorithm can compete with it. (H.J. Stetter 1970)

Here we can not do better than quote from Stetter (1970): “Expansions in powers of
h2 are extremely important for an efficient application of Richardson extrapolation.
Therefore it was a great achievement when Gragg proved in 1963 that the quantity
Sh(x) produced by the algorithm (x = x0+2nh , xi = x0+ih)

y1 = y0 +hf(x0, y0) (9.13a)

yi+1 = yi−1 + 2hf(xi, yi) i = 1, 2, . . . , 2n (9.13b)

Sh(x) =
1
4

(y2n−1 + 2y2n + y2n+1) (9.13c)

possesses an asymptotic expansion in even powers of h and has satisfactory stabil-
ity properties. This led to the construction of the very powerful G(ragg)-B(ulirsch)-
S(toer)-extrapolation algorithm . . .”.

Gragg’s proof of this property was very long and complicated and it was again
“a great achievement” that Stetter had the elegant idea of interpreting (9.13b) as a
one-step algorithm by rewriting (9.13) in terms of odd and even indices: for this
purpose we define

h∗ = 2h, x∗
k = x0 + kh∗, u0 = v0 = y0,

uk = y2k, vk = y2k+1 −hf(x2k, y2k) =
1
2

(y2k+1 + y2k−1).
(9.14)

Then the method (9.13) can be rewritten as (see Fig. 9.3)(
uk+1

vk+1

)
=
(

uk

vk

)
+h∗

⎛⎝ f
(
x∗

k + h∗
2

, vk + h∗
2

f(x∗
k, uk)

)
1
2

(
f(x∗

k +h∗, uk+1) + f(x∗
k, uk)

)⎞⎠ . (9.15)
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x k x k x k x k x k

y k
vk

y k uky k uk

y k

vk

y k uky k uk
y k

Fig. 9.3. Symmetry of the Gragg method

This method, which maps the pair (uk, vk) to (uk+1, vk+1) , can be seen from
Fig. 9.3 to be symmetric. The symmetry can also be checked analytically (see Def-
inition 8.7) by exchanging uk+1 ↔ uk , vk+1 ↔ vk , h∗ ↔−h∗ , x∗

k ↔ x∗
k +h∗.

A trivial calculation then shows that this leaves formula (9.15) invariant. Method
(9.15) is consistent with the differential equation (let h∗ → 0 in the increment
function)

u′ = f(x, v) u(x0) = y0

v′ = f(x, u) v(x0) = y0,
(9.16)

whose exact solution is simply u(x) = v(x) = y(x). Therefore, we have from The-
orem 8.10 that

y(x)−uh∗(x) =
�∑

j=1

a2j(x)(h∗)2j + (h∗)2�+2A(x, h∗) (9.17a)

y(x)− vh∗(x) =
�∑

j=1

b2j(x)(h∗)2j + (h∗)2�+2B(x, h∗) (9.17b)

and a2j(x0) = b2j(x0) = 0. We see from (9.14) and (9.17a) that yh(x) possesses
an expansion in even powers of h , provided that the number of steps is even; i.e.,
for x = x0 + 2nh ,

y(x)− yh(x) =
�∑

j=1

â2j(x)h2j +h2�+2Â(x, h) (9.18)

where â2j(x) = 22j a2j(x) and Â(x, h) = 22�+2 A(x, 2h) .
The so-called smoothing step, i.e., formula

Sh(x0+2nh) =
1
4

(y2n−1 + 2y2n + y2n+1) =
1
2

(un + vn)

(see (9.13c) and (9.14)) had its historical origin in the “weak stability” of the ex-
plicit midpoint rule (9.13b) (see also Fig. III.9.2). However, since the method is
anyway followed by extrapolation, this step is not of great importance (Shampine
& Baca 1983). It is a little more costly and increases the “stability domain” by
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approximately the same amount (see Fig. IV.2.3 of Vol. II). Further, it has the ad-
vantage of evaluating the function f at the end of the basic step.

Theorem 9.2. Let f(x, y) ∈ C2�+2 , then the numerical solution defined in (9.13)
possesses for x = x0+2nh an asymptotic expansion of the form

y(x)−Sh(x) =
�∑

j=1

e2j(x)h2j +h2�+2C(x, h) (9.19)

with e2j(x0) = 0 and C(x, h) bounded for x0 ≤ x ≤ x and 0 ≤ h ≤ h0 .

Proof. By adding (9.17a) and (9.17b) and using h∗ = 2h we obtain (9.19) with
e2j(x) = (a2j(x) + b2j(x))22j−1 .

This method can thus be used for Richardson extrapolation in the same way as
symmetric methods above: we choose a step-number sequence, with the condition
that the nj are even, i.e.,

2, 4, 8, 16, 32, 64, 128, 256, . . . (9.6’)

2, 4, 6, 8, 12, 16, 24, 32, 48, . . . (9.7’)

2, 4, 6, 8, 10, 12, 14, 16, 18, . . . (9.8’)

set
Ti,1 := Shi

(x0 +H)

and compute the extrapolated expressions Ti,j , based on the h2 -expansion, by the
Aitken-Neville formula (9.10).

Numerical example. Fig. 9.4 represents the numerical results of this algorithm
applied to Example (9.11) with step size H = 0.2 . The step size sequences are
Romberg (9.6’) (above), Bulirsch (9.7’) (middle), and harmonic (9.8’) (below). The
algorithm with smoothing step (numerical work = 1+nj +nj−1 + . . .+nj−k+1 )
is represented left, the results without smoothing step (numerical work = 1+nj −
1 +nj−1 − 1 + . . .+nj−k+1 − 1 ) are on the right.

The results are nearly identical to those for the implicit midpoint rule (Fig. 9.2),
but much more valuable, since here the method is explicit. In the pictures on the
left the values for extrapolated Euler (from Fig. 9.1) are repeated as a “ghost” and
demonstrate clearly the importance of the h2 -expansion, especially in the diagonal
Tkk for large values of k . The ghost in the pictures on the right are the values with
smoothing step from the left; the differences are seen to be tiny.
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Fig. 9.4. Precision of h2 -extrapolated Gragg method for Example (9.11)

Asymptotic Expansion for Odd Indices

For completeness, we still want to derive the existence of an h2 expansion for
y2k+1 from (9.17b), although this is of no practical importance for the numerical
algorithm described above.

Theorem 9.3 (Gragg 1964). For x = x0 + (2k+1)h we have

y(x)− yh(x) =
�∑

j=1

b̂2j(x)h2j +h2�+2B̂(x, h) (9.20)

where the coefficients b̂2j(x) are in general different from those for even indices

and b̂2j(x0) �= 0 .

Proof. y2k+1 can be computed (see Fig. 9.3) either from vk by a forward step or
from vk+1 by a backward step. For the sake of symmetry, we take the mean of
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both expressions and write

y2k+1 =
1
2

(vk + vk+1) +
h

2
(
f(x∗

k, uk)− f(x∗
k+1, uk+1)

)
.

We now subtract the exact solution and obtain

2
(
yh(x)− y(x)

)
= v2h(x−h)− y(x−h)

+ v2h(x +h)− y(x +h) + y(x−h)− 2y(x) + y(x+h)

+h
(
f
(
x−h, u2h(x−h)

)− f
(
x +h, u2h(x +h)

))
.

Due to the symmetry of u2h(x) (u2h(ξ) = u−2h(ξ)) and of v2h(x) the whole
expression becomes symmetric in h . Thus the asymptotic expansion for y2k+1

contains no odd powers of h .

Both expressions, for even and for odd indices, can still be combined into a
single formula (see Exercise 2).

Existence of Explicit RK Methods of Arbitrary Order

Each of the expressions Tj,k clearly represents an explicit RK-method (see Exer-
cise 1). If we apply the well-known error formula for polynomial interpolation (see
e.g., Abramowitz & Stegun 1964, formula 25.2.27) to (9.19), we obtain

y(x0 +H)−Tj,k =
(−1)k

n2
j · . . . ·n2

j−k+1

e2k(x0 +H)H2k +O(H2k+2). (9.21)

Since ek(x0) = 0, we have

y(x0 +H)−Tj,k =
(−1)k

n2
j · . . . ·n2

j−k+1

e′2k(x0)H
2k+1 +O(H2k+2). (9.22)

This shows that Tj,k represents an explicit Runge-Kutta method of order 2k . As
an application of this result we have:

Theorem 9.4 (Gragg 1964). For p even, there exists an explicit RK-method of
order p with s = p2/4 + 1 stages.

Proof. This result is obtained by counting the number of necessary function eval-
uations of the GBS-algorithm using the harmonic sequence and without the final
smoothing step.
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Remark. The extrapolated Euler method leads to explicit Runge-Kutta methods
with s = p(p− 1)/2 + 1 stages. This shows once again the importance of the h2

expansion.

Order and Step Size Control

Extrapolation methods have the advantage that in addition to the step size also the
order (i.e., number of columns) can be changed at each step. Because of this double
freedom, the practical implementation in an optimal way is more complicated than
for fixed-order RK-methods. The first codes were developed by Bulirsch & Stoer
(1966) and their students. Very successful extrapolation codes due to P. Deuflhard
and his collaborators are described in Deuflhard (code DIFEX1, 1983).

The choice of the step size can be performed in exactly the same way as for
fixed-order embedded methods (see Section II.4). If the first k lines of the extrap-
olation tableau are computed, we have Tkk as the highest-order approximation (of
order 2k by (9.22)) and in addition Tk,k−1 of order 2k− 2. It is therefore natural
to use the expression

errk = ‖Tk,k−1 −Tk,k‖ (9.23)

for step size control. The norm is the same as in (4.11). As in (4.12) we get for the
optimal step size the formula

Hk = H · 0.94 · (0.65/errk)1/(2k−1) (9.24)

where this time we have chosen a safety factor depending partly on the order.
For the choice of an optimal order we need a measure of work, which allows

us to compare different methods. The work for computing Tkk can be measured
by the number Ak of function evaluations. For the GBS-algorithm it is given
recursively by

A1 = n1 + 1

Ak = Ak−1 +nk.
(9.25)

However, a large number of function evaluations can be compensated by a large
step size Hk, given by (9.24). We therefore consider

Wk =
Ak

Hk

, (9.26)

the work per unit step, as a measure of work. The idea is now to choose the order
(i.e., the index k ) in such a way that Wk is minimized.

Let us describe the combined order and step size control in some more detail.
We assume that at some point of integration the step size H and the index k (k>2)
are proposed. The step is then realized in the following way: we first compute
k− 1 lines of the extrapolation tableau and also the values Hk−2 , Wk−2 , errk−1 ,
Hk−1 , Wk−1.
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a) Convergence in line k−1 . If errk−1 ≤ 1, we accept Tk−1,k−1 as numerical
solution and continue the integration with the new proposed quantities

knew =
{

k if Wk−1 < 0.9 ·Wk−2

k− 1 else

Hnew =
{

Hknew
if knew ≤ k− 1

Hk−1(Ak/Ak−1) if knew = k .

(9.27)

In (9.27), the only non-trivial formula is the choice of the step size Hnew in the
case of an order-increase knew = k. In this case we want to avoid the computation
of errk, so that Hk and Wk are unknown. However, since our k is assumed to be
close to the optimal value, we have Wk ≈ Wk−1 which leads to the proposed step
size increase.

b) Convergence monitor. If errk−1 > 1 , we first decide whether we may expect
convergence at least in line k + 1. It follows from (9.22) that, asymptotically,

‖Tk,k−2 −Tk,k−1‖ ≈
(n2

nk

)2

errk−1 (9.28)

with errk−1 given by (9.23). Unfortunately, errk cannot be compared with (9.28),
since different factors (depending on the differential equation to be solved) are
involved in the asymptotic formula (cf. (9.22)). If we nevertheless assume that
errk is (n2/n1)2 times smaller than (9.28) we obtain errk ≈ (n1/nk)2errk−1. We
therefore already reject the step at this point, if

errk−1 >
(nk+1nk

n1n1

)2

(9.29)

and restart with knew ≤ k− 1 and Hnew according to (9.27). If the contrary of
(9.29) holds, we compute the next line of the extrapolation tableau, i.e., Tk,k , errk ,
Hk and Wk.

c) Convergence in line k. If errk ≤ 1 , we accept Tkk as numerical solution and
continue the integration with the new proposed values

knew =

⎧⎨⎩
k− 1 if Wk−1 < 0.9 ·Wk

k + 1 if Wk < 0.9 ·Wk−1

k in all other cases

Hnew =
{

Hknew
if knew ≤ k

Hk(Ak+1/Ak) if knew = k + 1.

(9.30)

d) Second convergence monitor. If errk > 1 , we check, as in (b), the relation

errk >
(nk+1

n1

)2

. (9.31)

If (9.31) is satisfied, the step is rejected and we restart with knew ≤ k and Hnew of
(9.30). Otherwise we continue.
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solutions

y

y

step sizes

orders

tol

tol

tol

Fig. 9.5. Solution, step size and order variation obtained by ODEX

e) Hope for convergence in line k+1 . We compute errk+1 , Hk+1 and Wk+1.
If errk+1 ≤ 1, we accept Tk+1,k+1 as numerical solution and continue the integra-
tion with the new proposed order

knew := k

if (Wk−1 < 0.9 ·Wk) knew := k− 1

if (Wk+1 < 0.9 ·Wknew
) knew := k + 1.

(9.32)

If errk+1 > 1 the step is rejected and we restart with knew ≤ k and Hnew of (9.24).
The following slight modifications of the above algorithm are recommended:
i) Storage considerations lead to a limitation of the number of columns of the

extrapolation tableau, say by kmax (e.g., kmax = 9 ). For the proposed index knew
we require 2 ≤ knew ≤ kmax − 1. This allows us to activate (e) at each step.

ii) After a step-rejection the step size and the order may not be increased.
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solution

step sizes

tol

orders

tol

tol

tol

tol

tol

Fig. 9.6. Solution, step size and order variation
obtained by ODEX at the discontinuous example (9.33)

Numerical study of the combined step size and order control. We show in
the following examples how the step size and the order vary for the above algo-
rithm. For this purpose we have written the FORTRAN-subroutine ODEX (see
Appendix).

As a first example we again take the Brusselator (cf. Section II.4). As in
Fig. 4.1, the first picture of Fig. 9.5 shows the two components of the solution (ob-
tained with Atol = Rtol = 10−9 ). In the remaining two pictures we have plotted the
step sizes and orders for the three tolerances 10−3 (broken line), 10−6 (dashes and
dots) and 10−9 (solid line). One can easily observe that the extrapolation code au-
tomatically chooses a suitable order (depending essentially on Tol ). Step-rejections
are indicated by larger symbols.
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We next study the behaviour of the order control near discontinuities. In the
example

y′ = −sign (x)
∣∣1− |x|∣∣ y2, y(−2) = 2/3, −2 ≤ x ≤ 2 (9.33)

we have a discontinuity in the first derivative of y(x) at x = 0 and two discon-
tinuities in the second derivative (at x = ±1 ). The numerical results are shown
in Fig. 9.6 for three tolerances. In all cases the error at the endpoint is about
10 · Tol . The discontinuities at x = ±1 are not recognized in the computations
with Tol = 10−3 and Tol = 10−6 . Whenever a discontinuity is detected, the order
drops to 4 (lowest possible) in its neighbourhood, so that these points are passed
rather efficiently.

Dense Output for the GBS Method

Extrapolation methods are methods best suited for high precision which typically
take very large (basic) step sizes during integration. The reasons for the need of a
dense output formula (discussed in Section II.6) are therefore particularly important
here. First attempts to provide extrapolation methods with a dense output are due to
Lindberg (1972) for the implicit trapezoidal rule, and to Shampine, Baca & Bauer
(1983) who constructed a 3rd order dense output for the GBS method. We present
here the approach of Hairer & Ostermann (1990) (see also Simonsen 1990).

It turned out that the existence of high order dense output is only possible if the
step number sequence satisfies some restrictions such as

nj+1 −nj = 0 ( mod 4 ) for j = 1, 2, 3, . . . (9.34)

which, for example, is fulfilled by the sequence

{2, 6, 10, 14, 18, 22, 26, 30, 34, . . .} . (9.35)

The idea is, once again, to do Hermite interpolation. To begin with, high order
approximations are as usual at our disposal for the values y0 , y′

0 , y1 , y′
1 by using

y0 , f(x0, y0) , Tkk , f(x0 +H, Tkk) , where Tkk is supposed to be the highest
order approximation computed and used for continuation of the solution.

j = 1, nj =  2
j = 2, nj =  6
j = 3, nj = 10
j = 4, nj = 14
j = 5, nj = 18
j = 6, nj = 22

x0 x0+H/2 x0+H
Fig. 9.7. Evaluation points for a GBS step
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For more inspiration, we represent in Fig. 9.7 the steps taken by Gragg’s midpoint
rule for the step number sequence (9.35). The symbols ◦ and × indicate that the
even steps and the odd steps possess a different asymptotic expansion (see Theorem
9.3) and must not be blended. We see that, owing to condition (9.34), the midpoint
values y

(j)
nj/2 , obtained during the computation of Tj1 , all have the same parity and

can therefore also be extrapolated to yield an approximation for y(x0 +H/2) of
order 2k− 1 (remember that in Theorem 9.3, b̂2j(x0) �= 0 ).

We next insert (9.20) for x = x0 +H/2 into f(x, y)

f
(j)
nj/2 := f(x, y

(j)
nj/2) = f

(
x, y(x)−h2

j b̂2(x)−h4
j b̂4(x) . . .

)
and develop in powers of hj to obtain

y′(x)− f
(j)
nj/2 = h2

ja2,1(x) +h4
ja4,1(x) + . . . . (9.36)

This shows that the f -values at the midpoint x0 +H/2 (for j =1, 2, . . . k ) possess
an asymptotic expansion and can be extrapolated k− 1 times to yield an approxi-
mation to y′(x0 +H/2) of order 2k− 1 .

But this is not enough. We now consider, similar to an idea which goes back
to the papers of Deuflhard & Nowak (1987) and Lubich (1989), the central dif-
ferences δfi = fi+1 − fi−1 at the midpoint which, by Fig. 9.7, are available for
j = 1, 2, . . . , k and are based on even parity. By using (9.18) and by developing
into powers of hj we obtain

δf
(j)
nj/2

2hj

=
f(x +hj , y

(j)
nj/2+1)− f(x−hj, y

(j)
nj/2−1)

2hj

=
(
f
(
x+hj , y(x+hj)−h2

j â2(x+hj)−h4
j â4(x+hj)− . . .

)−
f
(
x−hj , y(x−hj)−h2

j â2(x−hj)−h4
j â4(x−hj)− . . .

))/
2hj

=
y′(x+hj)− y′(x−hj)

2hj

−h2
jc2(x)−h4

jc4(x)− . . . .

Finally we insert the Taylor series for y′(x+h) and y′(x−h) to obtain an expansion

y′′(x)−
δf

(j)
nj/2

2hj

= h2
ja2,2(x) +h4

ja4,2(x) + . . . . (9.38)

Therefore, k− 1 extrapolations of the expressions (9.37) yield an approximation
to y′′(x0 +H/2) of order 2k− 1 .

In order to get approximations to the third and fourth derivatives of the solution
at x0 +H/2 , we use the second and third central differences of f

(j)
i which exist

for j ≥ 2 (Fig. 9.7). These can be extrapolated k− 2 times to give approximations
of order 2k− 3 .
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The continuation of this process yields the following algorithm:

Step 1. For each j∈{1, . . . , k} , compute approximations to the derivatives of y(x)
at x0 +H/2 by:

d
(0)
j = y

(j)
nj/2 , d

(κ)
j =

δκ−1f
(j)
nj/2

(2hj)κ−1
for κ = 1, . . . , 2j . (9.39)

Step 2. Extrapolate d
(0)
j (k− 1) times and d

(2�−1)
j , d

(2�)
j (k− 	) times to obtain

improved approximations d(κ) to y(κ)(x0 +H/2) .

Step 3. For given μ (−1 ≤ μ ≤ 2k) define the polynomial Pμ(θ) of degree μ + 4
by

Pμ(0) = y0 ,

Pμ(1) = Tkk ,

P (κ)
μ (1/2) = Hκd(κ)

P ′
μ(0) = Hf(x0, y0) ,

P ′
μ(1) = Hf(x0 +H, Tkk)

for κ = 0, . . . , μ .

(9.40)

This computation of Pμ(θ) does not need any further function evaluation since
f(x0 +H, Tkk) has to be computed anyway for the next step. Further, Pμ(θ)
gives a global C1 approximation to the solution.

Theorem 9.5 (Hairer & Ostermann 1990). If the step number sequence satisfies
(9.34), then the error of the dense output polynomial Pμ(θ) satisfies

y(x0+θH)−Pμ(θ) =
{O(H2k+1) if n1 = 4 and μ ≥ 2k−4
O(H2k) if n1 = 2 and μ ≥ 2k−5.

(9.40)

Proof. Since Pμ(θ) is a polynomial of degree μ + 4 the error due to interpolation
is of size O(Hμ+5) . This explains the restriction on μ in (9.40). As explained
above, the function value and derivative data used for Hermite interpolation have
the required precision

Hκy(κ)(x0+H/2)−Hκd(κ) =

⎧⎨⎩O(H2k) if κ = 0,
O(H2k+1) if κ is odd,
O(H2k+2) if κ ≥ 2 is even.

In the case n1 = 4 the parity of the central point x0+H/2 is even (in contrary to
Fig. 9.7), we therefore apply (9.18) and gain one order because then the functions
ai,0(x) vanish at x0 .
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Control of the Interpolation Error

At one time . . . every young mathematician was familiar with snu ,
cnu , and dnu , and algebraic identities between these functions
figured in every examination.

(E.H. Neville, Jacobian Elliptic Functions, 1944)

Numerical example. We apply the above dense output formula with μ = 2k−3 (as
is standard in ODEX) to the differential equations of the Jacobian elliptic functions
sn, cn, dn (see Abramowitz & Stegun 1964, 16.16):

y′
1 = y2y3

y′
2 = −y1y3

y′
3 = −0.51 · y1y2

y1(0) = 0

y2(0) = 1

y3(0) = 1

(9.41)

with integration interval 0 ≤ x ≤ 10 and error tolerance Atol = Rtol = 10−9 . The
error for the three components of the obtained continuous solution is displayed
in Fig. 9.8 (upper picture; the ghosts are the solution curves) and gives a quite
disappointing impression when compared with the precision at the grid points. We
shall now see that these horrible bumps are nothing else than interpolation errors.

y1
y2

y3

TolTol

without control of errintwithout control of errint

y1
y2

y3
with control of errintwith control of errint

Fig. 9.8. Error of dense output without/with interpolation control

Assume that in the definition of Pμ(θ) the basic function and derivative values
are replaced by the exact values y(x0 +H) , y′(x0 +H) , and y(κ)(x0 +H/2) .
Then the error of Pμ(θ) is given by

θ2(1− θ)2
(
θ− 1

2

)μ+1 y(μ+5)(ξ)
(μ + 5)!

Hμ+5 (9.42)
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where ξ ∈ (x0, x0 +H) (possibly different for each component). The function

θ2(1− θ)2
(
θ− 1/2

)μ+1
has its maximum at

θμ+1 =
1
2
± 1

2

√
μ + 1
μ + 5

(9.43)

which, for large μ , are close to the ends of the integration intervals and indicate
precisely the locations of the large bumps in Fig. 9.8. This demonstrates the need
for a code which not only controls the error at the grid points, but also takes care
of the interpolation error. To this end we denote by aμ the coefficient of θμ+4 in
the polynomial Pμ(θ) and consider (Hairer & Ostermann 1992)

Pμ(θ)−Pμ−1(θ) = θ2(1− θ)2
(
θ− 1

2

)μ

aμ (9.44)

as an approximation for the interpolation error for Pμ−1(θ) and use

errint = ‖Pμ(θμ)−Pμ−1(θμ)‖ (9.45)

as error estimator (the norm is again that of (4.11)). Then, if errint > 10 the step
is rejected and recomputed with

Hint = H
(
1/errint

)1/(μ+4)

because errint =O(Hμ+4) . Otherwise the subsequent step is computed subject to
the restriction H ≤ Hint .

This modified step size strategy makes the code, together with its dense out-
put, more robust. The corresponding numerical results for the problem (9.41) are
presented in the lower graph of Fig. 9.8.

Exercises

1. Show that the extrapolated Euler methods T3,1, T3,2, T3,3 (with step-number
sequence (9.8)) are equivalent to the Runge-Kutta methods of Table 9.1. Com-
pute also the Runge-Kutta schemes corresponding to the first elements of the
GBS algorithm.

Table 9.1. Extrapolation methods as Runge-Kutta methods

0

1/3 1/3

2/3 1/3 1/3

1/3 1/3 1/3

T3,1 order 1

0

1/2 1/2

1/3 1/3 0

2/3 1/3 0 1/3

0 −1 1 1

T3,2 order 2

0

1/2 1/2

1/3 1/3 0

2/3 1/3 0 1/3

0 −2 3/2 3/2

T3,3 order 3
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2. Combine (9.18) and (9.19) into the formula (x = x0 + kh)

y(x)− yk =
�∑

j=1

(
α2j(x) + (−1)kβ2j(x)

)
h2j +h2�+2E(x, h)

for the asymptotic expansion of the Gragg method defined by (9.13a,b).

3. (Stetter 1970). Prove that for every real b (generally between 0 and 1 ) the
method

y1 = y0 +h
(
bf(x0, y0) + (1−b)f(x1, y1)

)
yi+1 = yi−1 +h

(
(1−b)f(xi−1, yi−1) + 2bf(xi, yi) + (1− b)f(xi+1, yi+1)

)
possesses an expansion in powers of h2 . Prove the same property for the
smoothing step

Sh(x) =
1
2

(
y2n + y2n−1 +h(1− b)f(x2n−1, y2n−1) +hbf(x2n, y2n)

)
.

4. (Stetter 1970). Is the Euler step (9.13a) essential for an h2 -expansion? Prove
that a first order starting procedure

y1 = y0 +hΦ(x0, y0, h)

for (9.13a) produces an h2 -expansion if the quantities
y−1 = y0 −hΦ(x0, y0,−h) , y0 , and y1 satisfy (9.13b) for i = 0.

5. Study the numerical instability of the extrapolation scheme for the harmonic
sequence, i.e., suppose that the entries T11 , T21 , T31 . . . are disturbed with
rounding errors ε , −ε , ε, . . . and compute the propagation of these errors into
the extrapolation tableau (9.5).

Result. Due to the linearity of the extrapolation scheme, we suppose the Tik

equal zero and ε = 1 . Then the results for sequence (9.8’) are

1.
−1. −1.67

1. 2.60 3.13
−1. −3.57 −5.63 −6.21

1. 4.56 9.13 11.94 12.69
−1. −5.55 −13.63 −21.21 −25.35 −26.44

1. 6.54 19.13 35.01 47.65 54.14 55.82
−1. −7.53 −25.63 −54.31 −84.09 −105.64 −116.30 −119.03

1. 8.53 33.13 80.13 140.14 195.34 232.96 251.10 255.73

hence, for order 18, we lose approximately two digits due to roundoff errors.



II.9 Extrapolation Methods 243

6. (Laguerre 1883* ). If a1, a2, . . . , an are distinct positive real numbers and
r1, r2, . . . , rn are distinct reals, then

A =

⎛⎜⎜⎜⎝
ar1
1 ar2

1 . . . arn
1

ar1
2 ar2

2 . . . arn
2

...
...

...
ar1

n ar2
n . . . arn

n

⎞⎟⎟⎟⎠
is invertible.

Hint (Pólya & Szegö 1925, Vol. II, Abschn. V, Problems 76-77* ). Show by
induction on n that, if the function g(t) =

∑n
i=1 αit

ri has n distinct positive
zeros, then g(t) ≡ 0 . By Rolle’s theorem the function

d

dt

(
t−r1g(t)

)
=

n∑
i=2

αi(ri − r1)t
ri−r1−1

has n− 1 positive distinct zeros and the induction hypothesis can be applied.

* We are grateful to our colleague J. Steinig for these references.
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The Pleiades seem to be among the first stars mentioned in astronomical liter-
ature, appearing in Chinese annals of 2357 B.C. . . .

(R.H. Allen, Star names, their love and meaning, 1899, Dover 1963)

If you enjoy fooling around making pictures, instead of typesetting ordinary
text, TEX will be a source of endless frustration/amusement for you, . . .

(D. Knuth, The TEXbook, p. 389)

Problems

EULR — Euler’s equation of rotation of a rigid body (“Diese merkwürdig sym-
metrischen und eleganten Formeln . . .”, A. Sommerfeld 1942, vol. I, § 26.1, Euler
1758)

x

y

y

y

y
f

Fig. 10.1. Solutions of Euler’s equations (10.1)

I1 y′
1 = (I2−I3) y2y3

I2 y′
2 = (I3−I1) y3y1

I3 y′
3 = (I1−I2) y1y2 + f(x)

(10.1)

where y1, y2, y3 are the coordinates of �ω , the rotation vector, and I1, I2, I3 are the
principal moments of inertia. The third coordinate has an additional exterior force

f(x) =
{

0.25 · sin2 x if 3π ≤ x ≤ 4π
0 otherwise

(10.1’)

which is discontinuous in its second derivative. We choose the constants and initial
values as

I1 = 0.5, I2 = 2, I3 = 3, y1(0) = 1, y2(0) = 0, y3(0) = 0.9
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(see Fig. 10.1) and check the numerical precision at the output points

xend = 10 and xend = 20 .

AREN — the Arenstorf orbit (0.1) for the restricted three body problem with initial
values (0.2) integrated over one period 0 ≤ x ≤ xend (see Fig. 0.1). The precision
is checked at the endpoint, here the solution is most sensitive to errors of the initial
phase.

LRNZ — the solution of the Saltzman-Lorenz equations (I.16.17) displayed in
Fig. I.16.8, i.e., with constants and initial values

σ = 10, r = 28, b =
8
3
, y1(0) = −8, y2(0) = 8, y3(0) = 27 . (10.2)

The solution is, for large values of x , extremely sensitive to the errors of the first
integration steps (see Fig. I.16.10 and its discussion). For example, at x = 50 the
numerical solution becomes totally wrong, even if the computations are performed
in quadruple precision with Tol = 10−20 . Hence the numerical results of all meth-
ods would be equally useless and no comparison makes any sense. Therefore we
choose

xend = 16

and check the numerical solution at this point. Even here, all computations with
Tol ≥ 10−7 , say, fall into a chaotic cloud of meaningless results (see Fig. 10.5).

PLEI — a celestial mechanics problem (which we call “the Pleiades”): seven stars
in the plane with coordinates xi , yi and masses mi = i (i = 1, . . . , 7) :

x′′
i =
∑
j �=i

mj(xj −xi)/rij

y′′
i =

∑
j �=i

mj(yj − yi)/rij

(10.3)

where

rij =
(
(xi −xj)

2 + (yi − yj)
2
)3/2

, i, j = 1, . . . , 7.

The initial values are

x1(0) = 3, x2(0) = 3, x3(0) = −1, x4(0) = −3,

x5(0) = 2, x6(0) = −2, x7(0) = 2,

y1(0) = 3, y2(0) = −3, y3(0) = 2, y4(0) = 0,

y5(0) = 0, y6(0) = −4, y7(0) = 4,

x′
i(0) = y′

i(0) = 0, for all i with the exception of

x′
6(0) = 1.75, x′

7(0) = −1.5, y′
4(0) = −1.25, y′

5(0) = 1,

(10.4)
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and we integrate for 0≤ t≤ tend = 3 . Fig. 10.2a represents the movement of these
7 bodies in phase coordinates. The initial value is marked by an “i”, the final value
at t = tend is marked by an “f”. Between these points, 19 time-equidistant output
points are plotted and connected by a dense output formula. There occur several
quasi-collisions which are displayed in Table 10.1.

Table 10.1. Quasi-collisions in the PLEI problem

Body1 1 1 3 1 2 5

Body2 7 3 5 7 6 7

r2
ij 0.0129 0.0193 0.0031 0.0011 0.1005 0.0700

time 1.23 1.46 1.63 1.68 1.94 2.14

The resulting violent shapes of the derivatives x′
i(t), y

′
i(t) are displayed in

Fig. 10.2b and show that automatic step size control is essential for this example.

1i

1f

2i

2f

3i

3f

4i

4f

5i

5f

6i

6f

7i

7f

x

y

t

x
x

x

x

x

x
x

x

x

x

t

y

y

y

y

y
y

y
y

y

y

y

y
y

y

Fig. 10.2a. Solutions of (10.3) Fig. 10.2b. Speeds
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ROPE — the movement of a hanging rope (see Fig. 10.3a) of length 1 under grav-
itation and under the influence of a horizontal force

Fy(t) =
( 1

cosh(4t− 2.5)

)4

(10.5a)

acting at the point s = 0.75 as well as a vertical force

Fx(t) = 0.4 (10.5b)

acting at the endpoint s = 1 .

y

x

s

Fy

Fx

t

yy

x

Fig. 10.3a. Hanging rope Fig. 10.3b. Solution for 0 ≤ t ≤ 3.723 .

If this problem is discretized, then Lagrange theory (see (I.6.18); see also Ex-
ercises IV.1.2 and IV.1.4 of Volume II) leads to the following equations for the
unknown angles θk :

n∑
k=1

alkθ̈k = −
n∑

k=1

blkθ̇2
k −n

(
n +

1
2
− l
)

sin θl (10.6)

−n2 sin θl ·Fx(t) +
{

n2 cos θl ·Fy(t) if l ≤ 3n/4
0 if l > 3n/4,

l = 1, . . . , n

where

alk = glk cos(θl−θk), blk = glk sin(θl−θk), glk = n +
1
2
−max(l, k).

(10.7)
We choose

n = 40 , θl(0) = θ̇l(0) = 0 , 0 ≤ t ≤ 3.723. (10.8)
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The resulting system is of dimension 80. The special structure of G−1 (see
(IV.1.16–18) of Volume II) allows one to evaluate θ̈l with the following algorithm:

a) Let vl = −n
(
n+1

2−l
)
sin θl −n2 sin θl ·Fx +

{
n2 cos θl ·Fy

0
b) Compute w=Dv+θ̇2 ,
c) Solve the tridiagonal system Cu=w ,
d) Compute θ̈=Cv+Du ,

where

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 −cos(θ1−θ2)
−cos(θ2−θ1) 2 −cos(θ2−θ3)

−cos(θ3−θ2)
. . .

. . .
. . . 2 − cos(θn−1−θn)

− cos(θn−θn−1) 3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(10.9)

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 −sin(θ1−θ2)
−sin(θ2−θ1) 0 −sin(θ2−θ3)

−sin(θ3−θ2)
. . .

. . .
. . . 0 − sin(θn−1−θn)

− sin(θn−θn−1) 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

BRUS — the reaction-diffusion equation (Brusselator with diffusion)

∂u

∂t
= 1 +u2v− 4.4u +α

(∂2u

∂x2
+

∂2u

∂y2

)
∂v

∂t
= 3.4u−u2v +α

(∂2v

∂x2
+

∂2v

∂y2

) (10.10)

for 0≤x≤ 1 , 0≤ y≤ 1 , t≥ 0 , α=2 ·10−3 together with the Neumann boundary
conditions

∂u

∂n
= 0,

∂v

∂n
= 0, (10.11)

and the initial conditions

u(x, y, 0) = 0.5 + y, v(x, y, 0) = 1 + 5x . (10.12)

By the method of lines (cf. Section I.6) this problem becomes a system of ordinary
differential equations. We put

xi =
i− 1
N − 1

, yj =
j − 1
N − 1

, i, j = 1, . . . , N
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and define
Uij(t) = u(xi, yj, t), Vij(t) = v(xi, yj, t) . (10.13)

Discretizing the derivatives in (10.10) with respect to the space variables we obtain
for i, j = 1, . . . , N

U ′
ij = 1+U2

ijVij−4.4Uij+α(N−1)2
(
Ui+1,j+Ui−1,j+Ui,j+1+Ui,j−1−4Uij

)
V ′

ij = 3.4Uij−U2
ijVij+α(N−1)2

(
Vi+1,j+Vi−1,j+Vi,j+1+Vi,j−1−4Vij

)
,

(10.14)
an ODE of dimension 2N2 . Because of the boundary condition (10.11) we have

U0,j = U2,j , UN+1,j = UN−1,j , Ui,0 = Ui,2 , Ui,N+1 = Ui,N−1

and similarly for the Vij -quantities. We choose N = 21 so that the system is
of dimension 882 and check the numerical solutions at the output point tend =
7.5 . The solution of (10.14) (in the (x, y) -space) is represented in Fig. 10.4a and
Fig. 10.4b for u and v respectively.

Performance of the Codes

Several codes were applied to each of the test problems with Tol = 10−3 , Tol =
10−3−1/8, Tol = 10−3−2/8, Tol = 10−3−3/8, . . . (for the large problems with Tol =
10−3, Tol = 10−3−1/4, T ol = 10−3−2/4, . . .) up to, in general, Tol = 10−14 , then
the numerical result at the output points were compared with an “exact solution”
(computed very precisely in quadruple precision). Each of these results then cor-
responds to one point of Fig. 10.5, where this precision is compared (in double
logarithmic scale) to the number of function evaluations. The “integer” tolerances
10−3 , 10−4 , 10−5, . . . are distinguishable as enlarged symbols. All codes were
applied with complete “standard” parameter settings and were not at all “tuned” to
these particular problems.

A comparison of the computing time (instead of the number of function eval-
uations) gave no significant difference. Therefore, only one representative of the
small problems (LRNZ) and one large problem (BRUS) are displayed in Fig. 10.6.
All computations have been performed in REAL*8 (Uround = 1.11 · 10−16 ) on a
Sun Workstation (SunBlade 100).

The codes used are the following:

RKF45 — symbol — a product of Shampine and Watts’ programming art
based on Fehlberg’s pair of orders 4 and 5 (Table 5.1). The method is used in the
“local extrapolation mode”, i.e., the numerical solution is advanced with the 5th
order result. The code is usually, except for low precision, the slowest of all, which
is explained by its low order. The results of the “time”-picture Fig. 10.6 for this
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Fig. 10.4a. Solution u(x, y, t) for the BRUS problem
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Fig. 10.4b. Solution v(x, y, t) for the BRUS problem
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Fig. 10.5. Precision versus function calls



II.10 Numerical Comparisons 253

LRNZ

error

sec

DOPRI5

DOP853

ODEX

RKF45
DVERK

BRUS

error

sec

DOPRI5

DOP853ODEX

RKF45

DVERK

Fig. 10.6. Precision versus computing time

code are relatively better than those on the “function calls” front (Fig. 10.5). This
indicates that the code has particularly small overhead.

DOPRI5 — symbol — the method of Dormand & Prince of order 5 with
embedded error estimator of order 4 (see Table 5.2). The code is explained in the
Appendix. The method has precisely the same order as that used in RKF45, but the
error constants are much more optimized. Therefore the “error curves” in Fig. 10.5
are nicely parallel to those of RKF45, but appear translated to the side of higher
precision. One usually gains between a half and one digit of numerical precision for
comparable numerical work. The code performs specially well between Tol=10−3

and Tol = 10−8 in the AREN problem. This is simply due to an accidental sign
change of the error for the most sensitive solution component.

DVERK — symbol — this widely known code implements Verner’s 6 th order
method of Table 5.4 and was written by Hull, Enright & Jackson. It has been in-
cluded in the IMSL library for many years and the source code is available through
na-net. The corresponding error curves in Fig. 10.5 appear to be less steep than
those of DOPRI5, which illustrates the higher order of the method. However, the
error constants seem to be less optimal so that this code surpasses the performance
of DOPRI5 only for very stringent tolerances. It is significantly better than DOPRI5
solely in problems EULR and ROPE. The code, as it was, failed at the BRUS prob-
lem for Tol = 10−3 and Tol = 10−4 . Therefore these computations were started
with Tol = 10−5 .

DOP853 — symbol — is the method of Dormand & Prince of order 8 ex-
plained in Section II.5 (formulas (5.20) – (5.30), see Appendix). The 6 th order
error estimator (5.29), (5.30) has been replaced by a 5 th order estimator with 3rd
order correction (see below). This was necessary to make the code robust for the
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EULR problem. The code works perfectly for all problems and nearly all toler-
ances. Whenever more than 3 or 4 digits are desired, this method seems to be
highly recommendable. The most astonishing fact is that its use was never disas-
trous, even not for Tol = 10−3 .

ODEX — symbol — is an extrapolation code based on the Gragg-Bulirsch-
Stoer algorithm with harmonic step number sequence (see Appendix). This
method, which allows arbitrary high orders (in the standard version of the code
limited to p ≤ 18 ) is of course predestined for computations with high precision.
The more stringent Tol is, the higher the used order becomes, the less steep the
error curve is. This can best be observed in the picture for the ROPE problem.
Finally, for Tol≈ 10−12 , the code surpasses the values of DOP853. As can be seen
in Fig. 10.6, the code loses slightly on the “time”-front. This is due to the increased
overhead of the extrapolation scheme.

The numerical results of ODEX behave very similarly to those of DIFEX1
(Deuflhard 1983).

A “Stretched” Error Estimator for DOP853

In preliminary stages of our numerical tests we had written a code “DOPR86”
based on the method of order 8 of Dormand & Prince with the 6th order error
estimator described in Section II.5. For most problems the results were excellent.
However, there are some situations in which the error control of DOPR86 did not
work safely:

When applied to the BRUS problem with Tol = 10−3 or Tol = 10−4 the code
stopped with an overflow message. The reason was the following: when the step
size is too large, the internal stages are too far away from the solution and their
modulus increases at each stage (e.g., by a factor 105 between stage 11 and stage
12). Due to the fact that b̂12 = b12 (see (5.30) (5.26) and (5.25b)) the difference
ŷ1 − y1 is not influenced by the last stage and is smaller (by a factor of 105 ) than
the modulus of y1 . Hence, the error estimator scaled by (4.10) is ≤ 10−5 and a
completely wrong step will be accepted.

The code DOPR86 also had severe difficulties when applied to problems with
discontinuities such as EULR. The worst results were obtained for the problem

y′
1 = y2y3

y′
2 = −y3y1

y′
3 = −0.51 · y1y2 + f(x)

y1(0) = 0

y2(0) = 1

y3(0) = 1

(10.15)

where f(x) , given in (10.1’), has a discontinuous second derivative. The re-
sults for this problem and the code DOPR86 for very many different Tol values
(Tol = 10−3, 10−3−1/24, 10−3−2/24, . . . , 10−14 ) are displayed in Fig. 10.7. There,
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DOPR86

error

fe

DOP853

error

fe

Fig. 10.7. Performances of DOPR86 and DOP853 at (10.15)

the (dotted) diagonal is of exact slope 1/8 and represents the theoretical conver-
gence speed of the method of order 8. It can be observed that this convergence is
well attained by some results, but others lose precision of up to 8 digits from the de-
sired tolerance. We explain this disappointing behaviour by the fact that b̂12 = b12

and that the 12 th stage is the only one where the function is evaluated at the end-
point of the step. Whenever the discontinuity of f ′′ is by accident slightly to the
left of a grid point, the error estimator ignores it and the code reports a wrong value.

Unfortunately, the basic 8 th order method does not possess a 6 th order embed-
ding with b̂12 �= b12 (unless additional function evaluations are used). Therefore,
we decided to construct a 5 th order approximation ŷ1 . It can be obtained by taking
b̂6 , b̂7 , b̂12 as free parameters, e.g.,

b̂6 = b6/2 + 1, b̂7 = b7/2 + 0.45, b̂12 = b12/2,

by putting b̂2 = b̂3 = b̂4 = b̂5 = 0 and by determining the remaining coefficients
such that this quadrature formula has order 5. Due to the simplifying assumptions
(5.20) all conditions for order 5 are then satisfied. In order to prevent a serious
over-estimation of the error, we consider a second embedded method ỹ1 of order
3 based on the nodes c1 = 0, c9 and c12 = 1 so that two error estimators

err5 = ‖ŷ1 − y1‖ = O(h6), err3 = ‖ỹ1 − y1‖ = O(h4) (10.16)

are available. Similarly to a procedure which is common for quadrature formulas
(R. Piessens, E. de Doncker-Kapenga, C.W. Überhuber & D.K. Kahaner 1983,
Berntsen & Espelid 1991) we consider

err = err5 ·
err5√

err25 + 0.01 · err23
= O(h8) (10.17)

as error estimator. It behaves asymptotically like the global error of the method.
The corresponding code DOP853 gives satisfactory results for all the above prob-
lems (see right picture in Fig. 10.7).
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Effect of Step-Number Sequence in ODEX

We also study the influence of the different step-number sequences to the perfor-
mance of the extrapolation code ODEX. Fig. 10.8 presents two examples of this
study, a small problem (AREN) and a large problem (ROPE). The used sequences
are

HARMONIC — symbol — the harmonic sequence (9.8’) which is the standard
choice in ODEX;

MOD4 — symbol — the sequence {2, 6, 10, 14, 18, . . .} (see (9.35)) which
allowed the construction of high-order dense output;

BULIRSCH — symbol — the Bulirsch sequence (9.7’);

ROMBERG — symbol — the Romberg sequence (9.6’);

DNSECTRL — symbol — the error control for the MOD4 sequence taking into
account the interpolation error of the dense output solution (9.42). This is included
only in the small problem, since (complete) dense output on large problems would
need too much memory.

AREN

error

fe

HARMONIC

MOD4

BULIRSCH

ROMBERG

DNSECTRL
ROPE

error

fe

HARMONIC

MOD4

BULIRSCH

ROMBERG

Fig. 10.8. Effect of step-number sequences in ODEX

Discussion. With the exception of the clear inferiority of the Romberg sequence,
especially for high precision, and a certain price to be paid for the dense output error
control, there is not much difference between the first three sequences. Although
the harmonic sequence appears to be slightly superior, the difference is statistically
not very significant.
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We suppose that we have a computer with a number of arithmetic
processors capable of simultaneous operation and seek to devise
parallel integration algorithms for execution on such a computer.

(W.L. Miranker & W. Liniger 1967)

“PARALYSING ODES” (K. Burrage, talk in Helsinki 1990)

Parallel machines are computers with more than one processor and this facility
might help us to speed up the computations in ordinary differential equations. This
is particularly interesting for very large problems, for very costly function evalua-
tion, or for fast real-time simulations. A second motivation is the desire to make a
code, with the help of parallel computations, not necessarily faster but more robust
and reliable.

Early attempts for finding parallel methods are Nievergelt (1964) and Miranker
& Liniger (1967). See also the survey papers Miranker (1971) and Jackson (1991).

We distinguish today essentially between two types of parallel architectures:

SIMD (single instruction multiple data): all processors execute the same in-
structions with possibly different input data.

MIMD (multiple instruction multiple data): the different processors can act
independently.

The exploitation of parallelism for an ordinary differential equation

y′ = f(x, y), y(x0) = y0 (11.1)

can be classified into two main categories (Gear 1987, 1988):

Parallelism across the system. Often the problem itself offers more or less trivial
applications for parallelism, e.g.,

> if several solutions are required for various initial or parameter values;

> if the right-hand side of (11.1) is very costly, but structured in such a way that
the computation of one function evaluation can be split efficiently across the
various processors;

> space discretizations of partial differential equations (such as the Brusselator
problem (10.14)) whose function evaluation can be done simultaneously for all
components on an SIMD machine with thousands of processors;

> the solution of boundary value problems with the multiple shooting method
(see Section I.15) where all computations on the various sub-intervals can be
done in parallel;
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> doing all the high-dimensional linear algebra in the Runge-Kutta method (11.2)
in parallel;

> parallelism in the linear algebra for Newton’s method for implicit Runge-Kutta
methods (see Section IV.8).

These types of parallelism, of course, depend strongly on the problem and on the
type of the computer.

Parallelism across the method. This is problem-independent and means that, due
to a special structure of the method, several function values can be evaluated in
parallel within one integration step. This will be discussed in this section in more
detail.

Parallel Runge-Kutta Methods

. . . it seems that explicit Runge-Kutta methods are not facilitated
much by parallelism at the method level.

(Iserles & Nørsett 1990)

Consider an explicit Runge-Kutta method

ki = f
(
x0 + cih, y0 +h

i−1∑
j=1

aijkj

)
, i = 1, . . . , s

y1 = y0 +h
s∑

i=1

biki.

(11.2)

Suppose, for example, that the coefficients have the zero-pattern indicated in
Fig. 11.1.

1

2

3

4

Fig. 11.1. Parallel method Fig. 11.2. Production graph

Each arrow in the corresponding “production graph” G (Fig. 11.2), pointing from
vertex “i” to vertex “j ”, stands for a non-zero aji . Here the vertices 2 and 3 are
independent and can be evaluated in parallel. We call the number of vertices in
the longest chain of successive arrows (here 3) the number of sequential function
evaluations σ .
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In general, if the Runge-Kutta matrix A can be partitioned (possibly after a
permutation of the stages) as

A =

⎛⎜⎜⎜⎜⎝
0

A21 0
A31 A32 0

...
...

. . .
Aσ1 Aσ2 . . . Aσ,σ−1 0

⎞⎟⎟⎟⎟⎠ , (11.3)

where Aij is a matrix of size μi ×μj , then the derivatives k1, . . . , kμ1
as well

as kμ1+1, . . . , kμ1+μ2
, and so on, can be computed in parallel and one step of the

method is executed in σ sequential function evaluations (if μ=maxi μi processors
are at disposal). The following theorem is a severe restriction on parallel methods.
It appeared in hand-written notes by K. Jackson & S. Nørsett around 1986. For a
publication see Jackson & Nørsett (1992) and Iserles & Nørsett (1990).

Theorem 11.1. For an explicit Runge-Kutta method with σ sequential stages the
order p satisfies

p ≤ σ, (11.4)

for any number μ of available processors.

Proof. Each non-zero term of the expressions Φi(t) for the “tall” trees t21 , t32 ,
t44 , t59, . . . (see Table 2.2 and Definition 2.9)

∑
aijajkak�a�m . . . corresponds to

a connected chain of arrows in the production graph. Since their length is limited
by σ , these terms are all zero for �(t) > σ .

Methods with p=σ will be called P-optimal methods. The Runge-Kutta meth-
ods of Section II.1 for p≤ 4 are all P-optimal. Only for p > 4 does the subsequent
construction of P-optimal methods allow one to increase the order with the help of
parallelism.

Remark. The fact that the “stability function” (see Section IV.2) of an explicit
parallel Runge-Kutta method is a polynomial of degree ≤ σ allows a second proof
of Theorem 11.1. Further, P-optimal methods all have the same stability function
1 + z + z2/2!+ . . .+ zσ/σ! .

Parallel Iterated Runge-Kutta Methods

One possibility of constructing P-optimal methods is by fixed point iteration. Con-
sider an arbitrary (explicit or implicit) Runge-Kutta method with coefficients
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c = (c1, . . . , cs)
T , A = (aij)

s
i,j=1, bT = (b1, . . . , bs)

and define ŷ1 by

k
(0)
i = 0

k
(�)
i = f

(
x0 + cih, y0 +h

s∑
j=1

aijk
(�−1)
j

)
, 	 = 1, . . . , σ

ŷ1 = y0 +h

s∑
i=1

bik
(σ)
i .

(11.5)

This algorithm can be interpreted as an explicit Runge-Kutta method with scheme

0 0

c A 0
c 0 A 0
...

...
. . .

. . .

c 0 . . . 0 A 0

0 . . . 0 0 bT

(11.6)

It has σ sequential stages if s processors are available. To compute its order we
use a Lipschitz condition for f(x, y) and obtain

max
i

‖k(�)
i − ki‖ ≤ Ch ·max

i
‖k(�−1)

i − ki‖

where ki are the stage-vectors of the basic method. Since k
(0)
i − ki = O(1) this

implies k
(σ)
i − ki = O(hσ) and consequently the difference to the solution of the

basic method satisfies ŷ1 − y1 = O(hσ+1) .

Theorem 11.2. The parallel iterated Runge-Kutta method (11.5) is of order

p = min(p0, σ), (11.7)

if p0 denotes the order of the basic method.

Proof. The statement follows from

ŷ1 − y(x0 +h) = ŷ1 − y1 + y1 − y(x0 +h) = O(hσ+1) +O(hp0+1) .

This theorem shows that the choice σ = p0 in (11.5) yields P-optimal explicit
Runge-Kutta methods (i.e., σ = p). If we take as basic method the s -stage col-
location method based on the Gaussian quadrature (p0 = 2s) then we obtain a
method of order p = 2s which is P-optimal on s processors. P.J. van der Houwen
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& B.P. Sommeijer (1990) have done extensive numerical experiments with this
method.

Extrapolation Methods

It turns out that the GBS-algorithm (Section II.9) without smoothing step is also P-
optimal. Indeed, all the values Tj1 can be computed independently of each other. If
we choose the step number sequence {2, 4, 6, 8, 10, 12, . . .} then the computation
of Tk1 requires 2k sequential function evaluations. Hence, if k processors are
available (one for each Tj1 ), the numerical approximation Tkk , which is of order
p=2k , can be computed with σ=2k sequential stages. When the processors are of
type MIMD we can compute T11 and Tk−1,1 on one processor (2+2(k−1) = 2k
function evaluations). Similarly, T21 and Tk−2,1 occupy another processor, etc.
In this way, the number of necessary processors is reduced by a factor close to 2
without increasing the number of sequential stages.

The order and step size strategy, discussed in Section II.9, should, of course, be
adapted for an implementation on parallel computers. The “hope for convergence
in line k + 1” no longer makes sense because this part of the algorithm is now as
costly as the whole step. Similarly, there is no reason to accept already Tk−1,k−1

as numerical approximation, because Tkk is computed on the same time level as
Tk−1,k−1 . Moreover, the numbers Ak of (9.25) should be replaced by Ak = nk

which will in general increase the order used by the code.

Increasing Reliability

. . . using parallelism to improve reliability and functionality
rather than efficiency. (W.H. Enright & D.J. Higham 1991)

For a given Runge-Kutta method parallel computation can be used to give a reliable
error estimate or an accurate dense output. This has been advocated by Enright &
Higham (1991) and will be the subject of this subsection.

Consider a Runge-Kutta method of order p , choose distinct numbers 0 = σ0 <
σ1 < . . . < σk = 1 and apply the Runge-Kutta method in parallel with step sizes
σ1h, . . . , σk−1h, σkh = h . This gives approximations

yσi
≈ y(x0 +σih) . (11.8)

Then compute f(x0 +σih, yσi
) and do Hermite interpolation with the values

yσi
, hf(x0 +σih, yσi

) , i = 0, 1, . . . , k, (11.9)

i.e., compute

u(θ) =
k∑

i=0

vi(θ) yσi
+h

k∑
i=0

wi(θ) f(x0 +σih, yσi
) (11.10)
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where vi(θ) and wi(θ) are the scalar polynomials

vi(θ) = 	2
i (θ) · (1− 2	′i(σi)(θ−σi)

)
wi(θ) = 	2

i (θ) · (θ−σi)

}
with 	i(θ) =

k∏
j=0
j �=i

(θ−σj)
(σi −σj)

. (11.11)

The interpolation error, which is O(h2k+2) , may be neglected if 2k + 2 > p + 1 .
As to the choice of σi we denote the local error of the method by le = y1 −

y(x0 +h) . It follows from Taylor expansion (see Theorem 3.2) that

yσi
− y(x0 +σih) = σp+1

i · le +O(hp+2)

and consequently the error of (11.10) satisfies (for 2k + 2 > p + 1 )

u(θ)− y(x0 + θh) =
( k∑

i=1

σp+1
i vi(θ)

)
· le +O(hp+2). (11.12)

The coefficient of le is equal to 1 for θ = 1 and it is natural to search for suitable
σi such that ∣∣∣ k∑

i=1

σp+1
i vi(θ)

∣∣∣≤ 1 for all θ ∈ [0, 1] . (11.13)

Indeed, under the assumption 2k− 1 ≤ p < 2k + 1 , it can be shown that num-
bers 0 = σ0 < σ1 < . . . < σk−1 < σk = 1 exist satisfying (11.13) (see Exercise 1).
Selected values of σi proposed by Enright & Higham (1991), which satisfy this
condition are given in Table 11.1. For such a choice of σi the error (11.12) of
the dense output is bounded (at least asymptotically) by the local error le at the
endpoint of integration. This implementation of a dense output provides a simple
way to estimate le . Since u(θ) is an O(hp+1) -approximation of y(x0 + θh) , the
defect of u(θ) satisfies

u′(θ)−hf
(
x0 + θh, u(θ)

)
=
( k∑

i=1

σp+1
i v′

i(θ)
)
· le +O(hp+2) . (11.14)

If we take a σ∗ different from σi such that
∑k

i=1 σp+1
i v′

i(σ∗) �= 0 (see Table 11.1)
then only one function evaluation, namely f(x0 +σ∗h, u(σ∗)) , allows the compu-
tation of an asymptotically correct approximation of le from (11.14). This error
estimate can be used for step size selection and for improving the numerical re-
sult (local extrapolation). In the local extrapolation mode one then loses the C1

continuity of the dense output.
With the use of an additional processor the quantities yσ∗ and f(x0 +σ∗h, yσ∗)

can be computed simultaneously with yσi
and f(x0 +σih, yσi

) . If the polynomial
u(θ) is required to satisfy u(σ∗) = yσ∗ , but not u′(σ∗) = hf(x0 +σ∗h, yσ∗) , then
the estimate (11.14) of the local error le does not need any further evaluation of f .
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Table 11.1. Good values for σi

p k σ1, . . . , σk−1 σ∗

5 3 0.2, 0.4 0.88
6 3 0.2, 0.4 0.88
7 4 0.2, 0.4, 0.7 0.94
8 4 0.2, 0.4, 0.6 0.93

Exercises

1. Let the positive integers k and p satisfy 2k− 1≤ p < 2k +1 . Then show that
there exist numbers 0 = σ0 < σ1 < . . . < σk−1 < σk = 1 such that (11.13) is
true for all θ ∈ [0, 1] .
Hint. Put σj = jε for j = 1, . . . , k− 1 and show that (11.13) is verified for
sufficiently small ε > 0 . Of course, in a computer program, one should use σj

which satisfy (11.13) and are well separated in order to avoid roundoff errors.



II.12 Composition of B-Series

At the Dundee Conference in 1969, a paper by J. Butcher was read
which contained a surprising result. (H.J. Stetter 1971)

We shall now derive a theorem on the composition of what we call B-series (in
honour of J. Butcher). This will have many applications and will lead to a better
understanding of order conditions for all general classes of methods (composition
of methods, multiderivative methods of Section II.13, general linear methods of
Section III.8, Rosenbrock methods in Exercise 2 of Section IV.7).

Composition of Runge-Kutta Methods

There is no five-stage explicit Runge-Kutta method of order 5 (Section II.5). This
led Butcher (1969) to the idea of searching for different five-stage methods such
that a certain composition of these methods produces a fifth-order result (“effective
order”). Although not of much practical interest (mainly due to the problem of
changing step size), this was the starting point of a fascinating algebraic theory of
numerical methods.

Suppose we have two methods, say of three stages,

0
ĉ2 â21

ĉ3 â31 â32

b̂1 b̂2 b̂3

0
c̃2 ã21

c̃3 ã31 ã32

b̃1 b̃2 b̃3

(12.1)

which are applied one after the other to a starting value y0 with the same step size:

gi = y0 +h
∑

j

âijf(gj), y1 = y0 +h
∑

j

b̂jf(gj) (12.2)

	i = y1 +h
∑

j

ãijf(	j), y2 = y1 +h
∑

j

b̃jf(	j). (12.3)

If we insert y1 from (12.2) into (12.3) and group all gi, 	i together, we see that the
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composition can be interpreted as a large Runge-Kutta method with coefficients

0

ĉ2 â21

ĉ3 â31 â32∑
b̂i b̂1 b̂2 b̂3∑

b̂i + c̃2 b̂1 b̂2 b̂3 ã21∑
b̂i + c̃3 b̂1 b̂2 b̂3 ã31 ã32

b̂1 b̂2 b̂3 b̃1 b̃2 b̃3

≡

0

c2 a21

c3 a31 a32

c4 a41 a42 a43

c5 a51 a52 a53 a54

c6 a61 a62 a63 a64 a65

b1 b2 b3 b4 b5 b6

(12.4)

It is now of interest to study the order conditions of the new method. For this, we
have to compute the expressions (see Table 2.2)∑

bi, 2
∑

bici, 3
∑

bic
2
i , 6

∑
biaijcj , etc.

If we insert the values from the left tableau of (12.4), a computation, which for low
orders is still not too difficult, shows that these expressions can be written in terms
of the corresponding expressions for the two methods (12.1). We shall denote these
expressions for the first method by a(t) , for the second method by b(t) , and for
the composite method by ab(t) :

a( ) =
∑

b̂i, a( ) = 2 ·∑ b̂iĉi, a( ) = 3 ·∑ b̂iĉ
2
i , . . . (12.5a)

b( ) =
∑

b̃i, b( ) = 2 ·∑ b̃ic̃i, b( ) = 3 ·∑ b̃ic̃
2
i , . . . (12.5b)

ab( ) =
∑

bi, ab( ) = 2 ·∑ bici, ab( ) = 3 ·∑ bic
2
i , . . . (12.5c)

The above mentioned formulas are then

ab( ) = a( ) +b( )

ab( ) = a( ) + 2b( )a( ) +b( )

ab( ) = a( ) + 3b( )a( )2 + 3b( )a( ) +b( )

ab( ) = a( ) + 3b( )a( ) + 3b( )a( ) +b( )

(12.6)

etc.
It is now, of course, of interest to have a general understanding of these for-

mulas for arbitrary trees. This, however, is not easy in the above framework (“ . . .
a tedious calculation shows that . . .”). Further, there are problems of identifying
different methods with identical numerical results (see Exercise 1 below). Also, we
want the theory to include more general processes than Runge-Kutta methods, for
example the exact solution or multi-derivative methods.
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B-Series

All these difficulties can be avoided if we consider directly the composition of the
series appearing in Section II.2. We define by

T = {∅}∪T1 ∪T2 ∪ . . . , LT = {∅}∪LT1 ∪LT2 ∪ . . .

the sets of all trees and labelled trees, respectively.

Definition 12.1 (Hairer & Wanner 1974). Let a(∅), a( ), a( ), a( ), . . . be
a sequence of real coefficients defined for all trees a : T → R. Then we call the
series (see Theorem 2.11, Definitions 2.2, 2.3)

B(a, y) = a(∅)y +ha( )f(y) +
h2

2!
a( )F ( )(y) + . . .

=
∑

t∈LT

h�(t)

�(t)!
a(t)F (t)(y) =

∑
t∈T

h�(t)

�(t)!
α(t) a(t)F (t)(y)

(12.7)

a B-series.

We have seen in Theorems 2.11 and 2.6 that the numerical solution of a Runge-
Kutta method as well as the exact solution are B-series. The coefficients of the latter
are all equal to 1.

Usually we are only interested in a finite number of terms of these series (only
as high as the orders of the methods under consideration, or as far as f is differen-
tiable) and all subsequent results are valid modulo error terms O(hk+1).

Definition 12.2. Let t ∈ LT be a labelled tree of order q = �(t) and 0 ≤ i ≤ q
be a fixed integer. Then we denote by si(t) = s the subtree formed by the first i
indices and by di(t) (the difference set) the set of subtrees formed by the remaining
indices. In the graphical representation we distinguish the subtree s by fat nodes
and doubled lines.

Example 12.3. For the labelled tree t = p

j

k
m

l we have:

i = 0 : s0(t) = ∅, d0(t) = { }
i = 1 : s1(t) = , d1(t) = { , , }
i = 2 : s2(t) = , d2(t) = { , , }
i = 3 : s3(t) = , d3(t) = { , }
i = 4 : s4(t) = , d4(t) = { }
i = 5 :

p

j

k
m

l

p k
m

j

l

p k
m

j

l

p k
m

j

l

p k
m

j

l

p k
m

l

j
s5(t) = t = , d5(t) = ∅
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Definition 12.4. Let a : T → R and b : T → R be two sequences of coefficients
such that a(∅) = 1 . Then for a tree t of order q = �(t) we define the composition

ab(t) =
1

α(t)

∑( q∑
i=0

(
q

i

)
b
(
si(t)

) ∏
z∈di(t)

a(z)
)

(12.8)

where the first summation is over all α(t) different labellings of t (see Definition
2.5).

Example 12.5. It is easily seen that the formulas of (12.6) are special cases of
(12.8). The tree t of Example 12.3 possesses 6 different labellings

k

j

m
p

l k

j

l
p

m k

j

l
m

p l

j

k
p

m l

j

k
m

p m

j

k
l

p

These lead to

ab( ) = b(∅)a( ) + 5b( )a( )2a( )

+ 10
(1

2
b( )a( )a( ) +

1
2

b( )a( )3
)

+ 10
(1

6
b( )a( ) +

4
6

b( )a( )2 +
1
6

b( )a( )2
)

+ 5
(1

2
b( )a( ) +

1
2

b( )a( )
)

+b( ).

(12.9)

Here is the main theorem of this section:

Theorem 12.6 (Hairer & Wanner 1974). As above, let a : T → R and b : T → R

be two sequences of coefficients such that a(∅) = 1. Then the composition of the
two corresponding B-series is again a B-series

B(b, B(a, y)) = B(ab, y) (12.10)

where the “product” ab : T → R is that of Definition 12.4.

Proof. We denote the inner series by

B(a, y) = g(h). (12.11)

Then the proof is similar to the development of Section II.2 (see Fig. 2.2), with the
difference that, instead of f(g), we now start from

B(b, g) =
∑

s∈LT

h�(s)

�(s)!
b(s)F (s)(g) (12.12)

and have to compute the derivatives of this function: let us select the term s =
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of this series,
h3

3!
b( )

∑
L,M

fK
L (g)fL

M(g)fM(g). (12.13)

The q th derivative of this expression, for h = 0, is by Leibniz’ formula(
q

3

)
b( )

∑
L,M

(
fK

L (g)fL
M(g)fM(g)

)(q−3)∣∣
h=0

. (12.14)

We now compute, as we did in Lemma 2.8, the derivatives of

fK
L (g)fL

M(g)fM(g) (12.15)

using the classical rules of differential calculus; this gives for the first derivative∑
N

fK
LN · (gN)′fL

MfM +
∑
N

fK
L fL

MN · (gN)′fM +
∑
N

fK
L fL

MfM
N · (gN)′

and so on. We again represent this in graphical form in Fig. 12.1.

k
l

m

l
k

n
m m

k

n

l

  . . .

m

k

n

l

  . . .

l

m

k

n

p

l

m
p

k

n
m

l

p

k

n
l

k

n
m

p

Fig. 12.1. Derivatives of (12.15)

We see that we arrive at trees u of order q such that s3(u)=s (where 3=�(s) )
and the elements of d3(u) have no ramifications. The corresponding expressions
are similar to (2.6;q-1) in Lemma 2.8. We finally have to insert the derivatives of
g (see (12.11)) and rearrange the terms. Then, as in Fig. 2.4, the tall branches of
d3(u) are replaced by trees z of order δ, multiplied by a(z). Thus the coefficient
which we obtain for a given tree t is just given by (12.8).

The factor 1/α(t) is due to the fact that in B(ab, y) the term with ab(t)F (t)
appears α(t) times.
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Since hf(y) = B(b, y) is a special B-series with b( ) = 1 and all other
b(t) = 0, we have the following

Corollary 12.7. If a : T → R with a(∅) = 1, then

hf(B(a, y)) = B(a′, y)

with
a′(∅) = 0, a′( ) = 1

a′([t1, . . . , tm]) = �(t) a(t1) · . . . · a(tm) (12.16)

where t = [t1, . . . , tm] means that d1(t) = {t1, t2, . . . , tm} (Definition 2.12).

Proof. We obtain (12.16) from (12.8) with i = 1, q = �(t) and the fact that the
expression in brackets is independent of the labelling of t .

Order Conditions for Runge-Kutta Methods

As an application of Corollary 12.7, we demonstrate the derivation of order condi-
tions for Runge-Kutta methods: we write method (2.3) as

gi = y0 +
s∑

j=1

aijkj , ki = hf(gi), y1 = y0 +
s∑

j=1

bjkj. (12.17)

If we assume gi , ki and y1 to be B-series, whose coefficients we denote by
gi,ki,y1

gi = B(gi, y0), ki = B(ki, y0), y1 = B(y1, y0),

then Corollary 12.7 immediately allows us to transcribe formulas (12.17) as

gi(∅) = 1, ki( ) = 1, y1(∅) = 1,

gi(t) =
s∑

j=1

aijkj(t), ki(t) = �(t) gi(t1) · . . . · gi(tm), y1(t) =
s∑

j=1

bjkj(t)

which leads easily to formulas (2.17), (2.19) and Theorem 2.11.
Also, if we put y(h) = B(y, y0) for the true solution, and compare the deriva-

tive hy′(h) of the series (12.7) with hf
(
y(h)

)
from Corollary 12.7, we immedi-

ately obtain y(t)=1 for all t , so that Theorem 2.6 drops out. The order conditions
are then obtained as in Theorem 2.13 by comparing the coefficients of the B-series
B(y, y0) and B(y1, y0) .



270 II. Runge-Kutta and Extrapolation Methods

Butcher’s “Effective Order”

We search for a 5 -stage Runge-Kutta method a and for a method d, such that
dad−1 represents a fifth order method u . This means that we have to satisfy

da(t) = yd(t) for �(t) ≤ 5, (12.18)

where y(t) = 1 represents the B-series of the exact solution. Then

(dad−1)k = dakd−1 = (da)ak−2(ad−1). (12.19)

If now two Runge-Kutta methods b and c are constructed such that b = da and
c = ad−1 up to order 5 , then applying one step of b followed by k−2 steps of a
and a final step of c is equivalent (up to order 5 ) to k steps of the 5 th order method
dad−1 (see Fig. 12.2). A possible set of coefficients, computed by Butcher (1969),
is given in Table 12.1 (method a has classical order 4 ).

d d d d db c

a a a a

u u u u u u
Fig. 12.2. Effective increase of order

Stetter’s approach. Soon after the appearance of Butcher’s purely algebraic proof,
Stetter (1971) gave an elegant analytic explanation. Consider the principal global
error term ep(x) which satisfies the variational equation (8.8). The question is,
under which conditions on the local error dp+1(x) (see (8.8)) this equation can be
solved, for special initial values, without effort. We write equation (8.8) as

e′(x)− ∂f

∂y

(
y(x)

) · e(x) = d(x) (12.20)

and want e(x) to possess an expansion of the form

e(x) =
∑
t∈Tp

α(t) e(t) F (t)(y(x)) (12.21)

with constant coefficients e(t) . Simply inserting (12.21) into (12.20) yields

d(x) =
∑
t∈Tp

α(t) e(t)
( d

dx

(
F (t)(y(x))

)− f ′(y(x)) ·F (t)(y(x))
)
. (12.22)

Thus, (12.21) is the exact solution of the variational equation, if the local error
d(x) has the symmetric form (12.22). Then, if we replace the initial value y0 by
the “starting procedure”

ŷ0 := y0 −hpe(x0) = y0 −hp
∑
t∈Tp

α(t) e(t) F (t)(y0) (12.23)
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Table 12.1. Butcher’s method of effective order 5

0 Method a

1
5

1
5

2
5

0
2
5

1
2

3
16

0
5
16

1
1
4

0 −5
4

2

1
6

0 0
2
3

1
6

0 Method b

1
5

1
5

2
5

0
2
5

3
4

75
64

−9
4

117
64

1 −37
36

7
3

−3
4

4
9

19
144

0
25
48

2
9

1
8

0 Method c

1
5

1
5

2
5

0
2
5

3
4

161
192

−19
12

287
192

1 −27
28

19
7

−291
196

36
49

7
48

0
475
1008

2
7

7
72

(or by a Runge-Kutta method equivalent to this up to order p+1 ; this would repre-
sent “method d” in Fig. 12.2), its error satisfies y(x0)− ŷ0 = hpe(x0)+O(hp+1) .
By Theorem 8.1 the numerical solution ŷn of the Runge-Kutta method applied to
ŷ0 satisfies y(xn)− ŷn =hpe(xn)+O(hp+1) . Therefore the “finishing procedure”

yn := ŷn +hpe(xn) = ŷn +hp
∑
t∈Tp

α(t) e(t) F (t)(ŷn) +O(hp+1) (12.24)

(or some equivalent Runge-Kutta method) gives a (p + 1) th order approximation
to the solution.

Example. Butcher’s method a of Table 12.1 has the local error

d6(x) =
1
6!

(
− 1

24
F ( )− 1

4
F ( )− 1

8
F ( ) +

1
6
F ( ) +

1
2
F ( )

)
. (12.25)

The right-hand side of (12.22) would be (the derivation d
dxF attaches a new twig
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to each of the nodes, the product f ′(y) ·F lifts the tree on a stilt)

e( )
(
F ( ) + 3F ( )−F ( )

)
+3e( )

(
F ( ) +F ( ) +F ( ) +F ( )−F ( )

)
+e( )

(
F ( ) +F ( ) + 2F ( )−F ( )

)
+e( )

(
F ( ) +F ( ) +F ( ) +F ( )−F ( )

)
.

(12.26)

Comparison of (12.25) and (12.26) shows that this method does indeed have the
desired symmetry if

e( ) = e( ) = − 1
6!

· 1
24

, e( ) = e( ) =
1
6!

· 1
8
.

This allows one to construct a Runge-Kutta method as starting procedure corre-
sponding to (12.23) up to the desired order.

Exercises

1. Show that the pairs of methods given in Tables 12.2 - 12.4 produce, at least for
h sufficiently small, identical numerical results.

Result. a) is seen by permutation of the stages, b) by neglecting superfluous
stages (Dahlquist & Jeltsch 1979), c) by identifying equal stages (Stetter 1973,
Hundsdorfer & Spijker 1981). See also the survey on “The Runge-Kutta space”
by Butcher (1984).

2. Extend formulas (12.6) by computing the composition ab(t) for all trees of
order 4 and 5.

3. Verify that the methods given in Table 12.1 satisfy the stated order properties.

4. Prove, using Theorem 12.6, that the set

G = {a : T → R | a(∅) = 1}
together with the composition law of Definition 12.4 is a (non-commutative)
group.

5. (Equivalence of Butcher’s and Stetter’s approach). Let a : T → R represent a
Runge-Kutta method of classical order p and effective order p+1 , i.e., a(t)=
1 for �(t) ≤ p and

da(t) = yd(t) for �(t) ≤ p + 1 (12.27)

for some d :T →R and with y(t) as in (12.18). Prove that then the local error
hp+1d(x) +O(hp+2) of the method a has the symmetric form (12.22). This
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Table 12.2. Equivalent methods a)

0
1 1 0

1/4 3/4

1 0 1
0 0 0

3/4 1/4

Table 12.3. Equivalent methods b)

1 2 0 0 −1
3 0 1 2 0
7 0 3 4 0
2 1 0 0 1

1/2 0 0 1/2

1 2 −1
2 1 1

1/2 1/2

Table 12.4. Equivalent methods c)

1 1 1 1 −2
1 2 2 −1 −2
1 −1 −1 5 −2

−1 −1 2 1 −3

1/4 1/4 1/4 1/4

1 3 −2
−1 2 −3

3/4 1/4

means that, in this situation, Butcher’s effective order is equivalent to Stetter’s
approach.

Hint. Start by expanding condition (12.27) (using (12.8)) for the first trees.
Possible simplifications are then best seen if the second sum

∑q
i=0 (for yd ) is

arranged downwards (i = q, q− 1, . . . , 0) . One then arrives recursively at the
result

d(t) = d( )�(t) for �(t) ≤ p− 1 .

Then express the error coefficients a(t)−1 for �(t)=p+1 in terms of d(s)−
d( )�(s) where �(s) = p . Formula (12.22) then becomes visible.

6. Prove that for t = [t1, . . . , tm] the coefficient α(t) of Definition 2.5 satisfies
the recurrence relation

α(t) =
(

�(t)− 1
�(t1), . . . , �(tm)

)
α(t1) · . . . ·α(tm) · 1

μ1!μ2! . . .
. (12.28)

The integers μ1, μ2, . . . count the equal trees among t1, . . . , tm .

Hint. The multinomial coefficient in (12.28) counts the possible partitionnings
of the labels 2, . . . , �(t) to the m subtrees t1, . . . , tm . Equal subtrees lead to
equal labellings. Hence the division by μ1!μ2! . . . .
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In Section I.8 we studied the computation of higher derivatives of solutions of

(yJ)′ = fJ (x, y1, . . . , yn), J = 1, . . . , n. (13.1)

The chain rule

(yJ)′′ =
∂fJ

∂x
(x, y) +

∂fJ

∂y1
(x, y) · f1(x, y) + . . .+

∂fJ

∂yn
(x, y) · fn(x, y) (13.2)

leads to the differential operator D which, when applied to a function Ψ(x, y), is
given by

(DΨ)(x, y) =
∂Ψ
∂x

(x, y) +
∂Ψ
∂y1

(x, y) · f1(x, y) + . . .+
∂Ψ
∂yn

(x, y) · fn(x, y).

(13.2’)
Since DyJ = fJ , we see by extending (13.2) that

(yJ)(�) = (D�yJ)(x, y), 	 = 0, 1, 2, . . . . (13.3)

This notation allows us to define a new class of methods which combine features
of Runge-Kutta methods as well as Taylor series methods:

Definition 13.1. Let a
(r)
ij , b

(r)
j , (i, j = 1, . . . , s, r = 1, . . . , q) be real coefficients.

Then the method

k
(�)
i =

h�

	!
(D�y)

(
x0 + cih, y0 +

q∑
r=1

s∑
j=1

a
(r)
ij k

(r)
j

)
y1 = y0 +

q∑
r=1

s∑
j=1

b
(r)
j k

(r)
j

(13.4)

is called an s -stage q -derivative Runge-Kutta method. If a
(r)
ij = 0 for i ≤ j, the

method is explicit, otherwise implicit.

A natural extension of (1.9) is here, because of Dx = 1, D�x = 0 (	 ≥ 2),

ci =
s∑

j=1

a
(1)
ij . (13.5)
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Definition 13.1 is from Kastlunger & Wanner (1972), but special methods of this
type have been considered earlier in the literature. In particular, the very successful
methods of Fehlberg (1958, 1964) have this structure.

Collocation Methods

A natural way of obtaining s -stage q -derivative methods is to use the collocation
idea with multiple nodes, i.e., to replace (7.15b) by

u(�)(x0 + cih) = (D�y)
(
x0 + cih, u(x0 + cih)

)
i = 1, . . . , s, 	 = 1, . . . , qi

(13.6)
where u(x) is a polynomial of degree q1 + q2 + . . .+ qs and q1, . . . , qs, the “mul-
tiplicities” of the nodes c1, . . . , cs, are given integers. For example q1 = m, q2 =
. . . = qs = 1 leads to Fehlberg-type methods.

In order to generalize the results and ideas of Section II.7, we have to re-
place the Lagrange interpolation of Theorem 7.7 by Hermite interpolation (Hermite
1878: “Je me suis proposé de trouver un polynôme . . .”). The reason is that (13.6)
can be interpreted as an ordinary collocation condition with clusters of qi nodes
“infinitely” close together (Rolle’s theorem). We write Hermite’s formula as

p(t) =
s∑

j=1

qj∑
r=1

1
r!

	jr(t)p
(r−1)(cj) (13.7)

for polynomials p(t) of degree
∑

qj − 1. Here the “basis” polynomials 	jr(t) of
degree

∑
qj − 1 must satisfy

l
(k)
jr (ci) =

{
r! if i = j and k = r− 1
0 else

(13.8)

and are best obtained from Newton’s interpolation formula (with multiple nodes).
We now use this formula, as we did in Section II.7, for p(t) = hu′(x0 + th) :

hu′(x0 + th) =
s∑

j=1

qj∑
r=1

	jr(t)k
(r)
j , (13.9)

with

k
(r)
j =

hr

r!
u(r)(x0 + cjh). (13.10)

If we insert

u(x0 + cih) = y0 +
∫ ci

0

hu′(x0 + th) dt

together with (13.9) into (13.6), we get:
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Theorem 13.2. The collocation method (13.6) is equivalent to an s -stage q -
derivative implicit Runge-Kutta method (13.4) with

a
(r)
ij =

∫ ci

0

	jr(t) dt, b
(r)
j =

∫ 1

0

	jr(t) dt. (13.11)

Theorems 7.8, 7.9, and 7.10 now generalize immediately to the case of “con-
fluent” quadrature formulas; i.e., the q -derivative Runge-Kutta method possesses
the same order as the underlying quadrature formula∫ 1

0

p(t) dt ≈
s∑

j=1

qj∑
r=1

b
(r)
j p(r−1)(cj).

The “algebraic” proof of this result (extending Exercise 7 of Section II.7) is more
complicated and is given, for the case qj = q , in Kastlunger & Wanner (1972b).

The formulas corresponding to condition C(η) are given by

s∑
j=1

qj∑
r=1

a
(r)
ij

(
�

r

)
c�−r
j = c�

i , � = 1, 2, . . . ,
s∑

j=1

qj . (13.12)

These equations uniquely determine the a
(r)
ij , once the ci have been chosen, by

a linear system with a “confluent” Vandermonde matrix (see e.g., Gautschi 1962).
Formula (13.12) is obtained by setting p(t) = t�−1 in (13.7) and then integrating
from 0 to ci.

Examples of methods. “Gaussian” quadrature formulas with multiple nodes exist
for odd q (Stroud & Stancu 1965) and extend to q -derivative implicit Runge-Kutta
methods (Kastlunger & Wanner 1972b): for s = 1 we have, of course, c1 = 1/2
which yields

b
(2k)
1 = 0, b

(2k+1)
1 = 2−2k, a

(k)
11 = (−1)k+12−k.

We give also the coefficients for the case s = 2 and q1 = q2 = 3. The nodes ci and

the weights b
(k)
i are those of Stroud & Stancu. The method has order 8:

c1 = 0.185394435825045 c2 = 1− c1

b
(1)
1 = 0.5 b

(1)
2 = b

(1)
1

b
(2)
1 /2! = 0.0240729420844974 b

(2)
2 = −b

(2)
1

b
(3)
1 /3! = 0.00366264960671727 b

(3)
2 = b

(3)
1
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a
(1)
ij =

(
0.201854115831005 −0.0164596800059598
0.516459680005959 0.298145884168994

)
a
(2)
ij =

(−0.0223466569080541 0.00868878773082417
0.0568346718998190 −0.0704925410770490

)
a
(3)
ij =

(
0.0116739668400997 −0.00215351251065784
0.0241294101509615 0.0103019308002039

)

Hermite-Obreschkoff Methods

We now consider the special case of collocation methods with s=2 , c1 =0 , c2 =1 .
These methods can be obtained in closed form by repeated partial integration as
follows (Darboux 1876, Hermite 1878):

Lemma 13.3. Let m be a given positive integer and P (t) a polynomial of exact
degree m. Then

m∑
j=0

hj(Djy)(x1, y1) P (m−j)(0) =
m∑

j=0

hj(Djy)(x0, y0) P (m−j)(1) (13.13)

defines a multiderivative method (13.4) of order m .

Proof. We let y(x) be the exact solution and start from

hm+1

∫ 1

0

y(m+1)(x0 +ht)P (1− t) dt = O(hm+1).

This integral is now transformed by repeated partial integration until all derivatives
of the polynomial P (1− t) are used up. This leads to

m∑
j=0

hjy(j)(x1)P
(m−j)(0) =

m∑
j=0

hjy(j)(x0)P
(m−j)(1) +O(hm+1).

If this is subtracted from (13.13) we find the difference of the left-hand sides to be
O(hm+1) , which shows by the implicit function theorem that (13.13) determines
y1 to this order if P (m) , which is a constant, is �= 0 .

The argument 1− t in P (instead of the more natural t ) avoids the sign
changes in the partial integrations.

A good choice for P (t) is, of course, a polynomial for which most derivatives
disappear at t = 0 and t = 1 . Then the method (13.13) is, by keeping the same
order m , most economical. We write

P (t) =
tk(t− 1)�

(k + 	)!
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and obtain

y1 −
	

(k + 	)
h

1!
(Dy)(x1, y1) +

	(	− 1)
(k + 	)(k + 	− 1)

h2

2!
(D2y)(x1, y1)± . . .

= y0 +
k

(k + 	)
h

1!
(Dy)(x0, y0) +

k(k− 1)
(k + 	)(k + 	− 1)

h2

2!
(D2y)(x0, y0) + . . .

(13.14)
which is a method of order m = k + 	 . After the 	 th term in the first line and the
k th term in the second line, the coefficients automatically become zero. Special
cases of this method are:

k = 1, 	 = 0 : explicit Euler
k ≥ 1, 	 = 0 : Taylor series
k = 0, 	 = 1 : implicit Euler
k = 1, 	 = 1 : trapezoidal rule.

Darboux and Hermite advocated the use of this formula for the approximations
of functions, Obreschkoff (1940) for the computation of integrals, Loscalzo &
Schoenberg (1967), Loscalzo (1969) as well as Nørsett (1974a) for the solution
of differential equations.

Fehlberg Methods

Another class of multiderivative methods is due to Fehlberg (1958, 1964): the idea
is to subtract from the solution of y′ = f(x, y), y(x0) = y0 m terms of the Taylor
series (see Section I.8)

ŷ(x) := y(x)−
m∑

i=0

Yi(x−x0)
i, (13.15)

and to solve the resulting differential equation ŷ′(x) = f̂(x, ŷ(x)) , where

f̂
(
x, ŷ(x)

)
= f
(
x, ŷ +

m∑
i=0

Yi(x−x0)
i
)
−

m∑
i=1

Yi i (x−x0)
i−1, (13.16)

by a Runge-Kutta method. Thus, knowing that the solution of (13.16) and its first
m derivatives are zero at the initial value, we can achieve much higher orders.

In order to understand this, we develop the Taylor series of the solution for the
non-autonomous case, as we did at the beginning of Section II.1. We thereby omit
the hats and suppose the transformation (13.15) already carried out. We then have
from (1.6) (see also Exercise 3 of Section II.2)

f = 0,

fx + fyf = 0,

fxx + 2fxyf + fyyf2 + fy(fx + fyf) = 0, etc.
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These formulas recursively imply that f = 0, fx = 0 , . . . , ∂m−1f/∂xm−1 = 0.
All elementary differentials of order ≤ m and most of those of higher orders then
become zero and the corresponding order conditions can be omitted. The first non-
zero terms are

∂mf

∂xm
for order m+ 1,

∂m+1f

∂xm+1
and

∂f

∂y
· ∂mf

∂xm
for order m+ 2,

and so on. The corresponding order conditions are then

s∑
i=1

bic
m
i =

1
m+ 1

for order m+ 1 ,

s∑
i=1

bic
m+1
i =

1
m+ 2

and
∑
i,j

biaijc
m
j =

1
(m + 1)(m+ 2)

for order m+ 2, and so on.
The condition

∑
aij = ci, which usually allows several terms of (1.6) to be

grouped together, is not necessary, because all these other terms are zero.
A complete insight is obtained by considering the method as being partitioned

applied to the partitioned system y′ = f(x, y), x′ = 1. This will be explained in
Section II.15 (see Fig. 15.3).

Example 13.4. A solution with s = 3 stages of the (seven) conditions for order
m+3 is given by Fehlberg (1964). The choice c1 = c3 = 1 minimizes the numer-
ical work for the evaluation of (13.16) and the other coefficients are then uniquely
determined (see Table 13.1).

Fehlberg (1964) also derived an embedded method with two additional stages
of orders m+ 3 (m+ 4) . These methods were widely used in the sixties for sci-
entific computations.

Table 13.1. Fehlberg, order m + 3

1

θ
θm

m + 3

1 − 1
m + 1

2
(m + 1) θm

0
m + 3

2 (m + 1) (m + 2) θm

1
2 (m + 2)

θ = m + 1
m + 3
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General Theory of Order Conditions

For the same reason as in Section II.2 we assume that (13.1) is autonomous. The
general form of the order conditions for method (13.4) was derived in the thesis of
Kastlunger (see Kastlunger & Wanner 1972). It later became a simple application
of the composition theorem for B-series (Hairer & Wanner 1974). The point is that
from Theorem 2.6,

hi

i!
(Diy)(y0) =

∑
t∈LT,�(t)=i

hi

i!
F (t)(y0) = B(y(i), y0) (13.17)

is a B-series with coefficients

y(i)(t) =
{

1 if �(t) = i

0 otherwise.
(13.18)

Thus, in extension of Corollary 12.7, we have

hi

i!
(Diy)(B(a, y0)) = B(a(i), y0) (13.19)

where, from formula (12.8) with q = �(t) ,

a(i)(t) = (ay(i))(t) =
1

α(t)

(
q

i

)∑ ∏
z∈di(t)

a(z), (13.20)

and the sum is over all α(t) different labellings of t. This allows us to compute
recursively the coefficients of the B-series which appear in (13.4).

Example 13.5. The tree t = sketched in Fig. 13.1 possesses three different
labellings, two of which produce the same difference set d2(t), so that formula
(13.20) becomes

a′′( ) = 2
(
2(a( ))2 +a( )

)
. (13.21)

l

j

k

m
m

j

k

l
k

j

l

m

Fig. 13.1. Different labellings of

For all other trees of order ≤ 4 we have α(t) = 1 and (13.20) leads to the
following table of second derivatives

a′′( ) = 0 a′′( ) = 1
a′′( ) = 3a( ) a′′( ) = 3a( )
a′′( ) = 6(a( ))2 a′′( ) = 4(a( ))2 + 2a( )
a′′( ) = 6(a( ))2 a′′( ) = 6a( ).

(13.22)
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Once these expressions have been established, we write formulas (13.4) in the form

k
(�)
i =

h�

	!
(D�y)(gi)

gi = y0 +
q∑

r=1

s∑
j=1

a
(r)
ij k

(r)
j , y1 = y0 +

q∑
r=1

s∑
j=1

b
(r)
j k

(r)
j (13.23)

and suppose the expressions k
(�)
i , gi, y1 to be B-series

k
(�)
i = B(k(�)

i , y0), gi = B(gi, y0), y1 = B(y1, y0).

Then equations (13.23) can be translated into

k(1)
i (t) = �(t)gi(t1) · . . . · gi(tm), k(1)

i (τ) = 1 (see (12.16))

k(2)
i (t) = g′′

i (t) from (13.22)

k(3)
i (t) = g′′′

i (t) from Exercise 1 or Exercise 2, etc.

gi(t) =
q∑

r=1

s∑
j=1

a
(r)
ij k(r)

j (t), y1(t) =
q∑

r=1

s∑
j=1

b
(r)
j k(r)

j (t).

These formulas recursively determine all the coefficients. Method (13.4) (together
with (13.5)) is then of order p if, as usual,

y1(t) = 1 for all t with �(t) ≤ p. (13.24)

More details and special methods are given in Kastlunger & Wanner (1972); see
also Exercise 3.

Exercises

1. Extend Example 13.5 and obtain formulas for a(3)(t) for all trees of order ≤4.

2. (Kastlunger). Prove the following variant form of formula (13.20) which ex-
tends (12.16) more directly and can also be used to obtain the formulas of
Example 13.5. If t = [t1, . . . , tm] then

a(i)(t) =
�(t)
i

∑
λ1+...+λm=i−1

λ1,...,λm≥0

a(λ1)(t1) . . .a(λm)(tm)

Hint. See Kastlunger & Wanner (1972); Hairer & Wanner (1973), Section 5.
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3. Show that the conditions for order 3 of method (13.4) are given by∑
i

b
(1)
i = 1

2
∑

i

b
(1)
i ci +

∑
i

b
(2)
i = 1

3
∑

i

b
(1)
i c2

i + 3
∑

i

b
(2)
i ci +

∑
i

b
(3)
i = 1

6
∑
i,j

b
(1)
i a

(1)
ij cj + 3

∑
i

b
(1)
i ei + 3

∑
i

b
(2)
i ci +

∑
i

b
(3)
i = 1,

where ci =
∑

j a
(1)
ij , ei =

∑
j a

(2)
ij .

4. (Zurmühl 1952, Albrecht 1955). Differentiate a given first order system of
differential equations y′ = f(x, y) to obtain

y′′ = (D2y)(x, y), y(x0) = y0, y′(x0) = f0.

Apply to this equation a special method for higher order systems (see the fol-
lowing Section II.14) to obtain higher-derivative methods. Show that the fol-
lowing method is of order six

k1 = h2g(x0, y0)

k2 = h2g
(
x0 +

h

4
, y0 +

h

4
f0 +

1
32

k1

)
k3 = h2g

(
x0 +

h

2
, y0 +

h

2
f0 +

1
24

(−k1 + 4k2)
)

k4 = h2g
(
x0 +

3h

4
, y0 +

3h

4
f0 +

1
32

(3k1 + 4k2 + 2k3)
)

y1 = y0 +hf0 +
1
90

(7k1 + 24k2 + 6k3 + 8k4)

where g(x, y) = (D2y)(x, y) = Df(x, y) = fx(x, y) + fy(x, y) · f(x, y) .



II.14 Numerical Methods
for Second Order Differential Equations

Mutationem motus proportionalem esse vi motrici impressae
(Newton’s Lex II, 1687)

Many differential equations which appear in practice are systems of the second
order

y′′ = f(x, y, y′). (14.1)

This is mainly due to the fact that the forces are proportional to acceleration, i.e., to
second derivatives. As mentioned in Section I.1, such a system can be transformed
into a first order differential equation of doubled dimension by considering the
vector (y, y′) as the new variable:(

y
y′

)′
=
(

y′
f(x, y, y′)

)
y(x0) = y0

y′(x0) = y′
0.

(14.2)

In order to solve (14.1) numerically, one can for instance apply a Runge-Kutta
method (explicit or implicit) to (14.2). This yields

ki = y′
0 +h

s∑
j=1

aijk
′
j

k′
i = f

(
x0 + cih, y0 +h

s∑
j=1

aijkj , y′
0 +h

s∑
j=1

aijk
′
j

)
y1 = y0 +h

s∑
i=1

biki, y′
1 = y′

0 +h
s∑

i=1

bik
′
i.

(14.3)

If we insert the first formula of (14.3) into the others we obtain (assuming (1.9) and
an order ≥ 1 )

k′
i = f

(
x0 + cih, y0 + cihy′

0 +h2
s∑

j=1

aijk
′
j , y′

0 +h
s∑

j=1

aijk
′
j

)
y1 = y0 +hy′

0 +h2
s∑

i=1

bik
′
i, y′

1 = y′
0 +h

s∑
i=1

bik
′
i

(14.4)

where

aij =
s∑

k=1

aikakj , bi =
s∑

j=1

bjaji. (14.5)
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For an implementation the representation (14.4) is preferable to (14.3), since about
half of the storage can be saved. This may be important, in particular if the dimen-
sion of equation (14.1) is large.

Nyström Methods

R.H. Merson: “ . . . I have not seen the paper by Nyström. Was it
in English?”
J.M. Bennett: “In German actually, not Finnish.”

(From the discussion following a talk of Merson 1957)

E.J. Nyström (1925) was the first to consider methods of the form (14.4) in which
the coefficients do not necessarily satisfy (14.5) (“Da bis jetzt die direkte Anwen-
dung der Rungeschen Methode auf den wichtigen Fall von Differentialgleichungen
zweiter Ordnung nicht behandelt war . . .” Nyström, 1925). Such direct methods
are called Nyström methods.

Definition 14.1. A Nyström method (14.4) has order p if for sufficiently smooth
problems (14.1)

y(x0 +h)− y1 = O(hp+1), y′(x0 +h)− y′
1 = O(hp+1). (14.6)

An example of an explicit Nyström method where condition (14.5) is violated
is given in Table 14.1. Nyström claimed that this method would be simpler to apply
than “Runge-Kutta’s” and reduce the work by about 25%. This is, of course, not
true if the Runge-Kutta method is applied as in (14.4) (see also Exercise 2).

Table 14.1. Nyström, order 4

0

1
2

1
8

aij
1
2

aij

ci
1
2

1
8

0 0
1
2

1 0 0
1
2

0 0 1

bi → 1
6

1
6

1
6

0
1
6

2
6

2
6

1
6

← bi

A real improvement can be achieved in the case where the right-hand side of
(14.1) does not depend on y′ , i.e.,

y′′ = f(x, y). (14.7)
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Here the Nyström method becomes

k′
i = f(x0 + cih, y0 + cihy′

0 +h2
s∑

j=1

aijk
′
j)

y1 = y0 +hy′
0 +h2

s∑
i=1

bik
′
i, y′

1 = y′
0 +h

s∑
i=1

bik
′
i,

(14.8)

and the coefficients aij are no longer needed. Some examples are given in Table
14.2. The fifth-order method of Table 14.2 needs only four evaluations of f . This
is a considerable improvement compared to Runge-Kutta methods where at least
six evaluations are necessary (cf. Theorem 5.1).

Table 14.2. Methods for y′′ = f (x, y)

Nyström, order 4

0 aij

ci
1
2

1
8

1 0
1
2

bi
1
6

1
3

0

bi
1
6

4
6

1
6

Nyström, order 5

0

1
5

1
50

aij

2
3

−1
27

7
27

1
3

10
−2
35

9
35

bi
14
336

100
336

54
336

0

bi
14
336

125
336

162
336

35
336

Global convergence. Introducing the variable zn = (yn, y′
n)T , a Nyström method

(14.4) can be written in the form

z1 = z0 +hΦ(x0, z0, h) (14.9)

where

Φ(x0, z0, h) =
(

y′
0 +h

∑
i bik

′
i∑

i bik
′
i

)
.

(14.9) is just a special one-step method for the differential equation (14.2). For
a p th order Nyström method the local error (y(x0 +h)− y1, y′(x0 +h)− y′

1)T

can be bounded by Chp+1 (Definition 14.1), which is in agreement with formula
(3.27). The convergence theorems of Section II.3 and the results on asymptotic
expansions of the global error (Section II.8) are also valid here.

Our next aim is to derive the order conditions for Nyström methods. For this
purpose we extend the theory of Section II.2 to second order differential equations
(Hairer & Wanner 1976).
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The Derivatives of the Exact Solution

As for first order equations we may restrict ourselves to systems of autonomous
differential equations

(yJ)′′ = fJ(y1, . . . , yn, y′1, . . . , y′n) (14.10)

(if necessary, add x′′ = 0 ). The superscript index J denotes the J th component of
the corresponding vector. We now calculate the derivatives of the exact solution of
(14.10). The second derivative is given by (14.10):

(yJ)(2) = fJ(y, y′). (14.11;2)

A repeated differentiation of this equation, using (14.10), leads to

(yJ)(3) =
∑
K

∂fJ

∂yK
(y, y′) · y′K +

∑
K

∂fJ

∂y′K (y, y′)fK(y, y′) (14.11;3)

(yJ)(4) =
∑
K,L

∂2fJ

∂yK∂yL
(y, y′) · y′K · y′L (14.11;4)

+
∑
K,L

∂2fJ

∂yK∂y′L (y, y′) · y′K · fL(y, y′) +
∑
K

∂fJ

∂yK
(y, y′) fK(y, y′)

+
∑
K,L

∂2fJ

∂y′K∂yL
(y, y′) fK(y, y′) · y′L

+
∑
K,L

∂2fJ

∂y′K∂y′L (y, y′) fK(y, y′) fL(y, y′)

+
∑
K,L

∂fJ

∂y′K (y, y′)
∂fK

∂yL
(y, y′) y′L

+
∑
K,L

∂fJ

∂y′K (y, y′)
∂fK

∂y′L (y, y′) fL(y, y′)

The continuation of this process becomes even more complex than for first order
differential equations. A graphical representation of the above formulas will there-
fore be very helpful. In order to distinguish the derivatives with respect to y and
y′ we need two kinds of vertices: “meagre” and “fat”. Fig. 14.1 shows the graphs
that correspond to the above formulas.

Definition 14.2. A labelled N-tree of order q is a labelled tree (see Definition 2.2)

t : Aq \ {j}→ Aq

together with a mapping

t′ : Aq →{“meagre”, “fat”}
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Fig. 14.1. The derivatives of the exact solution

which satisfies:
a) the root of t is always fat; i.e., t′(j) = “fat”;
b) a meagre vertex has at most one son and this son has to be fat.

We denote by LNTq the set of all labelled N-trees of order q .

The reason for condition (b is that all derivatives of g(y, y′) = y′ vanish iden-
tically with the exception of the first derivative with respect to y′ .

In the sequel we use the notation end-vertex for a vertex which has no son. If
no confusion is possible, we write t instead of (t, t′) for a labelled N-tree.

Definition 14.3. For a labelled N-tree t we denote by

F J (t)(y, y′)

the expression which is a sum over the indices of all fat vertices of t (without “j′′ ,
the index of the root) and over the indices of all meagre end-vertices. The general
term of this sum is a product of expressions

∂rfK

∂yL . . . ∂y′M . . .
(y, y′) and y′K . (14.12)

A factor of the first type appears if the fat vertex k is connected via a meagre son
with l, . . . and directly with a fat son m, . . .; a factor y′K appears if “k” is the
index of a meagre end-vertex. The vector F (t)(y, y′) is again called an elementary
differential.

For some examples see Table 14.3 below. Observe that the indices of the mea-
gre vertices, which are not end-vertices, play no role in the above definition. In
analogy to Definition 2.4 we have

Definition 14.4. Two labelled N-trees (t, t′) and (u, u′) are equivalent, if they
differ only by a permutation of their indices; i.e., if they have the same order, say
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q , and if there exists a bijection σ : Aq →Aq with σ(j) = j , such that tσ = σu on
Aq \ {j} and t′σ = u′ .

For example, the second and fourth labelled N-trees of formula (14.11;4) in
Fig. 14.1 are equivalent; and also the second and fifth of formula (14.11;5).

Definition 14.5. An equivalence class of q th order labelled N-trees is called an
N-tree of order q . The set of all N-trees of order q is denoted by NTq. We further
denote by α(t) the number of elements in the equivalence class t , i.e., the number
of possible different monotonic labellings of t .

Representatives of N-trees up to order 5 are shown in Table 14.3. We are now
able to give a closed formula for the derivatives of the exact solution of (14.10).

Theorem 14.6. The exact solution of (14.10) satisfies

y(q) =
∑

t∈LNTq−1

F (t)(y, y′) =
∑

t∈NTq−1

α(t)F (t)(y, y′). (14.11;q)

Proof. The general formula is obtained by continuing the computation for (14.11;2-
4) as in Section II.2.

The Derivatives of the Numerical Solution

We first rewrite (14.4) as

gi = y0 + cihy′
0 +

s∑
j=1

aijh
2f(gj, g

′
j),

y1 = y0 +hy′
0 +

s∑
i=1

bih
2f(gi, g

′
i),

g′
i = y′

0 +
s∑

j=1

aijhf(gj, g
′
j)

y′
1 = y′

0 +
s∑

i=1

bihf(gi, g
′
i)

(14.13)
so that the intermediate values gi, g

′
i are treated in the same way as y1, y

′
1 . In

(14.13) there appear expressions of the form h2ϕ(h) and hϕ(h) . Therefore we
have to use in addition to (2.4) the formula(

h2ϕ(h)
)(q)∣∣

h=0
= q · (q− 1) · (ϕ(h)

)(q−2)∣∣
h=0

. (14.14)

We now compute successively the derivatives of gJ
i and g′J

i at h = 0 :

(gJ
i )(1)

∣∣
h=0

= ciy
′J
0 (14.15;1)

(g′J
i )(1)

∣∣
h=0

=
∑

j

aijf
J
∣∣
y0,y′

0
(14.16;1)
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(gJ
i )(2)

∣∣
h=0

= 2
∑

j

aijf
J
∣∣
y0,y′

0
. (14.15;2)

For a further differentiation we need

(fJ(gj, g
′
j))

(1) =
∑
K

∂fJ

∂yK
(gj, g

′
j)(g

K
j )(1) +

∑
K

∂fJ

∂y′K (gj , g
′
j)(g

′K
j )(1). (14.17)

With this formula we then obtain

(g′J
i )(2)

∣∣
h=0

= 2
∑

j

aijcj

∑
K

∂fJ

∂yK
· y′K∣∣

y0,y′
0

+ 2
∑
j,k

aijajk

∑
K

∂fJ

∂y′K · fK
∣∣
y0,y′

0

(14.16;2)

(gJ
i )(3)

∣∣
h=0

= 3 · 2
∑

j

aijcj

∑
K

∂fJ

∂yK
· y′K∣∣

y0,y′
0

+ 3 · 2
∑
j,k

aijajk

∑
K

∂fJ

∂y′K · fK
∣∣
y0,y′

0
.

(14.15;3)

To write down a general formula we need

Definition 14.7. For a labelled N-tree we denote by Φj(t) the expression which is
a sum over the indices of all fat vertices of t (without “j′′ , the index of the root).
The general term of the sum is a product of

akl if the fat vertex “k′′ has a fat son “l′′ ;
akl if the fat vertex “k′′ is connected via a meagre son with “l′′ ; and
cm
k if the fat vertex “k′′ is connected with m meagre end-vertices.

Theorem 14.8. The gi, g
′
i of (14.13) satisfy

(gi)
(q+1)

∣∣
h=0

= (q + 1)
∑

t∈LNTq

γ(t)
s∑

j=1

aijΦj(t) F (t)(y0, y
′
0) (14.15;q+1)

(g′
i)

(q)
∣∣
h=0

=
∑

t∈LNTq

γ(t)
s∑

j=1

aijΦj(t) F (t)(y0, y
′
0) (14.16;q)

where γ(t) is given in Definition 2.10.

Proof. For small values of q these formulas were obtained above; for general values
of q they are proved like Theorem 2.11. System (14.2) is a special case of what
will later be treated as a partitioned system (see Section II.15). Theorem 14.8 will
then appear again in a new light.
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Because of the similarity of the formulas for gi and y1, g′
i and y′

1 we have

Theorem 14.9. The numerical solution y1, y
′
1 of (14.13) satisfies

(y1)
(q)
∣∣
h=0

= q
∑

t∈LNTq−1

γ(t)
s∑

i=1

bi Φi(t) F (t)(y0, y
′
0) (14.18;q)

(y′
1)

(q−1)
∣∣
h=0

=
∑

t∈LNTq−1

γ(t)
s∑

i=1

bi Φi(t) F (t)(y0, y
′
0) . (14.19;q-1)

The Order Conditions

For the study of the order of a Nyström method (Definition 14.1) one has to com-
pare the Taylor series of y1, y

′
1 with that of the true solution y(x0 +h), y′(x0 +h).

Theorem 14.10. A Nyström method (14.4) is of order p iff

s∑
i=1

biΦi(t) =
1

(�(t) + 1) · γ(t)
for N -trees t with �(t) ≤ p− 1, (14.20)

s∑
i=1

biΦi(t) =
1

γ(t)
for N -trees t with �(t) ≤ p . (14.21)

Here �(t) denotes the order of the N-tree t, Φi(t) and γ(t) are given by Definition
14.7 and formula (2.17).

Proof. The “if” part is an immediate consequence of Theorems 14.6 and 14.9.
The “only if” part can be shown in the same way as for first order equations (cf.
Exercise 4 of Section II.2).

Let us briefly discuss whether the extra freedom in the choice of the parameters
of (14.4) (by discarding the assumption (14.5)) can lead to a considerable improve-
ment. Since the order conditions for Runge-Kutta methods (Theorem 2.13) are
a subset of (14.21) (see Exercise 3 below), it is impossible to gain order with this
extra freedom. Only some (never all) error coefficients can be made smaller. There-
fore we shall turn to Nyström methods (14.8) for special second order differential
equations (14.7).

For the study of the order conditions for (14.8) we write (14.7) in autonomous
form

y′′ = f(y). (14.22)
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This special form implies that those elementary differentials which contain deriva-
tives with respect to y′ vanish identically. Consequently, only the following subset
of N-trees has to be considered:

Definition 14.11. An N-tree t is called a special N-tree or SN-tree, if the fat vertices
have only meagre sons.

Theorem 14.12. A Nyström method (14.8) for the special differential equation
(14.7) is of order p, iff

s∑
i=1

biΦi(t) =
1

(�(t) + 1) · γ(t)
for SN -trees t with �(t) ≤ p− 1, (14.23)

s∑
i=1

biΦi(t) =
1

γ(t)
for SN -trees t with �(t) ≤ p . (14.24)

All SN-trees up to order 5, together with the elementary differentials and the
expressions Φj , �, α, and γ , which are needed for the order conditions, are given
in Table 14.3.

Higher order systems. The extension of the ideas of this section to higher order
systems

y(n) = f(x, y, y′, . . . , y(n−1)) (14.25)

is now more or less straightforward. Again, a real improvement is only possible in
the case when the right-hand side of (14.25) depends only on x and y . A famous
paper on this subject is the work of Zurmühl (1948). Tables of order conditions and
methods are given in Hebsacker (1982).

On the Construction of Nyström Methods

The following simplifying assumptions are useful for the construction of Nyström
methods.

Lemma 14.13. Under the assumption

bi = bi(1− ci) i = 1, . . . , s (14.26)

the condition (14.24) implies (14.23).

Proof. Let t be an SN-tree of order ≤ p− 1 and denote by u the SN-tree of order
�(t) + 1 obtained from t by attaching a new branch with a meagre vertex to the
root of t . By Definition 14.7 we have Φi(u) = ciΦi(t) and from formula (2.17) it
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Table 14.3. SN-trees, elementary differentials and order conditions

t graph �(t) α(t) γ(t) FJ (t)(y, y′) Φj (t)

t1 1 1 1 fJ 1

t2 2 1 2
∑

K fJ
Ky′K cj

t3 3 1 3
∑

K,L fJ
KLy′Ky′L c2j

t4 3 1 6
∑

L fJ
LfL ∑

l ajl

t5 4 1 4
∑

K,L,M fJ
KLMy′Ky′Ly′M c3j

t6 4 3 8
∑

L,M fJ
LMy′LfM ∑

m cjajm

t7 4 1 24
∑

L,M fJ
LfL

My′M
∑

l ajlcl

t8 5 1 5
∑

K,L,M,P fJ
KLMP y′Ky′Ly′My′P c4j

t9 5 6 10
∑

L,M,P fJ
LMP y′Ly′MfP ∑

p c2jajp

t10 5 3 20
∑

M,P fJ
MP fMfP ∑

m,p ajmajp

t11 5 4 30
∑

L,M,P fJ
LP fL

My′My′P
∑

l cjajlcl

t12 5 1 60
∑

L,M,P fJ
LfL

MP y′My′P
∑

l ajlc
2
l

t13

j

j
k

k
j

l

k
j

l

k
m

j

l

k

m

j
l

k
l

m

j

k
l p

m

j

k
m

j

p
l

k l
m p

j

k
l

j
p

m

k l

m p

j

k
l

m p

j
5 1 120

∑
L,P fJ

LfL
P fP ∑

l,p ajlalp

follows that γ(u) = (�(t) + 1)γ(t)/�(t) . The conclusion now follows since

s∑
i=1

biΦi(t) =
s∑

i=1

biΦi(t)−
s∑

i=1

biΦi(u) =
1

γ(t)
− 1

γ(u)
=

1
(�(t) + 1)γ(t)

.

Lemma 14.14. Let t and u be two SN-trees as sketched in Fig. 14.2, where the
encircled parts are assumed to be identical. Then under the assumption

s∑
j=1

aij =
c2
i

2
i = 1, . . . , s (14.27)

the order conditions for t and u are the same.

Proof. It follows from Definition 14.7 and (14.27) that Φi(t) = Φi(u)/2 and from
formula (2.17) that γ(t) = 2γ(u) . Both order conditions are thus identical.
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t u

Fig. 14.2. Trees of Lemma 14.14

Condition (14.26) allows us to neglect the equations (14.23), while condition
(14.27) plays a similar role to that of (1.9) for Runge-Kutta methods. It expresses
the fact that the gi of (14.13) approximate y(x0 + cih) up to O(h3). As a con-
sequence of Lemma 14.14, SN-trees which have at least one fat end-vertex can be
left out (i.e., t4 , t6 , t9 , t10 , t13 of Table 14.3).

With the help of (14.26) and (14.27) explicit Nyström methods (14.8) of or-
der 5 with s = 4 can now easily be constructed: the order conditions for the
trees t1, t2, t3, t5 and t8 just indicate that the quadrature formula with nodes c1 =
0, c2, c3, c4 and weights b1, b2, b3, b4 is of order 5. Thus the nodes ci have to
satisfy the orthogonality relation∫ 1

0

x(x− c2)(x− c3)(x− c4) dx = 0

and we see that two degrees of freedom are still left in the choice of the quadrature
formula. The aij are now uniquely determined and can be computed as follows:
a21 is given by (14.27) for i = 2 . The order conditions for t7 and t11 constitute
two linear equations for the unknowns

2∑
j=1

a3jcj and
3∑

j=1

a4jcj .

Together with (14.27, i = 3 ) one now obtains a31 and a32 . Finally, the order
condition for t12 leads to

∑
j a4jc

2
j and the remaining coefficients a41, a42, a43

can be computed from a Vandermonde-type linear system. The method of Table
14.2 is obtained in this way.

For still higher order methods it is helpful to use further simplifying assump-
tions; for example

s∑
j=1

aijc
q
j =

cq+2
i

(q + 2)(q + 1)
(14.28)

which, for q = 0 , reduces to (14.27), and
s∑

i=1

bic
q
i aij = bj

(
cq+2
j

(q + 2)(q + 1)
− cj

q + 1
+

1
q + 2

)
(14.29)

which can be considered a generalization of condition D(ζ) of Section II.7. For
more details we refer to Hairer & Wanner (1976) and also to Albrecht (1955),
Battin (1976), Beentjes & Gerritsen (1976), Hairer (1977, 1982), where Nyström
methods of higher order are presented.
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Embedded Nyström methods. For an efficient implementation we need a step
size control mechanism. This can be performed in the same manner as for Runge-
Kutta methods (see Section II.4). One can either apply Richardson extrapolation in
order to estimate the local error, or construct embedded Nyström methods.

A series of embedded Nyström methods has been constructed by Fehlberg
(1972). These methods use a (p + 1) -st order approximation to y(x0 +h) for
step size control. A (p + 1) -st order approximation to y′(x0 +h) is not needed,
since the lower order approximations are used for step continuation.

As for first order differential equations, local extrapolation — to use the higher
order approximations for step continuation — turns out to be superior. Bettis
(1973) was apparently the first to use this technique. His proposed method is of
order 5(4). A method of order 7(6) has been constructed by Dormand & Prince
(1978), methods of order 8(7), 9(8), 10(9) and 11(10) are given by Filippi & Gräf
(1986) and further methods of order 8(6) and 12(10) are presented by Dormand,
El-Mikkawy & Prince (1987).

In certain situations (see Section II.6) it is important that a Nyström method
be equipped with a dense output formula. Such procedures are given by Dormand
& Prince (1987) and, for general initial value problems y′′ = f(x, y, y′) , by Fine
(1987).

An Extrapolation Method for y′′ = f (x,y)

Les calculs originaux, comprenant environt 3.000 pages in-folio
avec 358 grandes planches, et encore 3.800 pages de développe-
ments mathématiques correspondants, appartiennent maintenant
à la collection de manuscrits de la Bibliothèque de l’Université,
Christiania. (Störmer 1921)

If we rewrite the differential equation (14.7) as a first order system(
y
y′

)′
=
(

y′
f(x, y)

)
,

(
y
y′

)
(x0) =

(
y0

y′
0

)
(14.30)

we can apply the GBS-algorithm (9.13) directly to (14.30); this yields

y1 = y0 +hy′
0 (14.31a)

y′
1 = y′

0 +hf(x0, y0)
yi+1 = yi−1 + 2hy′

i (14.31b)

y′
i+1 = y′

i−1 + 2hf(xi, yi) i = 1, 2, . . . , 2n

Sh(x) = (y2n−1 + 2y2n + y2n+1)/4 (14.31c)

S′
h(x) = (y′

2n−1 + 2y′
2n + y′

2n+1)/4.

Here, Sh(x) and S′
h(x) are the numerical approximations to y(x) and y′(x) at

x = x0 +H , where H = 2nh and xi = x0 + ih . We now make the following im-
portant observation: for the computation of y0, y2, y4, . . . , y2n (even indices) and
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of y′
1, y

′
3, . . . , y

′
2n+1 (odd indices) only the function values f(x0, y0) , f(x2, y2)

, . . . , f(x2n, y2n) have to be calculated. Furthermore, we know from (9.17) that
y2n and (y′

2n−1 +y′
2n+1)/2 each possess an asymptotic expansion in even powers

of h . It is therefore obvious that (14.31c) should be replaced by (Gragg 1965)

Sh(x) = y2n

S′
h(x) = (y′

2n−1 + y′
2n+1)/2.

(14.31c’)

Using this final step, the number of function evaluations is reduced by a factor of
two. These numerical approximations can now be used for extrapolation. We take
the harmonic sequence (9.8’), put

Ti1 = Sh(x0 +H), T ′
i1 = S′

h(x0 +H)

and compute the extrapolated expressions Ti,j and T ′
i,j by the Aitken & Neville

formula (9.10).

Remark. Eliminating the y′
j -values in (14.31b) we obtain the equivalent formula

yi+2 − 2yi + yi−2 = (2h)2f(xi, yi), (14.32)

which is often called Störmer’s rule. For the implementation the formulation
(14.31b) is to be preferred, since it is more stable with respect to round-off errors
(see Section III.10).

Dense output. As for the derivation of Section II.9 for the GBS algorithm we
shall do Hermite interpolation based on derivatives of the solution at x0 , x0 +H
and x0 +H/2 . At the endpoints of the considered interval we have y0, y′

0, y′′
0 =

f(x0, y0) and y1, y′
1, y′′

1 at our disposal. The derivatives at the midpoint can be
obtained by extrapolation of suitable differences of function values. However, one
has to take care of the fact that yi and f(xi, yi) are available only for even in-
dices, whereas y′

i is available for odd indices only. For the same reason as for
the GBS method, the step number sequence has to satisfy (9.34). For notational
convenience, the following description is restricted to the sequence (9.35).

We suppose that Tkk and T ′
kk are accepted approximations to the solution.

Then the construction of a dense output formula can be summarized as follows:

Step 1. For each j ∈ {1, . . . , k} compute the approximations to the derivatives of
y(x) at x0 +H/2 by (δ is the central difference operator):

d
(0)
j =

1
2

(
ynj/2−1 + ynj/2+1

)
, d

(1)
j = y′

nj/2,

d
(κ)
j =

1
2
· 1
(2hj)κ−2

(
δκ−2f

(j)
nj/2−1 + δκ−2f

(j)
nj/2+1

)
, κ = 2, 4, . . . , 2j,

d
(κ)
j =

δκ−2f
(j)
nj/2

(2hj)κ−2
, κ = 3, 5, . . . , 2j + 1. (14.33)
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Step 2. Extrapolate d
(0)
j , d

(1)
j (k− 1) times and d

(2�)
j , d

(2�+1)
j (k− 	) times to

obtain improved approximations d(κ) to y(κ)(x0 +H/2) .

Step 3. For given μ (−1 ≤ μ ≤ 2k + 1 ) define the polynomial Pμ(θ) of degree
μ + 6 by

Pμ(0) = y0,

Pμ(1) = Tkk,

P (κ)
μ (1/2) = Hκd(κ)

P ′
μ(0) = y′

0,

P ′
μ(1) = T ′

kk,

for

P ′′
μ (0) = f(x0, y0)

P ′′
μ (1) = f(x0 +H, Tkk)

κ = 0, 1, . . . , μ.

(14.34)

Since Tkk, T ′
kk are the initial values for the next step, the dense output obtained

by the above algorithm is a global C2 approximation to the solution. It satisfies

y(x0 + θH)−Pμ(θ) = O(H2k) if μ ≥ 2k− 7 (14.35)

(compare Theorem 9.5). In the code ODEX2 of the Appendix the value μ = 2k− 5
is suggested as standard choice.

Problems for Numerical Comparisons

PLEI — the celestial mechanics problem (10.3) which is the only problem of Sec-
tion II.10 already in the special form (14.7).

ARES — the AREnstorf orbit in Second order form (14.7). This is the restricted
three body problem (0.1) with initial values (0.2) integrated over one period 0 ≤
x ≤ xend (see Fig. 0.1) in a fixed coordinate system. Then the equations of motion
become

y′′
1 = μ′ a1(x)− y1

D1

+μ
b1(x)− y1

D2

y′′
2 = μ′ a2(x)− y2

D1

+μ
b2(x)− y2

D2

(14.36)

where

D1 =
(
(y1−a1(x))2 +(y2−a2(x))2

)3/2
, D2 =

(
(y1−b1(x))2 +(y2−b2(x))2

)3/2

and the movement of sun and moon are described by

a1(x) = −μ cos x a2(x) = −μ sin x b1(x) = μ′ cos x b2(x) = μ′ sin x.
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The initial values

y1(0) = 0.994 , y′
1(0) = 0 , y2(0) = 0 ,

y′
2(0) = −2.00158510637908252240537862224 + 0.994 ,

xend = 17.0652165601579625588917206249 ,

are those of (0.2) enlarged by the speed of the rotation. The exact solution values
are the initial values transformed by the rotation of the coordinate system.

CPEN — the nonlinear Coupled PENdulum (see Fig. 14.3).

l l

r r

m m

Fig. 14.3. Coupled pendulum

The kinetic as well as potential energies

T =
m1l

2
1ϕ̇

2
1

2
+

m2l
2
2ϕ̇

2
2

2

V = −m1l1 cos ϕ1 −m2l2 cos ϕ2 +
c0r

2(sin ϕ1 − sin ϕ2)2

2

lead by Lagrange theory (equations (I.6.21)) to

ϕ̈1 = −sin ϕ1

l1
− c0r

2

m1l
2
1

(sin ϕ1 − sin ϕ2) cosϕ1 + f(t)

ϕ̈2 = −sin ϕ2

l2
− c0r

2

m2l
2
1

(sin ϕ2 − sin ϕ1) cosϕ2.

(14.37)

We choose the parameters

l1 = l2 = 1, m1 = 1, m2 = 0.99, r = 0.1, c0 = 0.01, tend = 496

and all initial values and speeds for t = 0 equal to zero. The first pendulum is then
pushed into movement by a (somewhat idealized) hammer as

f(t) =
{√

1− (1− t)2 if |t− 1| ≤ 1;
0 otherwise.

The resulting solutions are displayed in Fig. 14.4. The nonlinearities in this prob-
lem produce quite different sausages (cf. “Mon Oncle” de Jacques Tati 1958) from
those people are accustomed to from linear problems (cf. Sommerfeld 1942, §20).
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Fig. 14.4. Movement of the coupled pendulum (14.37)

WPLT — the Weak PLaTe, i.e., the PLATE problem of Section IV.10 (see Volume
II) with weakened stiffness. We use precisely the same equations as (IV.10.6) and
reduce the stiffness parameter σ from σ = 100 to σ = 1/16 . We also remove the
friction (ω = 0 instead of ω = 1000 ) so that the problem becomes purely of second
order. It is linear, nonautonomous, and of dimension 40 .

Performance of the Codes

Several codes were applied to each of the above four problems with 89 different
tolerances between Tol = 10−3 and Tol = 10−14 (exactly as in Section II.10). The
number of function evaluations (Fig. 14.5) and the computer time (Fig. 14.6) on a
Sun Workstation (SunBlade 100) are plotted as a function of the global error at the
endpoint of the integration interval. The codes used are the following:

RKN6 — symbol — is the low order option of the Runge-Kutta-Nyström code
presented in Brankin, Gladwell, Dormand, Prince & Seward (1989). It is based
on a fixed-order embedded Nyström method of order 6(4), whose coefficients are
given in Dormand & Prince (1987). This code is provided with a dense output.

RKN12 — symbol — is the high order option of the Runge-Kutta-Nyström
code presented in Brankin & al. (1989). It is based on the method of order 12(10),
whose coefficients are given in Dormand, El-Mikkawy & Prince (1987). This code
is not equipped with a dense output.

ODEX2 — symbol — is the extrapolation code based on formula (14.31a,b,c’)
and uses the harmonic step number sequence (see Appendix). It is implemented
in the same way as ODEX (the extrapolation code for first order differential equa-
tions). In particular, the order and step size strategy is that of Section II.9. A dense
output is available. Similar results are obtained by the code DIFEX2 of Deuflhard
& Bauer (see Deuflhard 1985).

In order to demonstrate the superiority of the special methods for y′′ = f(x, y) , we
have included the results obtained by DOP853 (symbol ) and ODEX (symbol
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Fig. 14.5. Precision versus function evaluations

) which were already described in Section II.10. For their application we had to
rewrite the four problems as a first order system by introducing the first derivatives
as new variables. The code ODEX2 is nearly twice as efficient as ODEX which is in
agreement with the theoretical considerations. Similarly the Runge-Kutta-Nyström
codes RKN6 and RKN12 are a real improvement over DOP853.

A comparison of Fig. 14.5 and 14.6 shows a significant difference. The ex-
trapolation codes ODEX and ODEX2 are relatively better on the “time”-pictures
than for the function evaluation counts. With the exception of problem WPLT the
performance of the code ODEX2 then becomes comparable to that of RKN12. As
can be observed especially at the WPLT problem, the code RKN12 overshoots, for
stringent tolerances, significantly the desired precision. It becomes less efficient if
Tol is chosen too close to Uround .
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Fig. 14.6. Precision versus computing time

Exercises

1. Verify that the methods of Table 14.2 are of order 4 and 5 , respectively.

2. The error coefficients of a p th order Nyström method are defined by

e(t) = 1− (�(t) + 1)γ(t)
∑

i biΦi(t) for �(t) = p,

e′(t) = 1− γ(t)
∑

i biΦi(t) for �(t) = p + 1.
(14.38)

a) The assumption (14.26) implies that

e(t) = −�(t)e′(u) for �(t) = p,

where u is the N-tree obtained from t by adding a branch with a meagre
vertex to the root of t .
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b) Compute the error coefficients of Nyström’s method (Table 14.1) and com-
pare them to those of the classical Runge-Kutta method.

3. Show that the order conditions for Runge-Kutta methods (Theorem 2.13) are a
subset of the conditions (14.21). They correspond to the N-trees, all of whose
vertices are fat.

4. Sometimes the definition of order of Nyström methods (14.8) is relaxed to

y(x0 +h)− y1 = O(hp+1)

y′(x0 +h)− y′
1 = O(hp)

(14.39)

(see Nyström 1925). Show that the conditions (14.39) are not sufficient to
obtain global convergence of order p .

Hint. Investigate the asymptotic expansion of the global error with the help of
Theorem 8.1 and formula (8.8).

5. The numerical solutions Tkk and T ′
kk of the extrapolation method of this sec-

tion are equivalent to a Nyström method of order p = 2k with s = p2/8+
p/4 + 1 stages.

6. A collocation method for y′′ = f(x, y, y′) (or y′′ = f(x, y) ) can be defined as
follows: let u(x) be a polynomial of degree s + 1 defined by

u(x0) = y0, u′(x0) = y′
0 (14.40)

u′′(x0 + cih) = f
(
x0 + cih, u(x0 + cih), u′(x0 + cih)

)
, i = 1, . . . , s,

then the numerical solution is given by y1 = u(x0 +h) , y′
1 = u′(x0 +h) .

a) Prove that this collocation method is equivalent to the Nyström method
(14.4) where

aij =
∫ ci

0
	j(t) dt,

bi =
∫ 1

0
	i(t) dt,

aij =
∫ ci

0
(ci − t)	j(t) dt,

bi =
∫ 1

0
(1− t)	i(t) dt,

(14.41)

and 	j(t) are the Lagrange polynomials of (7.17).

b) The aij satisfy C(s) (see Theorem 7.8) and the aij satisfy (14.28) for
q = 0, 1, . . . , s− 1 . These equations uniquely define aij and aij .

c) In general, aij and aij do not satisfy (14.5).

d) If M(t) =
∏s

i=1(t− ci) is orthogonal to all polynomials of degree r− 1 ,∫ 1

0

M(t)tq−1 dt = 0, q = 1, . . . , r,

then the collocation method (14.40) has order p = s + r .

e) The polynomial u(x) yields an approximation to the solution y(x) on the
whole interval [x0, x0 +h] . The following estimates hold:

y(x)−u(x) = O(hs+2), y′(x)−u′(x) = O(hs+1).
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Divide ut regnes (N. Machiavelli 1469-1527)

In the previous section we considered direct methods for second order differen-
tial equations y′′ = f(y, y′) . The idea was to write the equation as a partitioned
differential system (

y
y′

)′
=
(

y′
f(y, y′)

)
(15.1)

and to discretize the two components, y and y′ , by different formulas. There are
many other situations where the problem possesses a natural partitioning. Typical
examples are the Hamiltonian equations (I.6.26, I.14.26) and singular perturbation
problems (see Chapter VI of Volume II). It may also be of interest to separate
linear and nonlinear parts or the “non-stiff” and “stiff” components of a differential
equation.

We suppose that the differential system is partitioned as(
ya

yb

)′
=
(

fa(ya, yb)
fb(ya, yb)

)
(15.2)

where the solution vector is separated into two components ya , yb , each of which
may itself be a vector. An extension to more components is straight-forward.

For the numerical solution of (15.2) we consider the partitioned method

ki = fa

(
ya0 +h

s∑
j=1

aijkj , yb0 +h

s∑
j=1

âij	j

)
	i = fb

(
ya0 +h

s∑
j=1

aijkj , yb0 +h
s∑

j=1

âij	j

)
ya1 = ya0 +h

s∑
i=1

biki, yb1 = yb0 +h

s∑
i=1

b̂i	i

(15.3)

where the coefficients aij , bi and âij, b̂i represent two different Runge-Kutta
schemes. The first methods of this type are due to Hofer (1976) and Griepentrog
(1978) who apply an explicit method to the nonstiff part and an implicit method
to the stiff part of a differential equation. Later Rentrop (1985) modified this idea
by combining explicit Runge-Kutta methods with Rosenbrock-type methods (Sec-
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tion IV.7). Recent interest for partitioned methods came up when solving Hamilto-
nian systems (see Section II.16 below).

The subject of this section is the derivation of the order conditions for method
(15.3). For order p it is necessary that each of the two Runge-Kutta schemes
under consideration be of order p . This can be seen by applying the method to
y′

a = fa(ya) , y′
b = fb(yb) . But this is not sufficient, the coefficients have to satisfy

certain coupling conditions. In order to understand this, we first look at the deriva-
tives of the exact solution of (15.2). Then we generalize the theory of B-series (see
Section II.12) to the new situation (Hairer 1981) and derive the order conditions in
the same way as in II.12 for Runge-Kutta methods.

Derivatives of the Exact Solution, P-Trees

In order to avoid sums and unnecessary indices we assume that ya and yb in (15.2)
are scalar quantities. All subsequent formulas remain valid for vectors if the deriva-
tives are interpreted as multi-linear mappings. Differentiating (15.2) and inserting
(15.2) again for the derivatives we obtain for the first component ya

y(1)
a = fa (15.4;1)

y(2)
a =

∂fa

∂ya

fa +
∂fa

∂yb

fb (15.4;2)

y(3)
a =

∂2fa

∂y2
a

(fa, fa) +
∂2fa

∂yb∂ya

(fb, fa) +
∂fa

∂ya

∂fa

∂ya

fa +
∂fa

∂ya

∂fa

∂yb

fb (15.4;3)

+
∂2fa

∂ya∂yb

(fa, fb) +
∂2fa

∂y2
b

(fb, fb) +
∂fa

∂yb

∂fb

∂ya

fa +
∂fa

∂yb

∂fb

∂yb

fb.

Similar formulas hold for the derivatives of yb .
For a graphical representation of these formulas we need two different kinds

of vertices. As in Section II.14 we use “meagre” and “fat” vertices, which will
correspond to fa and fb , respectively. Formulas (15.4) can then be represented as
shown in Fig. 15.1.

j
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k

j

l k

j

l k
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l
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l k
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l k

j

l
k

j
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Fig. 15.1. The derivatives of the exact solution ya
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Definition 15.1. A labelled P-tree of order q is a labelled tree (see Definition 2.2)

t : Aq \ {j}→ Aq

together with a mapping

t′ : Aq →{“meagre”, “fat”}.
We denote by LTP a

q the set of those labelled P-trees of order q , whose root is
meagre (i.e., t′(j) =“meagre”). Similarly, LTP b

q is the set of q th order labelled
P-trees with a “fat” root.

Due to the symmetry of the second derivative the 2nd and 5 th expressions in
(15.4;3) are equal. We therefore define:

Definition 15.2. Two labelled P-trees (t, t′) and (u, u′) are equivalent, if they
have the same order, say q , and if there exists a bijection σ : Aq → Aq such that
σ(j) = j and the following diagram commutes:

Aq \ {j} t−−−−−→ Aq

σ

⏐⏐⏐3 σ

⏐⏐⏐3
Aq \ {j} u−−−−−→ Aq

t′

u′
{“meagre”, “fat”}

Definition 15.3. An equivalence class of q th order labelled P-trees is called a P-
tree of order q . The set of all P-trees of order q with a meagre root is denoted by
TP a

q , that with a fat root by TP b
q . For a P-tree t we denote by �(t) the order of

t , and by α(t) the number of elements in the equivalence class t .

Examples of P-trees together with the numbers �(t) and α(t) are given in
Table 15.1 below. We first discuss a recursive representation of P-trees (extension
of Definition 2.12), which is fundamental for the following theory.

Definition 15.4. Let t1, . . . , tm be P-trees. We then denote by

t = a[t1, . . . , tm] (15.5)

the unique P-tree t such that the root is “meagre” and the P-trees t1, . . . , tm remain
if the root and the adjacent branches are chopped off. Similarly, we denote by

b[t1, . . . , tm] the P-tree whose new root is “fat” (see Fig. 15.2). We further denote
by τa and τb the meagre and fat P-trees of order one.

Our next aim is to make precise the connection between P-trees and the expres-
sions of the formulas (15.4). For this we use the notation

w(t) =
{

a if the root of t is meagre,
b if the root of t is fat.

(15.6)
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t t t t a t ,t ,t t b t ,t ,t

Fig. 15.2. Recursive definition of P-trees

Definition 15.5. The elementary differentials, corresponding to (15.2), are defined
recursively by (y = (ya, yb))

F (τa)(y) = fa(y), F (τb)(y) = fb(y)

and

F (t)(y) =
∂mfw(t)(y)

∂yw(t1)
. . . ∂yw(tm)

· (F (t1)(y), . . . , F (tm)(y)
)

for t = a[t1, . . . , tm] or t = b[t1, . . . , tm] .

Elementary differentials for P-trees up to order 3 are given explicitly in Ta-
ble 15.1.

We now return to the starting-point of this section and continue the differen-
tiation of formulas (15.4). Using the notation of labelled P-trees, one sees that a
differentiation of F (t)(ya, yb) can be interpreted as an addition of a new branch
with a meagre or fat vertex and a new summation letter to each vertex of the la-
belled P-tree t . In the same way as we proved Theorem 2.6 for non-partitioned
differential equations, we arrive at

Theorem 15.6. The derivatives of the exact solution of (15.2) satisfy

y(q)
a =

∑
t∈LTP a

q

F (t)(ya, yb) =
∑

t∈TP a
q

α(t)F (t)(ya, yb) (15.4;q)

y
(q)
b =

∑
t∈LTP b

q

F (t)(ya, yb) =
∑

t∈TP b
q

α(t)F (t)(ya, yb).
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Table 15.1. P-trees and their elementary differentials

P-tree repr. (15.5) �(t) α(t) elem. differential Φj (t)

τa 1 1 fa 1

a[τa] 2 1 ∂fa
∂ya

fa
∑

k ajk

a[τb] 2 1 ∂fa
∂yb

fb

∑
k âjk

a[τa, τa] 3 1 ∂2fa
∂y2

a
(fa, fa)

∑
k,l ajkajl

a[τa, τb] 3 2 ∂2fa
∂ya∂yb

(fa, fb)
∑

k,l ajkâjl

a[τb, τb] 3 1 ∂2fa
∂y2

b
(fb, fb)

∑
k,l âjkâjl

a[a[τa]] 3 1 ∂fa
∂ya

∂fa
∂ya

fa
∑

k,l ajkakl

a[a[τb]] 3 1 ∂fa
∂ya

∂fa
∂yb

fb

∑
k,l ajkâkl

a[b[τa]] 3 1 ∂fa
∂yb

∂fb
∂ya

fa
∑

k,l âjkakl

a[b[τb]] 3 1 ∂fa
∂yb

∂fb
∂yb

fb

∑
k,l âjkâkl

. . . . . . . . . . . . . . . . . .

τb 1 1 fb 1

b[τa] 2 1 ∂fb
∂ya

fa
∑

k ajk

b[τb] 2 1 ∂fb
∂yb

fb

∑
k âjk

. . . . . . . . . . . . . . . . . .

P-Series

In Section II.12 we saw the importance of the key-lemma Corollary 12.7 for the
derivation of the order conditions for Runge-Kutta methods. Therefore we extend
this result also to partitioned ordinary differential equations.

It is convenient to introduce two new P-trees of order 0 , namely ∅a and ∅b .
The corresponding elementary differentials are F (∅a)(y)=ya and F (∅b)(y)=yb .
We further set

TP a = {∅a}∪TP a
1 ∪TP a

2 ∪ . . .

TP b = {∅b}∪TP b
1 ∪TP b

2 ∪ . . .

LTP a = {∅a}∪LTP a
1 ∪LTP a

2 ∪ . . .

LTP b = {∅b}∪LTP b
1 ∪LTP b

2 ∪ . . . .
(15.7)
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Definition 15.7. Let c(∅a) , c(∅b) , c(τa) , c(τb), . . . be real coefficients defined
for all P-trees, i.e., c : TP a ∪TP b → R . The series

P (c, y) =
(
Pa(c, y), Pb(c, y)

)T
where

Pa(c, y) =
∑

t∈LTP a

h�(t)

�(t)!
c(t)F (t)(y), Pb(c, y) =

∑
t∈LTP b

h�(t)

�(t)!
c(t)F (t)(y)

is then called a P-series.

Theorem 15.6 simply states that the exact solution of (15.2) is a P-series(
ya(x0 +h), yb(x0 +h)

)T = P
(
y, (ya(x0), yb(x0))

)
(15.8)

with y(t) = 1 for all P-trees t .

Theorem 15.8. Let c : TP a ∪TP b → R be a sequence of coefficients such that
c(∅a) = c(∅b) = 1 . Then

h

(
fa

(
P (c, (ya, yb))

)
fb

(
P (c, (ya, yb))

) )= P
(
c′, (ya, yb)

)
(15.9)

with

c′(∅a) = c′(∅b) = 0, c′(τa) = c′(τb) = 1 (15.10)

c′(t) = �(t)c(t1) . . .c(tm) if t = a[t1, . . . , tm] or t = b[t1, . . . , tm].

The proof is related to that of Theorem 12.6. It is given with more details in
Hairer (1981).

Order Conditions for Partitioned Runge-Kutta Methods

With the help of Theorem 15.8 the order conditions for method (15.3) can readily
be obtained. For this we denote the arguments in (15.3) by

gi = ya0 +h

s∑
j=1

aijkj, ĝi = yb0 +h

s∑
j=1

âij	j, (15.11)

and we assume that Gi = (gi, ĝi)T and Ki = h(ki, 	i)T are P-series with coeffi-
cients Gi(t) and Ki(t) , respectively. The formulas (15.11) then yield Gi(∅a)=1 ,
Gi(∅b) = 1 and

Gi(t) =
{∑s

j=1 aijKj(t) if the root of t is meagre,∑s
j=1 âijKj(t) if the root of t is fat.

(15.12)
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Application of Theorem 15.8 to the relations kj = fa(Gj) , 	j = fb(Gj) shows that
Kj(t) = G′

j(t) which, together with (15.10) and (15.12), recursively defines the
values Kj(t) .

It is usual to write Kj(t)=γ(t)Φj(t) where γ(t) is the integer given in Defini-
tion 2.10 (see also (2.17)). The coefficient Φj(t) is then obtained in the same way
as the corresponding value of standard Runge-Kutta methods (see Definition 2.9)
with the exception that a factor aik has to be replaced by âik , if the vertex with la-
bel “k” is fat. A comparison of the P-series for the numerical solution (y1a, y1b)T

with that for the exact solution (15.8) yields the desired order conditions.

Theorem 15.9. A partitioned Runge-Kutta method (15.3) is of order p iff
s∑

j=1

bjΦj(t) =
1

γ(t)
and

s∑
j=1

b̂jΦj(t) =
1

γ(t)
(15.13)

for all P-trees of order ≤ p .

Example. A partitioned method (15.3) is of order 2 , if and only if each of the two
Runge-Kutta schemes has order 2 and if the coupling conditions∑

i,j

biâij =
1
2
,

∑
i,j

b̂iaij =
1
2
,

which correspond to trees a[τb] and b[τa] of Table 15.1 respectively, are satisfied.
This happens if

ci = ĉi for all i .

This last assumption simplifies the order conditions considerably (the “thickness”
of terminating vertices then has no influence). The resulting conditions for order
up to 4 have been tabulated by Griepentrog (1978).

Further Applications of P-Series

Runge-Kutta methods violating (1.9). For the non-autonomous differential equa-
tion y′ = f(x, y) we consider, as in Exercise 6 of Section II.1, the Runge-Kutta
method

ki = f
(
x0 + ĉih, y0 +h

s∑
j=1

aijkj

)
, y1 = y0 +h

s∑
i=1

biki, (15.14)
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where ĉi is not necessarily equal to ci =
∑

j aij . Therefore, the x and y compo-
nents in

y′ = f(x, y)

x′ = 1.
(15.15)

are integrated differently. This system is of the form (15.2), if we put ya = y , yb =
x , fa(ya, yb) = f(x, y) and fb(ya, yb) = 1 . Since fb is constant, all elementary
differentials that involve derivatives of fb vanish identically. Thus, P-trees where
at least one fat vertex is not an end-vertex need not be considered. It remains to
treat the set

Tx = {t ∈ TPa; all fat vertices are end-vertices}. (15.16)

Each tree of Tx gives rise to an order condition which is exactly that of Theorem
15.9. It is obtained in the usual way (Section II.2) with the exception that ck has
to be replaced by ĉk , if the corresponding vertex is a fat one.

Fehlberg methods. The methods of Fehlberg, introduced in Section II.13, are
equivalent to (15.14). However, it is known that the exact solution of the differ-
ential equation y′ = f(x, y) satisfies y(x0) = 0 , y′(x0) = 0, . . . , y(m)(x0) = 0 at
the initial value x = x0 . As explained in II.13, this implies that the expressions
f , ∂f/∂x, . . . , ∂m−1f/∂xm−1 vanish at (x0, y0) and consequently also many of
the elementary differentials disappear. The elements of Tx which remain to be
considered are given in Fig. 15.3.

m

...

m

...

m

... m

...

m

...

m

... m

...

Fig. 15.3. P-trees for the methods of Fehlberg

Nyström methods. As a last application of Theorem 15.8 we present a new deriva-
tion of the order conditions for Nyström methods (Section II.14). The second order
differential equation y′′ = f(y, y′) can be written in partitioned form as(

y
y′

)′
=
(

y′
f(y, y′)

)
. (15.17)

In the notation of (15.2) we have ya = y , yb = y′ , fa(ya, yb) = yb , fb(ya, yb) =
f(ya, yb) . The special structure of fa implies that only P-trees which satisfy the
condition (see Definition 14.2)

“meagre vertices have at most one son and this son has to be fat” (15.18)
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have to be considered. The essential P-trees are thus
TNa

q = {t ∈ TP a
q ; t satisfies (15.18)}

TN b
q = {t ∈ TP b

q ; t satisfies (15.18)}.
It follows that each element of TNa

q+1 can be written as t = a[u] with u ∈ TN b
q .

This implies a one-to-one correspondence between TNa
q+1 and TN b

q , leaving the
elementary differentials invariant:

F (a[u])(ya, yb) =
∂yb

∂yb

·F (u)(ya, yb) = F (u)(ya, yb).

From this property it follows that

hPb

(
c, (ya, yb)

)
= Pa

(
c′, (ya, yb)

)
(15.19)

where c′(∅a) = 0 , c′(τa) = c(∅b) and

c′(t) = �(t)c(u) if t = a[u]. (15.20)

This notation is in agreement with (15.10).
The order conditions of method (14.13) can now be derived as follows: assume

gi , g′
i to be P-series

gi = Pa

(
ci, (y0, y

′
0)
)
, g′

i = Pb(ci, (y0, y
′
0)).

Theorem 15.8 then implies that

hf(gi, g
′
i) = Pb

(
c′i, (y0, y

′
0)
)
. (15.21)

Multiplying this relation by h it follows from (15.19) that

h2f(gi, g
′
i) = Pa

(
c′′i , (y0, y

′
0)
)
. (15.22)

Here c′′i = (c′i)′ , i.e.,

c′′i (t) = 0 for t = ∅a and t = τa, c′′i (a[τb]) = 1,

c′′i (t) = �(t)(�(t)− 1)ci(t1) . . .ci(tm) if t = a[b[t1, . . . , tm]].

The relations (15.21) and (15.22), when inserted into (14.13), yield

ci(τa) = ci,

ci(t) =

{∑
j aijc

′′
j (t) if the root of t is meagre,∑

j aijc
′
j(t) if the root of t is fat.

Finally, a comparison of the P-series for the exact and numerical solutions gives
the order conditions (for order p)∑

i

bic
′′
i (t) = 1 for t ∈ TNa

q , q = 2, . . . , p∑
i

bic
′
i(t) = 1 for t ∈ TN b

q , q = 1, . . . , p.
(15.23)
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Exercises

1. Denote the number of elements of TP a
q (P-trees with meagre root of order q )

by αq (see Table 15.2). Prove that

α1 +α2x +α3x
2 + . . . = (1−x)−2α1(1−x2)−2α2(1−x3)−2α3 · . . .

Compute the first αq and compare them with the aq of Table 2.1.

Table 15.2. Number of elements of TP a
q

q 1 2 3 4 5 6 7 8 9 10

αq 1 2 7 26 107 458 2058 9498 44947 216598

2. There is no explicit, 4 -stage Runge-Kutta method of order 4 , which does not
satisfy condition (1.9).

Hint. Use the techniques of the proof of Lemma 1.4.

3. Show that the order conditions (15.23) are the same as those given in Theorem
14.10.

4. Show that the partitioned method of Griepentrog (1978)

0 aij

1/2 1/2

1 −1 2

1/6 2/3 1/6

0 0 âij

1/2 −β/2 (1 + β)/2

1 (3 + 5β)/2 −(1 + 3β) (1 + β)/2

1/6 2/3 1/6

with β =
√

3/3 is of order 3 (the implicit method to the right is A -stable and
is provided for the stiff part of the problem).
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It is natural to look forward to those discrete systems which pre-
serve as much as possible the intrinsic properties of the continu-
ous system. (Feng Kang 1985)

Y.V. Rakitskii proposed . . . a requirement of the most complete
conformity between two dynamical systems: one resulting from
the original differential equations and the other resulting from the
difference equations of the computational method.

(Y.B. Suris 1989)

Hamiltonian systems, given by

ṗi = −∂H

∂qi

(p, q), q̇i =
∂H

∂pi

(p, q), (16.1)

have been seen to possess two remarkable properties:

a) the solutions preserve the Hamiltonian H(p, q) (Ex. 5 of Section I.6);

b) the corresponding flow is symplectic, i.e., preserves the differential 2-form

ω2 =
n∑

i=1

dpi ∧ dqi (16.2)

(see Theorem I.14.12). In particular, the flow is volume preserving.
Both properties are usually destroyed by a numerical method applied to (16.1).

After some pioneering papers (de Vogelaere 1956, Ruth 1983, and Feng Kang
( ) 1985) an enormous avalanche of research started around 1988 on the char-
acterization of existing numerical methods which preserve symplecticity or on the
construction of new classes of symplectic methods. An excellent overview is pre-
sented by Sanz-Serna (1992).

Example 16.1. We consider the harmonic oscillator

H(p, q) =
1
2

(p2 + k2q2). (16.3)

Here (16.1) becomes

ṗ = −k2q, q̇ = p (16.4)

and we study the action of several steps of a numerical method on a well-known
set of initial data (p0, q0) (see Fig. 16.1):

a) The explicit Euler method (I.7.3)(
pm

qm

)
=
(

1 −hk2

h 1

)(
pm−1

qm−1

)
, h =

π

8k
, m = 1, . . . , 16; (16.5a)



II.16 Symplectic Integration Methods 313

b) the implicit (or backward) Euler method (7.3)(
pm

qm

)
=

1
1 +h2k2

(
1 −hk2

h 1

)(
pm−1

qm−1

)
, h =

π

8k
, m = 1, . . . , 16;

(16.5b)

c) Runge’s method (1.4) of order 2(
pm

qm

)
=
(

1− h2k2

2 −hk2

h 1− h2k2

2

)(
pm−1

qm−1

)
, h =

π

4k
, m = 1, . . . , 8;

(16.5c)

d) the implicit midpoint rule (7.4) of order 2(
pm

qm

)
=

1
1 + h2k2

4

(
1− h2k2

4
−hk2

h 1− h2k2

4

)(
pm−1

qm−1

)
, h=

π

4k
, m=1, . . . , 8.

(16.5d)
For the exact flow, the last of all these cats would precisely coincide with the

first one and all cats would have the same area. Only the last method appears to be
area preserving. It also preserves the Hamiltonian in this example.

a) Euler expl.a) Euler expl. b) Euler impl.b) Euler impl.

c) Runge2c) Runge2 d) midpointd) midpoint

Fig. 16.1. Destruction of symplecticity of a Hamiltonian flow, k = (
√

5 + 1)/2

Example 16.2. For a nonlinear problem we choose

H(p, q) =
p2

2
− cos(q)

(
1− p

6
)

(16.6)

which is similar to the Hamiltonian of the pendulum (I.14.25), but with some of
the pendulum’s symmetry destroyed. Fig. 16.2 presents 12000 consecutive solution
values (pi, qi) for
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a) Runge’s method of order 2 (see (1.4));

b) the implicit Radau method with s = 2 and order 3 (see Exercise 6 of Section
II.7);

c) the implicit midpoint rule (7.4) of order 2.
The initial values are

p0 = 0, q0 =
{

arccos(0.5) = π/3 for case (a)
arccos(−0.8) for cases (b) and (c).

The computation is done with fixed step sizes

h =
{

0.15 for case (a)
0.3 for cases (b) and (c).

The solution of method (a) spirals out, that of method (b) spirals in and both by
no means preserve the Hamiltonian. Method (c) behaves differently. Although the
Hamiltonian is not precisely preserved (see picture (d)), its error remains bounded
for long-scale computations.

a) Runge2

q

pp b) Radau3

q

pp

c) midpoint

q

pp d) Hamilt. for midpointH

t

Fig. 16.2. A nonlinear pendulum and behaviour of H

(• . . . indicates the initial position)
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Symplectic Runge-Kutta Methods

For a given Hamiltonian system (16.1), for a chosen one-step method (in particular
a Runge-Kutta method) and a chosen step size h we denote by

ψh : R2n −→ R2n

(p0, q0) �−→ (p1, q1)
(16.7)

the transformation defined by the method.

Remark. For implicit methods the numerical solution (p1, q1) need not exist for all
h and all initial values (p0, q0) nor need it be uniquely determined (see Exercise 2).
Therefore we usually will have to restrict the domain where ψh is defined and we
will have to select a solution of the nonlinear system such that ψh is differentiable
on this domain. The subsequent results hold for all possible choices of ψh .

Definition 16.4. A one-step method is called symplectic if for every smooth Hamil-
tonian H and for every step size h the mapping ψh is symplectic (see Definition
I.14.11), i.e., preserves the differential 2-form ω2 of (16.2).

We start with the easiest result.

Theorem 16.5. The implicit s -stage Gauss methods of order 2s (Kuntzmann &
Butcher methods of Section II.7) are symplectic for all s .

Proof. We simplify the notation by putting h=1 and t0 =0 and use the fact that the
methods under consideration are collocation methods, i.e., the numerical solution
after one step is defined by (u(1), v(1)) where (u(t), v(t)) are polynomials of
degree s such that

u(0) = p0, u′(ci) = −∂H

∂q

(
u(ci), v(ci)

)
v(0) = q0, v′(ci) =

∂H

∂p

(
u(ci), v(ci)

) i = 1, . . . , s. (16.8)

The polynomials u(t) and v(t) are now considered as functions of the initial val-
ues. For arbitrary variations ξ0

1 and ξ0
2 of the initial point we denote the corre-

sponding variations of u and v as

ξt
1 =

∂(u(t), v(t))
∂(p0, q0)

· ξ0
1 , ξt

2 =
∂(u(t), v(t))

∂(p0, q0)
· ξ0

2 .

Symplecticity of the method means that the expression

ω2(ξ1
1 , ξ

1
2)−ω2(ξ0

1 , ξ0
2) =

∫ 1

0

d

dt
ω2(ξt

1, ξ
t
2) dt (16.9)

should vanish. Since ξt
1 and ξt

2 are polynomials in t of degree s , the expression
d
dt ω2(ξt

1, ξ
t
2) is a polynomial of degree 2s−1 . We can thus exactly integrate (16.9)
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by the Gaussian quadrature formula and so obtain

ω2(ξ1
1 , ξ1

2)−ω2(ξ0
1 , ξ

0
2) =

s∑
i=1

bi

d

dt
ω2(ξt

1, ξ
t
2)
∣∣∣
t=ci

. (16.9’)

Differentiation of (16.8) with respect to (p0, q0) shows that (ξt
1, ξ

t
2) satisfies the

variational equation (I.14.27) at the collocation points t = ci, i = 1, . . . , s . There-
fore, the computations of the proof of Theorem I.14.12 imply that

d

dt
ω2(ξt

1, ξ
t
2)
∣∣∣
t=ci

= 0 for i = 1, . . . , s. (16.10)

This, introduced into (16.9’), completes the proof of symplecticity.

The following theorem, discovered independently by at least three authors
(F. Lasagni 1988, J.M. Sanz-Serna 1988, Y.B. Suris 1989) characterizes the class
of all symplectic Runge-Kutta methods:

Theorem 16.6. If the s× s matrix M with elements

mij = biaij + bjaji − bibj, i, j = 1, . . . , s (16.11)

satisfies M = 0 , then the Runge-Kutta method (7.7) is symplectic.

Proof. The matrix M has been known from nonlinear stability theory for many
years (see Theorem IV.12.4). Both theorems have very similar proofs, the one
works with the inner product, the other with the exterior product.

We write method (7.7) applied to problem (16.1) as

Pi = p0 +h
∑

j

aijkj Qi = q0 +h
∑

j

aij	j (16.12a)

p1 = p0 +h
∑

i

biki q1 = q0 +h
∑

i

bi	i (16.12b)

ki = −∂H

∂q
(Pi, Qi) 	i =

∂H

∂p
(Pi, Qi), (16.12c)

denote the J th component of a vector by an upper index J and introduce the linear
maps (one-forms)

dpJ
1 : R

2n → R ,

ξ �→ ∂pJ
1

∂(p0, q0)
ξ

dP J
i : R

2n → R ,

ξ �→ ∂P J
i

∂(p0, q0)
ξ

(16.13)

and similarly also dpJ
0 , dkJ

i , dqJ
0 , dqJ

1 , dQJ
i , d	J

i (the one-forms dpJ
0 and

dqJ
0 correspond to dpJ and dqJ of Section I.14). Using the notation (16.13),
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symplecticity of the method is equivalent to
n∑

J=1

dpJ
1 ∧ dqJ

1 =
n∑

J=1

dpJ
0 ∧ dqJ

0 . (16.14)

To check this relation we differentiate (16.12) with respect to the initial values and
obtain

dP J
i = dpJ

0 +h
∑

j

aijdkJ
j dQJ

i = dqJ
0 +h

∑
j

aijd	J
j (16.15a)

dpJ
1 = dpJ

0 +h
∑

i

bidkJ
i dqJ

1 = dqJ
0 +h

∑
i

bid	J
i (16.15b)

dkJ
i = −

n∑
L=1

∂2H

∂qJ∂pL
(Pi, Qi) · dP L

i −
n∑

L=1

∂2H

∂qJ∂qL
(Pi, Qi) · dQL

i (16.15c)

d	J
i =

n∑
L=1

∂2H

∂pJ∂pL
(Pi, Qi) · dP L

i +
n∑

L=1

∂2H

∂pJ∂qL
(Pi, Qi) · dQL

i . (16.15d)

We now compute

dpJ
1 ∧ dqJ

1 − dpJ
0 ∧ dqJ

0 (16.16)

= h
∑

i

bi dpJ
0 ∧ d	J

i +h
∑

i

bi dkJ
i ∧ dqJ

0 +h2
∑
i,j

bibj dkJ
i ∧ d	J

j

by using (16.15b) and the multilinearity of the wedge product. This formula corre-
sponds precisely to (IV.12.6). Exactly as in the proof of Theorem IV.12.5, we now
eliminate in (16.16) the quantities dpJ

0 and dqJ
0 with the help of (16.15a) to obtain

dpJ
1 ∧ dqJ

1 − dpJ
0 ∧ dqJ

0 (16.17)

= h
∑

i

bi dP J
i ∧ d	J

i +h
∑

i

bi dkJ
i ∧ dQJ

i −h2
∑
i,j

mij dkJ
i ∧ d	J

j ,

the formula analogous to (IV.12.7). Equations (16.15c,d) are perfect analogues of
the variational equation (I.14.27). Therefore the same computations as in (I.14.39)
give

n∑
J=1

dP J
i ∧ d	J

i +
n∑

J=1

dkJ
i ∧ dQJ

i = 0 (16.18)

and the first two terms in (16.17) disappear. The last term vanishes by hypothesis
(16.11) and we obtain (16.14).

Remark. F. Lasagni (1990) has proved in an unpublished manuscript that for irre-
ducible methods (see Definitions IV.12.15 and IV.12.17) the condition M = 0 is
also necessary for symplecticity. For a publication see Abia & Sanz-Serna (1993,
Theorem 5.1), where this proof has been elaborated and adapted to a more general
setting.
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Remarks. a) Explicit Runge-Kutta methods are never symplectic (Ex. 1).
b) Equations (16.11) imply a substantial simplification of the order conditions

(Sanz-Serna & Abia 1991). We shall return to this when treating partitioned meth-
ods (see (16.40)).

c) An important tool for the construction of symplectic methods is the W-
transformation (see Section IV.5, especially Theorem IV.5.6). As can be seen from
formula (IV.12.10), the method under consideration is symplectic if and only if the
matrix X is skew-symmetric (with the exception of x11 = 1/2 ). Sun Geng (
1992) constructed several new classes of symplectic Runge-Kutta methods. One of
his methods, based on Radau quadrature, is given in Table 16.1.

d) An inspection of Table IV.5.14 shows that all Radau IA, Radau IIA, Lo-
batto IIIA (in particular the trapezoidal rule), and Lobatto IIIC methods are not
symplectic.

Table 16.1. ’s symplectic Radau method of order 5

4−√
6

10
16−√

6
72

328− 167
√

6
1800

−2 + 3
√

6
450

4 +
√

6
10

328 + 167
√

6
1800

16 +
√

6
72

−2− 3
√

6
450

1
85− 10

√
6

180
85 + 10

√
6

180
1

18

16−√
6

36
16 +

√
6

36
1
9

Preservation of the Hamiltonian and of first integrals. In Exercise 5 of Sec-
tion I.6 we have seen that the Hamiltonian H(p, q) is a first integral of the system
(16.1). This means that every solution p(t), q(t) of (16.1) satisfies H

(
p(t), q(t)

)
=

Const . The numerical solution of a symplectic integrator does not share this prop-
erty in general (see Fig. 16.2). However, we will show that every quadratic first
integral will be preserved.

Denote y = (p, q) and let G be a symmetric 2n×2n matrix. We suppose that
the quadratic functional

〈y, y〉G := yT Gy

is a first integral of the system (16.1). This means that

〈y, J−1 gradH(y)〉G = 0 with J =
(

0 I
−I 0

)
(16.19)

for all y ∈ R
2n .
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Theorem 16.7 (Sanz-Serna 1988). A symplectic Runge-Kutta method (i.e., a
method satisfying (16.11)) leaves all quadratic first integrals of the system (16.1)
invariant, i.e., the numerical solution yn = (pn, qn) satisfies

〈y1, y1〉G = 〈y0, y0〉G (16.20)

for all symmetric matrices G satisfying (16.19).

Proof (Cooper 1987). The Runge-Kutta method (7.7) applied to problem (16.1) is
given by

y1 = y0 +
∑

i

biki, Yi = y0 +
∑

j

aijkj ,

ki = J−1 gradH(Yi).
(16.21)

As in the proof of Theorem 16.6 (see also Theorem IV.12.4) we obtain

〈y1, y1〉G −〈y0, y0〉G = 2h
∑

i

bi〈Yi, ki〉G −h2
∑
i,j

mij〈ki, kj〉G.

The first term on the right-hand side vanishes by (16.19) and the second one by
(16.11).

An Example from Galactic Dynamics

Always majestic, usually spectacularly beautiful, galaxies
are . . . (Binney & Tremaine 1987)

While the theoretical meaning of symplecticity of numerical methods is clear, its
importance for practical computations is less easy to understand. Numerous numer-
ical experiments have shown that symplectic methods, in a fixed step size mode,
show an excellent behaviour for long-scale scientific computations of Hamiltonian
systems. We shall demonstrate this on the following example chosen from galactic
dynamics and give a theoretical justification later in this section. However, Calvo &
Sanz-Serna (1992c) have made the interesting discovery that variable step size im-
plementation can destroy the advantages of symplectic methods. In order to illus-
trate this phenomenon we shall include in our computations violent step changes;
one with a random number generator and one with the step size changing in func-
tion of the solution position.

A galaxy is a set of N stars which are mutually attracted by Newton’s law.
A relatively easy way to study them is to perform a long-scale computation of the
orbit of one of its stars in the potential formed by the N − 1 remaining ones (see
Binney & Tremaine 1987, Chapter 3); this potential is assumed to perform a uni-
form rotation with time, but not to change otherwise. The potential is determined
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qq

qq

qq

Fig. 16.3. Galactic orbit

by Poisson’s differential equation ΔV =4Gπ� , where � is the density distribution
of the galaxy, and real-life potential-density pairs are difficult to obtain (e.g., de
Zeeuw & Pfenniger 1988). A popular issue is to choose a simple formula for V
in such a way that the resulting � corresponds to a reasonable galaxy, for example
(Binney 1981, Binney & Tremaine 1987, p. 45f, Pfenniger 1990)

V = A ln
(
C +

x2

a2
+

y2

b2
+

z2

c2

)
. (16.22)

The Lagrangian for a coordinate system rotating with angular velocity Ω becomes

L =
1
2

(
(ẋ−Ωy)2 + (ẏ + Ωx)2 + ż2

)
−V (x, y, z). (16.23)

This gives with the coordinates (see (I.6.23))

p1 =
∂L
∂ẋ

= ẋ−Ωy,

q1 = x,

p2 =
∂L
∂ẏ

= ẏ + Ωx,

q2 = y,

p3 =
∂L
∂ż

= ż,

q3 = z,

the Hamiltonian

H = p1q̇1 + p2q̇2 + p3q̇3 −L (16.24)

=
1
2
(
p2
1 + p2

2 + p2
3

)
+ Ω
(
p1q2 − p2q1

)
+A ln

(
C +

q2
1

a2
+

q2
2

b2
+

q2
3

c2

)
.

We choose the parameters and initial values as

a = 1.25, b = 1, c = 0.75, A = 1, C = 1, Ω = 0.25,

q1(0) = 2.5, q2(0) = 0, q3(0) = 0, p1(0) = 0, p3(0) = 0.2,
(16.25)
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and take for p2(0) the larger of the roots for which H = 2 . Our star then sets
out for its voyage through the galaxy, the orbit is represented in Fig. 16.3 for 0 ≤
t ≤ 15000 . We are interested in its Poincaré sections with the half-plane q2 = 0 ,
q1 > 0 , q̇2 > 0 for 0≤ t≤ 1000000 . These consist, for the exact solution, in 47101
cut points which are presented in Fig. 16.6l. These points were computed with the
(non-symplectic) code DOP853 with Tol=10−17 in quadruple precision on a VAX
8700 computer.

Fig. 16.4, Fig. 16.5, and Fig. 16.6 present the obtained numerical results for the
methods and step sizes summarized in Table 16.2.

Table 16.2. Methods for numerical experiments

item method order h
points

t ≤ 1000000 impl. symplec. symmet.

a) Gauss 6 1/5 47093 yes yes yes

b) ” ” 2/5 46852 ” ” ”

c) Gauss 6 random 46717 yes yes yes

d) Gauss 6 partially
halved 46576 yes yes yes

e) Radau 5 1/10 46597 yes no no

f) ” ” 1/5 46266 ” ” ”

g) RK44 4 1/40 47004 no no no

h) ” ” 1/10 46192 ” ” ”

i) Lobatto 6 1/5 47091 yes no yes

j) ” ” 2/5 46839 ” ” ”

k) Sun Geng 5 1/5 47092 yes yes no

l) exact – – 47101 – – –

Remarks.

ad a): the Gauss6 method (Kuntzmann & Butcher method based on Gaussian
quadrature with s = 3 and p = 6 , see Table 7.4) for h = 1/5 is nearly
identical to the exact solution;

ad b): Gauss6 for h = 2/5 is much better than Gauss6 with random or partially
halved step sizes (see item (c) and (d)) where h ≤ 2/5 .

ad c): h was chosen at random uniformly distributed on (0, 2/5) ;

ad d): h was chosen “partially halved” in the sense that

h =
{

2/5 if q1 > 0,

1/5 if q1 < 0.

This produced the worst result for the 6 th order Gauss method. We thus
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q

qa) Gauss6, h = 1/5

q

qb) Gauss6, h = 2/5

q

qc) Gauss6, random h

q

qd) Gauss6, halved h

Fig. 16.4. Poincaré cuts for 0 ≤ t ≤ 1000000; methods (a)-(d)
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q

qe) Radau5, h = 1/10

q

qf) Radau5, h = 1/5

q

qg) RK44, h = 1/40

q

qh) RK44, h = 1/10

Fig. 16.5. Poincaré cuts for 0 ≤ t ≤ 1000000; methods (e)-(h)
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q

qi) Lobatto6, h = 1/5

q

qj) Lobatto6, h = 2/5

q

qk) SunGeng5, h = 1/5

q

ql) exact solution

Fig. 16.6. Poincaré cuts for 0 ≤ t ≤ 1000000; methods (i)-(l)
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see that symplectic and symmetric methods compensate on the way back
the errors committed on the outward journey.

ad e), f): Radau5 (method of Ehle based on Radau quadrature with s = 3 and
p = 5 , see Table 7.7) is here not at all satisfactory;

ad g): The explicit method RK44 (Runge-Kutta method with s=p=4 , see Table
1.2, left) is evidently much faster than the implicit methods, even with a
smaller step size;

ad h): With increasing step size RK44 deteriorates drastically;

ad i): this is a non-symplectic but symmetric collocation method based on Lo-
batto quadrature with s = 4 of order 6 (see Table IV.5.8); its good perfor-
mance on this nonlinear Hamiltonian problem is astonishing;

ad j): with increasing h Lobatto6 is less satisfactory (see also Fig. 16.7);

ad k): this is the symplectic non-symmetric method based on Radau quadrature
of order 5 due to Sun Geng (Table 16.1).

The preservation of the Hamiltonian (correct value H = 2 ) during the compu-
tation for 0≤ t≤ 1000000 is shown in Fig. 16.7. While the errors for the symplec-
tic and symmetric methods in constant step size mode remain bounded, random h
(case c) results in a sort of Brownian motion, and the nonsymplectic methods as
well as Gauss6 with partially halved step size result in permanent deterioration.

a) Gauss, ha) Gauss, h

g) RK44, hg) RK44, h

c) Gauss ran.c) Gauss ran.

d) Gauss p.h.d) Gauss p.h.

i) Lob6, hi) Lob6, h

j) Lob6, hj) Lob6, h

h) RK44, hh) RK44, h

e) Rad5, he) Rad5, h

Fig. 16.7. Evolution of the Hamiltonian
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Partitioned Runge-Kutta Methods

The fact that the system (16.1) possesses a natural partitioning suggests the use of
partitioned Runge-Kutta methods as discussed in Section II.15. The main interest
of such methods is for separable Hamiltonians where it is possible to obtain explicit
symplectic methods.

A partitioned Runge-Kutta method for system (16.1) is defined by

Pi = p0 +h
∑

j

aijkj Qi = q0 +h
∑

j

âij	j (16.26a)

p1 = p0 +h
∑

i

biki q1 = q0 +h
∑

i

b̂i	i (16.26b)

ki = −∂H

∂q
(Pi, Qi) 	i =

∂H

∂p
(Pi, Qi) (16.26c)

where bi, aij and b̂i, âij represent two different Runge-Kutta schemes.

Theorem 16.10 (Sanz-Serna 1992b, Suris 1990). a) If the coefficients of (16.26)
satisfy

bi = b̂i, i = 1, . . . , s (16.27)

biâij + b̂jaji − bib̂j = 0, i, j = 1, . . . , s (16.28)

then the method (16.26) is symplectic.
b) If the Hamiltonian is separable (i.e., H(p, q) = T (p)+U(q) ) then the con-

dition (16.28) alone implies symplecticity of the method.

Proof. Following the lines of the proof of Theorem 16.6 we obtain

dpJ
1 ∧ dqJ

1 − dpJ
0 ∧ dqJ

0 = h
∑

i

b̂i dP J
i ∧ d	J

i +h
∑

i

bi dkJ
i ∧ dQJ

i

−h2
∑
i,j

(biâij + b̂jaji − bib̂j) dkJ
i ∧ d	J

j ,
(16.29)

instead of (16.17). The last term vanishes by (16.28). If bi = b̂i for all i , sym-
plecticity of the method follows from (16.18). If the Hamiltonian is separable (the
mixed derivatives ∂2H/∂qJ∂pL and ∂2H/∂pJ∂qL are not present in (16.15c,d))
then each of the two terms in (16.18) vanishes separately and the method is sym-
plectic without imposing (16.27).

Remark. If (16.28) is satisfied and if the Hamiltonian is separable, it can be as-
sumed without loss of generality that

bi �= 0, b̂i �= 0 for all i . (16.30)
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Indeed, the stage values Pi (for i with b̂i = 0 ) and Qj (for j with bj = 0 ) don’t
influence the numerical solution (p1, q1) and can be removed from the scheme.
Notice however that in the resulting scheme the number of stages Pi may be dif-
ferent from that of Qj .

Explicit methods for separable Hamiltonians. Let the Hamiltonian be of the
form H(p, q) = T (p) +U(q) and consider a partitioned Runge-Kutta method sat-
isfying

aij = 0 for i < j (diagonally implicit)

âij = 0 for i ≤ j (explicit).
(16.31)

Since ∂H/∂q depends only on q , the method (16.26) is explicit for such a choice
of coefficients. Under the assumption (16.30), the symplecticity condition (16.28)
then becomes

aij = bj for i ≥ j, âij = b̂j for i > j, (16.32)

so that the method (16.26) is characterized by the two schemes

b1
b1 b2
b1 b2 b3
...

...
. . .

. . .
b1 b2 · · · bs−1 bs

b1 b2 · · · bs−1 bs

0
b̂1 0
b̂1 b̂2 0
...

...
. . .

. . .

b̂1 b̂2 · · · b̂s−1 0

b̂1 b̂2 · · · b̂s−1 b̂s

(16.33)

If we admit the cases b1 = 0 and/or b̂s = 0 , it can be shown (Exercise 6) that this
scheme already represents the most general method (16.26) which is symplectic
and explicit. We denote this scheme by

b : b1 b2 . . . bs

b̂ : b̂1 b̂2 . . . b̂s.
(16.34)

This method is particularly easy to implement:
P0 = p0 , Q1 = q0

for i := 1 to s do
Pi = Pi−1 −hbi∂U/∂q(Qi) (16.35)

Qi+1 = Qi +hb̂i∂T/∂p(Pi)
p1 = Ps , q1 = Qs+1

Special case s=1 . The combination of the implicit Euler method (b1 =1 ) with the
explicit Euler method ( b̂1 = 1 ) gives the following symplectic method of order 1 :

p1 = p0 −h
∂U

∂q
(q0), q1 = q0 +h

∂T

∂p
(p1). (16.36a)
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By interchanging the roles of p and q we obtain the method

q1 = q0 +h
∂T

∂p
(p0), p1 = p0 −h

∂U

∂q
(q1) (16.36b)

which is also symplectic. Methods (16.36a) and (16.36b) are mutually adjoint (see
Section II.8).

Construction of higher order methods. The order conditions for general par-
titioned Runge-Kutta methods applied to general problems (15.2) are derived in
Section II.15 (Theorem 15.9). Let us here discuss how these conditions simplify in
our special situation.

A) We consider the system (16.1) with separable Hamiltonian. In the notation
of Section II.15 this means that fa(ya, yb) depends only on yb and fb(ya, yb)
depends only on ya . Therefore, many elementary differentials vanish and only P-
trees whose meagre and fat vertices alternate in each branch have to be considered.
This is a considerable reduction of the order conditions.

t tm
. . .

t

u ul. . .

u

t tm
. . .

u ul. . .

t u

u ul. . .

t tm
. . .

u t
Fig. 16.8. Product of P-trees

B) As observed by Abia & Sanz-Serna (1993) the condition (16.28) acts as a sim-
plifying assumption. Indeed, multiplying (16.28) by Φi(t) ·Φj(u) (where t =
a[t1, . . . , tm] ∈ TP a , u = b[u1, . . . , ul] ∈ TP b ) and summing up over all i and
j yields∑

i

biΦi(t · u) +
∑

j

b̂jΦj(u · t)−
(∑

i

biΦi(t)
)(∑

j

b̂jΦj(u)
)

= 0. (16.37)

Here we have used the notation of Butcher (1987)

t · u = a[t1, . . . , tm, u], u · t = b[u1, . . . , ul, t], (16.38)

illustrated in Fig. 16.8. Since

1
γ(t · u)

+
1

γ(u · t) −
1

γ(t)
· 1
γ(u)

= 0 (16.39)

(this relation follows from (16.37) by inserting the coefficients of a symplectic
Runge-Kutta method of sufficiently high order, e.g., a Gauss method) we obtain
the following fact:
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let �(t) + �(u) = p and assume that all order conditions for P-trees of order
< p are satisfied, then∑

i

biΦi(t · u) =
1

γ(t · u)
iff

∑
j

b̂jΦj(u · t) =
1

γ(u · t) . (16.40)

From Fig. 16.8 we see that the P-trees t · u and u · t have the same geometrical
structure. They differ only in the position of the root. Repeated application of this
property implies that of all P-trees with identical geometrical structure only one has
to be considered.

A method of order 3 (Ruth 1983). The above reductions leave five order conditions
for a method of order 3 which, for s = 3 , are the following:

b1 + b2 + b3 = 1, b̂1 + b̂2 + b̂3 = 1, b2b̂1 + b3(b̂1 + b̂2) = 1/2,

b2b̂
2
1 + b3(b̂1 + b̂2)

2 = 1/3, b̂1b
2
1 + b̂2(b1 + b2)

2 + b̂3(b1 + b2 + b3)
2 = 1/3.

This nonlinear system possesses many solutions. A particularly simple solution,
proposed by Ruth (1983), is

b : 7/24 3/4 −1/24
b̂ : 2/3 −2/3 1.

(16.41)

Concatenation of a method with its adjoint. The adjoint method of (16.26) is ob-
tained by replacing h by −h and by exchanging the roles of p0, q0 and p1, q1 (see
Section II.8). This results in a partitioned Runge-Kutta method with coefficients
(compare Theorem 8.3)

a∗
ij = bs+1−j − as+1−i,s+1−j,

â∗
ij = b̂s+1−j − âs+1−i,s+1−j,

b∗i = bs+1−i,

b̂∗i = b̂s+1−i.

For the adjoint of (16.33) the first method is explicit and the second one is diag-
onally implicit, but otherwise it has the same structure. Adding dummy stages, it
becomes of the form (16.33) with coefficients

b∗ : 0 bs bs−1 . . . b1

b̂∗ : b̂s b̂s−1 . . . b̂1 0.
(16.42)

The following idea of Sanz-Serna (1992b) allows one to improve a method of odd
order p : one considers the composition of method (16.33) (step size h/2 ) with its
adjoint (again with step size h/2 ). The resulting method, which is represented by
the coefficients

b1/2 b2/2 . . . bs−1/2 bs/2 bs/2 bs−1/2 . . . b1/2
b̂1/2 b̂2/2 . . . b̂s−1/2 b̂s b̂s−1/2 . . . b̂1/2 0,

is symmetric and therefore has an even order which is ≥ p + 1 . Concatenating
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Ruth’s method (16.41) with its adjoint yields the fourth order method

b : 7/48 3/8 −1/48 −1/48 3/8 7/48
b̂ : 1/3 −1/3 1 −1/3 1/3 0.

(16.43)

Symplectic Nyström Methods

A frequent special case of a separable Hamiltonian H(p, q)=T (p)+U(q) is when
T (p) is a quadratic functional T (p) = pT Mp/2 (with M a constant symmetric
matrix). In this situation the Hamiltonian system becomes

ṗ = −∂U

∂q
(q), q̇ = Mp,

which is equivalent to the second order equation

q̈ = −M
∂U

∂q
(q). (16.44)

It is therefore natural to consider Nyström methods (Section II.14) which for the
system (16.44) are given by

Qi = q0 + cihq̇0 +h2
∑

j

aijk
′
j , k′

j = −M
∂U

∂q
(Qj),

q1 = q0 +hq̇0 +h2
∑

i

bik
′
i, q̇1 = q̇0 +h

∑
i

bik
′
i.

Replacing the variable q̇ by Mp and k′
i by M	i , this method reads

Qi = q0 + cihMp0 +h2
s∑

j=1

aijM	j, 	j = −∂U

∂q
(Qj),

q1 = q0 +hMp0 +h2
s∑

i=1

biM	i, p1 = p0 +h

s∑
i=1

bi	i.

(16.45)

Theorem 16.11 (Suris 1989). Consider the system (16.44) where M is a symmetric
matrix. Then, the s -stage Nyström method (16.45) is symplectic if the following
two conditions are satisfied:

bi = bi(1− ci), i = 1, . . . , s (16.46a)

bi(bj − aij) = bj(bi − aji), i, j = 1, . . . , s. (16.46b)

Proof (Okunbor & Skeel 1992). As in the proof of Theorem 16.6 we differentiate
the formulas (16.45) and compute

dpJ
1 ∧ dqJ

1 − dpJ
0 ∧ dqJ

0

= h
∑

i

bi d	J
i ∧ dqJ

0 +h
∑
K

MJK dpJ
0 ∧ dpK

0 (16.47)
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+h2
∑

i

bi

∑
K

MJK d	J
i ∧ dpK

0 +h2
∑

i

bi

∑
K

MJK dpJ
0 ∧ d	K

i

+h3
∑
i,j

bibj

∑
K

MJK d	J
i ∧ d	K

j .

Next we eliminate dqJ
0 with the help of the differentiated equation of Qi , sum over

all J and so obtain
n∑

J=1

dpJ
1 ∧ dqJ

1 −
n∑

J=1

dpJ
0 ∧ dqJ

0

= h
∑

i

bi

∑
J

d	J
i ∧ dQJ

i +h
∑
J,K

MJK dpJ
0 ∧ dpK

0

+h2
∑

i

(bi − bi − bici)
∑
J,K

MJK d	J
i ∧ dpK

0

+h3
∑
i<j

(bibj − bjbi − biaij + bjaji)
∑
J,K

MJK d	J
i ∧ d	K

j .

The last two terms disappear by (16.46) whereas the first two terms vanish due to
the symmetry of M and of the second derivatives of U(q) .

We have already encountered condition (16.46a) in Lemma 14.13. There, it
was used as a simplifying assumption. It implies that only the order conditions for
q̇1 have to be considered.

For Nyström methods satisfying both conditions of (16.46), one can assume
without loss of generality that

bi �= 0 for i = 1, . . . , s. (16.48)

Let I = {i | bi = 0} , then bi = 0 for i ∈ I and aij = 0 for i �∈ I , j ∈ I . Hence,
the stage values Qi (i ∈ I ) don’t influence the numerical result (p1, q1) and can
be removed from the scheme.

Explicit methods. Our main interest is in methods which satisfy

aij = 0 for i ≤ j. (16.49)

Under the assumption (16.48) the condition (16.46) then implies that the remaining
coefficients are given by

aij = bj(ci − cj) for i > j. (16.50)

In this situation we may also suppose that

ci �= ci−1 for i = 2, 3, . . . , s,

because equal consecutive ci lead (via condition (16.50)) to equal stage values Qi .
Therefore the method is equivalent to one with a smaller number of stages.
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The particular form of the coefficients aij allows the following simple imple-
mentation (Okunbor & Skeel 1992b)

Q0 = q0 , P0 = p0

for i := 1 to s do
Qi = Qi−1 +h(ci − ci−1)MPi−1 (with c0 = 0 ) (16.51)
Pi = Pi−1 −hbi∂U/∂q(Qi)

q1 = Qs +h(1− cs)MPs , p1 = Ps .

Special case s = 1 . Putting b1 = 1 (c1 is a free parameter) yields a symplectic,
explicit Nyström method of order 1 . For the choice c1 = 1/2 it has order 2 .

Special case s = 3 . To obtain order 3 , four order conditions have to be satisfied
(see Table 14.3). The first three mean that (bi, ci) is a quadrature formula of order
3 . They allow us to express b1, b2, b3 in terms of c1, c2, c3 . The last condition then
becomes (Okunbor & Skeel 1992b)

1 + 24
(
c1 −

1
2

)(
c2 −

1
2

)
+ 24(c2 − c1)(c3 − c1)(c3 − c2) (16.52)

+ 144
(
c1 −

1
2

)(
c2 −

1
2

)(
c3 −

1
2

)(
c1 + c3 − c2 −

1
2

)
= 0.

We thus get a two-parameter family of third order methods. Okunbor & Skeel
(1992b) suggest taking

c2 =
1
2
, c1 = 1− c3 =

1
6

(
2 + 3

√
2+

1
3
√

2

)
(16.53)

(the real root of 12c1(2c1 − 1)2 = 1 ). This method is symmetric and thus of order
4 . Another 3 -stage method of order 4 has been found by Qin Meng-Zhao & Zhu
Wen-jie (1991).

Higher order methods. For the construction of methods of order ≥ 4 it is worth-
while to investigate the effect of the condition (16.46b) on the order conditions.
As for partitioned Runge-Kutta methods one can show that SN-trees with the same
geometrical structure lead to equivalent order conditions. For details we refer to
Calvo & Sanz-Serna (1992). With the notation of Table 14.3, the SN-trees t6 and
t7 as well as the pairs t9, t12 and t10, t13 give rise to equivalent order conditions.
Consequently, for order 5 , one has to consider 10 conditions. Okunbor & Skeel
(1992c) present explicit, symplectic Nyström methods of orders 5 and 6 with 5
and 7 stages, respectively. A 7 th order method is given by Calvo & Sanz-Serna
(1992b).
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Conservation of the Hamiltonian; Backward Analysis

The differential equation actually solved by the difference scheme
will be called the modified equation.

(Warming & Hyett 1974, p. 161)

The wrong solution of the right equation; the right solution of the
wrong equation. (Feng Kang, Beijing Sept. 1, 1992)

We have observed above (Example 16.2 and Fig. 16.6) that for the numerical so-
lution of symplectic methods the Hamiltonian H remained between fixed bounds
over any long-term integration, i.e., so-called secular changes of H were absent.
Following several authors (Yoshida 1993, Sanz-Serna 1992, Feng Kang 1991b) this
phenomenon is explained by interpreting the numerical solution as the exact solu-
tion of a perturbed Hamiltonian system, which is obtained as the formal expansion
(16.56) in powers of h . The exact conservation of the perturbed Hamiltonian H̃
then involves the quasi-periodic behaviour of H along the computed points. This
resembles Wilkinson’s famous idea of backward error analysis in linear algebra
and, in the case of differential equations, seems to go back to Warming & Hyett
(1974). We demonstrate this idea for the symplectic Euler method (see (16.36b))

p1 = p0 −hHq(p0, q1)

q1 = q0 +hHp(p0, q1)
(16.54)

which, when expanded around the point (p0, q0) , gives

p1 = p0 −hHq −h2HqqHp −
h3

2
HqqqHpHp −h3HqqHpqHp − . . .

∣∣∣
p0,q0

q1 = q0 +hHp +h2HpqHp +
h3

2
HpqqHpHp +h3HpqHpqHp + . . .

∣∣∣
p0,q0

.

(16.54’)
In the case of non-scalar equations the p’s and q ’s must here be equipped with var-
ious summation indices. We suppress these in the sequel for the sake of simplicity
and think of scalar systems only. The exact solution of a perturbed Hamiltonian

ṗ = −H̃q(p, q)

q̇ = H̃p(p, q)

has a Taylor expansion analogous to Theorem 2.6 as follows

p1 = p0 −hH̃q +
h2

2

(
H̃qpH̃q − H̃qqH̃p

)
+ . . .

q1 = q0 +hH̃p +
h2

2

(
−H̃ppH̃q + H̃pqH̃p

)
+ . . . .

(16.55)

We now set
H̃ = H +hH(1) +h2H(2) +h3H(3) + . . . (16.56)

with unknown functions H(1), H(2), . . ., insert this into (16.55) and compare the
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resulting formulas with (16.54’). Then the comparison of the h2 terms gives

H(1)
q =

1
2

HqqHp +
1
2

HqpHq, H(1)
p =

1
2

HppHq +
1
2

HpqHp

which by miracle (the “miracle” is in fact a consequence of the symplecticity of
method (16.54)) allow the common primitive

H(1) =
1
2

HpHq. (16.56;1)

The h3 terms lead to

H(2) =
1
12
(
HppH

2
q +HqqH

2
p + 4HpqHpHq

)
(16.56;2)

and so on.

Connection with the Campbell-Baker-Hausdorff formula. An elegant access to
the expansion (16.56), which works for separable Hamiltonians H(p, q) = T (p)+
U(q) , has been given by Yoshida (1993). We interpret method (16.54) as compo-
sition of the two symplectic maps

z0 =
(

p0

q0

)
ST�−→ z =

(
p0

q1

)
SU�−→ z1 =

(
p1

q1

)
(16.57)

which consist, respectively, in solving exactly the Hamiltonian systems

ṗ = 0

q̇ = Tp(p)
and

ṗ = −Uq(q)

q̇ = 0
(16.58)

and apply some Lie theory. If we introduce for these equations the differential
operators given by (13.2’)

DT Ψ =
∂Ψ
∂q

Tp(p), DUΨ = −∂Ψ
∂p

Uq(q), (16.59)

the formulas (13.3) allow us to write the Taylor series of the map ST as

z =
∞∑

i=0

hi

i!
Di

T z
∣∣∣
z=z0

. (16.60)

If now F (z) is an arbitrary function of the solution z(t) = (p(t), q(t)) (left equa-
tion of (16.58)), we find, as in (13.2), that

F (z)′ = DT F, F (z)′′ = D2
T F, . . .

and (16.60) extends to (Gröbner 1960)

F (z) =
∞∑

i=0

hi

i!
Di

T F (z)
∣∣∣
z=z0

. (16.60’).

We now insert SU for F and insert for SU the formula analogous to (16.60) to
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obtain for the composition (16.57)

z1 = (p1, q1) =
∞∑

i=0

hi

i!
Di

T

∞∑
j=0

hj

j!
Dj

Uz
∣∣∣
z=z0

= exp(hDT ) exp(hDU )(p, q)
∣∣∣
p=p0,q=q0

.

(16.61)

But the product exp(hDT ) exp(hDU ) is not exp(hDT +hDU ) , as we have all
learned in school, because the operators DT and DU do not commute. This is
precisely the content of the famous Campbell-Baker-Hausdorff Formula (claimed
in 1898 by J.E. Campbell and proved independently by Baker (1905) and in the
“kleine Untersuchung” of Hausdorff (1906)) which states, for our problem, that

exp(hDT ) exp(hDU ) = exp(hD̃) (16.62)

where

D̃ =DT +DU +
h

2
[DT , DU ] +

h2

12
(
[DT , [DT , DU ]] + [DU , [DU , DT ]]

)
+

h3

24
[DT , [DU , [DU , DT ]]] + . . . (16.63)

and [DA, DB]=DADB −DBDA is the commutator. Equation (16.62) shows that
the map (16.57) is the exact solution of the differential equation corresponding to
the differential operator D̃ . A straightforward calculation now shows: If

DAΨ = −∂Ψ
∂p

Aq +
∂Ψ
∂q

Ap and DBΨ = −∂Ψ
∂p

Bq +
∂Ψ
∂q

Bp (16.64)

are differential operators corresponding to Hamiltonians A and B respectively,
then

[DA, DB]Ψ = DCΨ = −∂Ψ
∂p

Cq +
∂Ψ
∂q

Cp

where
C = ApBq −AqBp. (16.65)

A repeated application of (16.65) now allows us to obtain for all brackets in (16.63)
a corresponding Hamiltonian which finally leads to

H̃ = T +U +
h

2
TpUq +

h2

12
(TppU

2
q +UqqT

2
p ) +

h3

12
TppUqqTpUq + . . . (16.66)

which is the specialization of (16.56) to separable Hamiltonians.

Example 16.12 (Yoshida 1993). For the mathematical pendulum

H(p, q) =
p2

2
− cos q (16.67)

series (16.66) becomes

H̃ =
p2

2
− cos q +

h

2
p sin q +

h2

12
(sin2 q + p2 cos q) +

h3

12
p cos q sin q +O(h4).

(16.68)
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Fig. 16.9 presents for various step sizes h and for various initial points (p0=0, q0=
−1.5 ; p0=0, q0 =−2.5 ; p0 =1.5, q0 =−π ; p0=2.5, q0 =−π ) the numerically
computed points for method (16.54) compared to the contour lines of H̃ = Const
given by the terms up to order h3 in (16.68). The excellent agreement of the results
with theory for h ≤ 0.6 leaves nothing to be desired, while for h beyond 0.9 the
dynamics of the numerical method turns rapidly into chaotic behaviour.

hh hh

hh hh

Fig. 16.9. Symplectic method compared to perturbed Hamiltonian
(• . . . indicate the initial positions)

Remark. For much research, especially in the beginning of the “symplectic era”, the
central role for the construction of canonical difference schemes is played by the
Hamilton-Jacobi theory and generating functions. For this, the reader may consult
the papers Feng Kang (1986), Feng Kang, Wu Hua-mo, Qin Meng-zhao & Wang
Dao-liu (1989), Channell & Scovel (1990) and Miesbach & Pesch (1992). Many
additional numerical experiments can be found in Channell & Scovel (1990), Feng
Kang (1991), and Pullin & Saffman (1991).
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Exercises

1. Show that explicit Runge-Kutta methods are never symplectic.

Hint. Compute the diagonal elements of M .

2. Study the existence and uniqueness of the numerical solution for the implicit
mid-point rule when applied to the Hamiltonian system

ṗ = −q2, q̇ = p.

Show that the method possesses no solution at all for h2q0 +h3p0/2 < −1
and two solutions for h2q0 +h3p0/2 >−1 (h �= 0 ). Only one of the solutions
tends to (p0, q0) for h → 0 .

3. A Runge-Kutta method is called linearly symplectic if it is symplectic for all
linear Hamiltonian systems

ẏ = J−1Cy

(J is given in (16.19) and C is a symmetric matrix). Prove (Feng Kang 1985)
that a Runge-Kutta method is linearly symplectic if and only if its stability
function satisfies

R(−z)R(z) = 1 for all z ∈ C. (16.69)

Hint. For the definition of the stability function see Section IV.2 of Volume II.
Then by Theorem I.14.14, linear symplecticity is equivalent to

R(hJ−1C)T JR(hJ−1C) = J.

Furthermore, the matrix B := J−1C is seen to verify BT J =−JB and hence
also (Bk)T J = J(−B)k for k = 0, 1, 2, . . .. This implies that

R(hJ−1C)T J = JR(−hJ−1C).

4. Prove that the stability function of a symmetric Runge-Kutta method satisfies
(16.69).

5. Compute all quadratic first integrals of the Hamiltonian system (16.4).

6. For a separable Hamiltonian consider the method (16.26) where aij = 0 for
i < j , âij = 0 for i < j and for every i either aii = 0 or âii = 0 . If the method
satisfies (16.28) then it is equivalent to one given by scheme (16.33).

Hint. Remove first all stages which don’t influence the numerical result (see
the remark after Theorem 16.10). Then deduce from (16.28) relations similar
to (16.32). Finally, remove identical stages and add, if necessary, a dummy
stage in order that both methods have the same number of stages.



338 II. Runge-Kutta and Extrapolation Methods

7. (Lasagni 1990). Characterize symplecticity for multi-derivative Runge-Kutta
methods. Show that the s -stage q -derivative method of Definition 13.1 is sym-
plectic if its coefficients satisfy

b
(r)
i b

(m)
j − b

(r)
i a

(m)
ij − b

(m)
j a

(r)
ji =

{
b
(r+m)
i if i = j and r +m ≤ q,

0 otherwise.
(16.70)

Hint. Denote k(r) = Dr
Hp , 	(r) = Dr

Hq , where DH is the differential operator
as in (16.59) and (16.64), so that the exact solution of (16.1) is given by

p(x0+h)=p0 +
∑
r≥1

hr

r!
k(r)(p0, q0), q(x0+h)= q0 +

∑
r≥1

hr

r!
	(r)(p0, q0).

Then deduce from the symplecticity of the exact solution that
1
�!
(
dp∧ d	(�) + dk(�) ∧ dq

)
+
∑

r+m=�

1
r!

1
m!

dk(r) ∧ d	(m) = 0. (16.71)

This, together with a modification of the proof of Theorem 16.6, allows us to
obtain the desired result.

8. (Yoshida 1990, Qin Meng-Zhao & Zhu Wen-Jie 1992). Let y1 =ψh(y0) denote
a symmetric numerical scheme of order p = 2k . Prove that the composed
method

ψc1h ◦ψc2h ◦ψc1h

is symmetric and has order p + 2 if

2c1 + c2 = 1, 2c2k+1
1 + c2k+1

2 = 0. (16.72)

Hence there exist, for separable Hamiltonians, explicit symplectic partitioned
methods of arbitrarily high order.

Hint. Proceed as for (4.1)-(4.2) and use Theorem 8.10 (the order of a symmetric
method is even).

9. The Hamiltonian function (16.24) for the galactic problem is not separable.
Nevertheless, both methods (16.36a) and (16.36b) can be applied explicitly.
Explain.
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Detailed studies of the real world impel us, albeit reluctantly, to
take account of the fact that the rate of change of physical systems
depends not only on their present state, but also on their past
history. (Bellman & Cooke 1963)

Delay differential equations are equations with “retarded arguments” or “time lags”
such as

y′(x) = f
(
x, y(x), y(x− τ)

)
(17.1)

or

y′(x) = f
(
x, y(x), y(x− τ1), y(x− τ2)

)
(17.2)

or of even more general form. Here the derivative of the solutions depends also on
its values at previous points.

Time lags are present in many models of applied mathematics. They can also
be the source of interesting mathematical phenomena such as instabilities, limit
cycles, periodic behaviour.

Existence

For equations of the type (17.1) or (17.2), where the delay values x−τ are bounded
away from x by a positive constant, the question of existence is an easy matter:
suppose that the solution is known, say

y(x) = ϕ(x) for x0 − τ ≤ x ≤ x0 .

Then y(x−τ) is a known function of x for x0≤x≤x0 +τ and (17.1) becomes an
ordinary differential equation, which can be treated by known existence theories.
We then know y(x) for x0 ≤x≤x0 +τ and can compute the solution for x0 +τ ≤
x≤x0 +2τ and so on. This “method of steps” then yields existence and uniqueness
results for all x . For more details we recommend the books of Bellman & Cooke
(1963) and Driver (1977, especially Chapter V).

Example 1. We consider the equation

y′(x) = −y(x− 1), y(x) = 1 for − 1 ≤ x ≤ 0. (17.3)
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Proceeding as described above, we obtain

y(x) = 1−x for 0 ≤ x ≤ 1,

y(x) = 1−x +
(x− 1)2

2!
for 1 ≤ x ≤ 2,

y(x) = 1−x +
(x− 1)2

2!
− (x− 2)3

3!
for 2 ≤ x ≤ 3, etc.

The solution is displayed in Fig. 17.1. We observe that despite the fact that the dif-
ferential equation and the initial function are C∞ , the solution has discontinuities
in its derivatives. This results from the fact that the initial function does not satisfy
the differential equation. With every time step τ , however, these discontinuities
are smoothed out more and more.

y   discontinuous

y   disc.

y   disc.

Fig. 17.1. Solution of (17.3)

Example 2. Our next example clearly illustrates the fact that the solutions of a
delay equation depend on the entire history between x0 − τ and x0 , and not only
on the initial value:

y′(x) = −1.4 · y(x− 1) (17.4)

a) ϕ(x) = 0.8 for −1 ≤ x ≤ 0,
b) ϕ(x) = 0.8 +x for −1 ≤ x ≤ 0,
c) ϕ(x) = 0.8 + 2x for −1 ≤ x ≤ 0.

The solutions are displayed in Fig. 17.2. An explanation for the oscillatory be-
haviour of the solutions will be given below.

a)

b)

c)

Fig. 17.2. Solutions of (17.4)
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Constant Step Size Methods for Constant Delay

If we apply the Runge-Kutta method (1.8) (or (7.7)) to a delay equation (17.1) we
obtain

g
(n)
i = yn +h

∑
j

aijf
(
xn + cjh, g

(n)
j , y(xn + cjh− τ)

)
yn+1 = yn +h

∑
j

bjf
(
xn + cjh, g

(n)
j , y(xn + cjh− τ)

)
.

But which values should we give to y(xn + cjh− τ)? If the delay is constant and
satisfies τ = kh for some integer k , the most natural idea is to use the back-values
of the old solution

g
(n)
i = yn +h

∑
j

aijf(xn + cjh, g
(n)
j , γ

(n)
j ) (17.5a)

yn+1 = yn +h
∑

j

bjf(xn + cjh, g
(n)
j , γ

(n)
j ) (17.5b)

where

γ
(n)
j =

{
ϕ(xn + cjh− τ) if n < k

g
(n−k)
j if n ≥ k.

(17.5c)

This can be interpreted as solving successively

y′(x) = f
(
x, y(x), ϕ(x− τ)

)
(17.1a)

for the interval [x0, x0 + τ ] , then

y′(x) = f
(
x, y(x), z(x)

)
z′(x) = f

(
x− τ, z(x), ϕ(x− 2τ)

) (17.1b)

for the interval [x0 + τ, x0 + 2τ ] , then

y′(x) = f
(
x, y(x), z(x)

)
z′(x) = f

(
x− τ, z(x), v(x)

)
v′(x) = f

(
x− 2τ, v(x), ϕ(x− 3τ)

) (17.1c)

for the interval [x0 + 2τ, x0 + 3τ ] , and so on. This is the perfect numerical analog
of the “method of steps” mentioned above.

Theorem 17.1. If ci, aij, bj are the coefficients of a p-th order Runge-Kutta
method, then (17.5) is convergent of order p .

Proof. The sequence (17.1a), (17.1b), . . . are ordinary differential equations nor-
mally solved by a p th order Runge-Kutta method. Therefore the result follows
immediately from Theorem 3.6.
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Remark. For the collocation method based on Gaussian quadrature formula, Theo-
rem 17.1 yields superconvergence in spite of the use of the low order approxima-
tions γ

(n)
j of (17.5c). Bellen (1984) generalizes this result to the situation where

τ = τ(x) and γ
(n)
j is the value of the collocation polynomial at xn + cjh− τ(xn +

cjh) . He proves superconvergence if the grid-points are chosen such that every in-
terval [xn−1, xn] is mapped, by x− τ(x) , into [xj−1, xj] for some j < n .

Numerical Example. We have integrated the problem

y′(x) =
(
1.4− y(x− 1)

) · y(x)

(see (17.12) below) for 0 ≤ x ≤ 10 with initial values y(x) = 0 , −1 ≤ x < 0 ,
y(0) = 0.1 , and step sizes h = 1, 1/2, 1/4, 1/8, . . . , 1/128 using Kutta’s methods
of order 4 (Table 1.2, left). The absolute value of the global errors (and the solu-
tion in grey) are presented in Fig. 17.3. The 4 th order convergence can clearly be
observed. The downward peaks are provoked by sign changes in the error.

y(x)

x

err
h

h

h

h

h

h

h

h

Fig. 17.3. Errors of RK44 with retarded stages (17.5)

Variable Step Size Methods

Although method (17.5) allows efficient and easy to code computations for simple
problems with constant delays (such as all the examples of this section), it does not
allow to change the step size arbitrarily, and an application to variable delay equa-
tions is not straightforward. If complete flexibility is desired, we need a global
approximation to the solution. Such global approximations are furnished by multi-
step methods of Adams or BDF type (see Chapter III.1) or the modern Runge-Kutta
methods which are constructed together with a dense output. The code RETARD
of the appendix is a modification of the code DOPRI5 (method of Dormand &
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Prince in Table 5.2 with Shampine’s dense output; see (6.12), (6.13) and the sub-
sequent discussion) in such a way that after every successful step of integration the
coefficients of the continuous solution are written into memory. Back-values of the
solution are then available by calling the function YLAG(I,X,PHI). For example,
for problem (17.4) the subroutine FCN would read as

F(1) = −1.4D0 ∗ YLAG(1, X− 1.D0, PHI).

As we have seen, the solutions possess discontinuities in the derivatives at several
points, e.g. for (17.1) at x0 + τ, x0 + 2τ, x0 + 3τ, . . . etc. Therefore the code
RETARD provides a possibility to match given points of discontinuities exactly
(specify IWORK(6) and WORK(11), . . .) which improves precision and computa-
tion time.

Earlier Runge-Kutta codes for delay equations have been written by Oppelstrup
(1976), Oberle & Pesch (1981) and Bellen & Zennaro (1985). Bock & Schlöder
(1981) exploited the natural dense output of multistep methods.

Stability

It can be observed from Fig. 17.1 and Fig. 17.2 that the solutions, after the initial
phase, seem to tend to something like eαx cos β(x− δ) . We now try to determine
α and β . We study the equation

y′(x) = λy(x) +μy(x− 1). (17.6)

There is no loss of generality in supposing the delay τ = 1 , since any delay τ �= 1
can be reduced to τ = 1 by a coordinate change.

We search for a solution of the form

y(x) = eγx where γ = α + iβ. (17.7)

Introducing this into (17.6) we obtain the following “characteristic equation” for γ

γ −λ−μe−γ = 0, (17.8)

which, for μ �= 0 , possesses an infinity of solutions: in fact, if |γ| becomes large,
we obtain from (17.8), since λ is fixed, that μe−γ must be large too and

γ ≈ μe−γ . (17.8’)

This implies that γ = α + iβ is close to the imaginary axis. Hence |γ| ≈ |β| and
from (17.8’)

|β| ≈ |μ|e−α.

Therefore the roots of (17.8) lie asymptotically on the curves −α = log |β| −
log |μ| . Again from (17.8’), we have a root whenever the argument of μe−iβ is
close to π/2 (for β > 0 ), i.e. if

β ≈ argμ− π

2
+ 2kπ k = 1, 2, . . .
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There are thus two sequences of characteristic values which tend to infinity on log-
arithmic curves left of the imaginary axis, with 2π as asymptotic distance between
two consecutive values.

The “general solution” of (17.6) is thus a Fourier-like superposition of solu-
tions of type (17.7) (Wright 1946, see also Bellman & Cooke 1963, Chapter 4).
The larger −Re γ is, the faster these solutions “die out” as x → ∞ . The domi-
nant solutions are thus (provided that the corresponding coefficients are not zero)
those which correspond to the largest real part, i.e., those closest to the origin.
For equations (17.3) and (17.4) the characteristic equations are γ + e−γ = 0 and
γ + 1.4e−γ = 0 with solutions γ = −0.31813± 1.33724i and γ = −0.08170±
1.51699i respectively, which explains nicely the behaviour of the asymptotic solu-
tions of Fig. 17.1 and Fig. 17.2.

Remark. For the case of matrix equations

y′(x) = Ay(x) +By(x− 1)

where A and B are not simultaneously diagonizable, we set y(x) = veγx where
v �= 0 is a given vector. The equation now leads to

γv = Av +Be−γv,

which has a nontrivial solution if

det(γI −A−Be−γ) = 0, (17.8”)

the characteristic equation for the more general case. The shape of the solutions of
(17.8”) is similar to those of (17.8), there are just r = rank(B) points in each strip
of width 2π instead of one.

All solutions of (17.6) remain stable for x →∞ if all characteristic roots of
(17.8) remain in the negative half plane. This result follows either from the above
expansion theorem or from the theory of Laplace transforms (e.g., Bellmann &
Cooke (1963), Chapter 1), which, in fact, is closely related.

In order to study the boundary of the stability domain, we search for (λ, μ)
values for which the first solution γ crosses the imaginary axis, i.e. γ = iθ for θ
real. If we insert this into (17.8), we obtain

λ = −μ for θ = 0 (γ real)

λ = iθ−μe−iθ for θ �= 0

or, by separating real and imaginary parts,

λ =
cos θ · θ
sin θ

, μ = − θ

sin θ

valid for real λ and μ . These paths are sketched in Fig. 17.4 and separate in the
(λ, μ) -plane the domains of stability and instability for the solutions of (17.6) (a
result of Hayes 1950).
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If we put θ = π/2 , we find that the solutions of y′(x) = μy(x− 1) remain
stable for

−π

2
≤ μ ≤ 0 (17.9a)

and are unstable for

μ < −π

2
as well as μ > 0. (17.9b)

stable

stable

Fig. 17.4. Domain of stability for y′(x) = λy(x) + μy(x− 1)

An Example from Population Dynamics

Lord Cherwell drew my attention to an equation, equivalent to (8)
(here: (17.12)) with a = log 2 , which he had encountered in his
application of probability methods to the problem of distribution
of primes. My thanks are due to him for thus introducing me to
an interesting problem. (E.M. Wright 1945)

We now demonstrate the phenomena discussed above and the power of our pro-
grams on a couple of examples drawn from applications. For supplementary ap-
plications of delay equations to all sorts of sciences, consult the impressive list in
Driver (1977, p. 239-240).

Let y(x) represent the population of a certain species, whose development as
a function of time is to be studied. The simple model of infinite exponential growth
y′ = λy was soon replaced by the hypothesis that the growth rate λ will decrease
with increasing population y due to illness and lack of food and space. One then
arrives at the model (Verhulst 1845, Pearl & Reed 1922)

y′(x) = k · (a− y(x)
) · y(x). (17.10)
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“Nous donnerons le nom logistique à la courbe caractérisée par l’équation pré-
cédente” (Verhulst). It can be solved by elementary functions (Exercise 1). All
solutions with initial value y0 > 0 tend asymptotically to a as x → ∞ . If we
assume the growth rate to depend on the population of the preceding generation,
(17.10) becomes a delay equation (Cunningham 1954, Wright 1955, Kakutani &
Markus 1958)

y′(x) = k · (a− y(x− τ)
) · y(x). (17.11)

Introducing the new function z(x) = kτy(τx) into (17.11) and again replacing z
by y and kaτ by a we obtain

y′(x) =
(
a− y(x− 1)

) · y(x). (17.12)

This equation has an equilibrium point at y(x) = a . The substitution y(x) = a +
z(x) and linearization leads to the equation z′(x) = −az(x− 1) , and condition
(17.9) shows that this equilibrium point is locally stable if 0 < a ≤ π/2 . Hence
the characteristic equation, here γ + ae−γ = 0 , possesses two real solutions iff
a < 1/e = 0.368 , which makes monotonic solutions possible; otherwise they are
oscillatory. For a > π/2 the equilibrium solution is unstable and gives rise to a
periodic limit cycle.

a

a a a

a

Fig. 17.5. Solutions of the population dynamics problem (17.12)

The solutions in Fig. 17.5 have been computed by the code RETARD of the
appendix with subroutine FCN as

F(1) = (A− YLAG(1, X− 1.D0, PHI)) ∗ Y(1), A = 0.35, 0.5, 1., 1.4, and 1.6.
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Infectious Disease Modelling

De tous ceux qui ont traité cette matière, c’est sans contredit M.
de la Condamine qui l’a fait avec plus de succès. Il est déjà venu
à bout de persuader la meilleure partie du monde raisonnable de
la grande utilité de l’inoculation: quant aux autres, il serait inutile
de vouloir employer la raison avec eux: puisqu’ils n’agissent pas
par principes. Il faut les conduire comme des enfants vers leur
mieux . . . (Daniel Bernoulli 1760)

Daniel Bernoulli (“Docteur en medecine, Professeur de Physique en l’Université de
Bâle, Associé étranger de l’Academie des Sciences”) was the first to use differential
calculus to model infectious diseases in his 1760 paper on smallpox vaccination.
At the beginning of our century, mathematical modelling of epidemics gained new
interest. This finally led to the classical model of Kermack & McKendrick (1927):
let y1(x) measure the susceptible portion of the population, y2(x) the infected,
and y3(x) the removed (e.g. immunized) one. It is then natural to assume that
the number of newly infected people per time unit is proportional to the product
y1(x)y2(x) , just as in bimolecular chemical reactions (see Section I.16). If we
finally assume the number of newly removed persons to be proportional to the
infected ones, we arrive at the model

y′
1 = −y1y2, y′

2 = y1y2 − y2, y′
3 = y2 (17.13)

where we have taken for simplicity all rate constants equal to one. This system
can be integrated by elementary methods (divide the first two equations and solve
dy2/dy1 = −1 + 1/y1 ). The numerical solution with initial values y1(0) = 5,
y2(0) = 0.1, y3(0) = 1 is painted in gray color in Fig. 17.6: an epidemic breaks
out, everybody finally becomes “removed” and nothing further happens.

y (removed)

y (susceptible)

y (infected)

Fig. 17.6. Periodic outbreak of disease, model (17.14)
(in gray: Solution of Kermack - McKendrick model (17.13))

We arrive at a periodic outbreak of the disease, if we assume that immunized
people become susceptible again, say after a fixed time τ (τ = 10) . If we also
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introduce an incubation period of, say, τ2 = 1, we arrive at the model

y′
1(x) = −y1(x)y2(x− 1) + y2(x− 10)

y′
2(x) = y1(x)y2(x− 1)− y2(x)

y′
3(x) = y2(x)− y2(x− 10)

(17.14)

instead of (17.13). The solutions of (17.14), for the initial phases y1(x) = 5 ,
y2(x) = 0.1 , y3(x) = 1 for x ≤ 0 , are shown in Fig. 17.6 and illustrate the pe-
riodic outbreak of the disease.

An Example from Enzyme Kinetics

Our next example, more complicated than the preceding ones, is from enzyme
kinetics (Okamoto & Hayashi 1984). Consider the following consecutive reactions

I Y
z

Y
k

Y
k

Y
k

(17.15)

where I is an exogenous substrate supply which is maintained constant and n
molecules of the end product Y4 inhibit co-operatively the reaction step of Y1 →Y2

as

z =
k1

1 +α(y4(x))n
.

It is generally expected that the inhibitor molecule must be moved to the position
of the regulatory enzyme by forces such as diffusion or active transport. Thus,
we consider this time consuming process causing time-delay and we arrive at the
model

y′
1(x) = I − zy1(x)

y′
2(x) = zy1(x)− y2(x)

y′
3(x) = y2(x)− y3(x)

y′
4(x) = y3(x)− 0.5y4(x)

z =
1

1 + 0.0005(y4(x− 4))3
. (17.16)

This system possesses an equilibrium at zy1 = y2 = y3 = I, y4 = 2I, y1 = I(1 +
0.004I3) =: c1 . When it is linearized in the neighbourhood of this equilibrium
point, it becomes

y′
1(x) = −c1y1(x) + c2y4(x− 4)

y′
2(x) = c1y1(x)− y2(x)− c2y4(x− 4)

y′
3(x) = y2(x)− y3(x)

y′
4(x) = y3(x)− 0.5y4(x)

(17.17)
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where c2 = c1 · I3 · 0.006 . By setting y(x) = v · eγx we arrive at the characteristic
equation (see (17.8”)), which becomes after some simplifications

(c1 + γ)(1 + γ)2(0.5 + γ) + c2γe−4γ = 0. (17.18)

As in the paper of Okamoto & Hayashi, we put I = 10.5 . Then (17.18) possesses
one pair of complex solutions in C+ , namely

γ = 0.04246± 0.47666i

and the equilibrium solution is unstable (see Fig. 17.7). The period of the solution
of the linearized equation is thus T =2π/0.47666=13.18. The solutions then tend
to a limit cycle of approximately the same period.

y

y

y

y

Fig. 17.7. Solutions of the enzyme kinetics problem (17.16), I = 10.5.

Initial values close to equilibrium position

A Mathematical Model in Immunology

We conclude our series of examples with Marchuk’s model (Marchuk 1975) for the
struggle of viruses V (t) , antibodies F (t) and plasma cells C(t) in the organism
of a person infected by a viral disease. The equations are

dV

dt
= (h1 −h2F )V

dC

dt
= ξ(m)h3F (t− τ)V (t− τ)−h5(C − 1)

dF

dt
= h4(C −F )−h8FV.

(17.19)

The first is a Volterra - Lotka like predator-prey equation. The second equation
describes the creation of new plasma cells with time lag due to infection, in the
absence of which the second term creates an equilibrium at C = 1 . The third
equation models the creation of antibodies from plasma cells (h4C) and their
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Fig. 17.8. Solutions of the Marchuk immunology model

decrease due to aging (−h4F ) and binding with antigens (−h8FV ) . The term
ξ(m) , finally, is defined by

ξ(m) =

{ 1 if m ≤ 0.1

(1−m)
10
9

if 0.1 ≤ m ≤ 1

and expresses the fact that the creation of plasma cells slows down when the organ-
ism is damaged by the viral infection. The relative characteristic m(t) of damaging
is given by a fourth equation

dm

dt
= h6V −h7m

where the first term expresses the damaging and the second recuperation.
This model allows us, by changing the coefficients h1 , h2, . . . , h8 , to model

all sorts of behaviour of stable health, unstable health, acute form of a disease,
chronic form etc. See Chapter 2 of Marchuk (1983). In Fig. 17.8 we plot the
solutions of this model for τ = 0.5, h1 = 2, h2 = 0.8, h3 = 104, h4 = 0.17,
h5 = 0.5, h7 = 0.12, h8 = 8 and initial values V (t) = max(0, 10−6 + t) if t≤ 0,
C(0)=1, F (t)=1 if t≤0, m(0)=0. In dependence of the value of h6 (h6 =10



II.17 Delay Differential Equations 351

or h6 =300 ), we then observe either complete recovery (defined by V (t)<10−16 ),
or periodic outbreak of the disease due to damaging (m(t) becomes nearly 1 ).

Integro-Differential Equations

Often the hypothesis that a system depends on the time lagged solution at a speci-
fied fixed value x− τ is not very realistic, and one should rather suppose this de-
pendence to be stretched out over a longer period of time. Then, instead of (17.1),
we would have for example

y′(x) = f
(
x, y(x),

∫ x

x−τ

K
(
x, ξ, y(ξ)

)
dξ
)
. (17.20)

The numerical treatment of these problems becomes much more expensive (see
Brunner & van der Houwen (1986) for a study of various discretization methods).
If K(x, ξ, y) is zero in the neighbourhood of the diagonal x=ξ , one can eventually
use RETARD and call a quadrature routine for each function evaluation.

Fortunately, many integro-differential equations can be reduced to ordinary or
delay differential equations by introducing new variables for the integral function.

Example (Volterra 1934). Consider the equation

y′(x) =
(
ε−αy(x)−

∫ x

0

k(x− ξ)y(ξ) dξ
)
· y(x) (17.21)

for population dynamics, where the integral term represents a decrease of the re-
production rate due to pollution. If now for example k(x) = c , we put∫ x

0

y(ξ) dξ = v(x), y(x) = v′(x)

and obtain

v′′(x) =
(
ε−αv′(x)− cv(x)

) · v′(x),

an ordinary differential equation.

The same method is possible for equations (17.20) with “degenerate kernel”;
i.e., where

K(x, ξ, y) =
m∑

i=1

ai(x)bi(ξ, y). (17.22)

If we insert this into (17.20) and put

vi(x) =
∫ x

x−τ

bi

(
ξ, y(ξ)

)
dξ, (17.23)
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we obtain

y′(x) = f
(
x, y(x),

m∑
i=1

ai(x)vi(x)
)

v′
i(x) = bi

(
x, y(x)

)− bi

(
x− τ, y(x− τ)

)
i = 1, . . . , m,

(17.20’)

a system of delay differential equations.

Exercises

1. Compute the solution of the Verhulst & Pearl equation (17.10).

2. Compute the equilibrium points of Marchuk’s equation (17.19) and study their
stability.

3. Assume that the kernel k(x) in Volterra’s equation (17.21) is given by

k(x) = p(x)e−βx

where p(x) is some polynomial. Show that this problem can be transformed
into an ordinary differential equation.

4. Consider the integro-differential equation

y′(x) = f
(
x, y(x),

∫ x

0

K
(
x, ξ, y(ξ)

)
dξ
)
. (17.24)

a) For the degenerate kernel (17.22) problem (17.24) becomes equivalent to
the ordinary differential equation

y′(x) = f
(
x, y(x),

m∑
j=1

aj(x)vj(x)
)

v′
j(x) = bj

(
x, y(x)

)
.

(17.25)

b) Show that an application of an explicit (p th order) Runge-Kutta method to
(17.25) yields the formulas (Pouzet 1963)

yn+1 = yn +h

s∑
i=1

bif(xn + cih, g
(n)
i , u

(n)
i )

g
(n)
i = yn +h

i−1∑
j=1

aijf(xn + cjh, g
(n)
j , u

(n)
j )

u
(n)
i = Fn(xn + cih) +h

i−1∑
j=1

aijK(xn + cih, xn + cjh, g
(n)
j )

(17.26)
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where

F0(x) = 0, Fn+1(x) = Fn(x) +h

s∑
i=1

biK(x, xn + cih, g
(n)
i ).

c) If we apply method (17.26) to problem (17.24), where the kernel does not
necessarily satisfy (17.22), we nevertheless have convergence of order p .

Hint. Approximate the kernel by a degenerate one.

5. (Zennaro 1986). For the delay equation (17.1) consider the method (17.5)
where (17.5c) is replaced by

γ
(n)
j =

{
ϕ(xn + cjh− τ) if n < k

qn−k(cj) if n ≥ k.
(17.5c’)

Here qn(θ) is the polynomial given by a continuous Runge-Kutta method (Sec-
tion II.6)

qn(θ) = yn +h

s∑
j=1

bj(θ)f(xn + cjh, g
(n)
j , γ

(n)
j ).

a) Prove that the orthogonality conditions∫ 1

0

θq−1
(
γ(t)

s∑
j=1

bj(θ)Φj(t)− θ�(t)
)

dθ = 0 for q + �(t) ≤ p

(17.27)
imply convergence of order p , if the underlying Runge-Kutta method is of
order p for ordinary differential equations.

Hint. Use the theory of B-series and the Gröbner - Alekseev formula
(I.14.18) of Section I.14.

b) If for a given Runge-Kutta method the polynomials bj(θ) of degree ≤
[(p + 1)/2] are such that bj(0) = 0 , bj(1) = bj and∫ 1

0

θq−1bj(θ) dθ =
1
q

bj(1− cq
j), q = 1, . . . , [(p− 1)/2], (17.28)

then (17.27) is satisfied. In addition one has the order conditions
s∑

j=1

bj(θ)Φj(t) =
θ�(t)

γ(t)
for �(t) ≤ [(p + 1)/2] .

c) Show that the conditions (17.28) admit unique polynomials bj(θ) of de-
gree [(p + 1)/2] .

6. Solve Volterra’s equation (17.21) with k(x) = c and compare the solution with
the “pollution free” problem (17.10). Which population lives better, that with
pollution, or that without?



Chapter III. Multistep Methods
and General Linear Methods

This chapter is devoted to the study of multistep and general multivalue methods.
After retracing their historical development (Adams, Nyström, Milne, BDF) we
study in the subsequent sections the order, stability and convergence properties
of these methods. Convergence is most elegantly set in the framework of one-
step methods in higher dimensions. Sections III.5 and III.6 are devoted to variable
step size and Nordsieck methods. We then discuss the various available codes
and compare them on the numerical examples of Section II.10 as well as on some
equations of high dimension. Before closing the chapter with a section on special
methods for second order equations, we discuss two highly theoretical subjects:
one on general linear methods, including Runge-Kutta methods as well as multistep
methods and many generalizations, and the other on the asymptotic expansion of
the global error of such methods.
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. . . , and my undertaking must have ended here, if I had depended
upon my own resources. But at this point Professor J.C. Adams
furnished me with a perfectly satisfactory method of calculating
by quadratures the exact theoretical forms of drops of fluids from
the Differential Equation of Laplace, . . . (F. Bashforth 1883)

Another improvement of Euler’s method was considered even earlier than Runge-
Kutta methods — the methods of Adams. These were devised by John Couch
Adams in order to solve a problem of F. Bashforth, which occurred in an investiga-
tion of capillary action. Both the problem and the numerical integration schemes
are published in Bashforth (1883). The actual origin of these methods must date
back to at least 1855, since in that year F. Bashforth made an application to the
Royal Society for assistance from the Government grant. There he wrote: “ . . . , but
I am indebted to Mr Adams for a method of treating the differential equation

ddz

du2(
1 +

dz2

du2

)3/2
+

1
u

dz

du(
1 +

dz2

du2

)1/2
− 2αz =

2
b
,

when put under the form

b

�
+

b

x
sin ϕ = 2 + 2αb2 z

b
= 2 +β

z

b
,

which gives the theoretical form of the drop with an accuracy exceeding that of the
most refined measurements.”

In contrast to one-step methods, where the numerical solution is obtained solely
from the differential equation and the initial value, the algorithm of Adams consists
of two parts: firstly, a starting procedure which provides y1, . . . , yk−1 (approxima-
tions to the exact solution at the points x0 +h, . . . , x0 + (k− 1)h) and, secondly,
a multistep formula to obtain an approximation to the exact solution y(x0 + kh) .
This is then applied recursively, based on the numerical approximations of k suc-
cessive steps, to compute y(x0 + (k + 1)h) , etc.

There are several possibilities for obtaining the missing starting values. J.C.
Adams actually computed them using the Taylor series expansion of the exact so-
lution (as described in Section I.8, see also Exercise 2). Another possibility is the
use of any one-step method, e.g., a Runge-Kutta method (see Chapter II). It is also
usual to start with low-order Adams methods and very small step sizes.
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Explicit Adams Methods

We now derive, following Adams, the first explicit multistep formulas. We in-
troduce the notation xi = x0 + ih for the grid points and suppose we know the
numerical approximations yn, yn−1, . . . , yn−k+1 to the exact solution y(xn), . . . ,
y(xn−k+1) of the differential equation

y′ = f(x, y), y(x0) = y0. (1.1)

Adams considers (1.1) in integrated form,

y(xn+1) = y(xn) +
∫ xn+1

xn

f
(
t, y(t)

)
dt. (1.2)

On the right hand side of (1.2) there appears the unknown solution y(x) . But since
the approximations yn−k+1, . . . , yn are known, the values

fi = f(xi, yi) for i = n− k + 1, . . . , n (1.3)

are also available and it is natural to replace the function f(t, y(t)) in (1.2) by the
interpolation polynomial through the points {(xi, fi) | i = n−k+1, . . . , n} (see
Fig. 1.1).

xn k . . . xn xn xn

fn k

fn fn p t

xn k . . . xn xn xn

fn k

fn fn
fn

p* t

Fig. 1.1. Explicit Adams methods Fig. 1.2. Implicit Adams methods

This polynomial can be expressed in terms of backward differences

∇0fn = fn, ∇j+1fn = ∇jfn −∇jfn−1

as follows:

p(t) = p(xn + sh) =
k−1∑
j=0

(−1)j

(−s

j

)
∇jfn (1.4)

(Newton’s interpolation formula of 1676, published in Newton (1711), see e.g.
Henrici (1962), p. 190). The numerical analogue to (1.2) is then given by

yn+1 = yn +
∫ xn+1

xn

p(t) dt

or after insertion of (1.4) by

yn+1 = yn +h
k−1∑
j=0

γj∇jfn (1.5)
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where the coefficients γj satisfy

γj = (−1)j

∫ 1

0

(−s

j

)
ds (1.6)

(see Table 1.1 for their numerical values). A simple recurrence relation for these
coefficients will be derived below (formula (1.7)).

Table 1.1. Coefficients for the explicit Adams methods

j 0 1 2 3 4 5 6 7 8

γj 1
1
2

5
12

3
8

251
720

95
288

19087
60480

5257
17280

1070017
3628800

Special cases of (1.5). For k = 1, 2, 3, 4 , after expressing the backward differences
in terms of fn−j , one obtains the formulas

k = 1 : yn+1 = yn +hfn (explicit Euler method)

k = 2 : yn+1 = yn +h
(3

2
fn − 1

2
fn−1

)
k = 3 : yn+1 = yn +h

(23
12

fn − 16
12

fn−1 +
5
12

fn−2

)
k = 4 : yn+1 = yn +h

(55
24

fn − 59
24

fn−1 +
37
24

fn−2 −
9
24

fn−3

)
.

(1.5’)

Recurrence relation for the coefficients. Using Euler’s method of generating
functions we can deduce a simple recurrence relation for γi (see e.g. Henrici 1962).
Denote by G(t) the series

G(t) =
∞∑

j=0

γjt
j .

With the definition of γj and the binomial theorem one obtains

G(t) =
∞∑

j=0

(−t)j

∫ 1

0

(−s

j

)
ds =

∫ 1

0

∞∑
j=0

(−t)j

(−s

j

)
ds

=
∫ 1

0

(1− t)−s ds = − t

(1− t) log(1− t)
.

This can be written as

− log(1− t)
t

G(t) =
1

1− t
or as (

1 +
1
2
t +

1
3
t2 + . . .

)(
γ0 + γ1t + γ2t

2 + . . .
)

=
(
1 + t + t2 + . . .

)
.
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Comparing the coefficients of tm we get the desired recurrence relation

γm +
1
2
γm−1 +

1
3
γm−2 + . . .+

1
m+ 1

γ0 = 1. (1.7)

Implicit Adams Methods

The formulas (1.5) are obtained by integrating the interpolation polynomial (1.4)
from xn to xn+1 , i.e., outside the interpolation interval (xn−k+1, xn) . It is well
known that an interpolation polynomial is usually a rather poor approximation
outside this interval. Adams therefore also investigated methods where (1.4)
is replaced by the interpolation polynomial which uses in addition the point
(xn+1, fn+1) , i.e.,

p∗(t) = p∗(xn + sh) =
k∑

j=0

(−1)j

(−s + 1
j

)
∇jfn+1 (1.8)

(see Fig. 1.2). Inserting this into (1.2) we obtain the following implicit method

yn+1 = yn +h
k∑

j=0

γ∗
j∇jfn+1 (1.9)

where the coefficients γ∗
j satisfy

γ∗
j = (−1)j

∫ 1

0

(−s + 1
j

)
ds (1.10)

and are given in Table 1.2 for j ≤ 8 . Again, a simple recurrence relation can be
derived for these coefficients (Exercise 3).

Table 1.2. Coefficients for the implicit Adams methods

j 0 1 2 3 4 5 6 7 8

γ∗
j 1 −1

2
− 1

12
− 1

24
− 19

720
− 3

160
− 863

60480
− 275

24192
− 33953

3628800

The formulas thus obtained are generally of the form

yn+1 = yn +h
(
βkfn+1 + . . .+β0fn−k+1

)
. (1.9’)
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The first examples are as follows

k = 0 : yn+1 = yn +hfn+1 = yn +hf(xn+1, yn+1)

k = 1 : yn+1 = yn +h
(1

2
fn+1 +

1
2
fn

)
k = 2 : yn+1 = yn +h

( 5
12

fn+1 +
8
12

fn − 1
12

fn−1

)
k = 3 : yn+1 = yn +h

( 9
24

fn+1 +
19
24

fn − 5
24

fn−1 +
1
24

fn−2

)
.

(1.9”)

The special cases k =0 and k =1 are the implicit Euler method and the trapezoidal
rule, respectively. They are actually one-step methods and have already been con-
sidered in Chapter II.7.

The methods (1.9) give in general more accurate approximations to the exact
solution than (1.5). This will be discussed in detail when the concepts of order
and error constant are introduced (Section III.2). The price for this higher accuracy
is that yn+1 is only defined implicitly by formula (1.9). Therefore, in general a
nonlinear equation has to be solved at each step.

Predictor-corrector methods. One possibility for solving this nonlinear equation
is to apply fixed point iteration. In practice one proceeds as follows:

P: compute the predictor ŷn+1 = yn +h
∑k−1

j=0 γj∇jfn by the explicit Adams
method (1.5); this already yields a reasonable approximation to y(xn+1) ;

E: evaluate the function at this approximation: f̂n+1 = f(xn+1, ŷn+1) ;

C: apply the corrector formula

yn+1 = yn +h
(
βkf̂n+1 +βk−1fn + . . .+β0fn−k+1

)
(1.11)

to obtain yn+1 .

E: evaluate the function anew, i.e., compute fn+1 = f(xn+1, yn+1) .
This is the most common procedure, denoted by PECE. Other possibilities are:
PECECE (two fixed point iterations per step) or PEC (one uses f̂n+1 instead of
fn+1 in the subsequent steps).

This predictor-corrector technique has been used by F.R. Moulton (1926) as
well as by W.E. Milne (1926). J.C. Adams actually solved the implicit equation
(1.9) by Newton’s method, in the same way as is now usual for stiff equations (see
Volume II).

Remark. Formula (1.5) is often attributed to Adams-Bashforth. Similarly, the mul-
tistep formula (1.9) is usually attributed to Adams-Moulton (Moulton 1926). In
fact, both formulas are due to Adams.
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Numerical Experiment

We consider the Van der Pol equation (I.16.2) with ε = 1 , take as initial values
y1(0) = A , y2(0) = 0 on the limit cycle and integrate over one period T (for the
values of A and T see Exercise I.16.1). This is exactly the same problem as the
one used for the comparison of Runge-Kutta methods (Fig. II.1.1). We have applied
the above explicit and implicit Adams methods with several fixed step sizes. The
missing starting values were computed with high accuracy by an explicit Runge-
Kutta method. Fig. 1.3 shows the errors of both components in dependence of the
number of function evaluations. Since we have implemented the implicit method
(1.9) in PECE mode it requires 2 function evaluations per step, whereas the explicit
method (1.5) needs only one.

This experiment shows that, for the same value of k , the implicit methods
usually give a better result (the strange behaviour in the error of the y2 -component
for k ≥ 3 is due to a sign change). Since we have used double logarithmic scales,
it is possible to read the “numerical order” from the slope of the corresponding
lines. We observe that the global error of the explicit Adams methods behaves like
O(hk) and that of the implicit methods like O(hk+1) . This will be proved in the
following sections.

We also remark that the scales used in Fig. 1.3 are exactly the same as those of
Fig. II.1.1. This allows a comparison with the Runge-Kutta methods of Section II.1.

fe

error of y

kk
k

k

k

fe

error of y

k
k

k

explicit Adams, k
implicit Adams (PECE), k

Fig. 1.3. Global errors versus number of function evaluations
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Explicit Nyström Methods

Die angenäherte Integration hat, besonders in der letzten Zeit,
ein ausgedehntes Anwendungsgebiet innerhalb der exakten Wis-
senschaften und der Technik gefunden. (E.J. Nyström 1925)

In his review article on the numerical integration of differential equations (which
we have already encountered in Section II.14), Nyström (1925) also presents a new
class of multistep methods. He considers instead of (1.2) the integral equation

y(xn+1) = y(xn−1) +
∫ xn+1

xn−1

f
(
t, y(t)

)
dt. (1.12)

In the same way as above he replaces the unknown function f(t, y(t)) by the poly-
nomial p(t) of (1.4) and so obtains the formula (see Fig. 1.4)

yn+1 = yn−1 +h
k−1∑
j=0

κj∇jfn (1.13)

with the coefficients

κj = (−1)j

∫ 1

−1

(−s

j

)
ds. (1.14)

The first of these coefficients are given in Table 1.3. E.J. Nyström recommended
the formulas (1.13), because the coefficients κj were more convenient for his com-
putations than the coefficients γj of (1.6). This recommendation, surely reasonable
for a computation by hand, is of little relevance for computations on a computer.

xn k . . . xn xn xn

fn k

fn fn p t

xn k . . . xn xn xn

fn k

fn fn
fn

p* t

Fig. 1.4. Explicit Nyström methods Fig. 1.5. Milne-Simpson methods

Table 1.3. Coefficients for the explicit Nyström methods

j 0 1 2 3 4 5 6 7 8

κj 2 0
1
3

1
3

29
90

14
45

1139
3780

41
140

32377
113400

Special cases. For k = 1 the formula

yn+1 = yn−1 + 2hfn (1.13’)
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is obtained. It is called the mid-point rule and is the simplest two-step method. Its
symmetry was extremely useful in the extrapolation schemes of Section II.9. The
case k = 2 yields nothing new, because κ1 = 0 . For k = 3 one gets

yn+1 = yn−1 +h
(7

3
fn − 2

3
fn−1 +

1
3
fn−2

)
. (1.13”)

Milne–Simpson Methods

We consider again the integral equation (1.12). But now we replace the integrand
by the polynomial p∗(t) of (1.8), which in addition to fn, . . . , fn−k+1 also in-
terpolates the value fn+1 (see Fig. 1.5). Proceeding as usual, we get the implicit
formulas

yn+1 = yn−1 +h
k∑

j=0

κ∗
j∇jfn+1. (1.15)

The coefficients κ∗
j are defined by

κ∗
j = (−1)j

∫ 1

−1

(−s + 1
j

)
ds, (1.16)

and the first of these are given in Table 1.4.

Table 1.4. Coefficients for the Milne-Simpson methods

j 0 1 2 3 4 5 6 7 8

κ∗
j 2 −2

1
3

0 − 1
90

− 1
90

− 37
3780

− 8
945

− 119
16200

If the backward differences in (1.15) are expressed in terms of fn−j , one obtains
the following methods for special values of k :

k = 0 : yn+1 = yn−1 + 2hfn+1,

k = 1 : yn+1 = yn−1 + 2hfn, (1.15’)

k = 2 : yn+1 = yn−1 +h
(1

3
fn+1 +

4
3
fn +

1
3
fn−1

)
,

k = 4 : yn+1 = yn−1 +h
(29

90
fn+1 +

124
90

fn +
24
90

fn−1 +
4
90

fn−2 −
1
90

fn−3

)
.

The special case k = 0 is just Euler’s implicit method applied with step size 2h .
For k = 1 one obtains the previously derived mid-point rule. The particular case
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k = 2 is an interesting method, known as the Milne method (Milne 1926, 1970, p.
66). It is a direct generalization of Simpson’s rule.

Many other similar methods have been investigated. They are all based on an
integral equation of the form

y(xn+1) = y(xn−�) +
∫ xn+1

xn−�

f
(
t, y(t)

)
dt, (1.17)

where f(t, y(t)) is replaced either by the interpolating polynomial p(t) (formula
(1.4)) or by p∗(t) (formula (1.8)). E.g., for 	 = 3 one obtains

yn+1 = yn−3 +h
(8

3
fn − 4

3
fn−1 +

8
3
fn−2

)
. (1.18)

This particular method has been used by Milne (1926) as a “predictor” for his
method: in order to solve the implicit equation (1.15’), Milne uses one or two
fixed-point iterations with the numerical value of (1.18) as starting point.

Methods Based on Differentiation (BDF)

“My name is Gear.” — “pardon?”
“Gear, dshii, ii, ay, are.” — “Mr. Jiea?”

(In a hotel of Paris)

The multistep formulas considered until now are all based on numerical integration,
i.e., the integral in (1.17) is approximated numerically using some quadrature for-
mula. The underlying idea of the following multistep formulas is totally different
as they are based on the numerical differentiation of a given function.

Assume that the approximations yn−k+1, . . . , yn to the exact solution of (1.1)
are known. In order to derive a formula for yn+1 we consider the polynomial q(x)
which interpolates the values {(xi, yi) | i = n−k +1, . . . , n+1} . As in (1.8) this
polynomial can be expressed in terms of backward differences, namely

q(x) = q(xn + sh) =
k∑

j=0

(−1)j

(−s + 1
j

)
∇jyn+1. (1.19)

The unknown value yn+1 will now be determined in such a way that the polyno-
mial q(x) satisfies the differential equation at at least one grid-point, i.e.,

q′(xn+1−r) = f(xn+1−r, yn+1−r). (1.20)

For r = 1 we obtain explicit formulas. For k = 1 and k = 2 , these are equivalent
to the explicit Euler method and the mid-point rule, respectively. The case k = 3
yields

1
3
yn+1 +

1
2
yn − yn−1 +

1
6
yn−2 = hfn. (1.21)

This formula, however, as well as those for k > 3 , is unstable (see Section III.3)
and therefore useless.
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Much more interesting are the formulas one obtains when (1.20) is taken for
r = 0 (see Fig. 1.6).

xn k . . . xn xn xn

yn k

yn yn
yn

q t

Fig. 1.6. Definition of BDF

In this case one gets the implicit formulas

k∑
j=0

δ∗j∇jyn+1 = hfn+1 (1.22)

with the coefficients

δ∗j = (−1)j d

ds

(−s + 1
j

)∣∣∣
s=1

.

Using the definition of the binomial coefficient

(−1)j

(−s + 1
j

)
=

1
j!

(s− 1)s(s + 1) . . . (s + j − 2)

the coefficients δ∗j are obtained by direct differentiation:

δ∗0 = 0, δ∗j =
1
j

for j ≥ 1 . (1.23)

Formula (1.22) therefore becomes
k∑

j=1

1
j
∇jyn+1 = hfn+1. (1.22’)

These multistep formulas, known as backward differentiation formulas (or BDF-
methods), are, since the work of Gear (1971), widely used for the integration of
stiff differential equations (see Volume II). They were introduced by Curtiss &
Hirschfelder (1952); Mitchell & Craggs (1953) call them “standard step-by-step
methods”.

For the sake of completeness we give these formulas also in the form which
expresses the backward differences in terms of the yn−j .

k = 1 : yn+1 − yn = hfn+1,

k = 2 :
3
2
yn+1 − 2yn +

1
2
yn−1 = hfn+1, (1.22”)
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k = 3 :
11
6

yn+1 − 3yn +
3
2
yn−1 −

1
3
yn−2 = hfn+1,

k = 4 :
25
12

yn+1 − 4yn + 3yn−1 −
4
3
yn−2 +

1
4
yn−3 = hfn+1,

k = 5 :
137
60

yn+1 − 5yn + 5yn−1 −
10
3

yn−2 +
5
4
yn−3 −

1
5
yn−4 = hfn+1,

k = 6 :
147
60

yn+1 − 6yn +
15
2

yn−1 −
20
3

yn−2 +
15
4

yn−3 −
6
5
yn−4 +

1
6
yn−5

= hfn+1.

For k > 6 the BDF-methods are unstable (see Section III.3).

Exercises

1. Let the differential equation y′ = y2 , y(0) = 1 and the exact starting values
yi = 1/(1−xi) for i = 0, 1, . . . , k−1 be given. Apply the methods of Adams
and study the expression y(xk)− yk for small step sizes.

2. Consider the differential equation at the beginning of this section. It describes
the form of a drop and can be written as (F. Bashforth 1883, page 26; the same
problem as Exercise 2 of Section II.1 in a different coordinate system)

dx

dϕ
= � cosϕ,

dz

dϕ
= � sinϕ (1.24)

where
1
�

+
sin ϕ

x
= 2 +βz. (1.25)

� may be considered as a function of the coordinates x and z . It can be
interpreted as the radius of curvature and ϕ denotes the angle between the
normal to the curve and the z -axis (see Fig. 1.7 for β = 3 ). The initial values
are given by x(0) = 0 , z(0) = 0 , �(0) = 1 .

Solve the above differential equation along the lines of J.C. Adams:

a) Assuming
� = 1 + b2ϕ

2 + b4ϕ
4 + . . .

and inserting this expression into (1.24) we obtain after integration the
truncated Taylor series of x(ϕ) and z(ϕ) in terms of b2, b4, . . . . These
parameters can then be calculated from (1.25) by comparing the coeffi-
cients of ϕm . In this way one obtains the solution for small values of ϕ
(starting values).

b) Use one of the proposed multistep formulas and calculate the solution for
fixed β (say β = 3 ) over the interval [0, π] .
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xz

Fig. 1.7. Solution of the differential equation (1.24)
and an illustration from the book of Bashforth

3. Prove that the coefficients γ∗
j , defined by (1.10), satisfy γ∗

0 = 1 and

γ∗
m +

1
2
γ∗

m−1 +
1
3
γ∗

m−2 + . . .+
1

m+ 1
γ∗
0 = 0 for m ≥ 1.

4. Let κj , κ
∗
j , γj, γ

∗
j be the coefficients defined by (1.14), (1.16), (1.6), (1.10),

respectively. Show that (with γ−1 = γ∗
−1 = 0 )

κj = 2γj − γj−1, κ∗
j = 2γ∗

j − γ∗
j−1 for j ≥ 0.

Hint. By splitting the integral in (1.14) one gets κj = γj + γ∗
j . The relation

γ∗
j = γj − γj−1 is obtained by using a well-known identity for binomial coef-

ficients.
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You know, I am a multistep man . . . and don’t tell anybody, but the first
program I wrote for the first Swedish computer was a Runge-Kutta code . . .

(G. Dahlquist, 1982, after some glasses of wine; printed with permission)

A general theory of multistep methods was started by the work of Dahlquist
(1956, 1959), and became famous through the classical book of Henrici (1962).
All multistep formulas considered in the previous section have this in common that
the numerical approximations yi as well as the values fi appear linearly. We thus
consider the general difference equation

αkyn+k +αk−1yn+k−1 + . . .+α0yn = h(βkfn+k + . . .+β0fn) (2.1)

which includes all considered methods as special cases. In this formula the αi and
βi are real parameters, h denotes the step size and

fi = f(xi, yi), xi = x0 + ih.

Throughout this chapter we shall assume that

αk �= 0, |α0|+ |β0| > 0. (2.2)

The first assumption expresses the fact that the implicit equation (2.1) can be solved
with respect to yn+k at least for sufficiently small h . The second relation in (2.2)
can always be achieved by reducing the index k , if necessary.

Formula (2.1) will be called a linear multistep method or more precisely a
linear k-step method. We also distinguish between explicit (βk = 0) and implicit
(βk �= 0) multistep methods.

Local Error of a Multistep Method

As the numerical solution of a multistep method does not depend only on the initial
value problem (1.1) but also on the choice of the starting values, the definition of
the local error is not as straightforward as for one-step methods (compare Sections
II.2 and II.3).

Definition 2.1. The local error of the multistep method (2.1) is defined by

y(xk)− yk
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xn k. . . xn kxn xn

yn kyn

yn k
yn

y x
local error

Fig. 2.1. Illustration of the local error

where y(x) is the exact solution of y′ = f(x, y) , y(x0) = y0 , and yk is the nu-
merical solution obtained from (2.1) by using the exact starting values yi = y(xi)
for i = 0, 1, . . . , k− 1 (see Fig. 2.1).

In the case k = 1 this definition coincides with the definition of the local error
for one-step methods. In order to show the connection with other possible defi-
nitions of the local error, we associate with (2.1) the linear difference operator L
defined by

L(y, x, h) =
k∑

i=0

(
αiy(x + ih)−hβiy

′(x + ih)
)
. (2.3)

Here y(x) is some differentiable function defined on an interval that contains the
values x + ih for i = 0, 1, . . . , k .

Lemma 2.2. Consider the differential equation (1.1) with f(x, y) continuously
differentiable and let y(x) be its solution. For the local error one has

y(xk)− yk =
(
αkI −hβk

∂f

∂y
(xk, η

)−1

L(y, x0, h).

Here η is some value between y(xk) and yk , if f is a scalar function. In the case
of a vector valued function f , the matrix ∂f

∂y (xk, η) is the Jacobian whose rows
are evaluated at possibly different values lying on the segment joining y(xk) and
yk .

Proof. By Definition 2.1, yk is determined implicitly by the equation

k−1∑
i=0

(
αiy(xi)−hβif

(
xi, y(xi)

))
+αkyk −hβkf(xk, yk) = 0.

Inserting (2.3) we obtain

L(y, x0, h) = αk

(
y(xk)− yk

)−hβk

(
f(xk, y(xk))− f(xk, yk)

)
and the statement follows from the mean value theorem.
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This lemma shows that α−1
k L(y, x0, h) is essentially equal to the local error.

Sometimes this term is also called the local error (Dahlquist 1956, 1959). For
explicit methods both expressions are equal.

Order of a Multistep Method

Once the local error of a multistep method is defined, one can introduce the concept
of order in the same way as for one-step methods.

Definition 2.3. The multistep method (2.1) is said to be of order p, if one of the
following two conditions is satisfied:

i) for all sufficiently regular functions y(x) we have L(y, x, h) = O(hp+1) ;

ii) the local error of (2.1) is O(hp+1) for all sufficiently regular differential equa-
tions (1.1).

Observe that by Lemma 2.2 the above conditions (i) and (ii) are equivalent.
Our next aim is to characterize the order of a multistep method in terms of the free
parameters αi and βi . Dahlquist (1956) was the first to observe the fundamental
role of the polynomials

�(ζ) = αkζk +αk−1ζ
k−1 + . . .+α0

σ(ζ) = βkζk +βk−1ζ
k−1 + . . .+β0.

(2.4)

They will be called the generating polynomials of the multistep method (2.1).

Theorem 2.4. The multistep method (2.1) is of order p , if and only if one of the
following equivalent conditions is satisfied:

i)
k∑

i=0

αi = 0 and
k∑

i=0

αii
q = q

k∑
i=0

βii
q−1 for q = 1, . . . , p;

ii) �(eh)−hσ(eh) = O(hp+1) for h → 0;

iii)
�(ζ)
log ζ

−σ(ζ) = O((ζ − 1)p
)

for ζ → 1.

Proof. Expanding y(x+ ih) and y′(x+ ih) into a Taylor series and inserting these
series (truncated if necessary) into (2.3) yields

L(y, x, h) =
k∑

i=0

(
αi

∑
q≥0

iq

q!
hqy(q)(x)−hβi

∑
r≥0

ir

r!
hry(r+1)(x)

)

= y(x)
k∑

i=0

αi +
∑
q≥1

hq

q!
y(q)(x)

( k∑
i=0

αii
q − q

k∑
i=0

βii
q−1
)
.

(2.5)
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This implies the equivalence of condition (i) with L(y, x, h) = O(hp+1) for all
sufficiently regular functions y(x) .

It remains to prove that the three conditions of Theorem 2.4 are equivalent. The
identity

L(exp, 0, h) = �(eh)−hσ(eh)

where exp denotes the exponential function, together with

L(exp, 0, h) =
k∑

i=0

αi +
∑
q≥1

hq

q!

( k∑
i=0

αii
q − q

k∑
i=0

βii
q−1
)
,

which follows from (2.5), shows the equivalence of the conditions (i) and (ii).
By use of the transformation ζ = eh (or h=log ζ ) condition (ii) can be written

in the form

�(ζ)− log ζ · σ(ζ) = O((log ζ)p+1
)

for ζ → 1.

But this condition is equivalent to (iii), since

log ζ = (ζ − 1) +O((ζ − 1)2
)

for ζ → 1.

Remark. The conditions for a multistep method to be of order 1, which are usually
called consistency conditions, can also be written in the form

�(1) = 0, �′(1) = σ(1). (2.6)

Once the proofs of the above order conditions have been understood, it is not dif-
ficult to treat the more general situation of non-equidistant grids (see Section III.5
and the book of Stetter (1973), p. 191).

Example 2.5. Order of the explicit Adams methods. Let us first investigate for
which differential equations the explicit Adams methods give theoretically the ex-
act solution. This is the case if the polynomial p(t) of (1.4) is equal to f(t, y(t)) .
Suppose now that f(t, y) = f(t) does not depend on y and is a polynomial of
degree less than k . Then the explicit Adams methods integrate the differential
equations

y′ = qxq−1, for q = 0, 1, . . . , k

exactly. This means that the local error is zero and hence, by Lemma 2.2,

0 = L(xq, 0, h) = hq
( k∑

i=0

αii
q − q

k∑
i=0

βii
q−1
)

for q = 0, . . . , k.

This is just condition (i) of Theorem 2.4 with p = k so that the order of the explicit
Adams methods is at least k . In fact it will be shown that the order of these methods
is not greater than k (Example 2.7).
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Example 2.6. For implicit Adams methods the polynomial p∗(t) of (1.8) has degree
one higher than that of p(t) . Thus the same considerations as in Example 2.5 show
that these methods have order at least k + 1 .

All methods of Section III.1 can be treated analogously (see Exercise 3 and
Table 2.1).

Table 2.1. Order and error constant of multistep methods

method formula order error constant

explicitAdams (1.5) k γk

implicitAdams (1.9) k + 1 γ∗
k+1

midpoint rule (1.13’) 2 1/6

Nyström, k > 2 (1.13) k κk/2

Milne, k = 2 (1.15’) 4 −1/180

Milne-Simpson, k > 3 (1.15) k + 1 κ∗
k+1/2

BDF (1.22’) k −1/(k + 1)

Error Constant

The order of a multistep method indicates how fast the error tends to zero if h→ 0 .
Different methods of the same order, however, can have different errors; they are
distinguished by the error constant. Formula (2.5) shows that the difference opera-
tor L , associated with a p th order multistep method, is such that for all sufficiently
regular functions y(x)

L(y, x, h) = Cp+1h
p+1y(p+1)(x) +O(hp+2) (2.7)

where the constant Cp+1 is given by

Cp+1 =
1

(p + 1)!

( k∑
i=0

αii
p+1 − (p + 1)

k∑
i=0

βii
p
)
. (2.8)

This constant is not suitable as a measure of accuracy, since multiplication of for-
mula (2.1) by a constant can give any value for Cp+1 , whereas the numerical so-
lution {yn} remains unchanged. A better choice would be the constant α−1

k Cp+1 ,
since the local error of a multistep method is given by (Lemma 2.2 and formula
(2.7))

y(xk)− yk = α−1
k Cp+1h

p+1y(p+1)(x0) +O(hp+2). (2.9)
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For several reasons, however, this is not yet a satisfactory definition, as we shall
see from the following motivation: let

en =
y(xn)− yn

hp

be the global error scaled by hp , and assume for this motivation that en = O(1) .
Subtracting (2.1) from (2.3) and using (2.7) we have

k∑
i=0

αien+i = h1−p
k∑

i=0

βi

(
f
(
xn+i, y(xn+i)

)− f(xn+i, yn+i)
)

+Cp+1hy(p+1)(xn) +O(h2).

(2.10)

The point is now to use

y(p+1)(xn) =
1

σ(1)

k∑
i=0

βiy
(p+1)(xn+i) +O(h) (2.11)

which brings the error term in (2.10) inside the sum with the βi . We linearize

f
(
xn+i, y(xn+i)

)− f(xn+i, yn+i) =
∂f

∂y

(
xn+i, y(xn+i)

)
hpen+i +O(h2p)

and insert this together with (2.11) into (2.10). Neglecting the O(h2) and O(h2p)
terms, we can interpret the obtained formula as the multistep method applied to

e′(x) =
∂f

∂y

(
x, y(x)

)
e(x) +Cy(p+1)(x), e(x0) = 0, (2.12)

where

C =
Cp+1

σ(1)
(2.13)

is seen to be a natural measure for the global error and is therefore called the error
constant.

Another derivation of Definition (2.13) will be given in the section on global
convergence (see Exercise 2 of Section III.4). Further, the solution of (2.12) gives
the first term of the asymptotic expansion of the global error (see Section III.9).

Example 2.7. Error constant of the explicit Adams methods. Consider the differ-
ential equation y′ = f(x) with f(x) = (k + 1)xk , the exact solution of which is
y(x)= xk+1 . As this differential equation is integrated exactly by the (k +1) -step
explicit Adams method (see Example 2.5), we have

y(xk)− y(xk−1) = h

k∑
j=0

γj∇jfk−1.

The local error of the k -step explicit Adams method (1.5) is therefore given by

y(xk)− yk = hγk∇kfk−1 = hk+1γkf (k)(x0) = hk+1γky(k+1)(x0).
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As γk �= 0 , this formula shows that the order of the k -step method is not greater
than k (compare Example 2.5). Furthermore, since αk = 1 , a comparison with
formula (2.9) yields Ck+1 = γk . Finally, for Adams methods we have �(ζ) =
ζk − ζk−1 and �′(1) = 1 , so that by the use of (2.6) the error constant is given by
C = γk .

The error constants of all other previously considered multistep methods are
summarized in Table 2.1 (observe that σ(1) = 2 for explicit Nyström and Milne-
Simpson methods).

Irreducible Methods

Let �(ζ) and σ(ζ) of formula (2.4) be the generating polynomials of (2.1) and
suppose that they have a common factor ϕ(ζ) . Then the polynomials

�∗(ζ) =
�(ζ)
ϕ(ζ)

, σ∗(ζ) =
σ(ζ)
ϕ(ζ)

,

are the generating polynomials of a new and simpler multistep method. Using the
shift operator E , defined by

Eyn = yn+1 or Ey(x) = y(x +h),

this multistep method can be written in compact form as

�∗(E)yn = hσ∗(E)fn.

Multiplication by ϕ(E) shows that any solution {yn} of this method is also a so-
lution of �(E)yn = hσ(E)fn . The two methods are thus essentially equal. Denote
by L∗ the difference operator associated with the new reduced method, and by
C∗

p+1 the constant given by (2.7). As

L(y, x, h) = ϕ(E)L∗(y, x, h) = C∗
p+1h

p+1ϕ(E)y(p+1)(x) +O(hp+2)

= C∗
p+1ϕ(1)hp+1y(p+1)(x) +O(hp+2)

one immediately obtains Cp+1 = ϕ(1)C∗
p+1 and therefore also the relation

Cp+1/σ(1) = C∗
p+1/σ∗(1)

holds. Both methods thus have the same error constant.
The above analysis has shown that multistep methods whose generating poly-

nomials have a common factor are not interesting. We therefore usually assume
that

�(ζ) and σ(ζ) have no common factor. (2.14)

Multistep methods satisfying this property are called irreducible.
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The Peano Kernel of a Multistep Method

The order and the error constant above do not yet give a complete description of
the error, since the subsequent terms of the series for the error may be much larger
than Cp+1 . Several attempts have therefore been made, originally for the error of
a quadrature formula, to obtain a complete description of the error. The following
discussion is an extension of the ideas of Peano (1913).

Theorem 2.8. Let the multistep method (2.1) be of order p and let q (1 ≤ q ≤ p)
be an integer. For any (q + 1) -times continuously differentiable function y(x) we
then have

L(y, x, h) = hq+1

∫ k

0

Kq(s)y
(q+1)(x + sh) ds, (2.15)

where

Kq(s) =
1
q!

k∑
i=0

αi(i− s)q
+ − 1

(q− 1)!

k∑
i=0

βi(i− s)q−1
+ (2.16a)

with

(i− s)r
+ =

{
(i− s)r for i− s > 0
0 for i− s ≤ 0.

Kq(s) is called the q th Peano kernel of the multistep method (2.1).

Remark. We see from (2.16a) that Kq(s) is a piecewise polynomial and satisfies

Kq(s) =
1
q!

k∑
i=j

αi(i− s)q − 1
(q− 1)!

k∑
i=j

βi(i− s)q−1 for s ∈ [j − 1, j).

(2.16b)

Proof. Taylor’s theorem with the integral representation of the remainder yields

y(x + ih) =
q∑

r=0

ir

r!
hry(r)(x) +hq+1

∫ i

0

(i− s)q

q!
y(q+1)(x + sh) ds,

hy′(x + ih) =
q∑

r=1

ir−1

(r− 1)!
hry(r)(x) +hq+1

∫ i

0

(i− s)q−1

(q− 1)!
y(q+1)(x + sh) ds.

Inserting these two expressions into (2.3), the same considerations as in the proof
of Theorem 2.4 show that for q≤ p the polynomials before the integral cancel. The
statement then follows from∫ i

0

(i− s)q

q!
y(q+1)(x + sh) ds =

∫ k

0

(i− s)q
+

q!
y(q+1)(x + sh) ds.



376 III. Multistep Methods and General Linear Methods

Besides the representation (2.16), the Peano kernel Kq(s) has the following
properties:

Kq(s) = 0 for s ∈ (−∞, 0)∪ [k,∞) and q = 1, . . . , p ; (2.17)

Kq(s) is (q− 2) -times continuously differentiable and
K ′

q(s) = −Kq−1(s) for q = 2, . . . , p (for q = 2 piecewise); (2.18)

K1(s) is a piecewise linear function with discontinuities at
0, 1, . . . , k . It has a jump of size βj at the point j and its
slope over the interval (j − 1, j) is given by −(αj +αj+1 +
. . .+αk) ; (2.19)

For the constant Cp+1 of (2.8) we have Cp+1 =
∫ k

0
Kp(s)ds . (2.20)

The proofs of Statements (2.17) to (2.20) are as follows: it is an immediate con-
sequence of the definition of the Peano kernel that Kq(s) = 0 for s ≥ k and
q ≤ p . In order to prove that Kq(s) = 0 also for s < 0 we consider the polynomial
y(x) = (x− s)q with s as a parameter. Theorem 2.8 then shows that

L(y, 0, 1) =
k∑

i=0

αi(i− s)q − q
k∑

i=0

βi(i− s)q−1 ≡ 0 for q ≤ p

and hence Kq(s) = 0 for s < 0 . This gives (2.17). The relation (2.18) is seen
by partial integration of (2.15). As an example, the Peano kernels for the 3-step
Nyström method (1.13”) are plotted in Fig. 2.2.

K s K s K s

Fig. 2.2. Peano kernels of the 3-step Nyström method



III.2 Local Error and Order Conditions 377

Exercises

1. Construction of multistep methods. Let �(ζ) be a k th degree polynomial sat-
isfying �(1) = 0 .

a) There exists exactly one polynomial σ(ζ) of degree ≤ k , such that the
order of the corresponding multistep method is at least k + 1 .

b) There exists exactly one polynomial σ(ζ) of degree <k , such that the cor-
responding multistep method, which is then explicit, has order at least k .

Hint. Use condition (iii) of Theorem 2.4.

2. Find the multistep method of the form

yn+2 +α1yn+1 +α0yn = h(β1fn+1 +β0fn)

of the highest possible order. Apply this formula to the example y′ =y , y(0)=
1 , h = 0.1.

3. Verify that the order and the error constant of the BDF-formulas are those of
Table 2.1.

4. Show that the Peano kernel Kp(s) does not change sign for the explicit and
implicit Adams methods, nor for the BDF-formulas. Deduce from this property
that

L(y, x, h) = hp+1Cp+1y
(p+1)(ζ) with ζ ∈ (x, x + kh)

where the constant Cp+1 is given by (2.8).

5. Let y(x) be an exact solution of y′ = f(x, y) and let yi = y(xi) , i = 0, 1, . . . ,
k− 1 . Assume that f is continuous and satisfies a Lipschitz condition with
respect to y (f not necessarily differentiable). Prove that for consistent multi-
step methods (i.e., methods with (2.6)) the local error satisfies

‖y(xk)− yk‖ ≤ hω(h)

where ω(h) → 0 for h → 0 .
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. . . hat der Verfasser seither öfters Verfahren zur numerischen
Integration von Differentialgleichungen beobachtet, die, obschon
zwar mit bestechend kleinem Abbruchfehler behaftet, doch die
grosse Gefahr der numerischen Instabilität in sich bergen.

(H. Rutishauser 1952)

Rutishauser observed in his famous paper that high order and a small local error
are not sufficient for a useful multistep method. The numerical solution can be
“unstable”, even though the step size h is taken very small. The same observation
was made by Todd (1950), who applied certain difference methods to second order
differential equations. Our presentation will mainly follow the lines of Dahlquist
(1956), where this effect has been studied systematically. An interesting presenta-
tion of the historical development of numerical stability concepts can be found in
Dahlquist (1985) “33 years of numerical instability, Part I”.

Let us start with an example, taken from Dahlquist (1956). Among all explicit
2 -step methods we consider the formula with the highest order (see Exercise 2 of
Section III.2). A short calculation using Theorem 2.4 shows that this method of
order 3 is given by

yn+2 + 4yn+1 − 5yn = h(4fn+1 + 2fn). (3.1)

Application to the differential equation

y′ = y, y(0) = 1 (3.2)

yields the linear difference relation

yn+2 + 4(1−h)yn+1 − (5 + 2h)yn = 0. (3.3)

As starting values we take y0 =1 and y1 =exp(h) , the values on the exact solution.
The numerical solution together with the exact solution exp(x) is plotted in Fig. 3.1
for the step sizes h = 1/10 , h = 1/20 , h = 1/40 , etc. In spite of the small local
error, the results are very bad and become even worse as the step size decreases.

An explanation for this effect can easily be given. As usual for linear difference
equations (Dan. Bernoulli 1728, Lagrange 1775), we insert yj = ζj into (3.3). This
leads to the characteristic equation

ζ2 + 4(1−h)ζ − (5 + 2h) = 0. (3.4)

The general solution of (3.3) is then given by

yn = Aζn
1 (h) +Bζn

2 (h) (3.5)
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Fig. 3.1. Numerical solution of the unstable method (3.1)

where

ζ1(h) = 1 +h +O(h2), ζ2(h) = −5 +O(h)

are the roots of (3.4) and the coefficients A and B are determined by the start-
ing values y0 and y1 . Since ζ1(h) approximates exp(h) , the first term in (3.5)
approximates the exact solution exp(x) at the point x = nh . The second term
in (3.5), often called a parasitic solution, is the one which causes trouble in our
method: since for h → 0 the absolute value of ζ2(h) is larger than one, this par-
asitic solution becomes very large and dominates the solution yn for increasing
n .

We now turn to the stability discussion of the general method (2.1). The essen-
tial part is the behaviour of the solution as n →∞ (or h → 0 ) with nh fixed. We
see from (3.3) that for h → 0 we obtain

αkyn+k +αk−1yn+k−1 + . . .+α0yn = 0. (3.6)

This can be interpreted as the numerical solution of the method (2.1) for the differ-
ential equation

y′ = 0. (3.7)

We put yj = ζj in (3.6), divide by ζn , and find that ζ must be a root of

�(ζ) = αkζk +αk−1ζ
k−1 + . . .+α0 = 0. (3.8)

As in Section I.13, we again have some difficulty when (3.8) possesses a root of
multiplicity m > 1 . In this case (Lagrange 1792, see Exercise 1 below) yn =
nj−1ζn (j = 1, . . . , m) are solutions of (3.6) and we obtain by superposition:

Lemma 3.1. Let ζ1, . . . , ζl be the roots of �(ζ) , of respective multiplicity
m1, . . . , ml . Then the general solution of (3.6) is given by

yn = p1(n)ζn
1 + . . .+ pl(n)ζn

l (3.9)

where the pj(n) are polynomials of degree mj − 1 .
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Formula (3.9) shows us that for boundedness of yn , as n →∞ , we need that
the roots of (3.8) lie in the unit disc and that the roots on the unit circle be simple.

Definition 3.2. The multistep method (2.1) is called stable, if the generating poly-
nomial �(ζ) (formula (3.8)) satisfies the root condition, i.e.,

i) The roots of �(ζ) lie on or within the unit circle;

ii) The roots on the unit circle are simple.

Remark. In order to distinguish this stability concept from others, it is sometimes
called zero-stability or, in honour of Dahlquist, also D-stability.

Examples. For the explicit and implicit Adams methods, �(ζ) = ζk − ζk−1 . Be-
sides the simple root 1 , there is a (k− 1) -fold root at 0 . The Adams methods are
therefore stable.

The same is true for the explicit Nyström and the Milne-Simpson methods,
where �(ζ)=ζk −ζk−2 . Note that here we have a simple root at −1 . This root can
be dangerous for certain differential equations (see Section III.9 and Section V.1 of
Volume II).

Stability of the BDF-Formulas

The investigation of the stability of the BDF-formulas is more difficult. As the
characteristic polynomial of ∇jyk+n = 0 is given by ζk−j(ζ − 1)j = 0 it follows
from the representation (1.22’) that the generating polynomial �(ζ) of the BDF-
formulas has the form

�(ζ) =
k∑

j=1

1
j
ζk−j(ζ − 1)j . (3.10)

In order to study the zeros of (3.10) it is more convenient to consider the polynomial

p(z) = (1− z)k�
( 1
1− z

)
=

k∑
j=1

zj

j
(3.11)

via the transformation ζ = 1/(1− z) . This polynomial is just the k th partial sum
of − log(1− z) . As the roots of p(z) and �(ζ) are related by the above transfor-
mation, we have:

Lemma 3.3. The k -step BDF-formula (1.22’) is stable iff all roots of the polyno-
mial (3.11) are outside the disc {z; |z− 1| ≤ 1} , with simple roots allowed on the
boundary.
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Fig. 3.2. Roots of the polynomial p(z) of (3.11)

The roots of (3.11) are displayed in Fig. 3.2 for different values of k .

Theorem 3.4. The k -step BDF-formula (1.22’) is stable for k ≤ 6 , and unstable
for k ≥ 7 .

Proof. The first assertion can be verified simply by a finite number of numerical
calculations (see Fig. 3.2). This was first observed by Mitchell & Craggs (1953).
The second statement, however, contains an infinity of cases and is more difficult.
The first complete proof was given by Cryer (1971) in a technical report, a con-
densed version of which is published in Cryer (1972). A second proof is given in
Creedon & Miller (1975) (see also Grigorieff (1977), p. 135), based on the Schur-
Cohn criterion. This proof is outlined in Exercise 4 below. The following proof,
which is given in Hairer & Wanner (1983), is based on the representation

p(z) =
∫ z

0

k∑
j=1

ζj−1dζ =
∫ z

0

1− ζk

1− ζ
dζ =

∫ r

0

(
1− eikθsk

)
ϕ(s) ds (3.12)

with

ζ = seiθ, z = reiθ, ϕ(s) =
eiθ

1− seiθ
.

We cut the complex plane into k sectors

Sj =
{
z ;

2π

k

(
j − 1

2
)

< arg(z) <
2π

k

(
j +

1
2
)}

, j = 0, 1, . . . , k− 1.
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On the rays bounding Sj we have eikθ = −1 , so that from (3.12)

p(z) =
∫ r

0

(1 + sk)ϕ(s) ds

with a positive weight function. Therefore, p(z) always lies in the sector between
eiθ and eiπ = −1 , which contains all values ϕ(s) (see Theorem 1.1 on page 1
of Marden (1966)). So no revolution of arg(p(z)) is possible on these rays, and
due to the one revolution of arg(zk) at infinity between θ = 2π(j − 1/2)/k and
θ = 2π(j + 1/2)/k the principle of the argument (e.g., Henrici (1974), p. 278)
implies (see Fig. 3.3) that in each sector Sj (j = 1, . . . , k− 1 , with the exception
of j = 0 ) there lies exactly one root of p(z) .

Fig. 3.3. Argument of p(z) of (3.11)

In order to complete the proof, we still have to bound the zeros of p(z) from
above: we observe that in (3.12) the term sk becomes large for s>1 . We therefore
partition (3.12) into two integrals p(z) = I1 − I2 , where

I1 =
∫ r

0

ϕ(s) ds−
∫ 1

0

eikθskϕ(s) ds, I2 = eikθ

∫ r

1

skϕ(s) ds.

Since |ϕ(s)| ≤ B(θ) where

B(θ) =
{ | sin θ|−1 if 0<θ≤π/2 or 3π/2≤θ<2π,

1 otherwise,

we obtain

|I1| ≤
(
r +

1
k + 1

)
B(θ) < rB(θ)

k + 2
k + 1

, (r > 1). (3.13)
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Secondly, since sk is positive,

I2 = eikθΦ
∫ r

1

sk ds with Φ ∈ convex hull of {ϕ(s); 1 ≤ s ≤ r}.

Any element of the above convex hull can be written in the form

Φ = αϕ(s1) + (1−α)ϕ(s2) =
ϕ(s1)ϕ(s2)

ϕ(ŝ)

with ŝ = αs2 + (1−α)s1 , 0 ≤ α ≤ 1 , 1 ≤ s1, s2 ≤ r . Since |ϕ(s)| decreases
monotonically for s ≥ 1 , we have |Φ| ≥ |ϕ(r)| . Some elementary geometry then
leads to |Φ| ≥ 1/2r and we get

|I2| ≥
rk+1 − 1
2r(k + 1)

>
r(rk−1 − 1)

2k + 2
, (r > 1). (3.14)

From (3.13) and (3.14) we see that

r ≥ R(θ) =
(
(2k + 4)B(θ) + 1

)1/(k−1)
(3.15)

implies |I2| > |I1| , so that p(z) cannot be zero. The curve R(θ) is also plotted
in Fig. 3.2 and cuts from the sectors Sj what we call Madame Imhof’s cheese pie,
each slice of which (with j �= 0 ) must contain precisely one zero of p(z) . A simple
analysis shows that for k = 12 the cheese pie, cut from S1 , is small enough to
ensure the presence of zeros of p(z) inside the disc {z; |z−1| ≤ 1} . As R(θ) , for
fixed θ , as well as R(π/k) are monotonically decreasing in k , the same is true for
all k ≥ 12 .

For 6 < k < 12 numerical calculations show that the method is unstable (see
Fig. 3.2 or Exercise 4).

Highest Attainable Order of Stable Multistep Methods

It is a natural task to investigate the stability of the multistep methods with high-
est possible order. This has been performed by Dahlquist (1956), resulting in the
famous “first Dahlquist-barrier”.

Counting the order conditions (Theorem 2.4) shows that for order p the param-
eters of a linear multistep method have to satisfy p+1 linear equations. As 2k +1
free parameters are involved (without loss of generality one can assume αk = 1 ),
this suggests that 2k is the highest attainable order. Indeed, this can be verified
(see Exercise 5). However, these methods are of no practical significance, because
we shall prove



384 III. Multistep Methods and General Linear Methods

Theorem 3.5 (The first Dahlquist-barrier). The order p of a stable linear k -step
method satisfies

p ≤ k + 2 if k is even,
p ≤ k + 1 if k is odd,
p ≤ k if βk/αk ≤ 0 (in particular if the method is explicit).

We postpone the verification of this theorem and give some notations and lem-
mas, which will be useful for the proof. First of all we introduce the “Greek-Roman
transformation”

ζ =
z + 1
z− 1

or z =
ζ + 1
ζ − 1

. (3.16)

This transformation maps the disk |ζ| < 1 onto the half-plane Re z < 0 , the upper
half-plane Im z > 0 onto the lower half-plane, the circle |ζ| = 1 to the imaginary
axis, the point ζ = 1 to z = ∞ and the point ζ = −1 to z = 0 . We then consider
the polynomials

R(z) =
(z − 1

2

)k

�(ζ) =
k∑

j=0

ajz
j ,

S(z) =
(z − 1

2

)k

σ(ζ) =
k∑

j=0

bjz
j .

(3.17)

Since the zeros of R(z) and of �(ζ) are connected via the transformation (3.16),
the stability condition of a multistep method can be formulated in terms of R(z) as
follows: all zeros of R(z) lie in the negative half-plane Re z ≤ 0 and no multiple
zero of R(z) lies on the imaginary axis.

Lemma 3.6. Suppose the multistep method to be stable and of order at least 0 . We
then have

i) ak = 0 and ak−1 = 21−k�′(1) �= 0 ;

ii) All non-vanishing coefficients of R(z) have the same sign.

Proof. Dividing formula (3.17) by zk and putting z = ∞ , one sees that ak =
2−k�(1) . This expression must vanish, because the method is of order 0 . In the
same way one gets ak−1 = 21−k�′(1) , which is different from zero, since by sta-
bility 1 cannot be a multiple root of �(ζ) . The second statement follows from the
factorization

R(z) = ak−1

∏
(z +xj)

∏(
(z +uj)

2 + v2
j

)
.

where −xj are the real roots and −uj ± ivj are the conjugate pairs of complex
roots. By stability xj ≥ 0 and uj ≥ 0 , implying that all coefficients of R(z) have
the same sign.
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We next express the order conditions of Theorem 2.4 in terms of the polyno-
mials R(z) and S(z) .

Lemma 3.7. The multistep method is of order p if and only if

R(z)
(
log

z + 1
z− 1

)−1

−S(z) = Cp+1

(2
z

)p−k

+O
((2

z

)p−k+1)
for z →∞

(3.18)

Proof. First, observe that the O((ζ − 1)p) term in condition (iii) of Theorem
2.4 is equal to Cp+1(ζ − 1)p +O((ζ − 1)p+1) by formula (2.7). Application of
the transformation (3.16) then yields (3.18), because (ζ − 1) = 2/(z− 1) = 2/z +
O((2/z)2) for z →∞ .

Lemma 3.8. The coefficients of the Laurent series(
log

z + 1
z− 1

)−1

=
z

2
−μ1z

−1 −μ3z
−3 −μ5z

−5 − . . . (3.19)

satisfy μ2j+1 > 0 for all j ≥ 0 .

Proof. We consider the branch of log ζ which is analytic in the complex ζ -plane
cut along the negative real axis and satisfies log 1 = 0 . The transformation (3.16)
maps this cut onto the segment from −1 to +1 on the real axis. The function
log((z+1)/(z−1)) is thus analytic on the complex z -plane cut along this segment
(see Fig. 3.4). From the formula

log
z + 1
z − 1

=
2
z

(
1 +

z−2

3
+

z−4

5
+

z−6

7
+ . . .

)
, (3.20)

the existence of (3.19) becomes clear. In order to prove the positivity of the co-
efficients, we use Cauchy’s formula for the coefficients of the function f(z) =∑

n∈Z
an(z− z0)n ,

an =
1

2πi

∫
γ

f(z)
(z− z0)n+1

dz,

i.e., in our situation

μ2j+1 = − 1
2πi

∫
γ

z2j
(
log

z + 1
z− 1

)−1

dz

(Cauchy 1831; see also Behnke & Sommer 1962). Here γ is an arbitrary curve
enclosing the segment (−1, 1) , e.g., the curve plotted in Fig. 3.4.

Fig. 3.4. Cut z -plane with curve γ
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Observing that log((z +1)/(z− 1)) = log((1+x)/(1−x))− iπ when z ap-
proaches the real value x ∈ (−1, 1) from above, and that log((z + 1)/(z− 1)) =
log((1 +x)/(1−x)) + iπ when z approaches x from below, we obtain

μ2j+1 = − 1
2πi

∫ 1

−1

x2j
[(

log
1 +x

1−x
+ iπ

)−1

−
(
log

1 +x

1−x
− iπ

)−1]
dx

=
∫ 1

−1

x2j
[(

log
1 +x

1−x

)2

+π2
]−1

dx > 0.

For another proof of this lemma, which avoids complex analysis, see Exer-
cise 10.

Proof of Theorem 3.5. We insert the series (3.19) into (3.18) and obtain

R(z)
(
log

z + 1
z − 1

)−1

−S(z)= polynomial(z)+d1z
−1 +d2z

−2 +O(z−3) (3.21)

where
d1 = −μ1a0 −μ3a2 −μ5a4 − . . .

d2 = −μ3a1 −μ5a3 −μ7a5 − . . . .
(3.22)

Lemma 3.6 together with the positivity of the μj (Lemma 3.8) implies that all
summands in the above formulas for d1 and d2 have the same sign. Since ak−1 �=0
we therefore have d2 �= 0 for k even and d1 �= 0 for k odd. The first two bounds
of Theorem 3.5 are now an immediate consequence of formula (3.18).

Finally, we prove that p≤ k for βk/αk ≤ 0 : assume, by contradiction, that the
order is greater than k . Then by formula (3.18), S(z) is equal to the principal part
of R(z)(log((z + 1)/(z− 1)))−1 , and we may write (putting μj = 0 for even j )

S(z) = R(z)
(z

2
−

k−1∑
j=1

μjz
−j
)

+
k−1∑
j=1

(k−1∑
s=j

μsas−j

)
z−j .

Setting z = 1 we obtain

S(1)
R(1)

=
(1

2
−

k−1∑
j=1

μj

)
+

k−1∑
j=1

(k−1∑
s=j

μsas−j

) 1
R(1)

. (3.23)

Since by formula (3.17), S(1) = βk and R(1) = αk , it is sufficient to prove
S(1)/R(1) > 0 . Formula (3.19), for z → 1 , gives

∞∑
j=1

μj =
1
2
,

so that the first summand in (3.23) is strictly positive. The non-negativeness of the
second summand is seen from Lemmas 3.6 and 3.8.
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The stable multistep methods which attain the highest possible order k + 2
have a very special structure.

Theorem 3.9. Stable multistep methods of order k + 2 are symmetric, i.e.,

αj = −αk−j , βj = βk−j for all j . (3.24)

Remark. For symmetric multistep methods we have �(ζ) = −ζk�(1/ζ) by def-
inition. Since with ζi also 1/ζi is a zero of �(ζ) , all roots of stable symmetric
multistep methods lie on the unit circle and are simple.

Proof. A comparison of the formulas (3.18) and (3.21) shows that d1 = 0 is neces-
sary for order k +2 . Since the method is assumed to be stable, Lemma 3.6 implies
that all even coefficients of R(z) vanish. Hence, k is even and R(z) satisfies
the relation R(z) = −R(−z) . By definition of R(z) this relation is equivalent to
�(ζ) =−ζk�(1/ζ) , which implies the first condition of (3.24). Using the above re-
lation for R(z) one obtains from formula (3.18) that S(z)−S(−z) =O((2/z)2) ,
implying S(z) = S(−z) . If this relation is transformed into an equivalent one for
σ(ζ) , one gets the second condition of (3.24).

Exercises

1. Consider the linear difference equation (3.6) with

�(ζ) = αkζk +αk−1ζ
k−1 + . . .+α0

as characteristic polynomial. Let ζ1, . . . , ζl be the different roots of �(ζ) and
let mj ≥ 1 be the multiplicity of the root ζj . Show that for 1 ≤ j ≤ l and
0 ≤ i ≤ mj − 1 the sequences{(n

i

)
ζn−i
j

}
n≥0

form a system of k linearly independent solutions of (3.6).

2. Show that all roots of the polynomial p(z) of formula (3.11) except the simple
root 0 lie in the annulus

k

k− 1
≤ |z| ≤ 2.

Hint. Use the following lemma, which can be found in Marden (1966), p.137:
if all coefficients of the polynomial akzk + ak−1z

k−1 + . . .+ a0 are real and
positive, then its roots lie in the annulus �1≤|z|≤�2 with �1 =min(aj/aj+1)
and �2 = max(aj/aj+1) .
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3. Apply the lemma of the above exercise to �(ζ)/(ζ − 1) and show that the
BDF-formulas are stable for k = 1, 2, 3, 4 .

4. Give a different proof of Theorem 3.4 by applying the Schur-Cohn criterion to
the polynomial

f(z) = zk�
(1

z

)
=

k∑
j=1

1
j
(1− z)j . (3.25)

Schur-Cohn criterion (see e.g., Marden (1966), Chapter X). For a given poly-
nomial with real coefficients

f(z) = a0 + a1z + . . .+ akzk

we consider the coefficients a
(j)
i where

a
(0)
i = ai

a
(j+1)
i = a

(j)
0 a

(j)
i − a

(j)
k−ja

(j)
k−j−i

i = 0, 1, . . . , k

i = 0, 1, . . . , k−j−1
(3.26)

and also the products

P1 = a
(1)
0 , Pj+1 = Pja

(j+1)
0 for j = 1, . . . , k− 1. (3.27)

We further denote by n the number of negative elements among the values
P1, . . . , Pk and by p the number of positive elements. Then f(z) has at least
n zeros inside the unit disk and at least p zeros outside it.

a) Prove the following formulas for the coefficients of (3.25):

a0 =
k∑

i=1

1
i
, a1 = −k, a2 =

k(k− 1)
4

,

ak−2 = (−1)k k(k− 1)
2(k− 2)

, ak−1 = (−1)k−1 k

k− 1
, ak = (−1)k 1

k
.

(3.28)

b) Verify that the coefficients a
(j)
0 of (3.26) have the sign structure of Table

3.1. For k<13 these tedious calculations can be performed on a computer.
The verification of a

(1)
0 > 0 and a

(2)
0 > 0 is easy for all k > 2 . In order to

verify a
(3)
0 = (a(2)

0 )2 − (a(2)
k−2)2 < 0 for k ≥ 13 consider the expression

a
(2)
0 − (−1)ka

(2)
k−2 =a

(1)
0

(
a2
0 − a2

k − a0|ak−2|+ a2|ak|
)

− |a(1)
k−1| · (a0 + |ak|)(|ak−1|+ a1)

(3.29)
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Table 3.1. Signs of a
(j)
0 .

k 2 3 4 5 6 7 8 9 10 11 12 13 > 13

j=1 + + + + + + + + + + + + +

j=2 0 + + + + + + + + + + + +

j=3 0 + + + + + + + + + − −
j=4 0 + + + − − − − −
j=5 0 + −

which can be written in the form (a0 + |ak|)ϕ(k) with

ϕ(k) = (a0 − |ak|)
(
a2
0 − a2

k − a0|ak−2|+ a2|ak|
)− |a(1)

k−1|(a1 + |ak−1|)
= a3

0 − a2
0

(k

2
+

1
2

+
1

k− 2
+

1
k

)
+ a0

(5k

4
+

1
4

+
1

2k− 4
− 1

k− 1
− 1

(k− 1)2
− 1

k2

)
−
(
k− 3

4
− 1

k− 1
− 1

4k
− 1

k3

)
.

Show that ϕ(13) < 0 and that ϕ is monotonically decreasing for k ≥ 13
(observe that a0 = a0(k) actually depends on k and that a0(k + 1) =
a0(k) + 1/(k + 1)) . Finally, deduce from the negativeness of (3.29) that

a
(3)
0 < 0 for k ≥ 13 .

c) Use Table 3.1 and the Schur-Cohn criterion for the verification of Theorem
3.4.

5. (Multistep methods of maximal order). Verify the following statements:

a) there is no k -step method of order 2k + 1 ,

b) there is a unique (implicit) k -step method of order 2k ,

c) there is a unique explicit k -step method of order 2k− 1 .

6. Prove that symmetric multistep methods are always of even order. More pre-
cisely, if a symmetric multistep method is of order 2s− 1 then it is also of
order 2s .

7. Show that all stable 4 -step methods of order 6 are given by

�(ζ) = (ζ2 − 1)(ζ2 + 2μζ + 1), |μ| < 1,

σ(ζ) =
1
45

(14−μ)(ζ4 + 1) +
1
45

(64 + 34μ)ζ(ζ2 + 1) +
1
15

(8 + 38μ)ζ2.

Compute the error constant and observe that it cannot become arbitrarily small.
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Result. C = −(16− 5μ)/(7560(1 +μ)) .

8. Prove the following bounds for the error constant:

a) For stable methods of order k + 2

C ≤−2−1−kμk+1.

b) For stable methods of order k + 1 with odd k we have

C ≤−2−kμk.

c) For stable explicit methods of order k we have (μj = 0 for even j )

C ≥ 21−k
(1

2
−

k−1∑
j=1

μj

)
.

Show that all these bounds are optimal.

Hint. Compare the formulas (3.18) and (3.21) and use the relation σ(1) =
2k−1ak−1 of Lemma 3.6.

9. The coefficients μj of formula (3.19) satisfy the recurrence relation

μ2j+1 +
1
3
μ2j−1 + . . .+

1
2j + 1

μ1 =
1

4j + 6
. (3.30)

The first of these coefficients are given by

μ1 =
1
6
, μ3 =

2
45

, μ5 =
22
945

, μ7 =
214

14175
.

10. Another proof of Lemma 3.8: multiplying (3.30) by 2j + 3 and subtracting
from it the same formula with j replaced by j − 1 yields

(2j + 3)μ2j+1 +
j−1∑
i=0

μ2i+1

( 2j + 3
2j − 2i + 1

− 2j + 1
2j − 2i− 1

)
= 0.

Show that the expression in brackets is negative and deduce the result of
Lemma 3.8 by a simple induction argument.
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. . . , ist das Adams’sche Verfahren jedem andern bedeutend überlegen.
Wenn es gleichwohl nicht genügend allgemein angewandt wird und,
besonders in Deutschland, gegenüber den von Runge, Heun und Kutta
entwickelten Methoden zurücktritt, so mag dies daran liegen, dass bisher
eine brauchbare Untersuchung der Genauigkeit der Adams’schen Inte-
gration gefehlt hat. Diese Lücke soll hier ausgefüllt werden, . . .

(R. v. Mises 1930)

The convergence of Adams methods was investigated in the influential article of
von Mises (1930), which was followed by an avalanche of papers improving the er-
ror bounds and applying the ideas to other special multistep methods, e.g., Tollmien
(1938), Fricke (1949), Weissinger (1950), Vietoris (1953). A general convergence
proof for the method (2.1), however, was first given by Dahlquist (1956), who gave
necessary and sufficient conditions for convergence. Great elegance was introduced
in the proofs by the ideas of Butcher (1966), where multistep formulas are written
as one-step formulas in a higher dimensional space. Furthermore, the resulting
presentation can easily be extended to a more general class of integration methods
(see Section III.8).

We cannot expect reasonable convergence of numerical methods, if the differ-
ential equation problem

y′ = f(x, y), y(x0) = y0 (4.1)

does not possess a unique solution. We therefore make the following assumptions,
which were seen in Sections I.7 and I.9 to be natural for our purpose:

f is continuous on D = {(x, y) ; x ∈ [x0, x̂], ‖y(x)− y‖ ≤ b} (4.2a)

where y(x) denotes the exact solution of (4.1) and b is some positive number. We
further assume that f satisfies a Lipschitz condition, i.e.,

‖f(x, y)− f(x, z)‖≤ L‖y− z‖ for (x, y), (x, z)∈ D. (4.2b)

If we apply the multistep method (2.1) with step size h to the problem (4.1) we
obtain a sequence {yi} . For given x and h such that (x−x0)/h = n is an integer,
we introduce the following notation for the numerical solution:

yh(x) = yn if x−x0 = nh . (4.3)

Definition 4.1 (Convergence). i) The linear multistep method (2.1) is called con-
vergent, if for all initial value problems (4.1) satisfying (4.2),

y(x)− yh(x) → 0 for h → 0, x ∈ [x0, x̂]
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whenever the starting values satisfy

y(x0 + ih)− yh(x0 + ih) → 0 for h → 0, i = 0, 1, . . . , k− 1 .

ii) Method (2.1) is convergent of order p , if to any problem (4.1) with f suffi-
ciently differentiable, there exists a positive h0 such that

‖y(x)− yh(x)‖ ≤ Chp for h ≤ h0

whenever the starting values satisfy

‖y(x0 + ih)− yh(x0 + ih)‖ ≤ C0h
p for h ≤ h0, i = 0, 1, . . . , k− 1 .

In this definition we clearly assume that a solution of (4.1) exists on [x0, x̂] .

The aim of this section is to prove that stability together with consistency are
necessary and sufficient for the convergence of a multistep method. This is ex-
pressed in the famous slogan

convergence = stability+ consistency

(compare also Lax & Richtmyer 1956). We begin with the study of necessary
conditions for convergence.

Theorem 4.2. If the multistep method (2.1) is convergent, then it is necessarily

i) stable and
ii) consistent (i.e. of order 1: �(1) = 0, �′(1) = σ(1)).

Proof. Application of the multistep method (2.1) to the differential equation y′ =0 ,
y(0) = 0 yields the difference equation (3.6). Suppose, by contradiction, that �(ζ)
has a root ζ1 with |ζ1| > 1 , or a root ζ2 on the unit circle whose multiplicity
exceeds 1. ζn

1 and nζn
2 are then divergent solutions of (3.6). Multiplying by√

h we achieve that the starting values converge to y0 = 0 for h → 0 . Since

yh(x) =
√

hζ
x/h
1 and yh(x) = (x/

√
h)ζx/h

2 remain divergent for every fixed x ,
we have a contradiction to the assumption of convergence. The method (2.1) must
therefore be stable.

We next consider the initial value problem y′ =0 , y(0)=1 with exact solution
y(x) = 1 . The corresponding difference equation is again that of (3.6), which, in
the new notation, can be written as

αkyh(x + kh) +αk−1yh(x + (k−1)h) + . . .+α0yh(x) = 0.

Letting h → 0 , convergence immediately implies that �(1) = 0 .
Finally we apply method (2.1) to the problem y′ = 1 , y(0) = 0 . The exact

solution is y(x) = x . Since we already know that �(1) = 0 , it is easy to verify
that a particular numerical solution is given by yn = nhK or yh(x) = xK where
K = σ(1)/�′(1) . By convergence, K = 1 is necessary.
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Although the statement of Theorem 4.2 was derived from a consideration of
almost trivial differential equations, it is remarkable that conditions (i) and (ii) turn
out to be not only necessary but also sufficient for convergence.

Formulation as One-Step Method

We are now at the point where it is useful to rewrite a multistep method as a one-
step method in a higher dimensional space (see Butcher 1966, Skeel 1976). For
this let ψ = ψ(xi, yi, ..., yi+k−1, h) be defined implicitly by

ψ =
k−1∑
j=0

β′
jf
(
xi + jh, yi+j

)
+β′

kf
(
xi + kh, hψ−

k−1∑
j=0

α′
jyi+j

)
(4.4)

where α′
j = αj/αk and β′

j = βj/αk . Multistep formula (2.1) can then be written
as

yi+k = −
k−1∑
j=0

α′
jyi+j +hψ. (4.5)

Introducing the m · k -dimensional vectors (m is the dimension of the differential
equation)

Yi = (yi+k−1, yi+k−2, . . . , yi)
T , i ≥ 0 (4.6)

and

A =

⎛⎜⎜⎜⎜⎝
−α′

k−1 −α′
k−2 . . . . −α′

0

1 0 . . . . 0
1 . 0

. . .
...

...
1 0

⎞⎟⎟⎟⎟⎠ , e1 =

⎛⎜⎜⎜⎜⎝
1
0
0
...
0

⎞⎟⎟⎟⎟⎠ , (4.7)

the multistep method (4.5) can be written — after adding some trivial identities —
in compact form as

Yi+1 = (A⊗ I)Yi +hΦ(xi, Yi, h), i ≥ 0 (4.8)

with
Φ(xi, Yi, h) = (e1 ⊗ I)ψ(xi, Yi, h). (4.8a)

Here, A⊗I denotes the Kronecker tensor product, i.e. the m ·k -dimensional block
matrix with (m, m) -blocks aijI . Readers unfamiliar with the notation and proper-
ties of this product may assume for simplicity that (4.1) is a scalar equation (m=1)
and A⊗ I = A .

The following lemmas express the concepts of order and stability in this new
notation.
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Lemma 4.3. Let y(x) be the exact solution of (4.1). For i = 0, 1, 2, . . . we define
the vector Ŷi+1 as the numerical solution of one step

Ŷi+1 = (A⊗ I)Y (xi) +hΦ
(
xi, Y (xi), h

)
with correct starting values

Y (xi) =
(
y(xi+k−1), y(xi+k−2), . . . , y(xi)

)T
.

i) If the multistep method (2.1) is of order 1 and if f satisfies (4.2), then an
h0 > 0 exists such that for h ≤ h0 ,

‖Y (xi+1)− Ŷi+1‖ ≤ hω(h), 0 ≤ i ≤ x̂/h− k

where ω(h) → 0 for h → 0 .
ii) If the multistep method (2.1) is of order p and if f is sufficiently differen-

tiable then a constant M exists such that for h small enough,

‖Y (xi+1)− Ŷi+1‖ ≤ Mhp+1, 0 ≤ i ≤ x̂/h− k.

Proof. The first component of Y (xi+1)− Ŷi+1 is the local error as given by Defi-
nition 2.1. Since the remaining components all vanish, Exercise 5 of Section III.2
and Definition 2.3 yield the result.

Lemma 4.4. Suppose that the multistep method (2.1) is stable. Then there exists a
vector norm (on Rmk ) such that the matrix A of (4.7) satisfies

‖A⊗ I‖ ≤ 1

in the subordinate matrix norm.

Proof. If λ is a root of �(ζ) , then the vector (λk−1, λk−2, . . . , 1) is an eigenvector
of the matrix A with eigenvalue λ . Therefore the eigenvalues of A (which are
the roots of �(ζ) ) satisfy the root condition by Definition 3.2. A transformation to
Jordan canonical form therefore yields (see Section I.12)

T−1AT = J = diag

⎧⎪⎨⎪⎩λ1, . . . , λl,

⎛⎜⎝λl+1 εl+1

. . . εk−1

λk

⎞⎟⎠
⎫⎪⎬⎪⎭ (4.9)

where λ1, . . . , λl are the eigenvalues of modulus 1, which must be simple, each εj

is either 0 or 1 . We further find by a suitable multiplication of the columns of T
that |εj | < 1− |λj| for j = l + 1, . . . , k− 1 . Because of (9.11’) of Chapter I we
then have ‖J ⊗ I‖∞ ≤ 1 . Using the transformation T of (4.9) we define the norm

‖x‖ := ‖(T−1 ⊗ I)x‖∞.
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This yields

‖(A⊗ I)x‖= ‖(T−1 ⊗ I)(A⊗ I)x‖∞ = ‖(J ⊗ I)(T−1 ⊗ I)x‖∞
≤ ‖(T−1 ⊗ I)x‖∞ = ‖x‖

and hence also ‖A⊗ I‖ ≤ 1 .

Proof of Convergence

The convergence theorem for multistep methods can now be established.

Theorem 4.5. If the multistep method (2.1) is stable and of order 1 then it is
convergent. If method (2.1) is stable and of order p then it is convergent of order
p .

Proof. As in the convergence theorem for one-step methods (Section II.3) we may
assume without loss of generality that f(x, y) is defined for all y∈Rm, x∈ [x0, x̂]
and satisfies there a (global) Lipschitz condition. This implies that for sufficiently
small h the functions ψ(xi, Yi, h) and Φ(xi, Yi, h) satisfy a Lipschitz condition
with respect to the second argument (with Lipschitz constant L∗ ). For the function
G , defined by formula (4.8), which maps the vector Yi onto Yi+1 we thus obtain
from Lemma 4.4

‖G(Yi)−G(Zi)‖ ≤ (1 +hL∗)‖Yi −Zi‖. (4.10)

The rest of the proof now proceeds in the same way as for one-step methods and is
illustrated in Fig. 4.1.

Y x
Y

x x x x  .  .  . xn = X

multistep methodmultistep method Yn

E

E

.

.

.
En

En en

Y x1

Y x2 en

Y xn

Y

Y
Y

Fig. 4.1. Lady Windermere’s Fan for multistep methods

The arrows in Fig. 4.1 indicate the application of G . From Lemma 4.3 we
know that ‖Y (xi+1) −G(Y (xi))‖ ≤ hω(h) . This together with (4.10) shows that
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the local error Y (xi+1)−G(Y (xi)) at stage i + 1 causes an error at stage n ,
which is at most hω(h)(1 +hL∗)n−i+1 . Thus we have

‖Y (xn)−Yn‖ ≤ ‖Y (x0)−Y0‖(1 +hL∗)n

+hω(h)
(
(1 +hL∗)n−1 + (1 +hL∗)n−2 + . . .+ 1

)
≤ ‖Y (x0)−Y0‖ exp(nhL∗) +

ω(h)
L∗
(
exp(nhL∗)− 1

)
.

(4.11)

Convergence of method (2.1) is now an immediate consequence of formula (4.11).
If the multistep method is of order p , the same proof with ω(h) replaced by Mhp

yields convergence of order p .

Exercises

1. Consider the function (for x ≥ 0 )

f(x, y) =

⎧⎪⎨⎪⎩
2x for y ≤ 0,

2x− 4y

x
for 0 < y < x2,

−2x for y ≥ x2.

a) Show that y(x) = x2/3 is the unique solution of y′ = f(x, y), y(0) = 0 ,
although f does not satisfy a Lipschitz condition near the origin.

b) Apply the mid-point rule (1.13’) with starting values y0 = 0, y1 = −h2

to the above problem and verify that the numerical solution at x = nh is
given by yh(x) = (−1)nx2 (Taubert 1976, see also Grigorieff 1977).

2. Another motivation for the meaning of the error constant: suppose that 1 is
the only eigenvalue of A in (4.7) of modulus one. Show that (1, 1, . . . , 1)T is
the right eigenvector and (1, 1+α′

k−1, 1+α′
k−1 +α′

k−2, . . .) is the left eigen-
vector to this eigenvalue. The global contribution of the local error after many
steps is then given by

A∞

⎛⎜⎜⎝
Cp+1

0
...
0

⎞⎟⎟⎠= C

⎛⎜⎜⎝
1
1
...
1

⎞⎟⎟⎠ . (4.12)

Multiply this equation from the left by the left eigenvector to show with (2.6)
that C is the error constant defined in (2.13).

Remark. For multistep methods with several eigenvalues of modulus 1, formula
(4.12) remains valid if A∞ is replaced by E (see Section III.8).
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Des war a harter Brockn, des . . . (Tyrolean dialect)

It is clear from the considerations of Section II.4 that an efficient integrator must be
able to change the step size. However, changing the step size with multistep meth-
ods is difficult since the formulas of the preceding sections require the numerical
approximations at equidistant points. There are in principle two possibilities for
overcoming this difficulty:

i) use polynomial interpolation to reproduce the starting values at the new (equi-
distant) grid;

ii) construct methods which are adjusted to variable grid points.
This section is devoted to the second approach. We investigate consistency, stability
and convergence. The actual implementation (order and step size strategies) will
be considered in Section III.7.

Variable Step Size Adams Methods

F. Ceschino (1961) was apparently the first person to propose a “smooth” transition
from a step size h to a new step size ωh . C.V.D. Forrington (1961) and later on F.T.
Krogh (1969) extended his ideas: we consider an arbitrary grid (xn) and denote
the step sizes by hn = xn+1 −xn . We assume that approximations yj to y(xj)
are known for j = n− k + 1, . . . , n and we put fj = f(xj, yj) . In the same way
as in Section III.1 we denote by p(t) the polynomial which interpolates the values
(xj , fj) for j = n− k + 1, . . . , n . Using Newton’s interpolation formula we have

p(t) =
k−1∑
j=0

j−1∏
i=0

(t−xn−i) δjf [xn, xn−1, . . . , xn−j] (5.1)

where the divided differences δjf [xn, . . . , xn−j] are defined recursively by

δ0f [xn] = fn

δjf [xn, . . . , xn−j] =
δj−1f [xn, . . . , xn−j+1]− δj−1f [xn−1, . . . , xn−j]

xn −xn−j

.
(5.2)
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For actual computations (see Krogh 1969) it is practical to rewrite (5.1) as

p(t) =
k−1∑
j=0

j−1∏
i=0

t−xn−i

xn+1 −xn−i

·Φ∗
j (n) (5.1’)

where

Φ∗
j (n) =

j−1∏
i=0

(xn+1 −xn−i) · δjf [xn, . . . , xn−j]. (5.3)

We now define the approximation to y(xn+1) by

yn+1 = yn +
∫ xn+1

xn

p(t) dt. (5.4)

Inserting formula (5.1’) into (5.4) we obtain

yn+1 = yn +hn

k−1∑
j=0

gj(n)Φ∗
j (n) (5.5)

with

gj(n) =
1
hn

∫ xn+1

xn

j−1∏
i=0

t−xn−i

xn+1 −xn−i

dt. (5.6)

Formula (5.5) is the extension of the explicit Adams method (1.5) to variable step
sizes. Observe that for constant step sizes the above expressions reduce to (Exer-
cise 1)

gj(n) = γj , Φ∗
j (n) = ∇jfn.

The variable step size implicit Adams methods can be deduced similarly. In anal-
ogy to Section III.1 we let p∗(t) be the polynomial of degree k that interpolates
(xj , fj) for j = n− k + 1, . . . , n, n + 1 (the value fn+1 = f(xn+1, yn+1) con-
tains the unknown solution yn+1 ). Again, using Newton’s interpolation formula
we obtain

p∗(t) = p(t) +
k−1∏
i=0

(t−xn−i) · δkf [xn+1, xn, . . . , xn−k+1].

The numerical solution, defined by

yn+1 = yn +
∫ xn+1

xn

p∗(t) dt,

is now given by
yn+1 = pn+1 +hngk(n)Φk(n + 1), (5.7)

where pn+1 is the numerical approximation obtained by the explicit Adams
method

pn+1 = yn +hn

k−1∑
j=0

gj(n)Φ∗
j (n)
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and where

Φk(n + 1) =
k−1∏
i=0

(xn+1 −xn−i) · δkf [xn+1, xn, . . . , xn−k+1]. (5.8)

Recurrence Relations for gj(n), Φj(n) and Φ∗
j (n)

The cost of computing integration coefficients is the biggest dis-
advantage to permitting arbitrary variations in the step size.

(F.T. Krogh 1973)

The values Φ∗
j (n) (j = 0, . . . , k− 1) and Φk(n + 1) can be computed efficiently

with the recurrence relations

Φ0(n) = Φ∗
0(n) = fn

Φj+1(n) = Φj(n)−Φ∗
j (n− 1)

Φ∗
j (n) = βj(n)Φj(n),

(5.9)

which are an immediate consequence of Definitions (5.3) and (5.8). The coeffi-
cients

βj(n) =
j−1∏
i=0

xn+1 −xn−i

xn −xn−i−1

can be calculated by

β0(n) = 1, βj(n) = βj−1(n)
xn+1 −xn−j+1

xn −xn−j

.

The calculation of the coefficients gj(n) is trickier (F.T. Krogh 1974). We intro-
duce the q -fold integral

cjq(x) =
(q− 1)!

hq
n

∫ x

xn

∫ ξq−1

xn

. . .

∫ ξ1

xn

j−1∏
i=0

ξ0 −xn−i

xn+1 −xn−i

dξ0 . . . dξq−1 (5.10)

and observe that

gj(n) = cj1(xn+1).

Lemma 5.1. We have

c0q(xn+1) =
1
q
, c1q(xn+1) =

1
q(q + 1)

,

cjq(xn+1) = cj−1,q(xn+1)− cj−1,q+1(xn+1)
hn

xn+1 −xn−j+1

.
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Proof. The first two relations follow immediately from (5.10). In order to prove the
recurrence relation we denote by d(x) the difference

d(x) = cjq(x)− cj−1,q(x)
x−xn−j+1

xn+1 −xn−j+1

+ cj−1,q+1(x)
hn

xn+1 −xn−j+1

.

Clearly, d(i)(xn)=0 for i=0, 1, . . . , q−1 . Moreover, the q -th derivative of d(x)
vanishes, since by the Leibniz rule

dq

dxq

(
cj−1,q(x) · x−xn−j+1

xn+1 −xn−j+1

)
= c

(q)
j−1,q(x)

x−xn−j+1

xn+1 −xn−j+1

+ qc
(q−1)
j−1,q(x)

1
xn+1 −xn−j+1

= c
(q)
j,q (x) + c

(q)
j−1,q+1(x)

hn

xn+1 −xn−j+1

.

Therefore we have d(x) ≡ 0 and the statement follows by putting x = xn+1 .

Using the above recurrence relation one can successively compute
c2q(xn+1) for q = 1, . . . , k− 1 ; c3q(xn+1) for q = 1, . . . , k− 2 ; . . . ; ckq(xn+1)
for q = 1 . This procedure yields in an efficient way the coefficients gj(n) =
cj1(xn+1) of the Adams methods.

Variable Step Size BDF

The BDF-formulas (1.22) can also be extended in a natural way to variable step
size. Denote by q(t) the polynomial of degree k that interpolates (xi, yi) for
i = n + 1, n, . . . , n− k + 1. It can be expressed, using divided differences, by

q(t) =
k∑

j=0

j−1∏
i=0

(t−xn+1−i) · δjy[xn+1, xn, . . . , xn−j+1]. (5.11)

The requirement
q′(xn+1) = f(xn+1, yn+1)

immediately leads to the variable step size BDF-formulas

k∑
j=1

hn

j−1∏
i=1

(xn+1 −xn+1−i) · δjy[xn+1, . . . , xn−j+1] = hnf(xn+1, yn+1).

(5.12)
The computation of the coefficients is much easier here than for the Adams meth-
ods.
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General Variable Step Size Methods and Their Orders

For theoretical investigations it is convenient to write the methods in a form where
the yj and fj values appear linearly. For example, the implicit Adams method
(5.7) becomes (k = 2 )

yn+1 = yn +
hn

6(1 +ωn)

(
(3 + 2ωn)fn+1 + (3 +ωn)(1 +ωn)fn −ω2

nfn−1

)
,

(5.13)
where we have introduced the notation ωn = hn/hn−1 for the step size ratio. Or,
the 2 -step BDF-formula (5.12) can be written as

yn+1 −
(1 +ωn)2

1 + 2ωn

yn +
ω2

n

1 + 2ωn

yn−1 = hn

1 +ωn

1 + 2ωn

fn+1. (5.14)

In order to give a unified theory for all these variable step size multistep methods
we consider formulas of the form

yn+k +
k−1∑
j=0

αjnyn+j = hn+k−1

k∑
j=0

βjnfn+j . (5.15)

The coefficients αjn and βjn actually depend on the ratios ωi = hi/hi−1 for i =
n + 1, . . . , n + k− 1. In analogy to the constant step size case we give

Definition 5.2. Method (5.15) is consistent of order p , if

q(xn+k) +
k−1∑
j=0

αjnq(xn+j) = hn+k−1

k∑
j=0

βjnq′(xn+j)

holds for all polynomials q(x) of degree ≤ p and for all grids (xj) .

By definition, the explicit Adams method (5.5) is of order k , the implicit
Adams method (5.7) is of order k + 1 , and the BDF-formula (5.12) is of order k .

The notion of consistency certainly has to be related to the local error. Indeed,
if the method is of order p , if the ratios hj/hn are bounded for j = n+1, . . . , n+
k− 1 and if the coefficients satisfy

αjn, βjn are bounded , (5.16)

then a Taylor expansion argument implies that

y(xn+k) +
k−1∑
j=0

αjny(xn+j)−hn+k−1

k∑
j=0

βjny′(xn+j) = O(hp+1
n ) (5.17)

for sufficiently smooth y(x) . Interpreting y(x) as the solution of the differential
equation, a trivial extension of Lemma 2.2 to variable step sizes shows that the
local error at xn+k (cf. Definition 2.1) is also O(hp+1

n ) .
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This motivates the investigation of condition (5.16). The methods (5.13) and
(5.14) are seen to satisfy (5.16) whenever the step size ratio hn/hn−1 is bounded
from above. In general we have

Lemma 5.3. For the explicit and implicit Adams methods as well as for the BDF-
formulas the coefficients αjn and βjn are bounded whenever for some Ω

hn/hn−1 ≤ Ω.

Proof. We prove the statement for the explicit Adams methods only. The proof
for the other methods is similar and thus omitted. We see from formula (5.5) that
the coefficients αjn do not depend on n and hence are bounded. The βjn are
composed of products of gj(n) with the coefficients of Φ∗

j (n) , when written as a
linear combination of fn, . . . , fn−j . From formula (5.6) we see that |gj(n)|≤1 . It
follows from (xn+1 −xn−j+1) ≤ max(1, Ωj)(xn −xn−j) and from an induction
argument that the coefficients of Φ∗

j (n) are also bounded. Hence the βjn are
bounded, which proves the lemma.

The condition hn/hn−1 ≤ Ω is a reasonable assumption which can easily be
satisfied by a code.

Stability

So geht das einfach . . . (R.D. Grigorieff, Halle 1983)

The study of stability for variable step size methods was begun in the articles of
Gear & Tu (1974) and Gear & Watanabe (1974). Further investigations are due to
Grigorieff (1983) and Crouzeix & Lisbona (1984).

We have seen in Section III.3 that for equidistant grids stability is equivalent to
the boundedness of the numerical solution, when applied to the scalar differential
equation y′ = 0 . Let us do the same here for the general case. Method (5.15),
applied to y′ = 0 , gives the difference equation with variable coefficients

yn+k +
k−1∑
j=0

αjnyn+j = 0.

If we introduce the vector Yn = (yn+k−1, . . . , yn)T , this difference equation is
equivalent to

Yn+1 = AnYn
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with

An =

⎛⎜⎜⎜⎜⎝
−αk−1,n . . . . . . −α1,n −α0,n

1 0 . . . 0 0
. . .

. . .
...

...
1 0 0

1 0

⎞⎟⎟⎟⎟⎠ , (5.18)

the companion matrix.

Definition 5.4. Method (5.15) is called stable, if

‖An+lAn+l−1 . . .An+1An‖ ≤ M (5.19)

for all n and l ≥ 0 .

Observe that in general An depends on the step ratios ωn+1, . . . , ωn+k−1 .
Therefore, condition (5.19) will usually lead to a restriction on these values. For
the Adams methods (5.5) and (5.7) the coefficients αjn do not depend on n and
hence are stable for any step size sequence.

In the following three theorems we present stability results for general variable
step size methods. The first one, taken from Crouzeix & Lisbona (1984), is a sort
of perturbation result: the variable step size method is considered as a perturbation
of a strongly stable fixed step size method.

Theorem 5.5. Let the method (5.15) satisfy the following properties:

a) it is of order p ≥ 0 , i.e., 1 +
k−1∑
j=0

αjn = 0 ;

b) the coefficients αjn = αj(ωn+1, . . . , ωn+k−1) are continuous in a neighbour-
hood of (1, . . . , 1) ;

c) the underlying constant step size formula is strongly stable, i.e., all roots of

ζk +
k−1∑
j=0

αj(1, . . . , 1)ζj = 0

lie in the open unit disc |ζ| < 1 , with the exception of ζ1 = 1 .
Then there exist real numbers ω, Ω (ω < 1 < Ω ) such that the method is stable if

ω ≤ hn/hn−1 ≤ Ω for all n. (5.20)

Proof. Let A be the companion matrix of the constant step size formula. As in the
proof of Lemma 4.4 we transform A to Jordan canonical form and obtain

T−1AT =

⎛⎝ Â

0
:
0
1

⎞⎠
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where, by assumption (c), ‖Â‖1 < 1 . Observe that the last column of T , the
eigenvector of A corresponding to 1 , is given by tk = (1, . . . , 1)T . Assumption
(a) implies that this vector tk is also an eigenvector for each An . Therefore we
have

T−1AnT =

⎛⎝ Ân

0
:
0
1

⎞⎠
and, by continuity, ‖Ân‖1 ≤ 1 , if ωn+1, . . . , ωn+k−1 are sufficiently close to 1 .
Stability now follows from the fact that

‖T−1AnT‖1 = max(‖Ân‖1, 1) = 1,

which implies that

‖An+l . . .An+1An‖ ≤ ‖T‖ · ‖T−1‖.

The next result (Grigorieff 1983) is based on a reduction of the dimension of
the matrices An by one. The idea is to use the transformation

T =

⎛⎜⎜⎜⎝
1 1 1 .. 1

1 1 .. 1
1 .. 1

0 ·. :
1

⎞⎟⎟⎟⎠ , T−1 =

⎛⎜⎜⎜⎝
1 −1 0

1 −1
1 ·.

0 ·. −1
1

⎞⎟⎟⎟⎠ .

Observe that the last column of T is just tk of the above proof. A simple calcula-
tion shows that

T−1AnT =
(

A∗
n 0

eT
k−1 1

)
where eT

k−1 = (0, . . . , 0, 1) and

A∗
n =

⎛⎜⎜⎜⎝
−α∗

k−2,n −α∗
k−3,n .. −α∗

1n −α∗
0n

1 0 .. . 0
1 .. . 0

·. : :
1 0

⎞⎟⎟⎟⎠ (5.21)

with
α∗

k−2,n = 1 +αk−1,n, α∗
0n = −α0n,

α∗
k−j−1,n −α∗

k−j,n = αk−j,n for j = 2, . . . , k− 1 .

We remark that the coefficients α∗
j,n are just the coefficients of the polynomial

defined by

(ζk +αk−1,nζk−1 + . . .+α1,nζ +α0,n)

= (ζ − 1)(ζk−1 +α∗
k−2,nζk−2 + . . .+α∗

1,nζ +α∗
0,n).
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Theorem 5.6. Let the method (5.15) be of order p ≥ 0 . Then the method is stable
if and only if for all n and l ≥ 0 ,

a)
∥∥A∗

n+l . . .A∗
n+1A

∗
n

∥∥≤ M1

b)
∥∥eT

k−1

∑n+l
j=n

∏j−1
i=n A∗

i

∥∥≤ M2.

Proof. A simple induction argument shows that

T−1An+l . . .AnT =
(

A∗
n+l . . . A∗

n 0
bT
n,l 1

)
with

bT
n,l = eT

k−1

n+l∑
j=n

j−1∏
i=n

A∗
i .

Since in this theorem the dimension of the matrices under consideration is re-
duced by one, it is especially useful for the stability investigation of two-step meth-
ods.

Example. Consider the two-step BDF-method (5.14). Here

α0n =
ω2

n+1

1 + 2ωn+1

, α1n = −1−α0n.

The matrix (5.21) becomes in this case

A∗
n = (−α∗

0n), −α∗
0n =

ω2
n+1

1 + 2ωn+1

.

If |α∗
0n| ≤ q < 1 the conditions of Theorem 5.6 are satisfied and imply stability.

This is the case, if
0 < hn+1/hn ≤ Ω < 1 +

√
2.

An interesting consequence of the theorem above is the instability of the two-step
BDF-formula if the step sizes increase at least like hn+1/hn ≥ 1 +

√
2 .

The investigation of stability for k -step (k ≥ 3) methods becomes much more
difficult, because several step size ratios ωn+1 , ωn+2, . . . are involved. Grigori-
eff (1983) calculated the bounds (5.20) given in Table 5.1 for the higher order
BDF-methods which ensure stability. These bounds are surely unrealistic, since all
pathological step size variations are admitted.

A less pessimistic result is obtained if the step sizes are supposed to vary
more smoothly (Gear & Tu 1974): the local error is known to be of the form
d(xn)hp+1

n +O(hp+2
n ) , where d(x) is the principal error function. This local error
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Table 5.1. Bounds (5.20) for k -step BDF formulas

k 2 3 4 5

ω 0 0.836 0.979 0.997

Ω 2.414 1.127 1.019 1.003

is, by the step size control, kept equal to Tol . Hence, if d(x) is bounded away from
zero we have

hn = |Tol/d(xn)|1/(p+1) +O(hn)

which implies (if hn+1/hn ≤ Ω) that

hn+1/hn = |d(xn)/d(xn+1)|1/(p+1) +O(hn).

If d(x) is differentiable, we obtain

|hn+1/hn − 1| ≤ Chn. (5.22)

Several stability results of Gear & Tu are based on this hypothesis (“Consequently,
we can expect either method to be stable if the fixed step method is stable. . . .”).
Adding up (5.22) we obtain

n+l∑
j=n

|hj+1/hj − 1| ≤ C(x̂−x0),

a condition which contains only step size ratios. This motivates the following the-
orem:

Theorem 5.7. Let the coefficients αjn of method (5.15) be continuously differen-
tiable functions of ωn+1, . . . , ωn+k−1 in a neighbourhood of the set

{(ωn+1, . . . , ωn+k−1) ; ω ≤ ωj ≤ Ω}
and assume that the method is stable for constant step sizes (i.e., for ωj = 1) . Then
the condition

n+l∑
j=n

|hj+1/hj − 1| ≤ C for all n and l ≥ 0 , (5.23)

together with ω ≤ hj+1/hj ≤ Ω , imply the stability condition (5.19).

Proof. As in the proof of Theorem 5.5 we denote by A the companion matrix
of the constant step size formula and by T a suitable transformation such that
‖T−1AT‖ = 1 . The mean value theorem, applied to αj(ωn+1, . . . , ωn+k−1)−
αj(1, . . . , 1) , implies that

‖T−1AnT −T−1AT‖ ≤ K
n+k−1∑
j=n+1

|ωj − 1|.
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Hence

‖T−1AnT‖ ≤ 1 +K

n+k−1∑
j=n+1

|ωj − 1| ≤ exp
(
K

n+k−1∑
j=n+1

|ωj − 1|
)
.

From this inequality we deduce that

‖An+l . . .An+1An‖ ≤ ‖T‖ · ‖T−1‖ · exp
(
K · (k− 1)C

)
.

Convergence

Convergence for variable step size Adams methods was first studied by
Piotrowski (1969). In order to prove convergence for the general case we intro-
duce the vector Yn = (yn+k−1, . . . , yn+1, yn)T . In analogy to (4.8) the method
(5.15) then becomes equivalent to

Yn+1 = (An ⊗ I)Yn +hn+k−1Φn(xn, Yn, hn) (5.24)

where An is given by (5.18) and

Φn(xn, Yn, hn) = (e1 ⊗ I)Ψn(xn, Yn, hn).

The value Ψ = Ψn(xn, Yn, hn) is defined implicitly by

Ψ =
k−1∑
j=0

βjnf(xn+j , yn+j) +βknf
(
xn+k, hΨ−

k−1∑
j=0

αjnyn+j

)
.

Let us further denote by

Y (xn) =
(
y(xn+k−1), . . . , y(xn+1), y(xn)

)T
the exact values to be approximated by Yn . The convergence theorem can now be
formulated as follows:

Theorem 5.8. Assume that

a) the method (5.15) is stable, of order p , and has bounded coefficients αjn and
βjn ;

b) the starting values satisfy ‖Y (x0)−Y0‖ = O(hp
0) ;

c) the step size ratios are bounded (hn/hn−1 ≤ Ω) .
Then the method is convergent of order p , i.e., for each differential equation y′ =
f(x, y), y(x0) = y0 with f sufficiently differentiable the global error satisfies

‖y(xn)− yn‖ ≤ Chp for xn ≤ x̂ ,

where h = maxhj .
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Proof. Since the method is of order p and the coefficients and step size ratios are
bounded, formula (5.17) shows that the local error

δn+1 = Y (xn+1)− (An ⊗ I)Y (xn)−hn+k−1Φn

(
xn, Y (xn), hn

)
(5.25)

satisfies
δn+1 = O(hp+1

n ). (5.26)

Subtracting (5.24) from (5.25) we obtain

Y (xn+1)−Yn+1 = (An ⊗ I)(Y (xn)−Yn)

+hn+k−1

(
Φn(xn, Y (xn), hn)−Φn(xn, Yn, hn)

)
+ δn+1

and by induction it follows that

Y (xn+1)−Yn+1 =
(
(An . . .A0)⊗ I

)
(Y (x0)−Y0)

+
n∑

j=0

hj+k−1

(
(An . . .Aj+1)⊗ I

)(
Φj(xj, Y (xj), hj)−Φj(xj , Yj, hj)

)
+

n∑
j=0

(
(An . . .Aj+1)⊗ I

)
δj+1.

As in the proof of Theorem 4.5 we deduce that the Φn satisfy a uniform Lipschitz
condition with respect to Yn . This, together with stability and (5.26), implies that

‖Y (xn+1)−Yn+1‖ ≤
n∑

j=0

hj+k−1L‖Y (xj)−Yj‖+C1h
p.

In order to solve this inequality we introduce the sequence {εn} defined by

ε0 = ‖Y (x0)−Y0‖, εn+1 =
n∑

j=0

hj+k−1Lεj +C1h
p. (5.27)

A simple induction argument shows that

‖Y (xn)−Yn‖ ≤ εn. (5.28)

From (5.27) we obtain for n ≥ 1

εn+1 = εn +hn+k−1Lεn ≤ exp(hn+k−1L)εn

so that also

εn ≤ exp((x̂−x0)L)ε1 = exp
(
(x̂−x0)L

) · (hk−1L‖Y (x0)−Y0‖+C1h
p
)
.

This inequality together with (5.28) completes the proof of Theorem 5.8.
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Exercises

1. Prove that for constant step sizes the expressions gj(n) and Φ∗
j (n) (formulas

(5.3) and (5.6)) reduce to

gj(n) = γj, Φ∗
j (n) = ∇jfn,

where γj is given by (1.6).

2. (Grigorieff 1983). For the k -step BDF-methods consider grids with constant
mesh ratio ω , i.e., hn = ωhn−1 for all n . In this case the elements of A∗

n (see
(5.21)) are independent of n . Show numerically that all eigenvalues of A∗

n are
of absolute value less than one for 0 < ω < Rk where

k 2 3 4 5 6

Rk 2.414 1.618 1.280 1.127 1.044



III.6 Nordsieck Methods

While [the method] is primarily designed to optimize the effi-
ciency of large-scale calculations on automatic computers, its es-
sential procedures also lend themselves well to hand computation.

(A. Nordsieck 1962)

Two further problems must be dealt with in order to implement the
automatic choice and revision of the elementary interval, namely,
choosing which quantities to remember in such a way that the
interval may be changed rapidly and conveniently . . .

(A. Nordsieck 1962)

In an important paper Nordsieck (1962) considered a class of methods for ordi-
nary differential equations which allow a convenient way of changing the step size
(see Section III.7). He already remarked that his methods are equivalent to the im-
plicit Adams methods, in a certain sense. Let us begin with his derivation of these
methods and then investigate their relation to linear multistep methods.

Nordsieck (1962) remarked “ . . . that all methods of numerical integration are
equivalent to finding an approximating polynomial for y(x) . . .”. His idea was to
represent such a polynomial by the 0 th to k th derivatives, i.e., by a vector (“the
Nordsieck vector”)

zn =
(
yn, hy′

n,
h2

2!
y′′

n, . . . ,
hk

k!
y(k)

n

)T

. (6.1)

The y
(j)
n are meant to be approximations to y(j)(xn) , where y(x) is the exact

solution of the differential equation

y′ = f(x, y). (6.2)

In order to define the integration procedure we have to give a rule for determining
zn+1 when zn and the differential equation (6.2) are given. By Taylor’s expansion,
such a rule is (e.g., for k = 3 )

yn+1 = yn + hy′
n + h2

2! y
′′
n + h3

3! y
′′′
n + h4

4! e

hy′
n+1 = hy′

n + 2h2

2! y
′′
n + 3h3

3! y
′′′
n + 4h4

4! e

h2

2!
y′′

n+1 = h2

2!
y′′

n + 3h3

3!
y′′′

n + 6h4

4!
e

h3

3!
y′′′

n+1 = h3

3!
y′′′

n + 4h4

4!
e,

(6.3)

where the value e is determined in such a way that

y′
n+1 = f(xn+1, yn+1). (6.4)

Inserting (6.4) into the second relation of (6.3) yields

4
h4

4!
e = h

(
f(xn+1, yn+1)− fp

n

)
(6.5)
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with

hfp
n = hy′

n + 2
h2

2!
y′′

n + 3
h3

3!
y′′′

n .

With this relation for e the above method becomes

yn+1 = yn + hy′
n + h2

2! y
′′
n + h3

3! y
′′′
n + 1

4h
(
f(xn+1, yn+1)− fp

n

)
hy′

n+1 = hy′
n + 2h2

2!
y′′

n + 3h3

3!
y′′′

n + h
(
f(xn+1, yn+1)− fp

n

)
h2

2!
y′′

n+1 = h2

2!
y′′

n + 3h3

3!
y′′′

n + 3
2
h
(
f(xn+1, yn+1)− fp

n

)
h3

3! y
′′′
n+1 = h3

3! y
′′′
n + h

(
f(xn+1, yn+1)− fp

n

)
(6.6)

The first equation constitutes an implicit formula for yn+1 , the others are explicit.

Observe that for sufficiently accurate approximations y
(j)
n to y(j)(xn) the value e

(formula (6.5)) is an approximation to y(4)(xn) . This seems to be a desirable prop-
erty from the point of view of accuracy. Unfortunately, method (6.6) is unstable.
To see this, we put f(x, y)= 0 in (6.6). In this case the method becomes the linear
transformation

zn+1 = Mzn (6.7)

where

M =

⎛⎜⎝
1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

⎞⎟⎠−

⎛⎜⎝
1/4
1

3/2
1

⎞⎟⎠( 0 1 2 3
)
.

The eigenvalues of M are seen to be 1, 0,−(2+
√

3) and −1/(2+
√

3) , implying
that (6.6) is unstable and therefore of no use. The phenomenon that highly accurate
methods are often unstable is, after our experiences in Section III.3, no longer
astonishing.

To overcome this difficulty Nordsieck proposed to replace the constants 1/4 ,
1, 3/2, 1 which appear in front of the brackets in (6.6) by arbitrary values (l0, l1 ,
l2, l3) , and to use this extra freedom to achieve stability. In compact form this
modification can be written as

zn+1 = (P ⊗ I)zn + (l⊗ I)
(
hf(xn+1, yn+1)− (eT

1 P ⊗ I)zn

)
. (6.8)

Here zn is given by (6.1), P is the Pascal triangle matrix defined by

pij =

⎧⎨⎩
(

j

i

)
for 0 ≤ i ≤ j ≤ k,

0 else,

l = (l0, l1, . . . , lk)T and e1 = (0, 1, 0, . . . , 0)T . Observe that the indices of vectors
and matrices start from zero.
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For notational simplicity in the following theorems, we consider from now on
scalar differential equations only, so that method (6.8) becomes

zn+1 = Pzn + l
(
hfn+1 − eT

1 Pzn

)
. (6.8’)

All results, of course, remain valid for systems of equations. Condition (6.4), which
relates the method to the differential equation, fixes the value of l1 as

l1 = 1. (6.9)

The above stability analysis applied to the general method (6.8) leads to the differ-
ence equation (6.7) with

M = P − leT
1 P. (6.10)

For instance, for k = 3 this matrix is given by

M =

⎛⎜⎝
1 1− l0 1− 2l0 1− 3l0
0 0 0 0
0 −l2 1− 2l2 3− 3l2
0 −l3 −2l3 1− 3l3

⎞⎟⎠ .

One observes that 1 and 0 are two eigenvalues of M and that its characteristic
polynomial is independent of l0 . Nordsieck determined l2, . . . , lk in such a way
that the remaining eigenvalues of M are zero. For k = 3 this yields l2 = 3/4
and l3 = 1/6 . The coefficient l0 can be chosen such that the error constant of the
method (see Theorem 6.2 below) vanishes. In our situation one gets l0 = 3/8 , so
that the resulting method is given by

l =
(
3/8, 1, 3/4, 1/6

)T
.

It is interesting to note that this method is equivalent to the implicit 3 -step Adams
method. Indeed, an elimination of the terms (h3/3!)y′′′

n and (h2/2!)y′′
n by using

formula (6.8) with reduced indices leads to (cf. formula (1.9”))

yn+1 = yn +
h

24

(
9y′

n+1 + 19y′
n − 5y′

n−1 + y′
n−2

)
. (6.11)

Equivalence with Multistep Methods

More insight into the connection between Nordsieck methods and multistep meth-
ods is due to Descloux (1963), Osborne (1966), and Skeel (1979). The following
two theorems show that every Nordsieck method is equivalent to a multistep for-
mula and that the order of this method is at least k .
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Theorem 6.1. Consider the Nordsieck method (6.8) where l1 = 1 . The first two
components of zn then satisfy the linear multistep formula (for n ≥ 0 )

k∑
i=0

αiyn+i = h
k∑

i=0

βifn+i (6.12)

where the generating polynomials are given by

�(ζ) = det(ζI −P ) · eT
1 (ζI −P )−1l

σ(ζ) = det(ζI −P ) · eT
0 (ζI −P )−1l.

(6.13)

Proof. The proof of the original papers simplifies considerably, if we work with the
generating functions (discrete Laplace transformation)

Z(ζ) =
∑
n≥0

znζn, Y (ζ) =
∑
n≥0

ynζn, F (ζ) =
∑
n≥0

fnζn, . . . .

Multiplying formula (6.8’) by ζn+1 and adding up we obtain

Z(ζ) = ζPZ(ζ) + l
(
hF (ζ)− eT

1 PζZ(ζ)
)

+ (z0 − lhf0). (6.14)

Similarly, the linear multistep method (6.12) can be written as

�̂(ζ)Y (ζ) = hσ̂(ζ)F (ζ) + pk−1(ζ), (6.15)

where
�̂(ζ) = ζk�(1/ζ), σ̂(ζ) = ζkσ(1/ζ) (6.16)

and pk−1 is a polynomial of degree k−1 depending on the starting values. In order
to prove the theorem we have to show that the first two components of Z(ζ) satisfy
a relation of the form (6.15). We first rewrite equation (6.14) in the form

Z(ζ) = (I − ζP )−1l
(
hF (ζ)− eT

1 PζZ(ζ)
)

+ (I − ζP )−1(z0 − lhf0)

so that its first two components become

Y (ζ) = eT
0 (I − ζP )−1l

(
hF (ζ)− eT

1 PζZ(ζ)
)

+ eT
0 (I − ζP )−1(z0 − lhf0)

hF (ζ) = eT
1 (I − ζP )−1l

(
hF (ζ)− eT

1 PζZ(ζ)
)

+ eT
1 (I − ζP )−1(z0 − lhf0).

Eliminating the term in brackets and multiplying by det(I − ζP ) we arrive at for-
mula (6.15) with

�̂(ζ) = det(I − ζP ) · eT
1 (I − ζP )−1l

σ̂(ζ) = det(I − ζP ) · eT
0 (I − ζP )−1l

pk−1(ζ) = det(I − ζP )
(
eT
1 (I − ζP )−1leT

0 (I − ζP )−1

− eT
0 (I − ζP )−1leT

1 (I − ζP )−1
)
z0.

(6.17)
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With the help of (6.16) we immediately get formulas (6.13). Therefore, it remains
to show that pk−1 , given by (6.17), is a polynomial of degree k− 1 . Since the
dimension of P is (k + 1) , pk−1 behaves like ζk−1 for |ζ| → ∞ . Finally, the
relation (6.15) implies that the Laurent series of pk−1 cannot contain negative
powers.

Putting (ζI −P )−1l = u in (6.13) and applying Cramer’s rule to the linear
system (ζI −P )u = l we obtain from (6.13) the elegant expressions

�(ζ) = det

⎛⎜⎜⎜⎜⎝
ζ − 1 l0 −1 .. −1

0 l1 −2 .. −k
0 l2 ζ − 1 .. .
...

...
...

...
0 lk 0 .. ζ − 1

⎞⎟⎟⎟⎟⎠ (6.13a)

σ(ζ) = det

⎛⎜⎜⎜⎜⎝
l0 −1 −1 .. −1
l1 ζ − 1 −2 .. −k
l2 0 ζ − 1 .. .
...

...
...

...
lk 0 0 .. ζ − 1

⎞⎟⎟⎟⎟⎠ . (6.13b)

We observe that �(ζ) does not depend on l0 . Further, ζ0 = 1 is a simple root of
�(ζ) if and only if lk �= 0 . We have

�′(1) = σ(1) = k! lk. (6.18)

Condition (6.9) is equivalent to αk = 1 .

Theorem 6.2. Assume that lk �= 0 . The multistep method defined by (6.13) is of
order at least k and its error constant (see (2.13)) is given by

C = − bT l

k! lk
.

Here the components of

bT =
(
B0, B1, . . . , Bk

)
=
(
1,−1

2
,
1
6
, 0,− 1

30
, 0,

1
42

, . . .
)

are the Bernoulli numbers.

Proof. By Theorem 2.4 we have order k iff

�(ζ)− log ζ · σ(ζ) = Ck+1(ζ − 1)k+1 +O((ζ − 1)k+2
)
.

Since det(ζI −P ) = (ζ − 1)k+1 this is equivalent to

eT
1 (ζI −P )−1l− log ζ · eT

0 (ζI −P )−1l = Ck+1 +O((ζ − 1)
)
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and, by (6.18), it suffices to show that

(log ζ · eT
0 − eT

1 )(ζI −P )−1 = bT +O((ζ − 1)
)
. (6.19)

Denoting the left-hand side of (6.19) by bT (ζ) we obtain

(ζI −P )T b(ζ) = (log ζ · e0 − e1). (6.20)

The q th component (q ≥ 2) of this equation

ζbq(ζ)−
q∑

j=0

(
q

j

)
bj(ζ) = 0

is equivalent to

ζbq(ζ)
q!

−
q∑

j=0

bj(ζ)
j!

1
(q− j)!

= 0,

which is seen to be a Cauchy product. Hence, formula (6.20) becomes

ζ
∑
q≥0

tq

q!
bq(ζ)− et

∑
q≥0

tq

q!
bq(ζ) = log ζ − t

which yields ∑
q≥0

tq

q!
bq(ζ) =

t− log ζ

et − ζ
.

If we set ζ = 1 in this formula we obtain∑
q≥0

tq

q!
bq(1) =

t

et − 1
,

therefore bq(1)=Bq , the q th Bernoulli number (see Abramowitz & Stegun, Chap-
ter 23).

We have thus shown that to each Nordsieck method (6.8) there corresponds a
linear multistep method of order at least k . Our next aim is to establish a corre-
spondence in the opposite direction.

Theorem 6.3. Let (�, σ) be the generating polynomials of a k-step method (6.12)
of order at least k and assume αk = 1 . Then we have:

a) There exists a unique vector l such that � and σ are given by (6.13).

b) If, in addition, the multistep method is irreducible, then there exists a non-
singular transformation T such that the solution of (6.8’) is related to that of
(6.12) by

zn = T−1un (6.21)
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where the j th component of un is given by

u
(n)
j =

{∑j
i=0(αk−j+iyn+i −hβk−j+ifn+i) for 0 ≤ j ≤ k− 1,

hfn for j = k.
(6.22)

Proof. a) For every k th order multistep method the polynomial �(ζ) is uniquely
determined by σ(ζ) (see Theorem 2.4). Expanding the determinant in (6.13b) with
respect to the first column we see that

σ(ζ) = l0(ζ − 1)k + l1(ζ − 1)k−1r1(ζ) + . . .+ lkrk(ζ),

where rj(ζ) is a polynomial of degree j satisfying rj(1) �= 0 . Hence, l can be
computed from σ(ζ) .

b) Let y0, . . . , yk−1 and f0, . . . , fk−1 be given. Then the polynomial pk−1(ζ)
in (6.15) satisfies

pk−1(ζ) = u
(0)
0 +u

(0)
1 ζ + . . .+u

(0)
k−1ζ

k−1.

On the other hand, if the starting vector z0 for the Nordsieck method defined by
l of (a) is known, then pk−1(ζ) is given by (6.17). Equating both expressions we
obtain

k−1∑
j=0

u
(0)
j ζj =

(
�̂(ζ)eT

0 − σ̂(ζ)eT
1

)
(I − ζP )−1z0. (6.23)

We now denote by tTj (j = 0, . . . , k− 1) the coefficients of the vector polynomial

(
�̂(ζ)eT

0 − σ̂(ζ)eT
1

)
(I − ζP )−1 =

k−1∑
j=0

tTj ζj (6.24)

and set tTk = eT
1 . Then let T be the square matrix whose j th row is tTj so that

u0 = Tz0 is a consequence of (6.23) and hfn = hy′
n . The same argument applied

to yn, . . . , yn+k−1 and fn, . . . , fn+k−1 instead of y0, . . . , yk−1 and f0, . . . , fk−1

yields un = Tzn for all n .
To complete the proof it remains to verify the non-singularity of T . Let v =

(v0, v1, . . . , vk)T be a non-zero vector satisfying Tv = 0 . By definition of tTk we
have v1 = 0 and from (6.24) it follows (using the transformation (6.16)) that

�(ζ)τ0(ζ) = σ(ζ)τ1(ζ), (6.25)

where τi(ζ) = det(ζI −P )eT
i (ζI −P )−1v are polynomials of degree at most k .

Moreover, Cramer’s rule shows that the degree of τ1(ζ) is at most k− 1 , since
v1 = 0 . Hence from (6.25) at least one of the roots of �(ζ) must be a root of σ(ζ) .
This is in contradiction with the assumption that the method is irreducible.
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Table 6.1. Coefficients lj of the k -step implicit Adams methods

l0 l1 l2 l3 l4 l5 l6

k = 1 1/2 1

k = 2 5/12 1 1/2

k = 3 3/8 1 3/4 1/6

k = 4 251/720 1 11/12 1/3 1/24

k = 5 95/288 1 25/24 35/72 5/48 1/120

k = 6 19087/60480 1 137/120 5/8 17/96 1/40 1/720

Table 6.2. Coefficients lj of the k -step BDF-methods

l0 l1 l2 l3 l4 l5 l6

k = 1 1 1

k = 2 2/3 1 1/3

k = 3 6/11 1 6/11 1/11

k = 4 12/25 1 7/10 1/5 1/50

k = 5 60/137 1 225/274 85/274 15/274 1/274

k = 6 20/49 1 58/63 5/12 25/252 1/84 1/1764

The vectors l which correspond to the implicit Adams methods and to the
BDF-methods are given in Tables 6.1 and 6.2. For these two classes of methods we
shall investigate the equivalence in some more detail.

Implicit Adams Methods

The following results are due to Byrne & Hindmarsh (1975). Since their “efficient
package” EPISODE and the successor VODE are based on the Nordsieck repre-
sentation of variable step size methods, we extend our considerations to this case.
The Adams methods define in a natural way a polynomial which approximates the
unknown solution of (6.2). Namely, if yn and fn, . . . , fn−k+1 are given, then the
k -step Adams method is equivalent to the construction of a polynomial pn+1(x)
of degree k + 1 which satisfies

pn+1(xn) = yn, pn+1(xn+1) = yn+1,

p′n+1(xj) = fj for j = n− k + 1, . . . , n + 1.
(6.26)

Condition (6.26) defines yn+1 implicitly. We observe that the difference of two
consecutive polynomials, pn+1(x)− pn(x) , vanishes at xn and that its derivative
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is zero at xn−k+1, . . . , xn . Therefore, if we let en+1 = yn+1 − pn(xn+1) , this
difference can be written as

pn+1(x)− pn(x) = Λ
( x−xn+1

xn+1 −xn

)
en+1 (6.27)

where Λ is the unique polynomial of degree (k + 1) defined by

Λ(0) = 1, Λ(−1) = 0

Λ′
( xj −xn+1

xn+1 −xn

)
= 0 for j = n− k + 1, . . . , n.

(6.28)

The derivative of (6.27) taken at x = xn+1 shows that with hn = xn+1 −xn ,

hnfn+1 −hnp′n(xn+1) = Λ′(0)en+1.

If we introduce the Nordsieck vector

z̃n =
(
pn(xn), hnp′n(xn), . . . ,

hk+1
n

(k + 1)!
p(k+1)

n (xn)
)T

and the coefficients l̃j by

Λ(t) =
k+1∑
j=0

l̃jt
j , (6.29)

then (6.27) becomes equivalent to

z̃n+1 = P z̃n + l̃ l̃−1
1

(
hfn+1 − eT

1 P z̃n

)
(6.30)

with l̃ = (l̃0, l̃1, . . . , l̃k+1)T . This method is of the form (6.8’). However, it is of
dimension k + 2 and not, as expected by Theorem 6.3, of dimension k + 1 . The
reason is the following: let �̃(ζ) and σ̃(ζ) be the generating polynomials of the
multistep method which corresponds to (6.30). Then the conditions Λ(−1) = 0
and Λ′(−1) = 0 imply that σ̃(0) = �̃(0) = 0 , so that this method is reducible.
Nevertheless, method (6.30) is useful, since the last component of z̃n can be used
for step size control.

Remark. For k ≥ 2 the coefficients l̃j , defined by (6.29), depend on the step size
ratios hj/hj−1 for j = n−k +2, . . . , n . They can be computed from the formula

Λ(t) =

∫ t

−1

∏k
j=1(s− tj) ds∫ 0

−1

∏k
j=1(s− tj) ds

(6.31)

where tj = (xn−j+1 −xn+1)/(xn+1 −xn) (see also Exercise 1).
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BDF-Methods

One step of the k -step BDF method consists in constructing a polynomial qn+1(x)
of degree k which satisfies

qn+1(xj) = yj for j = n− k + 1, . . . , n + 1

q′n+1(xn+1) = fn+1

(6.32)

and in computing a value yn+1 which makes this possible. As for the Adams
methods we have

qn+1(x)− qn(x) = Λ
( x−xn+1

xn+1 −xn

)
· (yn+1 − qn(xn+1)

)
, (6.33)

where Λ(t) is the polynomial of degree k defined by

Λ
( xj −xn+1

xn+1 −xn

)
= 0 for j = n− k + 1, . . . , n,

Λ(0) = 1.

With the vector

z̃n =
(
qn(xn), hnq′n(xn), . . . ,

hk
n

k!
q(k)
n (xn)

)T

and the coefficients l̃j given by

Λ(t) =
k∑

j=0

l̃jt
j ,

equation (6.33) becomes

z̃n+1 = P z̃n + l̃ l̃−1
1

(
hfn+1 − eT

1 P z̃n

)
. (6.34)

The vector l̃ = (l̃0, l̃1, . . . , l̃k)T can be computed from the formula

Λ(t) =
k∏

j=1

(
1 +

t

tj

)
where tj = (xn−j+1 −xn+1)/(xn+1 −xn) . For constant step sizes formula (6.34)

corresponds to that of Theorem 6.3 and the coefficients lj = l̃j/l̃1 coincide with
those of Table 6.2.
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Exercises

1. Let l
(k)
j (j = 0, . . . , k) be the Nordsieck coefficients of the k -step implicit

Adams methods (defined by Theorem 6.3 and given in Table 6.1). Further,
denote by l̃

(k)
j (j = 0, . . . , k + 1) the coefficients given by (6.29) and (6.31)

for the case of constant step sizes. Show that

l̃
(k)
j

l̃
(k)
1

=

{
l
(k)
j for j = 0

l
(k+1)
j for j = 1, . . . , k + 1.

Use these relations to verify Table 6.1.

2. a) Calculate the matrix T of Theorem 6.3 for the 3 -step implicit Adams
method.

Result.

T−1 =

⎛⎜⎝
1 0 0 3/8
0 0 0 1
0 6 6 3/4
0 4 12 1/6

⎞⎟⎠ .

Show that the Nordsieck vector zn is given by

zn =
(
yn, hfn, (3hfn−4hfn−1+hfn−2)/4, (hfn−2hfn−1+hfn−2)/6

)T

.

b) The vector z̃n for the 2 -step implicit Adams method (6.30) (constant step
sizes) also satisfies

z̃n =
(
yn, hfn, (3hfn−4hfn−1+hfn−2)/4, (hfn−2hfn−1+hfn−2)/6

)T

,

but this time yn is a less accurate approximation to y(xn) .
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There is a great deal of freedom in the implementation of multistep methods (even
if we restrict our considerations to the Adams methods). One can either directly
use the variable step size methods of Section III.5 or one can take a fixed step size
method and determine the necessary offgrid values, which are needed for a change
of step size, by interpolation. Further, it is possible to choose between the divided
difference formulation (5.7) and the Nordsieck representation (6.30).

The historical approach was the use of formula (1.9) together with interpola-
tion (J.C. Adams (1883): “We may, of course, change the value of ω (the step size)
whenever the more or less rapid rate of diminution of the successive differences
shews that it is expedient to increase or diminish the interval. It is only neces-
sary, by selection from or interpolation between the values already calculated, to
find the coordinates for a few values of ϕ separated from each other by the newly
chosen interval.”). It is theoretically more satisfactory and more elegant to work
with the variable step size method (5.7). For both of these approaches the change
of step size is rather expensive whereas the change of order is very simple — one
just has to add a further term to the expansion (1.9). If the Nordsieck represen-
tation (6.30) is implemented, the situation is the opposite. There, the change of
order is not as direct as above, but the step size can be changed simply by multiply-
ing the Nordsieck-vector (6.1) by the diagonal matrix with entries (1, ω, ω2, . . .)
where ω = hnew/hold is the step size ratio. Indeed, this was the main reason for
introducing this representation.

Step Size and Order Selection

Much was made of the starting of multistep computations and the need for Runge-
Kutta methods in the literature of the 60ies (see e.g., Ralston 1962). Nowadays,
codes for multistep methods simply start with order one and very small step sizes
and are therefore self-starting. The following step size and order selection is closely
related to the description of Shampine & Gordon (1975).

Suppose that the numerical integration has proceeded successfully until xn

and that a further step with step size hn and order k +1 is taken, which yields the
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approximation yn+1 to y(xn+1) . To decide whether yn+1 will be accepted or not,
we need an estimate of the local truncation error. Such an estimate is e.g. given by

lek+1(n + 1) = y∗
n+1 − yn+1

where y∗
n+1 is the result of the (k +2)nd order implicit Adams formula. Subtract-

ing formula (5.7) from the same formula with k replaced by k + 1 , we obtain

lek+1(n + 1) = hn

(
gk+1(n)− gk(n)

)
Φk+1(n + 1). (7.1)

Without changing the leading term in this expression we can replace the expression
Φk+1(n + 1) by

Φp
k+1(n + 1) =

k∏
i=0

(xn+1 −xn−i) δk+1fp[xn+1, xn, . . . , xn−k]. (7.2)

The superscript p of f indicates that fn+1 = f(xn+1, yn+1) is replaced by
f(xn+1, pn+1) when forming the divided differences. If the implicit equation (5.7)
is solved iteratively with pn+1 as predictor, then Φp

k+1(n+1) has to be calculated
anyway. Therefore, the only cost for computing the estimate

LEk+1(n + 1) = hn

(
gk+1(n)− gk(n)

)
Φp

k+1(n + 1) (7.3)

is the computation of gk+1(n) . After the expression (7.3) has been calculated, we
require (in the norm (4.11) of Section II.4)

‖LEk+1(n + 1)‖ ≤ 1 (7.4)

for the step to be successful.
If the Nordsieck representation (6.30) is considered instead of (5.7), then the

estimate of the local error is not as simple, since the l̃ -vectors in (6.30) are totally
different for different orders. For a possible error-estimate we refer to the article of
Byrne & Hindmarsh (1975).

Suppose now that yn+1 is accepted. We next have to choose a new step size
and a new order. The idea of the step size selection is to find the largest hn+1 for
which the predicted local error is acceptable, i.e., for which

hn+1 ·
∣∣gk+1(n + 1)− gk(n + 1)

∣∣ · ‖Φp
k+1(n + 2)‖ ≤ 1.

However, this procedure is of no practical use, since the expressions gj(n+1) and
Φp

k+1(n + 2) depend in a complicated manner on the unknown step size hn+1 .
Also, the coefficients gk+1(n + 1) and gk(n + 1) are too expensive to calculate.
To overcome this difficulty we assume the grid to be equidistant (this is a doubtful
assumption, but leads to a simple formula for the new step size). In this case the lo-
cal error (for the method of order k + 1 ) is of the form C(xn+2)hk+2 +O(hk+3)
with C depending smoothly on x . The local error at xn+2 can thus be approxi-
mated by that at xn+1 and in the same way as for one-step methods (cf. Section II.4
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formula (4.12)) we obtain

h
(k+1)
opt = hn ·

( 1
‖LEk+1(n + 1)‖

)1/(k+2)

(7.5)

as optimal step size. The local error LEk+1(n+1) is given by (7.3) or, again under
the assumption of an equidistant grid, by

LEk+1(n + 1) = hnγ∗
k+1Φ

p
k+1(n + 1) (7.6)

with γ∗
k+1 from Table 1.2 (see Exercise 1 of Section III.5 and Exercise 4 of Sec-

tion III.1).
We next describe how an optimal order can be determined. Since the number

of necessary function evaluations is the same for all orders, there are essentially
two strategies for selecting the new order. One can choose the order k + 1 either
such that the local error estimate is minimal, or such that the new optimal step size
is maximal. Because of the exponent 1/(k +2) in formula (7.5), the two strategies
are not always equivalent. For more details see the description of the code DEABM
below. It should be mentioned that each implementation of the Adams methods —
and there are many — contains refinements of the above description and has in
addition several ad-hoc devices. One of them is to keep the step size constant if
hnew/hold is near to 1 . In this way the computation of the coefficients gj(n) is
simplified.

Some Available Codes

We have chosen the three codes DEABM, VODE and LSODE to illustrate the
order- and step size strategies for multistep methods.

DEABM is a modification of the code DE/STEP/INTRP described in the book
of Shampine & Gordon (1975). It belongs to the package DEPAC, designed by
Shampine & Watts (1979). Our numerical tests use the revised version from Febru-
ary 1984. For European users it is available from the “Rechenzentrum der RWTH
Aachen, Seffenter Weg 23, D-5100 Aachen, Germany”.

This code implements the variable step size, divided difference representation
(5.7) of the Adams formulas. In order to solve the nonlinear equation (5.7) for
yn+1 the value pn+1 is taken as predictor (P ) , then fp

n+1 = f(xn+1, pn+1) is cal-
culated (E) and one corrector iteration (C) is performed, to obtain yn+1 . Finally,
in the case of a successful step, fn+1 = f(xn+1, yn+1) is evaluated (E) for the
next step. This PECE implementation needs two function evaluations for each suc-
cessful step. Let us also outline the order strategy of this code: after performing a
step with order k+1 , one computes LEk−1(n+1) , LEk(n+1) and LEk+1(n+1)
using a slight modification of (7.6). Then the order is reduced by one, if

max
(
‖LEk−1(n + 1)‖, ‖LEk(n + 1)‖

)
≤ ‖LEk+1(n + 1)‖. (7.7)
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solutions
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step size
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Fig. 7.1. Step size and order variation for the code DEABM

An increase in the order is considered only if the step is successful, (7.7) is violated
and a constant step size is used. In this case one computes the estimate

LEk+2(n + 1) = hnγ∗
k+2Φk+2(n + 1)

using the new value fn+1 = f(xn+1, yn+1) and increases the order by one if

‖LEk+2(n + 1)‖ < ‖LEk+1(n + 1)‖.
In Fig. 7.1 we demonstrate the variation of the step size and order on the example
of Section II.4 (see Fig. 4.1 and also Fig. 9.5 of Section II.9). We plot the solution
obtained with Rtol = Atol = 10−3 , the step size and order for the tolerances 10−3

and 10−8 . We observe that the step size — and not the order — drops signifi-
cantly at passages where the solution varies more rapidly. Furthermore, constant
step sizes are taken over long intervals, and the order is changed rather often (espe-
cially for Tol = 10−8 ). This is in agreement with the observation of Shampine &
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Fig. 7.2. Step size and order variation for the code VODE
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Fig. 7.3. Step size and order variation for the code LSODE
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Gordon (1975): “ . . . small reductions in the estimated error may cause the order
to fluctuate, which in turn helps the code continue with constant step size.”

VODE with parameter MF = 10 is an implementation of the variable-coefficient
Adams method in Nordsieck form (6.30). It is due to Brown, Byrne & Hindmarsh
(1989) and supersedes the older code EPISODE of Byrne & Hindmarsh (1975).
The authors recommend their code “for problems with widely different active time
scales”. We used the version of August 31, 1992. It can be obtained by sending an
electronic mail to “netlib@research.att.com” with the message

send vode.f from ode to obtain double precision VODE,
send svode.f from ode to obtain single precision VODE.

The code VODE differs in several respects from DEABM. The nonlinear equa-
tion (first component of (6.30)) is solved by fixed-point iteration until convergence.
No final f -evaluation is performed. This method can thus be interpreted as a
P (EC)M -method, where M , the number of iterations, may be different from step
to step. E.g., in the example of Fig. 7.2 (Tol=10−8) only 930 function evaluations
are needed for 535 steps (519 accepted and 16 rejected). This shows that for many
steps one iteration is sufficient. The order selection in VODE is based on maximiz-
ing the step size among h

(k)
opt , h

(k+1)
opt , h

(k+2)
opt . Fig. 7.2 presents the step size and

order variation for VODE for the same example as above: compared to DEABM
we observe that much lower orders are taken. Further, the order is constant over
long intervals. This is reasonable, since a change in the order is not natural for the
Nordsieck representation.

LSODE (with parameter MF = 10 ) is another implementation of the Adams meth-
ods. This is a successor of the code GEAR (Hindmarsh 1972), which is itself a
revised and improved code based on DIFSUB of Gear (1971). We used the version
of March 30, 1987. LSODE is based on the Nordsieck representation of the fixed
step size Adams formulas. It has the same interface as VODE and can be obtained
by sending an electronic mail to “netlib@research.att.com” with the message

send lsode.f from odepack
to obtain the double precision version. Fig. 7.3 shows the step sizes and orders
chosen by this code. It behaves similarly to VODE.
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Numerical Comparisons

Of the three families of methods, the fixed order Runge-Kutta is
the simplest, in several respects the best understood, and the least
efficient. (Shampine & Gordon 1975)

It is, of course, interesting to study the numerical performance of the above imple-
mentations of the Adams methods:

DEABM — symbol
VODE — symbol
LSODE — symbol

In order to compare the results with those of a typical one-step Runge-Kutta method
we include the results of the code

DOP853 — symbol
described in Section II.5.

With all these methods we have computed the numerical solution for the
six problems EULR, AREN, LRNZ, PLEI, ROPE, BRUS of Section II.10 us-
ing many different tolerances between 10−3 and 10−14 (the “integer” tolerances
10−3 , 10−4, . . . are distinguished by enlarged symbols). Fig. 7.4 gives the number
of function evaluations plotted against the achieved accuracy in double logarith-
mic scale. Some general tendencies can be distinguished in the crowds of numer-
ical results. LSODE and DEABM require, for equal obtained accuracy, usually
less function evaluations, with DEABM becoming champion for higher precision
(Tol ≤ 10−6 ).

The situation changes dramatically in favour of the Runge-Kutta code DOP853
if computing time is measured instead of function evaluations (see Fig. 7.5; the CPU
time is that of a Sun Workstation, SunBlade 100). We observe that for problems
with cheap function evaluations (EULR, AREN, LRNZ) the Runge-Kutta code
needs much less CPU time than the multistep codes, although more function evalu-
ations are necessary in general. For the problems PLEI and ROPE, where the right
hand side is rather expensive to evaluate, the discrepancy is not as large. For the
last problem (BRUS) the dimension is very high, but the individual components are
not too complicated. In this situation, the CPU time of DOP853 is also significantly
less than for the multistep codes; this indicates that their overhead also increases
with the dimension of the problem.
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Fig. 7.4. Precision versus function calls for the problems of Section II.10
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Fig. 7.5. Precision versus computing time for the problems of Section II.10
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. . . methods sufficiently general as to include linear multistep and
Runge-Kutta methods as special cases . . .

(K. Burrage & J.C. Butcher 1980)

In a remarkably short period (1964-1966) many independent papers appeared
which tried to generalize either Runge-Kutta methods in the direction of multi-
step or multistep methods in the direction of Runge-Kutta. The motivation was
either to make the advantages of multistep accessible to Runge-Kutta methods or
to “break the Dahlquist barrier” by modifying the multistep formulas. “General-
ized multistep methods” were introduced by Gragg and Stetter in (1964), “modified
multistep methods” by Butcher (1965a), and in the same year there appeared the
work of Gear (1965) on “hybrid methods”. A year later Byrne and Lambert (1966)
published their work on “pseudo Runge-Kutta methods”. All these methods fall
into the class of “general linear methods” to be discussed in this section.

An example of such a method is the following (Butcher (1965a), order 5)

ŷn+1/2 = yn−1 +
h

8
(
9fn + 3fn−1

)
ŷn+1 =

1
5
(
28yn − 23yn−1

)
+

h

5
(
32f̂n+1/2 − 60fn − 26fn−1

)
yn+1 =

1
31
(
32yn − yn−1

)
+

h

93
(
64f̂n+1/2 + 15f̂n+1 + 12fn − fn−1

)
.

(8.1)

We now have the choice of developing a theory of “generalized” multistep meth-
ods or of developing a theory of “generalized” Runge-Kutta methods. After having
seen in Section III.4 that the convergence theory becomes much nicer when multi-
step methods are interpreted as one-step methods in higher dimension, we choose
the second possibility: since formula (8.1) uses yn and yn−1 as previous infor-
mation, we introduce the vector un = (yn, yn−1)T so that the last line of (8.1)
becomes(

yn+1

yn

)
=
( 32

31
− 1

31

1 0

)(
yn

yn−1

)
+
( 64

93
15
93

12
93

− 1
93

0 0 0 0

)⎛⎜⎜⎝
hf(ŷn+1/2)
hf(ŷn+1)
hf(yn)

hf(yn−1)

⎞⎟⎟⎠
which, together with lines 1 and 2 of (8.1), is of the form

un+1 = Sun +hΦ(xn, un, h). (8.2)

Properties of such general methods have been investigated by Butcher (1966),
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Hairer & Wanner (1973), Skeel (1976), Cooper (1978), Albrecht (1978, 1985) and
others. Clearly, nothing prevents us from letting S and Φ be arbitrary, or from
allowing also other interpretations of un .

A General Integration Procedure

We consider the system

y′ = f(x, y), y(x0) = y0 (8.3)

where f satisfies the regularity condition (4.2). Let m be the dimension of the
differential equation (8.3), q ≥m be the dimension of the difference equation (8.2)
and xn = x0 +nh be the subdivision points of an equidistant grid. The methods
under consideration consist of three parts:

i) a forward step procedure, i.e., a formula (8.2), where the square matrix S is
independent of (8.3).

ii) a correct value function z(x, h) , which gives an interpretation of the values
un ; zn = z(xn, h) is to be approximated by un , so that the global error is
given by un − zn . It is assumed that the exact solution y(x) of (8.3) can be
recovered from z(x, h) .

iii) a starting procedure ϕ(h) , which specifies the starting value u0 = ϕ(h) .
ϕ(h) approximates z0 = z(x0, h) .

The discrete problem corresponding to (8.3) is thus given by

u0 = ϕ(h), (8.4a)

un+1 = Sun +hΦ(xn, un, h), n = 0, 1, 2, . . . , (8.4b)

which yields the numerical solution u0, u1, u2, . . . . We remark that the increment
function Φ(x, u, h) , the starting procedure ϕ(h) and the correct value function
z(x, h) depend on the differential equation (8.3), although this is not stated explic-
itly.

Example 8.1. The most simple cases are one-step methods. A characteristic fea-
ture of these is that the dimensions of the differential and difference equation are
equal (i.e., m = q ) and that S is the identity matrix. Furthermore, ϕ(h) = y0 and
z(x, h) = y(x) . They have been investigated in Chapter II.

Example 8.2. We have seen in Section III.4 that linear multistep methods also fall
into the class (8.4). For k -step methods the dimension of the difference equation
is q = km and the forward step procedure is given by formula (4.8). A starting
procedure yields the vector ϕ(h) = (yk−1, . . . , y1, y0)T and, finally, the correct
value function is given by

z(x, h) =
(
y(x + (k− 1)h), . . . , y(x +h), y(x)

)T
.
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The most common way of implementing an implicit multistep method is a
predictor-corrector process (compare (1.11) and Section III.7): an approximation
y
(0)
n+k to yn+k is “predicted” by an explicit multistep method, say

αp
ky

(0)
n+k +αp

k−1yn+k−1 + . . .+αp
0yn = h(βp

k−1fn+k−1 + . . .+βp
0fn) (8.5;P)

and is then “corrected” (usually once or twice) by

f
(l−1)
n+k := f(xn+k, y

(l−1)
n+k ) (8.5;E)

αky
(l)
n+k +αk−1yn+k−1 + . . .+α0yn = h(βkf

(l−1)
n+k +βk−1fn+k−1 + . . .+β0fn).

(8.5;C)
If the iteration (8.5) is carried out until convergence, the process is identical to that
of Example 8.2. In practice, however, only a fixed number, say M , of iterations
are carried out and the method is theoretically no longer a “pure” multistep method.
We distinguish two predictor-corrector (PC) methods, depending on whether it ends
with a correction (8.5;C) or not. The first algorithm is symbolized as P(EC)M and
the second possibility, where fn+k is once more updated by (8.5;E) for further use
in the subsequent steps, as P(EC)M E. We shall now see how these two procedures
can be interpreted as methods of type (8.4).

Example 8.2a. P(EC)M E-methods. The starting procedure and the correct value
function are the same as for multistep methods and also q = km . Furthermore we
have S = A⊗ I , where A is given by (4.7) and I is the m-dimensional identity
matrix. Observe that S depends only on the corrector-formula and not on the
predictor-formula. Here, the increment function is given by

Φ(x, u, h) = (e1 ⊗ I)ψ(x, u, h)

with e1 = (1, 0, . . . , 0)T . For u = (u1, . . . , uk)T with uj ∈ Rm the function
ψ(x, u, h) is defined by

ψ(x, u, h) = α−1
k

(
βkf(x + kh, y(M))

+βk−1f(x + (k−1)h, u1) + . . .+β0f(x, uk)
)

where the value y(M) is calculated from

αp
ky(0) +αp

k−1u
1 + . . .+αp

0u
k

= h
(
βp

k−1f
(
x + (k− 1)h, u1

)
+ . . .+βp

0f(x, uk)
)

αky(l) +αk−1u
1 + . . .+α0u

k

= h
(
βkf
(
x+kh, y(l−1)

)
+βk−1f

(
x+(k−1)h, u1

)
+. . .+β0f(x, uk)

)
(for l = 1, . . . , M ).
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Example 8.2b. For P(EC)M -methods, the formulation as a method of type (8.4)
becomes more complicated, since the information to be carried over to the next
step is determined not only by yn+k−1, . . . , yn , but also depends on the values

hfn+k−1, . . . , hfn , where hfn+j = hf(xn+j , y
(M−1)
n+j ) . Therefore the dimension

of the difference equation becomes q = 2km . A usual starting procedure (as for
multistep methods) yields

ϕ(h) =
(
yk−1, . . . , y0, hf(xk−1, yk−1), . . . , hf(x0, y0)

)T

.

If we define the correct value function by

z(x, h) =
(
y
(
x + (k− 1)h

)
, . . . , y(x), hy′(x + (k− 1)h

)
, . . . , hy′(x)

)T

,

the forward step procedure is given by

S =
(

A B
0 N

)
, Φ(x, u, h) =

(
β′

ke1

e1

)
Ψ(x, u, h).

Here A is the matrix given by (4.7), β′
j = βj/αk and

N =

⎛⎜⎜⎝
0 0 . . . 0 0
1 0 . . . 0 0
...

...
...

...
0 0 . . . 1 0

⎞⎟⎟⎠ , B =

⎛⎜⎜⎝
β′

k−1 . . . β′
0

0 . . . 0
...

...
0 . . . 0

⎞⎟⎟⎠ , e1 =

⎛⎜⎜⎝
1
0
...
0

⎞⎟⎟⎠ .

For u = (u1, . . . , uk, hv1, . . . , hvk) the function ψ(x, u, h) ∈ R
q is defined by

ψ(x, u, h) = f(x + kh, y(M−1))

where y(M−1) is given by

αp
ky(0) +αp

k−1u
1 +. . .+αp

0u
k = h(βp

k−1v
1 +. . .+βp

0vk)

αky(l) +αk−1u
1 +. . .+α0u

k = h
(
βkf(x+kh, y(l−1)) +βk−1v

1 +. . .+β0v
k
)
.

Again we observe that S depends only on the corrector-formula.

Example 8.3. Nordsieck methods are also of the form (8.4). This follows immedi-
ately from the representation (6.8). In this case the correct value function

z(x, h) =
(
y(x), hy′(x),

h2

2!
y′′(x), . . . ,

hk

k!
y(k)(x)

)T

is composed not only of values of the exact solution, but also contains their deriva-
tives.

Example 8.4. Cyclic multistep methods. Donelson & Hansen (1971) have investi-
gated the possibility of basing a discretization scheme on several different k -step
methods which are used cyclically. Let Sj and Φj represent the forward step
procedure of the j th multistep method; then the numerical solution u0, u1, . . . is
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defined by

u0 = ϕ(h)

un+1 = Sjun +hΦj(xn, un, h) if n ≡ (j − 1) mod m.

In order to get a method (8.4) with S independent of the step number, we consider
one cycle of the method as one step of a new method

u∗
0 = ϕ(

h∗

m
)

u∗
n+1 = Su∗

n +h∗Φ(x∗
n, u∗

n, h∗)
(8.6)

with step size h∗ = mh . Here x∗
n = x0 +nh∗, S = Sm . . . S2S1 and Φ has to be

chosen suitably. E.g., in the case m = 2 we have

Φ(x∗, u∗, h∗) =
1
2
S2Φ1

(
x∗, u∗,

h∗

2

)
+

1
2
Φ2

(
x∗ +

h∗

2
, S1u

∗ +
h∗

2
Φ1(x

∗, u∗,
h∗

2
),

h∗

2

)
.

It is interesting to note that cyclically used k -step methods can lead to convergent
methods of order 2k−1 (or even 2k ). The “first Dahlquist barrier” (Theorem 3.5)
can be broken in this way. For more details see Stetter (1973), Albrecht (1979) and
Exercise 2.

Example 8.5. General linear methods.
Following the advice of Aristotle . . . (the original Greek can be
found in Butcher’s paper) . . . we look for the greatest good as a
mean between extremes. (J.C. Butcher 1985a)

Introduced by Burrage & Butcher (1980), these methods are general enough to
include all previous examples as special cases, but at the same time the increment
function is given explicitly in terms of the differential equation and several free
parameters. They are defined by

v
(n)
i =

k∑
j=1

ãiju
(n)
j +h

s∑
j=1

b̃ijf(xn+cjh, v
(n)
j ) i = 1, . . . , s, (8.7a)

u
(n+1)
i =

k∑
j=1

aiju
(n)
j +h

s∑
j=1

bijf(xn+cjh, v
(n)
j ) i = 1, . . . , k. (8.7b)

The stages v
(n)
i (i = 1, . . . , s ) are the internal stages and do not leave the “black

box” of the current step. The stages u
(n)
i (i = 1, . . . , k ) are called the external

stages since they contain all the necessary information from the previous step used
in carrying out the current step. The coefficients aij in (8.7b) form the matrix S
of (8.4b). Very often, some internal stages are identical to external ones, as for
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example in method (8.1), where

vn = (ŷn+1/2, ŷn+1, yn, yn−1)
T .

One-step Runge-Kutta methods are characterized by k = 1 . At the end of this
section we shall discuss the algebraic conditions for general linear methods to be
of order p .

Example 8.6. In order to illustrate the fact that the analysis of this section is not
only applicable to numerical methods that discretize first order differential equa-
tions, we consider the second order initial value problem

y′′ = g(x, y), y(x0) = y0, y′(x0) = y′
0 (8.8)

Replacing y′′(x) by a central difference yields

yn+1 − 2yn + yn−1 = h2g(xn, yn),

and with the additional variables

hy′
n = yn+1 − yn

this method can be written as(
yn+1

y′
n+1

)
=
(

1 0
0 1

)(
yn

y′
n

)
+h

(
y′

n

g(xn+1, yn +hy′
n)

)
.

It now has the form of a method (8.4) with the correct value function z(x, h) =(
y(x), (y(x +h)− y(x))/h

)T
. Here y(x) denotes the exact solution of (8.8).

Clearly, all Nyström methods (Section II.14) fit into this framework, as do mul-
tistep methods for second order differential equations. They will be investigated in
more detail in Section III.10.

Example 8.7. Multi-step multi-stage multi-derivative methods seem to be the most
general class of explicitly given linear methods and generalize the methods of Sec-
tion II.13. In the notation of that section, we can write

v
(n)
i =

k∑
j=1

ãiju
(n)
j +

q∑
r=1

hr

r!

s∑
j=1

b̃
(r)
ij Dry(xn + cjh, v

(n)
j ) i = 1, . . . , s,

u
(n+1)
i =

k∑
j=1

aiju
(n)
j +

q∑
r=1

hr

r!

s∑
j=1

b
(r)
ij Dry(xn + cjh, v

(n)
j ) i = 1, . . . , k.

Such methods have been studied in Hairer & Wanner (1973).
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Stability and Order

The following study of stability, order and convergence follows mainly the lines
of Skeel (1976). Stability of a numerical scheme just requires that for h → 0 the
numerical solution remain bounded. This motivates the following definition.

Definition 8.8. Method (8.4) is called stable if ‖Sn‖ is uniformly bounded for all
n ≥ 0 .

The local error of method (8.4) is defined in exactly the same way as for one-
step methods (Section II.3) and multistep methods (Section III.2).

Definition 8.9. Let z(x, h) be the correct value function for the method (8.4) and
let zn = z(xn, h) . The local error is then given by (see Fig. 8.1)

d0 = z0 −ϕ(h)

dn+1 = zn+1 −Szn −hΦ(xn, zn, h), n = 0, 1, . . .
(8.9)

xn xn

zn zn

Method (8.4)

local error

Fig. 8.1. Illustration of the local error

The definition of order is not as straightforward. The requirement that the local
error be O(hp+1) (cf. one-step and multistep methods) will turn out to be suffi-
cient but in general not necessary for convergence of order p . For an appropriate
definition we need the spectral decomposition of the matrix S .

First observe that, whenever the local error (8.9) tends to zero for h→ 0 (nh=
x−x0 fixed), we get

0 = z(x, 0)−Sz(x, 0), (8.10)

so that 1 is an eigenvalue of S and z(x, 0) a corresponding eigenvector. Fur-
thermore, by stability, no eigenvalue of S can lie outside the unit disc and the
eigenvalues of modulus one can not give rise to Jordan chains. Denoting the eigen-
values of modulus one by ζ1(= 1), ζ2, . . . , ζl , the Jordan canonical form of S (see
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(I.12.14)) is therefore the block diagonal matrix

S = T diag

{⎛⎝ 1
·.

1

⎞⎠ ,

⎛⎝ ζ2

·.
ζ2

⎞⎠ , . . . ,

⎛⎝ ζl

·.
ζl

⎞⎠ , J̃

}
T−1.

If we decompose this matrix into the terms which correspond to the single eigen-
values we obtain

S = E + ζ2E2 + . . .+ ζlEl + Ẽ (8.11)

where

E = T diag
{

I, 0, 0, . . .
}

T−1, (8.12)

E2 = T diag
{

0, I, 0, . . .
}

T−1, . . . , El = T diag
{

0, . . . , 0, I, 0
}

T−1,

Ẽ = T diag
{

0, 0, 0, . . . , J̃
}

T−1.

We are now prepared to give

Definition 8.10. The method (8.4) is of order p (consistent of order p), if for all
problems (8.3) with p times continuously differentiable f , the local error satisfies

d0 = O(hp)

E(d0 + d1 + . . .+ dn) + dn+1 = O(hp) for 0 ≤ nh ≤ Const.
(8.13)

Remark. This property is called quasi-consistency of order p by Skeel (1976).

If the right-hand side of the differential equation (8.3) is p-times continuously
differentiable then, in general, ϕ(h), Φ(x, u, h) and z(x, h) are also smooth, so
that the local error (8.9) can be expanded into a Taylor series in h :

d0 = γ0 + γ1h + . . .+ γp−1h
p−1 +O(hp)

dn+1 = δ0(xn) + δ1(xn)h + . . .+ δp(xn)hp +O(hp+1).
(8.14)

The function δj(x) is then (p− j + 1) -times continuously differentiable. The fol-
lowing lemma gives a more practical characterization of the order of the methods
(8.4).

Lemma 8.11. Assume that the local error of method (8.4) satisfies (8.14) with
continuous δj(x) . The method is then of order p , if and only if

dn = O(hp) for 0 ≤ nh ≤ Const , and Eδp(x) = 0. (8.15)

Proof. The condition (8.15) is equivalent to

dn = O(hp), Edn+1 = O(hp+1) for 0 ≤ nh ≤ Const , (8.16)
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which is clearly sufficient for order p . We now show that (8.15) is also necessary.
Since E2 = E (see (8.12)) order p implies

dn = O(hp), E(d1 + . . .+ dn) = O(hp) for 0 ≤ nh ≤ Const . (8.17)

This is best seen by multiplying (8.13) by E . Consider now pairs (n, h) such
that nh = x−x0 for some fixed x . We insert (8.14) (observe that dn = O(hp) )
into E(d1 + . . .+ dn) and approximate the resulting sum by the corresponding
Riemann integral

E(d1 + . . .+ dn) = hpE
n∑

j=1

δp(xj−1) +O(hp) = hp−1E

∫ x

x0

δp(s) ds +O(hp).

It follows from (8.17) that E
∫ x

x0
δp(s) ds=0 and by differentiation that Eδp(x)=

0 .

Convergence

In addition to the numerical solution given by (8.4) we consider a perturbed numer-
ical solution (ûn) defined by

û0 = ϕ(h) + r0

ûn+1 = Sûn +hΦ(xn, ûn, h) + rn+1, n = 0, 1, . . . , N − 1
(8.18)

for some perturbation R = (r0, r1, . . . , rN ) . For example, the exact solution zn =
z(xn, h) can be interpreted as a perturbed solution, where the perturbation is just
the local error. The following lemma gives the best possible qualitative bound on
the difference un − ûn in terms of the perturbation R . We have to assume that
the increment function Φ(x, u, h) satisfies a Lipschitz condition with respect to u
(on a compact neighbourhood of the solution). This is the case for all reasonable
methods.

Lemma 8.12. Let the method (8.4) be stable and assume the sequences (un) and
(ûn) be given by (8.4) and (8.18), respectively. Then there exist positive constants
c and C such that for any perturbation R and for hN ≤ Const

c‖R‖S ≤ max
0≤n≤N

‖un − ûn‖ ≤ C‖R‖S

with

‖R‖S = max
0≤n≤N

∥∥ n∑
j=0

Sn−jrj

∥∥.
Remark. ‖R‖S is a norm on R(N+1)q . Its positivity is seen as follows: if ‖R‖S =0
then for n = 0, 1, 2, . . . one obtains r0 = 0, r1 = 0 , . . . recursively.
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Proof. Set Δun = ûn −un and ΔΦn = Φ(xn, ûn, h)−Φ(xn, un, h) . Then we
have

Δun+1 = SΔun +hΔΦn + rn+1. (8.19)

By assumption there exists a constant L such that ‖ΔΦn‖ ≤ L‖Δun‖ . Solving
the difference equation (8.19) gives Δu0 = r0 and

Δun+1 =
n∑

j=0

Sn−jhΔΦj +
n+1∑
j=0

Sn+1−jrj . (8.20)

By stability there exists a constant B such that

‖Sn‖L ≤ B for all n ≥ 0. (8.21)

Thus (8.20) becomes

‖Δun+1‖ ≤ hB

n∑
j=0

‖Δuj‖+ ‖R‖S.

By induction on n it follows that

‖Δun‖ ≤ (1 +hB)n‖R‖S ≤ exp(Const ·B) · ‖R‖S,

which proves the second inequality in the lemma. From (8.20) and (8.21)∥∥ n∑
j=0

Sn−jrj

∥∥≤ (1 +nhB) max
0≤n≤N

‖Δun‖,

and we thus obtain for Nh ≤ Const

‖R‖S ≤ (1 + Const ·B) · max
0≤n≤N

‖ûn −un‖.

Remark. Two-sided error bounds, such as in Lemma 8.12, were first studied, in the
case of multi-step methods, by Spijker (1971). This theory has become prominent
through the treatment of Stetter (1973, pp. 81-84). Extensions to general linear
methods are due to Skeel (1976) and Albrecht (1978).

Using the lemma above we can prove

Theorem 8.13. Consider a stable method (8.4) and assume that the local error sat-
isfies (8.14) with δp(x) continuously differentiable. The method is then convergent
of order p , i.e., the global error un − zn satisfies

un − zn = O(hp) for 0 ≤ nh ≤ Const ,

if and only if it is consistent of order p .
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Proof. The identity

E(d0 + . . .+ dn) + dn+1 =
n+1∑
j=0

Sn+1−jdj − (S −E)
n∑

j=0

Sn−jdj ,

which is a consequence of ES = E (see (8.11) and (8.12)), implies that for n ≤
N − 1 and D = (d0, . . . , dN ) ,

‖E(d0 + . . .+ dn) + dn+1‖ ≤ (1 + ‖S −E‖) · ‖D‖S. (8.22)

The lower bound of Lemma 8.12, with rn and ûn replaced by dn and zn respec-
tively, yields the “only if” part of the theorem.

For the “if” part we use the upper bound of Lemma 8.12. We have to show that
consistency of order p implies

max
0≤n≤N

∥∥ n∑
j=0

Sn−jdj

∥∥= O(hp). (8.23)

By (8.11) and (8.12) we have

Sn−j = E + ζn−j
2 E2 + . . .+ ζn−j

l El + Ẽn−j .

This identity together with Lemma 8.11 implies
n∑

j=0

Sn−jdj = hpE2

n∑
j=1

ζn−j
2 δp(xj−1) + . . .

+hpEl

n∑
j=1

ζn−j
l δp(xj−1) +

n∑
j=0

Ẽn−jdj +O(hp).

The last term in this expression is O(hp) since in a suitable norm ‖Ẽ‖ < 1 and
therefore ∥∥ n∑

j=0

Ẽn−jdj

∥∥≤ n∑
j=0

‖Ẽ‖n−j‖dj‖ ≤
1

1−‖Ẽ‖ · max
0≤n≤N

‖dn‖.

For the rest we use partial summation (Abel 1826)
n∑

j=1

ζn−jδ(xj−1) =
1− ζn

1− ζ
· δ(x0) +

n∑
j=1

1− ζn−j

1− ζ
·
(
δ(xj)− δ(xj−1)

)
= O(1),

whenever |ζ| = 1 , ζ �= 1 and δ is of bounded variation.
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Order Conditions for General Linear Methods

For the construction of a p th order general linear method (8.7) the conditions (8.15)
are still not very practical. One would like to have instead algebraic conditions in
the free parameters, as is the case for Runge-Kutta methods. We shall demonstrate
how this can be achieved using the theory of B-series of Section II.12 (see also
Burrage & Moss 1980). In order to avoid tensor products we assume in what fol-
lows that the differential equation under consideration is a scalar one. All results,
however, are also valid for systems. We further assume the differential equation to
be autonomous, so that the theory of Section II.12 is directly applicable. This will
be justified in Remark 8.17 below.

Suppose now that the components of the correct value function z(x, h) =
(z1(x, h), . . . , zk(x, h))T possess an expansion as a B-series

zi(x, h) = B
(
zi, y(x)

)
so that with z(t) =

(
z1(t), . . . , zk(t)

)T
,

z(x, h) = z(∅)y(x) +hz(τ)f
(
y(x)

)
+ . . . . (8.24)

Before deriving the order conditions we observe that (8.7a) makes sense only if
v
(n)
j → y(xn) for h → 0 . Otherwise f(v(n)

j ) need not be defined. Since u
(n)
j is

an approximation of zj(xn, h) , this leads to the condition
∑

ãijzj(∅) = 1 . This
together with (8.10) are the so-called preconsistency conditions:

Az(∅) = z(∅), Ãz(∅) = 1l. (8.25)

A and Ã are the matrices with entries aij and ãij , respectively, and 1l is the
column vector (1, . . . , 1)T . Recall that the local error (8.9) for the general linear
method (8.7) is given by

d
(n+1)
i = zi(xn +h, h)−

k∑
j=1

aijzj(xn, h)−
s∑

j=1

bijhf(vj) (8.26a)

where

vi =
k∑

j=1

ãijzj(xn, h) +
s∑

j=1

b̃ijhf(vj). (8.26b)

For the derivation of the order conditions we write vi and d
(n+1)
i as B-series

vi = B
(
vi, y(xn)

)
, d

(n+1)
i = B

(
di, y(xn)

)
.

By the composition theorem for B-series and by formula (12.10) of Section II.12
we have

zi(xn +h, h) = B
(
zi, y(xn +h)

)
= B

(
zi, B(p, y(xn))

)
= B

(
pzi, y(xn)

)
.



442 III. Multistep Methods and General Linear Methods

Inserting all these series into (8.26) and comparing the coefficients we arrive at

di(t) = (pzi)(t)−
k∑

j=1

aijzj(t)−
s∑

j=1

bijv
′
j(t)

vi(t) =
k∑

j=1

ãijzj(t) +
s∑

j=1

b̃ijv
′
j(t).

(8.27)

An application of Lemma 8.11 now yields

Theorem 8.14. Let d(t)=
(
d1(t), . . . ,dk(t)

)T
with di(t) be given by (8.27). The

general linear method (8.7) is of order p, iff

d(t) = 0 for t ∈ T, �(t) ≤ p− 1,

Ed(t) = 0 for t ∈ T, �(t) = p,
(8.28)

where the matrix E is defined in (8.12).

Corollary 8.15. Sufficient conditions for the general linear method to be of order
p are

d(t) = 0 for t ∈ T, �(t) ≤ p . (8.29)

Remark 8.16. The expression (pzi)(t) in (8.27) can be computed using formula
(12.8) of Section II.12. Since p(t) = 1 for all trees t , we have

(pzi)(t) =
�(t)∑
j=0

(
�(t)
j

)
1

α(t)

∑
all labellings

zi(sj(t)). (8.30)

This rather complicated formula simplifies considerably if we assume that the co-
efficients zi(t) of the correct value function depend only on the order of t , i.e.,
that

zi(t) = zi(u) whenever �(t) = �(u) . (8.31)

In this case formula (8.30) becomes

(pzi)(t) =
�(t)∑
j=0

(
�(t)
j

)
zi(τ

j). (8.32)

Here τ j represents any tree of order j , e.g.,

τ j = [ τ, . . . , τ︸ ︷︷ ︸
j−1

], τ1 = τ, τ0 = ∅. (8.33)
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Usually the components of z(x, h) are composed of

y(x), y(x + jh), hy′(x), h2y′′(x), . . . ,

in which case assumption (8.31) is satisfied.

Remark 8.17. Non-autonomous systems. For the differential equation x′ = 1 ,
formula (8.7a) becomes

vn = Ãun +hB̃1l.

Assuming that x′ = 1 is integrated exactly, i.e., un = z(∅)xn +hz(τ) we obtain
vn = xn1l +hc , where c = (c1, . . . , cs)T is given by

c = Ãz(τ) + B̃e. (8.34)

This definition of the ci implies that the numerical results for y′ = f(x, y) and for
the augmented autonomous differential equation are the same and the above results
are also valid in the general case.

Table 8.1 presents the order conditions up to order 3 in addition to the precon-
sistency conditions (8.25). We assume that (8.31) is satisfied and that c is given by
(8.34). Furthermore, cj denotes the vector (cj

1, . . . , c
j
s)T .

Table 8.1. Order conditions for general linear methods

t �(t) order condition

τ 1 Az(τ ) + B1l = z(τ ) + z(∅)

τ2 2 Az(τ2) + 2Bc = z(τ2) + 2z(τ ) + z(∅)

τ3 3 Az(τ3) + 3Bc2 = z(τ3) + 3z(τ2) + 3z(τ ) + z(∅)

[τ2] 3 Az(τ3) + 3Bv(τ2) = z(τ3) + 3z(τ2) + 3z(τ ) + z(∅)

with v(τ2) = Ãz(τ2) + 2B̃c

Construction of General Linear Methods

Let us demonstrate on an example how low order methods can be constructed: we
set k = s = 2 and fix the correct value function as

z(x, h) =
(
y(x), y(x−h)

)T
.

This choice satisfies (8.24) and (8.31) with

z(∅) =
(

1
1

)
, z(τ) =

(
0
−1

)
, z(τ2) =

(
0
1

)
, . . . .
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Since the second component of z(x +h, h) is equal to the first component of
z(x, h) , it is natural to look for methods with

A =
(

a11 a12

1 0

)
, B =

(
b11 b12

0 0

)
.

We further impose

B̃ =
(

0 0
b̃21 0

)
so that the resulting method is explicit.

The preconsistency condition (8.25), formula (8.34) and the order conditions
of Table 8.1 yield the following equations to be solved:

a11 + a12 = 1 (8.35a)

ã11 + ã12 = 1, ã21 + ã22 = 1 (8.35b)

c1 = −ã12, c2 = b̃21 − ã22 (8.35c)

−a12 + b11 + b12 = 1 (8.35d)

a12 + 2(b11c1 + b12c2) = 1 (8.35e)

−a12 + 3(b11c
2
1 + b12c

2
2) = 1 (8.35f)

−a12 + 3
(
b11ã12 + b12(ã22 + 2b̃21c1)

)
= 1. (8.35g)

These are 9 equations in 11 unknowns. Letting c1 and c2 be free parameters, we
obtain the solution in the following way: compute a12, b11 and b12 from the linear
system (8.35d,e,f), then ã12, ã22 and b̃21 from (8.35c,g) and finally a11, ã11 and
ã21 from (8.35a,b). A particular solution for c1 = 1/2 , c2 = −2/5 is:

A =
(

16/11 −5/11
1 0

)
, B =

(
104/99 −50/99

0 0

)
,

Ã =
(

3/2 −1/2
3/2 −1/2

)
, B̃ =

(
0 0

−9/10 0

)
.

(8.36)

This method, which represents a stable explicit 2 -step, 2 -stage method of order 3 ,
is due to Butcher (1984).

The construction of higher order methods soon becomes very complicated, and
the use of simplifying assumptions will be very helpful:

Theorem 8.18 (Burrage & Moss 1980). Assume that the correct value function
satisfies (8.31). The simplifying assumptions

Ãz(τ j) + jB̃cj−1 = cj j = 1, . . . , p− 1 (8.37)

together with the preconsistency relations (8.25) and the order conditions for the
“bushy trees”

d(τ j) = 0 j = 1, . . . , p

imply that the method (8.7) is of order p .
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Proof. An induction argument based on (8.27) implies that

v(t) = v(τ j) for �(t) = j, j = 1, . . . , p− 1

and consequently also that

d(t) = d(τ j) for �(t) = j, j = 1, . . . , p .

The simplifying assumptions (8.37) allow an interesting interpretation: they are
equivalent to the fact that the internal stages v

(n)
1 approximate the exact solution at

xn + cih up to order p− 1 , i.e., that

v
(n)
i − y(xn + cih) = O(hp).

In the case of Runge-Kutta methods (8.37) reduces to the conditions C(p− 1) of
Section II.7.

For further examples of general linear methods satisfying (8.37) we refer to
Burrage & Moss (1980) and Butcher (1981). See also Burrage (1985) and Butcher
(1985a).

Exercises

1. Consider the composition of (cf. Example 8.5)

a) explicit and implicit Euler method;

b) implicit and explicit Euler method.

To which methods are they equivalent? What is the order of the composite
methods?

2. a) Suppose that each of the m multistep methods (�i, σi) i = 1, . . . , m is of
order p . Prove that the corresponding cyclic method is of order at least p .

b) Construct a stable, 2 -cyclic, 3 -step linear multistep method of order 5 :
find first a one-parameter family of linear 3 -step methods of order 5
(which are necessarily unstable).

Result.

�c(ζ) = cζ3 +
(19

30
− c
)
ζ2 −

( 8
30

+ c
)
ζ +
(
c− 11

30

)
σc(ζ) =

(1
9
− c

3

)
ζ3 +

(
c +

8
30

)
ζ2 +

(19
30

− c
)
ζ +
( c

3
− 1

90

)
.

Then determine c1 and c2 , such that the eigenvalues of the matrix S for
the composite method become 1, 0, 0 .

3. Prove that the composition of two different general linear methods (with the
same correct value function) again gives a general linear method. As a conse-
quence, the cyclic methods of Example 8.4 are general linear methods.
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4. Suppose that all eigenvalues of S (except ζ1 = 1 ) lie inside the unit circle.
Then

‖R‖E = max
0≤n≤N

∥∥rn +E

n−1∑
j=0

rj

∥∥
is a minimal stability functional.

5. Verify for linear multistep methods that the consistency conditions (2.6) are
equivalent to consistency of order 1 in the sense of Lemma 8.11.

6. Write method (8.1) as general linear method (8.7) and determine its order (an-
swer: p = 5 ).

7. Interpret the method of Caira, Costabile & Costabile (1990)

kn
i = hf

(
xn + cih, yn +

s∑
j=1

aijk
n−1
j +

i−1∑
j=1

aijk
n
j

)
yn+1 = yn +

s∑
i=1

bik
n
i

as general linear method. Show that, if

‖k−1
i −hy′(x0 + (ci − 1)h

)‖ ≤ C · hp,
s∑

i=1

bic
q−1
i =

1
q
, q = 1, . . . , p,

s∑
j=1

aij(cj − 1)q−1 +
i−1∑
j=1

aijc
q−1
j =

cq
i

q
, q = 1, . . . , p− 1,

then the method is of order at least p . Find parallels of these conditions with
those of Theorem 8.18.

8. Jackiewicz & Zennaro (1992) propose the following two-step Runge-Kutta
method

Y n−1
i = yn−1 +hn−1

i−1∑
j=1

aijf(Y n−1
j ), Y n

i = yn +hn−1ξ
i−1∑
j=1

aijf(Y n
j ),

yn+1 = yn +hn−1

s∑
i=1

vif(Y n−1
i ) +hn−1ξ

s∑
i=1

wif(Y n
i ), (8.38)

where ξ = hn/hn−1 . The coefficients vi, wi may depend on ξ , but the aij do
not. Hence, this method requires s function evaluations per step.

a) Show that the order of method (8.38) is p (according to Definition 8.10) if
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and only if for all trees t with 1 ≤ �(t) ≤ p

ξ�(t) =
s∑

i=1

vi(y
−1g′

i)(t) + ξ�(t)
s∑

i=1

wig
′
i(t), (8.39)

where, as for Runge-Kutta methods, gi(t) =
∑i−1

j=1 aijg
′
j(t) . The coeffi-

cients y−1(t) = (−1)�(t) are those of y(xn −h) = B
(
y−1, y(xn)

)
.

b) Under the assumption

vi + ξpwi = 0 for i = 2, . . . , s (8.40)

the order conditions (8.39) are equivalent to

ξ =
s∑

i=1

vi + ξ

s∑
i=1

wi, (8.41a)

ξr=
r−1∑
j=1

j

(
r

j

)
(−1)r−j

s∑
i=1

vic
j−1
i + (1− ξr−p) r

s∑
i=1

vic
r−1
i , r = 2, . . . , p,

s∑
i=1

vi

(
g′

i(u)− �(u)c�(u)−1
i

)
= 0 for �(u) ≤ p− 1. (8.41c)

(8.41b)

c) The conditions (8.41a,b) uniquely define
∑

i wi ,
∑

i vic
j−1
i as functions

of ξ > 0 (for j = 1, . . . , p− 1 ).

d) For each continuous Runge-Kutta method of order p− 1 ≥ 2 there exists
a method (8.38) of order p with the same coefficient matrix (aij) .

Hints. To obtain (8.41c) subtract equation (8.40) from the same equation where
t is replaced by the bushy tree of order �(t) . Then proceed by induction. The
conditions

∑
i vic

j−1
i = fp

j (ξ) , j = 1, . . . , p− 1 , obtained from (c), together
with (8.41c) have the same structure as the order conditions (order p− 1 ) of a
continuous Runge-Kutta method (Theorem II.6.1).
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The asymptotic expansion of the global error of multistep methods was studied
in the famous thesis of Gragg (1964). His proof is very technical and can also
be found in a modified version in the book of Stetter (1973), pp. 234-245. The
existence of asymptotic expansions for general linear methods was conjectured by
Skeel (1976). The proof given below (Hairer & Lubich 1984) is based on the ideas
of Section II.8.

An Instructive Example

Let us start with an example in order to understand which kind of asymptotic ex-
pansion may be expected. We consider the simple differential equation

y′ = −y, y(0) = 1,

take a constant step size h and apply the 3 -step BDF-formula (1.22’) with one of
the following three starting procedures:

y0 = 1, y1 = exp(−h), y2 = exp(−2h) (exact values) (9.1a)

y0 = 1, y1 = 1−h +
h2

2
− h3

6
, y2 = 1− 2h + 2h2 − 4h3

3
, (9.1b)

y0 = 1, y1 = 1−h +
h2

2
, y2 = 1− 2h + 2h2. (9.1c)

The three pictures on the left of Fig. 9.1 (they correspond to the three starting pro-
cedures in the same order) show the global error divided by h3 for the five step
sizes h = 1/5, 1/10, 1/20, 1/40, 1/80 .

For the first two starting procedures we observe uniform convergence to the
function e3(x) = xe−x/4 (cf. formula (2.12)), so that

yn − y(xn) = e3(xn)h3 +O(h4), (9.2)

valid uniformly for 0 ≤ nh ≤ Const . In the third case we have convergence to
e3(x) = (9 +x)e−x/4 (Exercise 2), but this time the convergence is no longer
uniform. Therefore (9.2) only holds for xn bounded away from x0 , i.e., for 0 <
α ≤ nh ≤ Const . In the three pictures on the right of Fig. 9.1 the functions(

yn − y(xn)− e3(xn)h3
)
/h4 (9.3)
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(9.1a)

hh

(9.1a)

(9.1b)h

h

(9.1b)

h

(9.1c)

h

(9.1c)

h

h

h

Fig. 9.1. The values (yn − y(xn))/h3 (left), (yn − y(xn)− e3(xn)h3)/h4 (right)
for the 3-step BDF method and for three different starting procedures

are plotted. Convergence to functions e4(x) is observed in all cases. Clearly, since
e3(x0) �= 0 for the starting procedure (9.1c), the sequence (9.3) diverges at x0 like
O(1/h) in this case.

We conclude from this example that for linear multistep methods there is in
general no asymptotic expansion of the form

yn − y(xn) = ep(xn)hp + ep+1(xn)hp+1 + . . .

which holds uniformly for 0≤nh≤Const . It will be necessary to add perturbation
terms

yn − y(xn) =
(
ep(xn) + εp

n

)
hp +

(
ep+1(xn) + εp+1

n

)
hp+1 + . . . (9.4)

which compensate the irregularity near x0 . If the perturbations εj
n decay exponen-

tially (for n →∞ ), then they have no influence on the asymptotic expansion for
xn bounded away from x0 .
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Asymptotic Expansion for Strictly Stable Methods (8.4)

In order to extend the techniques of Section II.8 to multistep methods it is useful
to write them as a “one-step” method in a higher dimensional space (cf. (4.8) and
Example 8.2). This suggests we study at once the asymptotic expansion for the
general method (8.4). Because of the presence of εj

nhj in (9.4), the iterative proof
of Theorem 9.1 below will lead us to increment functions which also depend on n ,
of the form

Φn(x, u, h) = Φ
(
x, u +hαn(h), h

)
+βn(h). (9.5)

We therefore consider for an equidistant grid (xn) the numerical procedure

u0 = ϕ(h)

un+1 = Sun +hΦn(xn, un, h),
(9.6)

where Φn is given by (9.5) and the correct value function is again denoted by
z(x, h) . The following additional assumptions will simplify the discussion of an
asymptotic expansion:

A1) Method (9.6) is strictly stable; i.e., it is stable (Definition 8.8) and 1 is the
only eigenvalue of S with modulus one. In this case the spectral radius of
S −E (cf. formula (8.11)) is smaller than 1 ;

A2) αn(h) and βn(h) are polynomials, whose coefficients decay exponentially
like O(�n

0 ) for n →∞ . Here �0 denotes some number lying between the
spectral radius of S −E and one; i.e. �(S −E) < �0 < 1 ;

A3) the functions ϕ , z and Φ are sufficiently differentiable.

Assumption A3 allows us to expand the local error, defined by (8.9), into a Taylor
series:

dn+1 = z(xn +h, h)−Sz(xn, h)−hΦ
(
xn, z(xn, h) +hαn(h), h

)−hβn(h)

= d0(xn) + d1(xn)h + . . .+ dN+1(xn)hN+1

−h2 ∂Φ
∂u

(
xn, z(xn, 0), 0

)
αn(h)− . . .−hβn(h) +O(hN+1).

The expressions involving αn(h) can be simplified further. Indeed, for a smooth
function G(x) we have

G(xn)αn(h) = G(x0)αn(h) +hG′(x0)nαn(h) + . . .+hN+1R(n, h).

We observe that njαn(h) is again a polynomial in h and that its coefficients decay
like O(�n) where � satisfies �0 < � < 1 . The same argument shows the bound-
edness of the remainder R(n, h) for 0 ≤ nh ≤ Const . As a consequence we can
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write the local error in the form

d0 = γ0 + γ1h + . . .+ γNhN +O(hN+1)

dn+1 =
(
d0(xn) + δ0

n

)
+ . . .+

(
dN+1(xn) + δN+1

n

)
hN+1 +O(hN+2)

for 0 ≤ nh ≤ Const.

(9.7)

The functions dj(x) are smooth and the perturbations δj
n satisfy δj

n =O(�n) . The

expansion (9.7) is unique, because δj
n → 0 for n →∞ .

Method (9.6) is called consistent of order p , if the local error (9.7) satisfies
(Lemma 8.11)

dn = O(hp) for 0 ≤ nh ≤ Const, and Edp(x) = 0. (9.8)

Observe that by this definition the perturbations δj
n have to vanish for j = 0, . . . ,

p− 1 , but no condition is imposed on δp
n . The exponential decay of these terms

implies that we still have

dn+1 +E(dn + . . .+ d0) = O(hp) for 0 ≤ nh ≤ Const,

in agreement with Definition 8.10. One can now easily verify that Lemma 8.12 (Φn

satisfies a Lipschitz condition with the same constant as Φ ) and the Convergence
Theorem 8.13 remain valid for method (9.6). In the following theorem we use, as
for one-step methods, the notation uh(x) = un when x = xn .

Theorem 9.1 (Hairer & Lubich 1984). Let the method (9.6) satisfy A1-A3 and be
consistent of order p ≥ 1 . Then the global error has an asymptotic expansion of
the form

uh(x)− z(x, h) = ep(x)hp + . . .+ eN (x)hN +E(x, h)hN+1 (9.9)

where the ej(x) are given in the proof (cf. formula (9.18)) and E(x, h) is bounded
uniformly in h ∈ [0, h0] and for x in compact intervals not containing x0 . More
precisely than (9.9), there is an expansion

un − zn =
(
ep(xn) + εp

n

)
hp + . . .+

(
eN (xn) + εN

n

)
hN + Ẽ(n, h)hN+1 (9.10)

where εj
n =O(�n) with �(S −E) < � < 1 and Ẽ(n, h) is bounded for 0≤ nh≤

Const .

Remark. We obtain from (9.10) and (9.9)

E(xn, h) = Ẽ(n, h) +h−1εN
n +h−2εN−1

n + . . .+hp−N−1εp
n,

so that the remainder term E(x, h) is in general not uniformly bounded in h for
x varying in an interval [x0, x] . However, if x is bounded away from x0 , say
x ≥ x0 + δ (δ > 0 fixed), the sequence εj

n goes to zero faster than any power of
δ/n ≤ h .
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Proof. a) As for one-step methods (cf. proof of Theorem 8.1, Chapter II) we
construct a new method, which has as numerical solution

ûn = un − (e(xn) + εn

)
hp (9.11)

for a given smooth function e(x) and a given sequence εn satisfying εn =O(�n) .
Such a method is given by

û0 = ϕ̂(h)

ûn+1 = Sûn +hΦ̂n(xn, ûn, h)
(9.12)

where ϕ̂(h) = ϕ(h)− (e(x0) + ε0

)
hp and

Φ̂n(x, u, h) = Φn

(
x, u + (e(x) + εn)hp, h

)
− (e(x +h)−Se(x)

)
hp−1 − (εn+1 −Sεn)hp−1.

Since Φn is of the form (9.5), Φ̂n is also of this form, so that its local error has
an expansion (9.7). We shall now determine e(x) and εn in such a way that the
method (9.12) is consistent of order p + 1 .

b) The local error d̂n of (9.12) can be expanded as

d̂0 = z0 − û0 =
(
γp + e(x0) + ε0

)
hp +O(hp+1)

d̂n+1 = zn+1 −Szn −hΦ̂n(xn, zn, h)

= dn+1 +
(
(I −S)e(xn) + (εn+1 −Sεn)

)
hp

+
(−G(xn)(e(xn) + εn) + e′(xn)

)
hp+1 +O(hp+2).

Here

G(x) =
∂Φn

∂u

(
x, z(x, 0), 0

)
which is independent of n by (9.5). The method (9.12) is consistent of order p+1 ,
if (see (9.8))

i) ε0 = −γp − e(x0),

ii) dp(x) + (I −S)e(x) + δp
n + εn+1 −Sεn = 0 for x = xn,

iii) Ee′(x) = EG(x)e(x)−Edp+1(x).

We assume for the moment that the system (i)-(iii) can be solved for e(x) and εn .
This will actually be demonstrated in part (d) of the proof. By the Convergence
Theorem 8.13 the method (9.12) is convergent of order p + 1 . Hence

ûn − zn = O(hp+1) uniformly for 0 ≤ nh ≤ Const,

which yields the statement (9.10) for N = p .
c) The method (9.12) satisfies the assumptions of the theorem with p replaced

by p + 1 and �0 by � . As in Theorem 8.1 (Section II.8) an induction argument
yields the result.
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d) It remains to find a solution of the system (i)-(iii). Condition (ii) is satisfied
if

(iia) dp(x) = (S − I)(e(x) + c)

(iib) εn+1 − c = S(εn − c)− δp
n

hold for some constant c . Using (I −S +E)−1(I −S) = (I −E) , which is a
consequence of SE = E2 = E (see (8.11)), formula (iia) is equivalent to

(I −S +E)−1dp(x) = −(I −E)(e(x) + c). (9.13)

From (i) we obtain ε0 − c = −γp − (e(x0) + c) , so that by (9.13)

(I −E)(ε0 − c) = −(I −E)γp + (I −S +E)−1dp(x0).

Since Edp(x0) = 0 , this relation is satisfied in particular if

ε0 − c = −(I −E)γp + (I −S +E)−1dp(x0). (9.14)

The numbers εn − c are now determined by the recurrence relation (iib)

εn − c = Sn(ε0 − c)−
n∑

j=1

Sn−jδp
j−1

= E(ε0 − c) + (S −E)n(ε0 − c)−E
∞∑

j=0

δp
j +E

∞∑
j=n

δp
j −

n∑
j=1

(S −E)n−jδp
j−1,

where we have used Sn = E + (S −E)n . If we put

c = E

∞∑
j=0

δp
j (9.15)

the sequence {εn} defined above satisfies εn = O(�n) , since E(ε0 − c) = 0 by
(9.14) and since δp

n = O(�n) .
In order to find e(x) we define

v(x) = Ee(x).

With the help of formulas (9.15) and (9.13) we can recover e(x) from v(x) by

e(x) = v(x)− (I −S +E)−1dp(x). (9.16)

Equation (iii) can now be rewritten as the differential equation

v′(x) = EG(x)
(
v(x)− (I −S +E)−1dp(x)

)
−Edp+1(x), (9.17)

and condition (i) yields the starting value v(x0) =−E(γp + ε0) . This initial value
problem can be solved for v(x) and we obtain e(x) by (9.16). This function and
the εn defined above represent a solution of (i)-(iii).
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Remarks. a) It follows from (9.15)-(9.17) that the principal error term satisfies

e′p(x) = EG(x)ep(x)−Edp+1(x)− (I −S +E)−1d′
p(x)

ep(x0) = −Eγp −E

∞∑
j=0

δp
j − (I −S +E)−1dp(x0).

(9.18)

b) Since ep+1(x) is just the principal error term of method (9.12), it satisfies

the differential equation (9.18) with dj replaced by d̂j+1 . By an induction argu-
ment we therefore have for j ≥ p

e′j(x) = EG(x)ej(x) + inhomogeneity(x).

Weakly Stable Methods

We next study the asymptotic expansion for stable methods, which are not strictly
stable. For example, the explicit mid-point rule (1.13’), treated in connection with
the GBS-algorithm (Section II.9), is of this type. As at the beginning of this section,
we apply the mid-point rule to the problem y′ = −y , y(0) = 1 and consider the
following three starting procedures

y0 = 1, y1 = exp(−h) (9.19a)

y0 = 1, y1 = 1−h +
h2

2
(9.19b)

y0 = 1, y1 = 1−h. (9.19c)

The three pictures on the left of Fig. 9.2 show the global error divided by h2 . For
the first two starting procedures we have convergence to the function xe−x/6 ,
while for (9.19c) the divided error (yn − y(xn))/h2 converges to

e−x
(2x− 3

12

)
+

ex

4
for n even,

e−x
(2x− 3

12

)
− ex

4
for n odd.

We then subtract the h2 -term from the global error and divide by h3 in the case
(9.19a) and by h4 for (b) and (c). The result is plotted in the pictures on the right
of Fig. 9.2.

This example nicely illustrates the fact that we no longer have an asymptotic
expansion of the form (9.9) or (9.10) but that there exists one expansion for xn

with n even, and a different expansion for xn with n odd (see also Exercise 2 of
Section II.9). Similar results for more general methods will be obtained here.

We say that a method of the form (8.4) is weakly stable, if it is stable, but if
the matrix S has, besides ζ1 =1 , further eigenvalues of modulus 1 , say ζ2, . . . , ζl .
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(9.19a)

hh

h
(9.19a)

(9.19b)

h

h

(9.19b)

(9.19c) (9.19c)

Fig. 9.2. Asymptotic expansion of the mid-point rule
(three different starting procedures)

The matrix S therefore has the representation (cf. (8.11))

S = ζ1E1 + ζ2E2 + . . .+ ζlEl +R (9.20)

where the Ej are the projectors (corresponding to ζj ) and the spectral radius of R
satisfies �(R) < 1 .

In what follows we restrict ourselves to the case where all ζj (j = 1, . . . , l)
are roots of unity. This allows a simple proof for the existence of an asymptotic
expansion and is at the same time by far the most important special case. For the
general situation we refer to Hairer & Lubich (1984).

Theorem 9.2. Let the method (9.6) with Φn independent of n be stable, consistent
of order p and satisfy A3. If all eigenvalues (of S ) of modulus 1 satisfy ζq

j = 1
(j = 1, . . . , l) for some positive integer q , then we have an asymptotic expansion
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of the form (ω = e2πi/q)

un − zn =
q−1∑
s=0

ωns
(
eps(xn)hp + . . .+ eNs(xn)hN

)
+E(n, h)hN+1 (9.21)

where the ejs(x) are smooth functions and E(n, h) is uniformly bounded for 0 <
δ ≤ nh ≤ Const .

Proof. The essential idea of the proof is to consider q consecutive steps of method
(9.6) as one method over a large step. Putting ũn = unq+i (0 ≤ i ≤ q− 1 fixed),

h̃ = qh and x̃n = xi +nh̃ , this method becomes

ũn+1 = Sqũn + h̃Φ̃(x̃n, ũn, h̃) (9.22)

with a suitably chosen Φ̃ . E.g., for q = 2 we have

Φ̃(x̃, ũ, h̃) =
1
2
SΦ
(
x̃, ũ,

h̃

2

)
+

1
2
Φ
(
x̃ +

h̃

2
, Sũ+

h̃

2
Φ
(
x̃, ũ,

h̃

2
)
,
h̃

2

)
.

The assumption on the eigenvalues implies

Sq = E1 + . . .+El +Rq

so that (9.22) is seen to be a strictly stable method. A straightforward calculation
shows that the local error of (9.22) satisfies

d̃0 = O(hp)

d̃n+1 = (I +S + . . .+Sq−1)dp(x̃n)hp +O(hp+1).

Inserting (9.20) and using ζq
j = 1 we obtain, with Ẽ = E1 + . . .+El ,

Ẽ(I +S + . . .+Sq−1)dp(x)

= Ẽ
(
I − Ẽ + qE1 +

l∑
j=2

1− ζq
j

1− ζj

Ej +
q−1∑
j=1

Rj
)
dp(x) = qE1dp(x),

which vanishes by (8.15). Hence, also method (9.22) is consistent of order p . All
the assumptions of Theorem 9.1 are thus verified for method (9.22). We therefore
obtain

unq+i − znq+i = ẽpi(xnq+i)h
p + . . .+ ẽNi(xnq+i)h

N +Ei(n, h)hN+1

where Ei(n, h) has the desired boundedness properties. If we define ejs(x) as a
solution of the Vandermonde-type system

q−1∑
s=0

ωisejs(x) = ẽji(x)

we obtain (9.21).
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The Adjoint Method

For a method (8.4) the correct value function z(x, h) , the starting procedure ϕ(h)
and the increment function Φ(x, u, h) are usually also defined for negative h (see
the examples of Section III.8). As for one-step methods (Section II.8) we shall give
here a precise meaning to the numerical solution uh(x) for negative h . This then
leads in a natural way to the study of asymptotic expansions in even powers of h .

With the notation uh(x) = un for x = x0 +nh (h > 0) the method (8.4) be-
comes

uh(x0) = ϕ(h)

uh(x +h) = Suh(x) +hΦ
(
x, uh(x), h

)
for x = x0 +nh.

(9.23)

We first replace h by −h in (9.23) to obtain

u−h(x0) = ϕ(−h)

u−h(x−h) = Su−h(x)−hΦ
(
x, u−h(x),−h

)
and then x by x +h which gives

u−h(x0) = ϕ(−h)

u−h(x) = Su−h(x +h)−hΦ
(
x +h, u−h(x +h),−h

)
.

For sufficiently small h this equation can be solved for u−h(x+h) (Implicit Func-
tion Theorem) and we obtain

u−h(x0) = ϕ(−h),

u−h(x +h) = S−1u−h(x) +hΦ∗(x, u−h(x), h
)
.

(9.24)

The method (9.24), which is again of the form (8.4), is called the adjoint method
of (9.23). Its correct value function is z∗(x, h) = z(x,−h) . Observe that for given
S and Φ the new increment function Φ∗ is just defined by the pair of formulas

v = Su−hΦ(x +h, u,−h)

u = S−1v +hΦ∗(x, v, h).
(9.25)

Example 9.3. Consider a linear multistep method with generating functions

�(ζ) =
k∑

j=0

αjζ
j , σ(ζ) =

k∑
j=0

βjζ
j .

Then we have

S =

⎛⎜⎜⎜⎜⎝
−αk−1/αk −αk−2/αk .. . −α0/αk

1 0 .. . 0
1 . 0

...
...

1 0

⎞⎟⎟⎟⎟⎠, Φ(x, u, h)=

⎛⎜⎜⎝
1
0
...
0

⎞⎟⎟⎠ψ(x, u, h)
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where ψ = ψ(x, u, h) is the solution of (u = (uk−1, . . . , u0)T )

αkψ =
k−1∑
j=0

βjf(x + jh, uj) +βkf
(
x + kh, hψ−

k−1∑
j=0

αj

αk

uj

)
.

A straightforward use of the formulas (9.25) shows that

S−1 =

⎛⎜⎜⎝
0 1
0 0
...

... . . . 1
−αk/α0 −αk−1/α0 . . . −α1/α0

⎞⎟⎟⎠, Φ∗(x, v, h)=

⎛⎜⎜⎝
0
...
0
1

⎞⎟⎟⎠ψ∗(x, v, h)

where ψ∗ = ψ∗(x, v, h) (with v = (v0, . . . , vk−1)T ) is given by

−α0ψ
∗ =

k−1∑
j=0

βk−jf
(
x + (j − k + 1)h, vj

)
+β0f

(
x +h, hψ∗ −

k−1∑
j=0

αk−j

α0

vj

)
.

This shows that the adjoint method is again a linear multistep method. Its generat-
ing polynomials are

�∗(ζ) = −ζk�(ζ−1), σ∗(ζ) = ζkσ(ζ−1). (9.26)

Our next aim is to prove that the adjoint method has exactly the same asymp-
totic expansion as the original method, with h replaced by −h . For this it is
necessary that S−1 also be a stable matrix. Therefore all eigenvalues of S must
lie on the unit circle.

Theorem 9.4. Let the method (9.23) be stable, consistent of order p and assume
that all eigenvalues of S satisfy ζq

j =1 for some positive integer q . Then the global
error has an asymptotic expansion of the form (ω = e2πi/q)

uh(xn)− z(xn, h) =
q−1∑
s=0

ωns
(
eps(xn)hp + . . .+ eNs(xn)hN

)
+E(xn, h)hN+1,

(9.27)
valid for positive and negative h . The remainder E(x, h) is uniformly bounded
for |h| ≤ h0 and x0 ≤ x ≤ x̂ .

Proof. As in the proof of Theorem 9.2 we consider q consecutive steps of method
(9.23) as one new method. The assumption on the eigenvalues implies that Sq =
I = identity. Therefore the new method is essentially a one-step method. The only
difference is that here the starting procedure and the correct value function may
depend on h . A straightforward extension of Theorem 8.5 of Chapter II (Exercise
3) implies the existence of an expansion

uh(xnq+i)− z(xnq+i, h) = ẽpi(xnq+i)h
p + . . .+ ẽNi(xnq+i)h

N

+Ei(xnq+i, h)hN+1.
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This expansion is valid for positive and negative h ; the remainder Ei(x, h) is
bounded for |h| ≤ h0 and x0 ≤ x ≤ x̂ . The same argument as in the proof of
Theorem 9.2 now leads to the desired expansion.

Symmetric Methods

The definition of symmetry for general linear methods is not as straightforward as
for one-step methods. In Example 9.3 we saw that the components of the numerical
solution of the adjoint method are in inverse order. Therefore, it is too restrictive to
require that ϕ(h) = ϕ(−h) , S = S−1 and Φ = Φ∗ .

However, for many methods of practical interest the correct value function
satisfies a symmetry relation of the form

z(x, h) = Qz(x + qh,−h) (9.28)

where Q is a square matrix and q an integer. This is for instance the case for linear
multistep methods, where the correct value function is given by

z(x, h) =
(
y(x + (k− 1)h), . . . , y(x)

)T
.

The relation (9.28) holds with

Q =
(

1.·
1

)
and q = k− 1. (9.29)

Definition 9.5. Suppose that the correct value function satisfies (9.28). Method
(9.23) is called symmetric (with respect to (9.28)), if the numerical solution satisfies
its analogue

uh(x) = Qu−h(x + qh). (9.30)

Example 9.6. Consider a linear multistep method and suppose that the generating
polynomials of the adjoint method (9.26) satisfy

�∗(ζ) = �(ζ), σ∗(ζ) = σ(ζ). (9.31)

This is equivalent to the requirement (cf. (3.24))

αk−j = −αj , βk−j = βj .

A straightforward calculation (using the formulas of Example 9.3) then shows that
the symmetry relation (9.30) holds for all x = x0 +nh whenever it holds for x =
x0 . This imposes an additional condition on the starting procedure ϕ(h) .

Let us finally demonstrate how Theorem 9.4 can be used to prove asymptotic
expansions in even powers of h . Denote by uj

h(x) the j th component of uh(x) .
The symmetry relation (9.30) for multistep methods then implies

uk
−h(x) = u1

h

(
x− (k− 1)h)
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Furthermore, for any multistep method we have

uk
h(x) = u1

h

(
x− (k− 1)h

)
so that

uk
h(x) = uk

−h(x)

for symmetric methods. As a consequence of Theorem 9.4 the asymptotic expan-
sion of the global error is in even powers of h , whenever the multistep method is
symmetric in the sense of Definition 9.5.

Exercises

1. Consider a strictly stable, p th order, linear multistep method written in the
form (9.6) (see Example 9.3) and set

G(x) =
∂Φ
∂u

(
x, z(x, 0), 0

)
.

a) Prove that

EG(x)1l = 1l
∂f

∂y

(
x, y(x)

)
where E is the matrix given by (8.11) and 1l = (1, . . . , 1)T .

b) Show that the function ep(x) in the expansion (9.9) is given by ep(x) =
1lêp(x) , where

ê′p(x) =
∂f

∂y

(
x, y(x)

)
êp(x)−Cy(p+1)(x)

and C is the error constant (cf. (2.13)). Compute also êp(x0) .

2. For the 3 -step BDF-method, applied to y′ = −y , y(0) = 1 with starting pro-
cedure (9.1c), compute the function e3(x) and the perturbations {ε3

n}n≥0 in
the expansion (9.4). Compare your result with Fig. 9.1.

3. Consider the method

u0 = ϕ(h), un+1 = un +hΦ(xn, un, h) (9.32)

with correct value function z(x, h) .

a) Prove that the global error has an asymptotic expansion of the form

un − zn = ep(xn)hp + . . .+ eN (xn)hN +E(xn, h)hN+1

where E(x, h) is uniformly bounded for 0 ≤ h ≤ h0 and x0 ≤ x ≤ x̂ .

b) Show that Theorem 8.5 of Chapter II remains valid for method (9.32).



III.10 Multistep Methods for Second Order
Differential Equations

En 1904 j’eus besoin d’une pareille méthode pour calculer les tra-
jectoires des corpuscules électrisés dans un champ magnétique, et
en essayant diverses méthodes déjà connues, mais sans les trouver
assez commodes pour mon but, je fus conduit moi-même à élaborer
une méthode assez simple, dont je me suis servi ensuite.

(C. Störmer 1921)

Because of their importance, second order differential equations deserve some ad-
ditional attention. We already saw in Section II.14 that for special second order
differential equations certain direct one-step methods are more efficient than the
classical Runge-Kutta methods. We now investigate whether a similar situation
also holds for multistep methods.

Consider the second order differential equation

y′′ = f(x, y, y′) (10.1)

where y is allowed to be a vector. We rewrite (10.1) in the usual way as a first
order system and apply a multistep method

k∑
i=0

αiyn+i = h
k∑

i=0

βiy
′
n+i

k∑
i=0

αiy
′
n+i = h

k∑
i=0

βif(xn+i, yn+i, y
′
n+i).

(10.2)

If the right hand side of the differential equation does not depend on y′ ,

y′′ = f(x, y), (10.3)

it is natural to look for numerical methods which do not involve the first derivative.
An elimination of {y′

n} in the equations (10.2) results in

2k∑
i=0

α̂iyn+i = h2
2k∑
i=0

β̂if(xn+i, yn+i) (10.4)

where the new coefficients α̂i, β̂i are given by

2k∑
i=0

α̂iζ
i =
( k∑

i=0

αiζ
i
)2

,

2k∑
i=0

β̂iζ
i =
( k∑

i=0

βiζ
i
)2

. (10.5)

In what follows we investigate (10.4) with coefficients that do not necessarily sat-
isfy (10.5). It is hoped to achieve the same order with a smaller step number.
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Explicit Störmer Methods

Sein Vortrag ist übrigens ziemlich trocken und langweilig . . .
(B. Riemann’s opinion about Encke, 1847)

Had the Ast. Ges. Essay been entirely free from numerical blun-
ders, . . . (P.H. Cowell & A.C.D. Crommelin 1910)

Since most differential equations of celestial mechanics are of the form (10.3) it is
not surprising that the first attempts at developing special methods for these equa-
tions were made by astronomers.

For his extensive numerical calculations concerning the aurora borealis (see
below), C. Störmer (1907) developed an accurate and simple method as follows:
by adding the Taylor series for y(xn +h) and y(xn −h) we obtain

y(xn +h)−2y(xn)+y(xn−h)=h2y′′(xn)+
h4

12
y(4)(xn)+

h6

360
y(6)(xn)+ . . . .

If we insert y′′(xn) from the differential equation (10.3) and neglect higher terms,
we get

yn+1 − 2yn + yn−1 = h2fn

as a first simple method, which is sometimes called Störmer’s or Encke’s method.
For greater precision, we replace the higher derivatives of y by central differences
of f

h2y(4)(xn) = Δ2fn−1 −
1
12

Δ4fn−2 + . . .

h4y(6)(xn) = Δ4fn−2 + . . .

and obtain

yn+1 − 2yn + yn−1 = h2
(
fn +

1
12

Δ2fn−1 −
1

240
Δ4fn−2 + . . .

)
. (10.6)

This formula is not yet very practical, since the differences of the right hand side
contain the unknown expressions fn+1 and fn+2 . Neglecting fifth-order dif-
ferences (i.e., putting Δ4fn−2 ≈ Δ4fn−4 and Δ2fn−1 = Δ2fn−2 + Δ3fn−3 +
Δ4fn−3 ≈ Δ2fn−2 + Δ3fn−3 + Δ4fn−4 ) one gets

yn+1 − 2yn + yn−1 = h2fn +
h2

12

(
Δ2fn−2 + Δ3fn−3 +

19
20

Δ4fn−4

)
(10.7)

(“ . . . formule qui est fondamentale dans notre méthode . . .”, C. Störmer 1907).
Some years later Cowell & Crommelin (1910) used the same ideas to inves-

tigate the motion of Halley’s comet. They considered one additional term in the
series (10.6), namely

31
60480

Δ6fn−3 ≈
1

1951
Δ6fn−3.
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Arbitrary orders. Integrating equation (10.3) twice we obtain

y(x +h) = y(x) +hy′(x) +h2

∫ 1

0

(1− s)f
(
x + sh, y(x + sh)

)
ds. (10.8)

In order to eliminate the first derivative of y(x) we write the same formula with h
replaced by −h and add the two expressions:

y(x +h)− 2y(x) + y(x−h) (10.9)

= h2

∫ 1

0

(1− s)
(
f
(
x + sh, y(x + sh)

)
+ f
(
x− sh, y(x− sh)

))
ds.

As in the derivation of the Adams formulas (Section III.1) we replace the unknown
function f(t, y(t)) by the interpolation polynomial p(t) of formula (1.4). This
yields the explicit method

yn+1 − 2yn + yn−1 = h2
k−1∑
j=0

σj∇jfn (10.10)

with coefficients σj given by

σj = (−1)j

∫ 1

0

(1− s)
((−s

j

)
+
(

s

j

))
ds. (10.11)

See Table 10.1 for their numerical values and Exercise 2 for their computation.

Table 10.1. Coefficients of the method (10.10)

j 0 1 2 3 4 5 6 7 8 9

σj 1 0
1

12
1

12
19
240

3
40

863
12096

275
4032

33953
518400

8183
129600

Special cases of (10.10) are

k = 2 : yn+1 − 2yn + yn−1 = h2fn

k = 3 : yn+1 − 2yn + yn−1 = h2
(13

12
fn − 1

6
fn−1 +

1
12

fn−2

)
(10.10’)

k = 4 : yn+1 − 2yn + yn−1 = h2
(7

6
fn − 5

12
fn−1 +

1
3
fn−2 −

1
12

fn−3

)
.

Method (10.10) with k = 5 is formula (10.7), the method used by Störmer (1907,
1921), and for k = 6 one obtains the method used by Cowell & Crommelin (1910).
The simplest of these methods (k = 1 or k = 2 ) has been successfully applied as
the basis of an extrapolation method (Section II.14, formula (14.32)).



464 III. Multistep Methods and General Linear Methods

Implicit Störmer Methods

The first terms of (10.6)

yn+1 − 2yn + yn−1 = h2
(
fn +

1
12

Δ2fn−1

)
=

h2

12
(
fn+1 + 10fn + fn−1

) (10.12)

form an implicit equation for yn+1 . This can either be used in a predictor-corrector
fashion, or, as advocated by B. Numerov (1924, 1927), by solving this implicit
nonlinear equation directly for yn+1 .

To obtain more accurate formulas, analogous to the implicit Adams methods,
we use the interpolation polynomial p∗(t) of (1.8), which passes through the addi-
tional point (xn+1, fn+1) . This yields the implicit method

yn+1 − 2yn + yn−1 = h2
k∑

j=0

σ∗
j∇jfn+1, (10.13)

where the coefficients σ∗
j are defined by

σ∗
j = (−1)j

∫ 1

0

(1− s)
((−s + 1

j

)
+
(

s + 1
j

))
ds (10.14)

and are given in Table 10.2 for j ≤ 9 .

Table 10.2. Coefficients of the implicit method (10.13)

j 0 1 2 3 4 5 6 7 8 9

σ∗
j 1 −1

1
12

0
−1
240

−1
240

−221
60480

−19
6048

−9829
3628800

−407
172800

Further methods can be derived by using the ideas of Nyström and Milne for
first order equations. With the substitutions h→2h, 2s→s and x→x−h formula
(10.9) becomes

y(x+h)− 2y(x−h) + y(x− 3h) = h2

∫ 2

0

(2− s) (10.15)

·
(
f
(
x + (s−1)h, y(x + (s−1)h)

)
+ f
(
x− (s+1)h, y(x− (s+1)h)

))
ds.

If one replaces f(t, y(t)) by the polynomial p(t) (respectively p∗(t) ) one obtains
the new classes of explicit (respectively implicit) methods.
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Numerical Example

Nous avons calculé plus de 120 trajectoires différentes, travail im-
mense qui a exigé plus de 4500 heures . . . Quand on est suffisam-
ment exercé, on calcule environ trois points (R, z) par heure.

(C. Störmer 1907)

We choose the historical problem treated by Störmer in 1907: Störmer’s aim was to
confirm numerically the conjecture of Birkeland, who explained in 1896 the aurora
borealis as being produced by electrical particles emanating from the sun and danc-
ing in the earth’s magnetic field. Suppose that an elementary magnet is situated at
the origin with its axis along to the z -axis. The trajectory (x(s), y(s), z(s)) of an
electrical particle in this magnetic field then satisfies

x′′ =
1
r5

(
3yzz′ − (3z2 − r2)y′)

y′′ =
1
r5

(
(3z2 − r2)x′− 3xzz′

)
z′′ =

1
r5

(
3xzy′− 3yzx′)

(10.16)

where r2 = x2 + y2 + z2 . Introducing the polar coordinates

x = R cos ϕ, y = R sin ϕ (10.17)

the system (10.16) becomes equivalent to

R′′ =
(2γ

R
+

R

r3

)( 2γ

R2
+

3R2

r5
− 1

r3

)
(10.18a)

z′′ =
(2γ

R
+

R

r3

)3Rz

r5
(10.18b)

ϕ′ =
(2γ

R
+

R

r3

) 1
R

(10.18c)

where now r2 = R2 + z2 and γ is some constant arising from the integration of
ϕ′′ . The two equations (10.18a,b) constitute a second order differential equation
of type (10.3), which can be solved numerically by the methods of this section.
ϕ is then obtained by simple integration of (10.18c). Störmer found after long
calculations that the initial values

R0 = 0.257453, z0 = 0.314687, γ = −0.5,

R′
0 =
√

Q0 cos u, z′0 =
√

Q0 sin u, u = 5π/4

r0 =
√

R2
0 + z2

0 , Q0 = 1− (2γ/R0 +R0/r3
0)2

(10.18d)

produce a specially interesting solution curve approaching very closely the North
Pole. Fig. 10.1 shows 125 solution curves (in the x, y, z -space) with these and
neighbouring initial values to give an impression of how an aurora borealis comes
into being.
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Fig. 10.1. An aurora borealis above Polarcirkeln

error

fe

Stoermer

k

kk

k

error

fe

Adams

k

k

explicit (10.10), k
implicit (PECE), k

explicit Adams, k
implicit (PECE), k

Fig. 10.2. Performance of Störmer and Adams methods

Fig. 10.2 compares the performance of the Störmer methods (10.10) and
(10.13) (in PECE mode) with that of the Adams methods by integrating subsys-
tem (10.18a,b) with initial values (10.18d) for 0 ≤ s ≤ 0.3 . The diagrams com-
pare the Euclidean norm in R2 of the error of the final solution point (R, z)
with the number of function evaluations fe . The step numbers used are {n =
50 · 20.3·i}i=0,1,...,30 = {50, 61, 75, 93, 114, . . . , 25600} . The starting values were
computed very precisely with an explicit Runge-Kutta method and step size hRK =
h/10 . It can be observed that the Störmer methods are substantially more precise
due to the smaller error constants (compare Tables 10.1 and 10.2 with Tables 1.1
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and 1.2). In addition, they have lower overhead. However, they must be imple-
mented carefully in order to avoid rounding errors (see below).

General Formulation

Our next aim is to study stability, consistency and convergence of general linear
multistep methods for (10.3). We write them in the form

k∑
i=0

αiyn+i = h2
k∑

i=0

βif(xn+i, yn+i). (10.19)

The generating polynomials of the coefficients αi and βi are again denoted by

�(ζ) =
k∑

i=0

αiζ
i, σ(ζ) =

k∑
i=0

βiζ
i. (10.20)

If we apply method (10.19) to the initial value problem

y′′ = f(x, y), y(x0) = y0, y′(x0) = y′
0 (10.21)

it is natural to require that the starting values be consistent with both initial values,
i.e., that

yi − y0 − ihy′
0

h
→ 0 for h → 0, i = 0, 1, . . . , k− 1. (10.22)

For the stability condition of method (10.19) we consider the simple problem

y′′ = 0, y0 = 0, y′
0 = 0.

Its numerical solution satisfies a linear difference equation with �(ζ) as character-
istic polynomial. The same considerations as in the proof of Theorem 4.2 show
that the following stability condition is necessary for convergence.

Definition 10.1. Method (10.19) is called stable, if the generating polynomial �(ζ)
satisfies:

i) The roots of �(ζ) lie on or within the unit circle;

ii) The multiplicity of the roots on the unit circle is at most two.

For the order conditions we introduce, similarly to formula (2.3), the linear
difference operator

L(y, x, h) = �(E)y(x)−h2σ(E)y′′(x)

=
k∑

i=0

(
αiy(x + ih)−h2βiy

′′(x + ih)
)
,

(10.23)

where E is the shift operator. As in Definition 2.3 we now have:
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Definition 10.2. Method (10.19) is consistent of order p if for all sufficiently
smooth functions y(x) ,

L(y, x, h) = O(hp+2). (10.24)

The following theorem is then proved similarly to Theorem 2.4.

Theorem 10.3. The multistep method (10.19) is of order p if and only if the fol-
lowing equivalent conditions hold:

i)
∑k

i=0 αi = 0,
∑k

i=0 iαi = 0

and
∑k

i=0 αii
q = q(q− 1)

∑k
i=0 βii

q−2 for q = 2, . . . , p + 1 ,

ii) �(eh)−h2σ(eh) = O(hp+2) for h → 0 ,

iii)
�(ζ)

(log ζ)2
−σ(ζ) = O((ζ − 1)p

)
for ζ → 1 .

As for Adams methods one easily verifies that the method (10.10) is of order
k , and that (10.13) is of order k + 1 .

The following order barriers are similar to those of Theorems 3.5 and 3.9; their
proofs are similar too (see, e.g., Dahlquist 1959, Henrici 1962):

Theorem 10.4. The order p of a stable linear multistep method (10.19) satisfies

p ≤ k + 2 if k is even,

p ≤ k + 1 if k is odd.

Theorem 10.5. Stable multistep methods (10.19) of order k + 2 are symmetric,
i.e.,

αj = αk−j , βj = βk−j for all j .

Convergence

Theorem 10.6. Suppose that method (10.19) is stable, of order p , and that the
starting values satisfy

y(xj)− yj = O(hp+1) for j = 0, 1, . . . , k− 1. (10.25)

Then we have convergence of order p , i.e.,

‖y(xn)− yn‖ ≤ Chp for 0 ≤ hn ≤ Const.
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Proof. It is possible to develop a theory analogous to that of Sections III.2 - III.4.
This is due to Dahlquist (1959) and can also be found in the book of Henrici (1962).
We prefer to rewrite (10.19) in a one-step formulation of the form (8.4) and to
apply directly the results of Section III.8 and III.9 (see Example 8.6). In order
to achieve this goal, we could put un = (yn+k−1, . . . , yn)T , which seems to be a
natural choice. But then the corresponding matrix S does not satisfy the stability
condition of Definition 8.8 because of the double roots of modulus 1. To overcome
this difficulty we separate these roots. We split the characteristic polynomial �(ζ)
into

�(ζ) = �1(ζ) · �2(ζ) (10.26)

such that each polynomial ( l + k = m)

�1(ζ) =
l∑

i=0

γiζ
i, �2(ζ) =

m∑
i=0

κiζ
i (10.27)

has only simple roots of modulus 1. Without loss of generality we assume in the
sequel that m ≥ l and αk = γl = κm = 1 . Using the shift operator E , method
(10.19) can be written as

�(E)yn = h2σ(E)fn.

The main idea is to introduce �2(E)yn as a new variable, say hvn , so that the
multistep formula becomes equivalent to the system

�1(E)vn = hσ(E)fn, �2(E)yn = hvn. (10.28)

Introducing the vector

un = (vn+l−1, . . . , vn, yn+m−1, . . . , yn)T

formula (10.28) can be written as

un+1 = Sun +hΦ(xn, un, h) (10.29a)

where

S =
(

G 0
0 K

)
, Φ(xn, un, h) =

(
e1ψ(xn, un, h)

e1vn

)
. (10.30)

The matrices G and K are the companion matrices

G =

⎛⎜⎜⎜⎜⎝
−γl−1 −γl−2 .. . −γ0

1 0 .. . 0
1 . 0

...
...

1 0

⎞⎟⎟⎟⎟⎠ , K =

⎛⎜⎜⎜⎜⎝
−κm−1 −κm−2 .. . −κ0

1 0 .. . 0
1 . 0

...
...

1 0

⎞⎟⎟⎟⎟⎠,

e1 = (1, 0, . . . , 0)T , and ψ = ψ(xn, un, h) is implicitly defined by

ψ =
k−1∑
j=0

βjf(xn + jh, yn+j) +βkf
(
xn + kh, h2ψ−

k−1∑
j=0

αjyn+j

)
. (10.31)
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In this formula ψ is written as a function of xn, (yn+k−1, . . . , yn) and h . But
the second relation of (10.28) shows that each value yn+k−1, . . . , yn+m can be
expressed as a linear combination of the elements of un . Therefore ψ is in fact a
function of (xn, un, h) .

Formula (10.29a) defines our forward step procedure. The corresponding start-
ing procedure is

ϕ(h) = (vl−1, . . . , v0, ym−1, . . . , y0)
T (10.29b)

which, by (10.28), is uniquely determined by (yk−1, . . . , y0)T . As correct value
function we have

z(x, h) =
( 1

h
�2(E)y(x+(l−1)h), . . . ,

1
h

�2(E)y(x), y(x+(m−1)h, . . . , y(x)
)T

.

(10.29c)
By our choice of �1(ζ) and �2(ζ) (both have only simple roots of modulus 1) the
matrices G and K are power bounded. Therefore S is also power bounded and
method (10.29) is stable in the sense of Definition 8.8.

We now verify the conditions of Definition 8.10 and for this start with the error
in the initial values

d0 = z(x0, h)−ϕ(h).

The first l components of this vector are

1
h

�2(E)y(xj)− vj =
1
h

m∑
i=0

κi

(
y(xi+j)− yi+j

)
, j = 0, . . . , l− 1

and the last m components are just

y(xj)− yj , j = 0, . . . , m− 1.

Thus hypothesis (10.25) ensures that d0 = O(hp) . Consider next the local error at
xn ,

dn+1 = z(xn +h, h)−Sz(xn, h)−hΦ
(
xn, z(xn, h), h

)
.

All components of dn+1 vanish except the first, which equals

d
(1)
n+1 =

1
h

�(E)y(xn)−hψ(xn, z(xn, h), h).

Using formula (10.31), an application of the mean value theorem yields

d
(1)
n+1 =

1
h

L(y, xn, h) +h2βkf ′(xn+k, η) · d(1)
n+1 (10.32)

with η as in Lemma 2.2. We therefore have

dn+1 = O(hp+1) since L(y, xn, h) = O(hp+2).

Finally Theorem 8.13 yields the stated convergence result.
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Asymptotic Formula for the Global Error

Assume that the method (10.19) is stable and consistent of order p . The local
truncation error of (10.29) is then given by

dn+1 = e1h
p+1Cp+2y

(p+2)(xn) +O(hp+2) (10.33)

with

Cp+2 =
1

(p + 2)!

k∑
i=0

(
αii

p+2 − (p + 2)(p + 1)βii
p
)
.

Formula (10.33) can be verified by developing L(y, xn, h) into a Taylor series in
(10.32). An application of Theorem 9.1 (if 1 is the only root of modulus 1 of �(ζ) )
or of Theorem 9.2 shows that the global error of method (10.29) is of the form

uh(x)− z(x, h) = e(x)hp +O(hp+1)

where e(x) is the solution of

e′(x) = E
∂Φ
∂u

(
x, z(x, 0), 0

)
e(x)−Ee1 ·Cp+2y

(p+2)(x). (10.34)

Here E is the matrix defined in (8.12). Since no hp -term is present in the local
error (10.33), it follows from (9.16) that e(x) = Ee(x) . Therefore (see Exercise
4a) this function can be written as

e(x) =
(

γ(x)1l
κ(x)1l

)
.

A straightforward calculation of ∂Φ
∂u

(
x, z(x, 0), 0

)
and Ee1 (for details see Exer-

cise 4) shows that (10.34) becomes equivalent to the system

γ′(x) =
σ(1)
�′
1(1)

∂f

∂y

(
x, y(x)

)
κ(x)− Cp+2

�′
1(1)

y(p+2)(x) (10.35a)

κ′(x) =
1

�′
2(1)

γ(x). (10.35b)

Differentiating (10.35b) and inserting γ′(x) from (10.35a), we finally obtain

κ′′(x) =
∂f

∂y

(
x, y(x)

)
κ(x)−Cy(p+2)(x) (10.36)

with

C =
Cp+2

σ(1)
. (10.37)

Here we have used the relation σ(1) = �′
1(1) · �′

2(1) , which is an immediate con-
sequence of (10.26), and the assumption that the order of the method is at least 1 .
The constant C in (10.37) is called the error constant of method (10.19). It plays
the same role as (2.13) for first order equations.
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Since the last component of the vector un is yn we have the desired result

yn − y(xn) = κ(xn)hp +O(hp+1)

with κ(x) satisfying (10.36). Further terms in the asymptotic expansion of the
global error can also be obtained by specializing the results of III.9.

Rounding Errors

A direct implementation of Störmer’s methods, for which (10.19) specializes to

yn+1 − 2yn + yn−1 = h2
k∑

i=0

βifn+i−k+1, (10.38)

by storing the y -values y0, y1, . . . , yk−1 and computing successively the values
yk, yk+1, . . . with the help of (10.38) leads to numerical instabilities for small h .
This instability is caused by the double root of �(ζ) on the unit circle. It can be
observed numerically in Fig. 10.3, where the left picture is a zoom of Fig. 10.2,
while the right image contains the results of a code implementing (10.38) directly.

error

fe

stabilized

error

fe

direct

Fig. 10.3. Rounding errors caused by a direct application of (10.38)

In order to obtain the stabilized version of the algorithm, we apply the follow-
ing two ideas:

a) Split, as in (10.26), the polynomial �(ζ) as (ζ −1)(ζ −1) . Then (10.28) leads
to hvn = yn+1 − yn and (10.38) becomes the mathematically equivalent for-
mulation

vn − vn−1 = h
k∑

i=0

βifn+i−k+1, yn+1 − yn = hvn. (10.38’)
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Here the corresponding matrix S of (10.30) is stable.

b) Avoid the use of vn = (yn+1 − yn)/h for the computation of the starting val-
ues v0, v1, . . . , vk−2 , since the difference is a numerically unstable operation.
Instead, add up the increments of the Runge-Kutta method, which you use for
the computation of the starting values, directly.

These two ideas together then produce the “stabilized” results in Fig. 10.3 and
Fig. 10.2.

Exercises

1. Compute the solution of Störmer’s problem (10.18) with one of the methods of
this section.

2. a) Show that the generating functions of the coefficients σi and σ∗
j (defined

in (10.11) and (10.14))

S(t) =
∞∑

j=0

σjt
j , S∗(t) =

∞∑
j=0

σ∗
j tj

satisfy

S(t) =
( t

log(1− t)

)2 1
1− t

, S∗(t) =
( t

log(1− t)

)2

.

b) Compute the coefficients dj of

∞∑
j=0

djt
j =
( log(1− t)

t

)2

=
(
1 +

t

2
+

t2

3
+

t3

4
+ . . .

)2

and derive a recurrence relation for the σj and σ∗
j .

c) Prove that σ∗
j = σj −σj−1 .

3. Let �(ζ) be a polynomial of degree k which has 1 as root of multiplicity 2 .
Then there exists a unique σ(ζ) such that the corresponding method is of order
k + 1 .

4. Consider the method (10.29) and, for simplicity, assume the differential equa-
tion to be a scalar one.

a) For any vector w in Rk the image vector Ew , with E given by (8.12),
satisfies

Ew =
(

γ1l
κ1l

)
where γ, κ are real numbers and 1l is the vector with all elements equal to
1 . The dimensions of γ1l and κ1l are l and m , respectively.
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b) Verify that for e1 = (1, 0, . . . , 0)T ,

E

(
αe1

βe1

)
=
(

(α/�′
1(1))1l

(β/�′
2(1))1l

)
.

c) Show that

E
∂Φ
∂u

(
x, z(x, 0), 0

)( γ1l
κ1l

)
=
((

σ(1)/�′
1(1)
)
(∂f/∂y)

(
x, y(x)

)
κ1l(

1/�′
2(1)
)
γ1l

)
.

Hint. With Yn = (yn+k−1, . . . , yn)T the formula (10.31) expresses ψ as
a function of (xn, Yn, h) . The second formula of (10.28) relates Yn and
un as

KYn = Lun +O(h) where K1l = L

(
0
1l

)
and K is invertible. Use the chain rule for the computation of ∂ψ/∂u .
See also Exercise 2 of Section III.4 and Exercise 1 of Section III.9.

5. Compute the error constant (10.37) for the methods (10.10) and (10.13).

Result. σk and σ∗
k+1 , respectively.
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. . . but the software is in various states of development from ex-
perimental (a euphemism for badly written) to what we might call
. . . (C.W. Gear, in Aiken 1985)

Several Fortran codes have been developed for our numerical computations. Those
of the first edition have been improved and several new options have been included,
e.g., automatic choice of initial step size, stiffness detection, dense output. We have
seen many of the ideas, which are incorporated in these codes, in the programs of
P. Deuflhard, A.C. Hindmarsh and L.F. Shampine.

Experiences with all of our codes are welcome. The programs can be obtained
from the authors’ homepage (http://www.unige.ch/∼hairer).
Address: Section de Mathématiques, Case postale 240,

CH-1211 Genève 24, Switzerland
E-mail: Ernst.Hairer@math.unige.ch Gerhard.Wanner@math.unige.ch

Driver for the Code DOPRI5

The driver given here is for the differential equation (II.0.1) with initial values and
xend given in (II.0.2). This is the problem AREN of Section II.10. The subroutine
FAREN (“F for AREN”) computes the right-hand side of this differential equation.
The subroutine SOLOUT (“Solution out”), which is called by DOPRI5 after every
successful step, and the dense output routine CONTD5 are used to print the solution
at equidistant points. The (optional) common block STATD5 gives statistical infor-
mation after the call to DOPRI5. The common blocks COD5R and COD5I transfer
the necessary information to CONTD5.

IMPLICIT REAL*8 (A-H,O-Z)
PARAMETER (NDGL=4,LWORK=8*NDGL+10,LIWORK=10)
PARAMETER (NRDENS=2,LRCONT=5*NRDENS+2,LICONT=NRDENS+1)
DIMENSION Y(NDGL),WORK(LWORK),IWORK(LIWORK)
COMMON/STATD5/NFCN,NSTEP,NACCPT,NREJCT
COMMON /COD5R/RCONT(LRCONT)
COMMON /COD5I/ICONT(LICONT)
EXTERNAL FAREN,SOLOUT

C --- DIMENSION OF THE SYSTEM
N=NDGL

C --- OUTPUT ROUTINE (AND DENSE OUTPUT) IS USED DURING INTEGRATION
IOUT=2
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C --- INITIAL VALUES AND ENDPOINT OF INTEGRATION
X=0.0D0
Y(1)=0.994D0
Y(2)=0.0D0
Y(3)=0.0D0
Y(4)=-2.00158510637908252240537862224D0
XEND=17.0652165601579625588917206249D0

C --- REQUIRED (RELATIVE AND ABSOLUTE) TOLERANCE
ITOL=0
RTOL=1.0D-7
ATOL=RTOL

C --- DEFAULT VALUES FOR PARAMETERS
DO 10 I=1,10
IWORK(I)=0

10 WORK(I)=0.D0
C --- DENSE OUTPUT IS USED FOR THE TWO POSITION COORDINATES 1 AND 2

IWORK(5)=NRDENS
ICONT(2)=1
ICONT(3)=2

C --- CALL OF THE SUBROUTINE DOPRI5
CALL DOPRI5(N,FAREN,X,Y,XEND,

+ RTOL,ATOL,ITOL,
+ SOLOUT,IOUT,
+ WORK,LWORK,IWORK,LIWORK,LRCONT,LICONT,IDID)

C --- PRINT FINAL SOLUTION
WRITE (6,99) Y(1),Y(2)

99 FORMAT(1X,’X = XEND Y =’,2E18.10)
C --- PRINT STATISTICS

WRITE (6,91) RTOL,NFCN,NSTEP,NACCPT,NREJCT
91 FORMAT(’ tol=’,D8.2,’ fcn=’,I5,’ step=’,I4,

+ ’ accpt=’,I4,’ rejct=’,I3)
STOP
END

C
SUBROUTINE SOLOUT (NR,XOLD,X,Y,N,IRTRN)

C --- PRINTS SOLUTION AT EQUIDISTANT OUTPUT-POINTS BY USING "CONTD5"
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION Y(N)
COMMON /INTERN/XOUT
IF (NR.EQ.1) THEN

WRITE (6,99) X,Y(1),Y(2),NR-1
XOUT=X+2.0D0

ELSE
10 CONTINUE

IF (X.GE.XOUT) THEN
WRITE (6,99) XOUT,CONTD5(1,XOUT),CONTD5(2,XOUT),NR-1
XOUT=XOUT+2.0D0
GOTO 10

END IF
END IF

99 FORMAT(1X,’X =’,F6.2,’ Y =’,2E18.10,’ NSTEP =’,I4)
RETURN
END

C
SUBROUTINE FAREN(N,X,Y,F)

C --- ARENSTORF ORBIT
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION Y(N),F(N)
AMU=0.012277471D0
AMUP=1.D0-AMU
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F(1)=Y(3)
F(2)=Y(4)
R1=(Y(1)+AMU)**2+Y(2)**2
R1=R1*SQRT(R1)
R2=(Y(1)-AMUP)**2+Y(2)**2
R2=R2*SQRT(R2)
F(3)=Y(1)+2*Y(4)-AMUP*(Y(1)+AMU)/R1-AMU*(Y(1)-AMUP)/R2
F(4)=Y(2)-2*Y(3)-AMUP*Y(2)/R1-AMU*Y(2)/R2
RETURN
END

The result, obtained on an Apollo workstation, is the following:

X = 0.00 Y = 0.9940000000E+00 0.0000000000E+00 NSTEP = 0
X = 2.00 Y = -0.5798781411E+00 0.6090775251E+00 NSTEP = 60
X = 4.00 Y = -0.1983335270E+00 0.1137638086E+01 NSTEP = 73
X = 6.00 Y = -0.4735743943E+00 0.2239068118E+00 NSTEP = 91
X = 8.00 Y = -0.1174553350E+01 -0.2759466982E+00 NSTEP = 110
X = 10.00 Y = -0.8398073466E+00 0.4468302268E+00 NSTEP = 122
X = 12.00 Y = 0.1314712468E-01 -0.8385751499E+00 NSTEP = 145
X = 14.00 Y = -0.6031129504E+00 -0.9912598031E+00 NSTEP = 159
X = 16.00 Y = 0.2427110999E+00 -0.3899948833E+00 NSTEP = 177
X = XEND Y = 0.9940021016E+00 0.8911185978E-05

tol=0.10E-06 fcn= 1442 step= 240 accpt= 216 rejct= 22

Subroutine DOPRI5

Explicit Runge-Kutta code based on the method of Dormand & Prince (see Ta-
ble 5.2 of Section II.5). It is provided with the step control algorithm of Section II.4
and the dense output of Section II.6.

SUBROUTINE DOPRI5(N,FCN,X,Y,XEND,
+ RTOL,ATOL,ITOL,
+ SOLOUT,IOUT,
+ WORK,LWORK,IWORK,LIWORK,LRCONT,LICONT,IDID)

C ----------------------------------------------------------
C NUMERICAL SOLUTION OF A SYSTEM OF FIRST 0RDER
C ORDINARY DIFFERENTIAL EQUATIONS Y’=F(X,Y).
C THIS IS AN EXPLICIT RUNGE-KUTTA METHOD OF ORDER (4)5
C DUE TO DORMAND & PRINCE (WITH STEPSIZE CONTROL AND
C DENSE OUTPUT).
C
C AUTHORS: E. HAIRER AND G. WANNER
C UNIVERSITE DE GENEVE, DEPT. DE MATHEMATIQUES
C CH-1211 GENEVE 24, SWITZERLAND
C E-MAIL: HAIRER@ UNI2A.UNIGE.CH, WANNER@ UNI2A.UNIGE.CH
C
C THIS CODE IS DESCRIBED IN:
C E. HAIRER, S.P. NORSETT AND G. WANNER, SOLVING ORDINARY
C DIFFERENTIAL EQUATIONS I. NONSTIFF PROBLEMS. 2ND EDITION.
C SPRINGER SERIES IN COMPUTATIONAL MATHEMATICS,
C SPRINGER-VERLAG (1993)
C
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C VERSION OF OCTOBER 3, 1991
C
C INPUT PARAMETERS
C ----------------
C N DIMENSION OF THE SYSTEM
C
C FCN NAME (EXTERNAL) OF SUBROUTINE COMPUTING THE
C VALUE OF F(X,Y):
C SUBROUTINE FCN(N,X,Y,F)
C REAL*8 X,Y(N),F(N)
C F(1)=... ETC.
C
C X INITIAL X-VALUE
C
C Y(N) INITIAL VALUES FOR Y
C
C XEND FINAL X-VALUE (XEND-X MAY BE POSITIVE OR NEGATIVE)
C
C RTOL,ATOL RELATIVE AND ABSOLUTE ERROR TOLERANCES. THEY
C CAN BE BOTH SCALARS OR ELSE BOTH VECTORS OF LENGTH N.
C
C ITOL SWITCH FOR RTOL AND ATOL:
C ITOL=0: BOTH RTOL AND ATOL ARE SCALARS.
C THE CODE KEEPS, ROUGHLY, THE LOCAL ERROR OF
C Y(I) BELOW RTOL*ABS(Y(I))+ATOL
C ITOL=1: BOTH RTOL AND ATOL ARE VECTORS.
C THE CODE KEEPS THE LOCAL ERROR OF Y(I) BELOW
C RTOL(I)*ABS(Y(I))+ATOL(I).
C
C SOLOUT NAME (EXTERNAL) OF SUBROUTINE PROVIDING THE
C NUMERICAL SOLUTION DURING INTEGRATION.
C IF IOUT.GE.1, IT IS CALLED AFTER EVERY SUCCESSFUL STEP.
C SUPPLY A DUMMY SUBROUTINE IF IOUT=0.
C IT MUST HAVE THE FORM
C SUBROUTINE SOLOUT (NR,XOLD,X,Y,N,IRTRN)
C REAL*8 X,Y(N)
C ....
C SOLOUT FURNISHES THE SOLUTION "Y" AT THE NR-TH
C GRID-POINT "X" (THEREBY THE INITIAL VALUE IS
C THE FIRST GRID-POINT).
C "XOLD" IS THE PRECEEDING GRID-POINT.
C "IRTRN" SERVES TO INTERRUPT THE INTEGRATION. IF IRTRN
C IS SET <0, DOPRI5 WILL RETURN TO THE CALLING PROGRAM.
C
C ----- CONTINUOUS OUTPUT: -----
C DURING CALLS TO "SOLOUT", A CONTINUOUS SOLUTION
C FOR THE INTERVAL [XOLD,X] IS AVAILABLE THROUGH
C THE FUNCTION
C >>> CONTD5(I,S) <<<
C WHICH PROVIDES AN APPROXIMATION TO THE I-TH
C COMPONENT OF THE SOLUTION AT THE POINT S. THE VALUE
C S SHOULD LIE IN THE INTERVAL [XOLD,X].
C
C IOUT SWITCH FOR CALLING THE SUBROUTINE SOLOUT:
C IOUT=0: SUBROUTINE IS NEVER CALLED
C IOUT=1: SUBROUTINE IS USED FOR OUTPUT.
C IOUT=2: DENSE OUTPUT IS PERFORMED IN SOLOUT
C (IN THIS CASE WORK(5) MUST BE SPECIFIED)
C
C WORK ARRAY OF WORKING SPACE OF LENGTH "LWORK".
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C "LWORK" MUST BE AT LEAST 8*N+10
C
C LWORK DECLARED LENGHT OF ARRAY "WORK".
C
C IWORK INTEGER WORKING SPACE OF LENGHT "LIWORK".
C IWORK(1),...,IWORK(5) SERVE AS PARAMETERS
C FOR THE CODE. FOR STANDARD USE, SET THEM
C TO ZERO BEFORE CALLING.
C "LIWORK" MUST BE AT LEAST 10 .
C
C LIWORK DECLARED LENGHT OF ARRAY "IWORK".
C
C LRCONT DECLARED LENGTH OF COMMON BLOCK
C >>> COMMON /COD5R/RCONT(LRCONT) <<<
C WHICH MUST BE DECLARED IN THE CALLING PROGRAM.
C "LRCONT" MUST BE AT LEAST
C 5 * NRDENS + 2
C WHERE NRDENS=IWORK(5) (SEE BELOW).
C
C LICONT DECLARED LENGTH OF COMMON BLOCK
C >>> COMMON /COD5I/ICONT(LICONT) <<<
C WHICH MUST BE DECLARED IN THE CALLING PROGRAM.
C "LICONT" MUST BE AT LEAST
C NRDENS + 1
C THESE COMMON BLOCKS ARE USED FOR STORING THE COEFFICIENTS
C OF THE CONTINUOUS SOLUTION AND MAKES THE CALLING LIST FOR
C THE FUNCTION "CONTD5" AS SIMPLE AS POSSIBLE.
C
C-----------------------------------------------------------------------
C
C SOPHISTICATED SETTING OF PARAMETERS
C -----------------------------------
C SEVERAL PARAMETERS (WORK(1),...,IWORK(1),...) ALLOW
C TO ADAPT THE CODE TO THE PROBLEM AND TO THE NEEDS OF
C THE USER. FOR ZERO INPUT, THE CODE CHOOSES DEFAULT VALUES.
C
C WORK(1) UROUND, THE ROUNDING UNIT, DEFAULT 2.3D-16.
C
C WORK(2) THE SAFETY FACTOR IN STEP SIZE PREDICTION,
C DEFAULT 0.9D0.
C
C WORK(3), WORK(4) PARAMETERS FOR STEP SIZE SELECTION
C THE NEW STEP SIZE IS CHOSEN SUBJECT TO THE RESTRICTION
C WORK(3) <= HNEW/HOLD <= WORK(4)
C DEFAULT VALUES: WORK(3)=0.2D0, WORK(4)=10.D0
C
C WORK(5) IS THE "BETA" FOR STABILIZED STEP SIZE CONTROL
C (SEE SECTION IV.2). LARGER VALUES OF BETA ( <= 0.1 )
C MAKE THE STEP SIZE CONTROL MORE STABLE. DOPRI5 NEEDS
C A LARGER BETA THAN HIGHAM & HALL. NEGATIVE WORK(5)
C PROVOKE BETA=0.
C DEFAULT 0.04D0.
C
C WORK(6) MAXIMAL STEP SIZE, DEFAULT XEND-X.
C
C WORK(7) INITIAL STEP SIZE, FOR WORK(7)=0.D0 AN INITIAL GUESS
C IS COMPUTED WITH HELP OF THE FUNCTION HINIT
C
C IWORK(1) THIS IS THE MAXIMAL NUMBER OF ALLOWED STEPS.
C THE DEFAULT VALUE (FOR IWORK(1)=0) IS 100000.
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C
C IWORK(2) SWITCH FOR THE CHOICE OF THE COEFFICIENTS
C IF IWORK(2).EQ.1 METHOD DOPRI5 OF DORMAND AND PRINCE
C (TABLE 5.2 OF SECTION II.5).
C AT THE MOMENT THIS IS THE ONLY POSSIBLE CHOICE.
C THE DEFAULT VALUE (FOR IWORK(2)=0) IS IWORK(2)=1.
C
C IWORK(3) SWITCH FOR PRINTING ERROR MESSAGES
C IF IWORK(3).LT.0 NO MESSAGES ARE BEING PRINTED
C IF IWORK(3).GT.0 MESSAGES ARE PRINTED WITH
C WRITE (IWORK(3),*) ...
C DEFAULT VALUE (FOR IWORK(3)=0) IS IWORK(3)=6
C
C IWORK(4) TEST FOR STIFFNESS IS ACTIVATED AFTER STEP NUMBER
C J*IWORK(4) (J INTEGER), PROVIDED IWORK(4).GT.0.
C FOR NEGATIVE IWORK(4) THE STIFFNESS TEST IS
C NEVER ACTIVATED; DEFAULT VALUE IS IWORK(4)=1000
C
C IWORK(5) = NRDENS = NUMBER OF COMPONENTS, FOR WHICH DENSE OUTPUT
C IS REQUIRED; DEFAULT VALUE IS IWORK(5)=0;
C FOR 0 < NRDENS < N THE COMPONENTS (FOR WHICH DENSE
C OUTPUT IS REQUIRED) HAVE TO BE SPECIFIED IN
C ICONT(2),...,ICONT(NRDENS+1);
C FOR NRDENS=N THIS IS DONE BY THE CODE.
C
C----------------------------------------------------------------------
C
C OUTPUT PARAMETERS
C -----------------
C X X-VALUE FOR WHICH THE SOLUTION HAS BEEN COMPUTED
C (AFTER SUCCESSFUL RETURN X=XEND).
C
C Y(N) NUMERICAL SOLUTION AT X
C
C H PREDICTED STEP SIZE OF THE LAST ACCEPTED STEP
C
C IDID REPORTS ON SUCCESSFULNESS UPON RETURN:
C IDID= 1 COMPUTATION SUCCESSFUL,
C IDID= 2 COMPUT. SUCCESSFUL (INTERRUPTED BY SOLOUT)
C IDID=-1 INPUT IS NOT CONSISTENT,
C IDID=-2 LARGER NMAX IS NEEDED,
C IDID=-3 STEP SIZE BECOMES TOO SMALL.
C IDID=-4 PROBLEM IS PROBABLY STIFF (INTERRUPTED).
C
C-----------------------------------------------------------------------
C *** *** *** *** *** *** *** *** *** *** *** *** ***
C DECLARATIONS
C *** *** *** *** *** *** *** *** *** *** *** *** ***

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION Y(N),ATOL(1),RTOL(1),WORK(LWORK),IWORK(LIWORK)
LOGICAL ARRET
EXTERNAL FCN,SOLOUT
COMMON/STATD5/NFCN,NSTEP,NACCPT,NREJCT

C --- COMMON STATD5 CAN BE INSPECTED FOR STATISTICAL PURPOSES:
C --- NFCN NUMBER OF FUNCTION EVALUATIONS
C --- NSTEP NUMBER OF COMPUTED STEPS
C --- NACCPT NUMBER OF ACCEPTED STEPS
C --- NREJCT NUMBER OF REJECTED STEPS (AFTER AT LEAST ONE STEP
C HAS BEEN ACCEPTED)

.........
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Subroutine DOP853

Explicit Runge-Kutta code of order 8 based on the method of Dormand & Prince,
described in Section II.5. The local error estimation and the step size control is
based on embedded formulas or orders 5 and 3 (see Section II.10). This method
is provided with a dense output of order 7. In the following description we have
omitted the parts which are identical to those for DOPRI5.

SUBROUTINE DOP853(N,FCN,X,Y,XEND,
+ RTOL,ATOL,ITOL,
+ SOLOUT,IOUT,
+ WORK,LWORK,IWORK,LIWORK,LRCONT,LICONT,IDID)

C ----------------------------------------------------------
C NUMERICAL SOLUTION OF A SYSTEM OF FIRST 0RDER
C ORDINARY DIFFERENTIAL EQUATIONS Y’=F(X,Y).
C THIS IS AN EXPLICIT RUNGE-KUTTA METHOD OF ORDER 8(5,3)
C DUE TO DORMAND & PRINCE (WITH STEPSIZE CONTROL AND
C DENSE OUTPUT)

.........
C
C VERSION OF NOVEMBER 29, 1992

.........
C ----- CONTINUOUS OUTPUT: -----
C DURING CALLS TO "SOLOUT", A CONTINUOUS SOLUTION
C FOR THE INTERVAL [XOLD,X] IS AVAILABLE THROUGH
C THE FUNCTION
C >>> CONTD8(I,S) <<<
C WHICH PROVIDES AN APPROXIMATION TO THE I-TH

.........
C
C WORK ARRAY OF WORKING SPACE OF LENGTH "LWORK".
C "LWORK" MUST BE AT LEAST 11*N+10

.........
C
C LRCONT DECLARED LENGTH OF COMMON BLOCK
C >>> COMMON /COD8R/RCONT(LRCONT) <<<
C WHICH MUST BE DECLARED IN THE CALLING PROGRAM.
C "LRCONT" MUST BE AT LEAST
C 8 * NRDENS + 2
C WHERE NRDENS=IWORK(5) (SEE BELOW).
C
C LICONT DECLARED LENGTH OF COMMON BLOCK
C >>> COMMON /COD8I/ICONT(LICONT) <<<
C WHICH MUST BE DECLARED IN THE CALLING PROGRAM.
C "LICONT" MUST BE AT LEAST
C NRDENS + 1
C THESE COMMON BLOCKS ARE USED FOR STORING THE COEFFICIENTS
C OF THE CONTINUOUS SOLUTION AND MAKES THE CALLING LIST FOR
C THE FUNCTION "CONTD8" AS SIMPLE AS POSSIBLE.

.........
C
C WORK(3), WORK(4) PARAMETERS FOR STEP SIZE SELECTION
C THE NEW STEP SIZE IS CHOSEN SUBJECT TO THE RESTRICTION
C WORK(3) <= HNEW/HOLD <= WORK(4)
C DEFAULT VALUES: WORK(3)=0.333D0, WORK(4)=6.D0

.........
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Subroutine ODEX

Extrapolation code for y′ = f(x, y) , based on the GBS algorithm (Section II.9). It
uses variable order and variable step sizes and is provided with a high-order dense
output. Again, the missing parts in the description are identical to those of DOPRI5.

SUBROUTINE ODEX(N,FCN,X,Y,XEND,H,
+ RTOL,ATOL,ITOL,
+ SOLOUT,IOUT,
+ WORK,LWORK,IWORK,LIWORK,LRCONT,LICONT,IDID)

C ----------------------------------------------------------
C NUMERICAL SOLUTION OF A SYSTEM OF FIRST 0RDER
C ORDINARY DIFFERENTIAL EQUATIONS Y’=F(X,Y).
C THIS IS AN EXTRAPOLATION-ALGORITHM (GBS), BASED ON THE
C EXPLICIT MIDPOINT RULE (WITH STEPSIZE CONTROL,
C ORDER SELECTION AND DENSE OUTPUT).
C
C AUTHORS: E. HAIRER AND G. WANNER
C UNIVERSITE DE GENEVE, DEPT. DE MATHEMATIQUES
C CH-1211 GENEVE 24, SWITZERLAND
C E-MAIL: HAIRER@ UNI2A.UNIGE.CH, WANNER@ UNI2A.UNIGE.CH
C DENSE OUTPUT WRITTEN BY E. HAIRER AND A. OSTERMANN

.........
C
C VERSION DECEMBER 18, 1991

.........
C
C H INITIAL STEP SIZE GUESS;
C H=1.D0/(NORM OF F’), USUALLY 1.D-1 OR 1.D-3, IS GOOD.
C THIS CHOICE IS NOT VERY IMPORTANT, THE CODE QUICKLY
C ADAPTS ITS STEP SIZE. WHEN YOU ARE NOT SURE, THEN
C STUDY THE CHOSEN VALUES FOR A FEW
C STEPS IN SUBROUTINE "SOLOUT".
C (IF H=0.D0, THE CODE PUTS H=1.D-4).

.........
C
C ----- CONTINUOUS OUTPUT (IF IOUT=2): -----
C DURING CALLS TO "SOLOUT", A CONTINUOUS SOLUTION
C FOR THE INTERVAL [XOLD,X] IS AVAILABLE THROUGH
C THE REAL*8 FUNCTION
C >>> CONTEX(I,S) <<<
C WHICH PROVIDES AN APPROXIMATION TO THE I-TH
C COMPONENT OF THE SOLUTION AT THE POINT S. THE VALUE
C S SHOULD LIE IN THE INTERVAL [XOLD,X].
.........
C
C WORK ARRAY OF WORKING SPACE OF LENGTH "LWORK".
C SERVES AS WORKING SPACE FOR ALL VECTORS.
C "LWORK" MUST BE AT LEAST
C N*(KM+5)+5*KM+10+2*KM*(KM+1)*NRDENS
C WHERE NRDENS=IWORK(8) (SEE BELOW) AND
C KM=9 IF IWORK(2)=0
C KM=IWORK(2) IF IWORK(2).GT.0
C WORK(1),...,WORK(10) SERVE AS PARAMETERS
C FOR THE CODE. FOR STANDARD USE, SET THESE
C PARAMETERS TO ZERO BEFORE CALLING.
.........
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C
C IWORK INTEGER WORKING SPACE OF LENGTH "LIWORK".
C "LIWORK" MUST BE AT LEAST
C 2*KM+10+NRDENS
C IWORK(1),...,IWORK(9) SERVE AS PARAMETERS
C FOR THE CODE. FOR STANDARD USE, SET THESE
C PARAMETERS TO ZERO BEFORE CALLING.
.........
C
C LRCONT DECLARED LENGTH OF COMMON BLOCK
C >>> COMMON /CONTR/RCONT(LRCONT) <<<
C WHICH MUST BE DECLARED IN THE CALLING PROGRAM.
C "LRCONT" MUST BE AT LEAST
C ( 2 * KM + 5 ) * NRDENS + 2
C WHERE KM=IWORK(2) AND NRDENS=IWORK(8) (SEE BELOW).
C
C LICONT DECLARED LENGTH OF COMMON BLOCK
C >>> COMMON /CONTI/ICONT(LICONT) <<<
C WHICH MUST BE DECLARED IN THE CALLING PROGRAM.
C "LICONT" MUST BE AT LEAST
C NRDENS + 2
C THESE COMMON BLOCKS ARE USED FOR STORING THE COEFFICIENTS
C OF THE CONTINUOUS SOLUTION AND MAKES THE CALLING LIST FOR
C THE FUNCTION "CONTEX" AS SIMPLE AS POSSIBLE.
.........
C
C WORK(2) MAXIMAL STEP SIZE, DEFAULT XEND-X.
C
C WORK(3) STEP SIZE IS REDUCED BY FACTOR WORK(3), IF THE
C STABILITY CHECK IS NEGATIVE, DEFAULT 0.5.
C
C WORK(4), WORK(5) PARAMETERS FOR STEP SIZE SELECTION
C THE NEW STEP SIZE FOR THE J-TH DIAGONAL ENTRY IS
C CHOSEN SUBJECT TO THE RESTRICTION
C FACMIN/WORK(5) <= HNEW(J)/HOLD <= 1/FACMIN
C WHERE FACMIN=WORK(4)**(1/(2*J-1))
C DEFAULT VALUES: WORK(4)=0.02D0, WORK(5)=4.D0
C
C WORK(6), WORK(7) PARAMETERS FOR THE ORDER SELECTION
C STEP SIZE IS DECREASED IF W(K-1) <= W(K)*WORK(6)
C STEP SIZE IS INCREASED IF W(K) <= W(K-1)*WORK(7)
C DEFAULT VALUES: WORK(6)=0.8D0, WORK(7)=0.9D0
C
C WORK(8), WORK(9) SAFETY FACTORS FOR STEP CONTROL ALGORITHM
C HNEW=H*WORK(9)*(WORK(8)*TOL/ERR)**(1/(J-1))
C DEFAULT VALUES: WORK(8)=0.65D0,
C WORK(9)=0.94D0 IF "HOPE FOR CONVERGENCE"
C WORK(9)=0.90D0 IF "NO HOPE FOR CONVERGENCE"
.........
C
C IWORK(2) THE MAXIMUM NUMBER OF COLUMNS IN THE EXTRAPOLATION
C TABLE. THE DEFAULT VALUE (FOR IWORK(2)=0) IS 9.
C IF IWORK(2).NE.0 THEN IWORK(2) SHOULD BE .GE.3.
C
C IWORK(3) SWITCH FOR THE STEP SIZE SEQUENCE (EVEN NUMBERS ONLY)
C IF IWORK(3).EQ.1 THEN 2,4,6,8,10,12,14,16,...
C IF IWORK(3).EQ.2 THEN 2,4,8,12,16,20,24,28,...
C IF IWORK(3).EQ.3 THEN 2,4,6,8,12,16,24,32,...
C IF IWORK(3).EQ.4 THEN 2,6,10,14,18,22,26,30,...
C IF IWORK(3).EQ.5 THEN 4,8,12,16,20,24,28,32,...
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C THE DEFAULT VALUE IS IWORK(3)=1 IF IOUT.LE.1;
C THE DEFAULT VALUE IS IWORK(3)=4 IF IOUT.GE.2.
C
C IWORK(4) STABILITY CHECK IS ACTIVATED AT MOST IWORK(4) TIMES IN
C ONE LINE OF THE EXTRAP. TABLE, DEFAULT IWORK(4)=1.
C
C IWORK(5) STABILITY CHECK IS ACTIVATED ONLY IN THE LINES
C 1 TO IWORK(5) OF THE EXTRAP. TABLE, DEFAULT IWORK(5)=1.
C
C IWORK(6) IF IWORK(6)=0 ERROR ESTIMATOR IN THE DENSE
C OUTPUT FORMULA IS ACTIVATED. IT CAN BE SUPPRESSED
C BY PUTTING IWORK(6)=1.
C DEFAULT IWORK(6)=0 (IF IOUT.GE.2).
C
C IWORK(7) DETERMINES THE DEGREE OF INTERPOLATION FORMULA
C MU = 2 * KAPPA - IWORK(7) + 1
C IWORK(7) SHOULD LIE BETWEEN 1 AND 6
C DEFAULT IWORK(7)=4 (IF IWORK(7)=0).
C
C IWORK(8) = NRDENS = NUMBER OF COMPONENTS, FOR WHICH DENSE OUTPUT
C IS REQUIRED
C
C IWORK(10),...,IWORK(NRDENS+9) INDICATE THE COMPONENTS, FOR WHICH
C DENSE OUTPUT IS REQUIRED
.........
C
C IDID REPORTS ON SUCCESSFULNESS UPON RETURN:
C IDID=1 COMPUTATION SUCCESSFUL,
C IDID=-1 COMPUTATION UNSUCCESSFUL.
.........

Subroutine ODEX2

Extrapolation code for second order differential equations y′′ = f(x, y) (Sec-
tion II.14). It uses variable order and variable step sizes and is provided with a
high-order dense output. The missing parts of the description are identical to those
of ODEX.

SUBROUTINE ODEX2(N,FCN,X,Y,YP,XEND,H,
+ RTOL,ATOL,ITOL,
+ SOLOUT,IOUT,
+ WORK,LWORK,IWORK,LIWORK,LRCONT,LICONT,IDID)

C ----------------------------------------------------------
C NUMERICAL SOLUTION OF A SYSTEM OF SECOND 0RDER
C ORDINARY DIFFERENTIAL EQUATIONS Y’’=F(X,Y).
C THIS IS AN EXTRAPOLATION-ALGORITHM, BASED ON
C THE STOERMER RULE (WITH STEPSIZE CONTROL
C ORDER SELECTION AND DENSE OUTPUT).
.........
C
C VERSION MARCH 30, 1992
.........
C
C Y(N) INITIAL VALUES FOR Y
C
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C YP(N) INITIAL VALUES FOR Y’
.........
C
C ITOL SWITCH FOR RTOL AND ATOL:
C ITOL=0: BOTH RTOL AND ATOL ARE SCALARS.
C THE CODE KEEPS, ROUGHLY, THE LOCAL ERROR OF
C Y(I) BELOW RTOL*ABS(Y(I))+ATOL
C YP(I) BELOW RTOL*ABS(YP(I))+ATOL
C ITOL=1: BOTH RTOL AND ATOL ARE VECTORS.
C THE CODE KEEPS THE LOCAL ERROR OF
C Y(I) BELOW RTOL(I)*ABS(Y(I))+ATOL(I).
C YP(I) BELOW RTOL(I+N)*ABS(YP(I))+ATOL(I+N).
C
C SOLOUT NAME (EXTERNAL) OF SUBROUTINE PROVIDING THE
C NUMERICAL SOLUTION DURING INTEGRATION.
C IF IOUT>=1, IT IS CALLED AFTER EVERY SUCCESSFUL STEP.
C SUPPLY A DUMMY SUBROUTINE IF IOUT=0.
C IT MUST HAVE THE FORM
C SUBROUTINE SOLOUT (NR,XOLD,X,Y,YP,N,IRTRN)
C REAL*8 X,Y(N),YP(N)
C ....
C SOLOUT FURNISHES THE SOLUTIONS "Y, YP" AT THE NR-TH
C GRID-POINT "X" (THEREBY THE INITIAL VALUE IS
C THE FIRST GRID-POINT).
C "XOLD" IS THE PRECEEDING GRID-POINT.
C "IRTRN" SERVES TO INTERRUPT THE INTEGRATION. IF IRTRN
C IS SET <0, ODEX2 WILL RETURN TO THE CALLING PROGRAM.
C
C ----- CONTINUOUS OUTPUT (IF IOUT=2): -----
C DURING CALLS TO "SOLOUT", A CONTINUOUS SOLUTION
C FOR THE INTERVAL [XOLD,X] IS AVAILABLE THROUGH
C THE REAL*8 FUNCTION
C >>> CONTX2(I,S) <<<
C WHICH PROVIDES AN APPROXIMATION TO THE I-TH
C COMPONENT OF THE SOLUTION AT THE POINT S. THE VALUE
C S SHOULD LIE IN THE INTERVAL [XOLD,X].
.........
C
C WORK ARRAY OF WORKING SPACE OF LENGTH "LWORK".
C SERVES AS WORKING SPACE FOR ALL VECTORS.
C "LWORK" MUST BE AT LEAST
C N*(2*KM+6)+5*KM+10+KM*(2*KM+3)*NRDENS
C WHERE NRDENS=IWORK(8) (SEE BELOW) AND
C KM=9 IF IWORK(2)=0
C KM=IWORK(2) IF IWORK(2).GT.0
C WORK(1),...,WORK(10) SERVE AS PARAMETERS
C FOR THE CODE. FOR STANDARD USE, SET THESE
C PARAMETERS TO ZERO BEFORE CALLING.
.........
C
C IWORK INTEGER WORKING SPACE OF LENGTH "LIWORK".
C "LIWORK" MUST BE AT LEAST
C KM+9+NRDENS
C IWORK(1),...,IWORK(9) SERVE AS PARAMETERS
C FOR THE CODE. FOR STANDARD USE, SET THESE
C PARAMETERS TO ZERO BEFORE CALLING.
.........
C
C LRCONT DECLARED LENGTH OF COMMON BLOCK
C >>> COMMON /CONTR2/RCONT(LRCONT) <<<
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C WHICH MUST BE DECLARED IN THE CALLING PROGRAM.
C "LRCONT" MUST BE AT LEAST
C ( 2 * KM + 6 ) * NRDENS + 2
C WHERE KM=IWORK(2) AND NRDENS=IWORK(8) (SEE BELOW).
C
C LICONT DECLARED LENGTH OF COMMON BLOCK
C >>> COMMON /CONTI2/ICONT(LICONT) <<<
C WHICH MUST BE DECLARED IN THE CALLING PROGRAM.
C "LICONT" MUST BE AT LEAST
C NRDENS + 2
C THESE COMMON BLOCKS ARE USED FOR STORING THE COEFFICIENTS
C OF THE CONTINUOUS SOLUTION AND MAKES THE CALLING LIST FOR
C THE FUNCTION "CONTX2" AS SIMPLE AS POSSIBLE.
.........
C
C WORK(3) STEP SIZE IS REDUCED BY FACTOR WORK(3), IF DURING THE
C COMPUTATION OF THE EXTRAPOLATION TABLEAU DIVERGENCE
C IS OBSERVED; DEFAULT 0.5.
.........
C
C IWORK(3) SWITCH FOR THE STEP SIZE SEQUENCE (EVEN NUMBERS ONLY)
C IF IWORK(3).EQ.1 THEN 2,4,6,8,10,12,14,16,...
C IF IWORK(3).EQ.2 THEN 2,4,8,12,16,20,24,28,...
C IF IWORK(3).EQ.3 THEN 2,4,6,8,12,16,24,32,...
C IF IWORK(3).EQ.4 THEN 2,6,10,14,18,22,26,30,...
C THE DEFAULT VALUE IS IWORK(3)=1 IF IOUT.LE.1;
C THE DEFAULT VALUE IS IWORK(3)=4 IF IOUT.GE.2.
.........
C
C IWORK(7) DETERMINES THE DEGREE OF INTERPOLATION FORMULA
C MU = 2 * KAPPA - IWORK(7) + 1
C IWORK(7) SHOULD LIE BETWEEN 1 AND 8
C DEFAULT IWORK(7)=6 (IF IWORK(7)=0).
.........

Driver for the Code RETARD

We consider the delay equation (II.17.14) with initial values and initial functions
given there. This is a 3 -dimensional problem, but only the second component
is used with retarded argument (hence NRDENS=1). We require that the points
1, 2, 3, . . . , 9, 10, 20 (points of discontinuity of the derivatives of the solution) are
hitten exactly by the integration routine.

IMPLICIT REAL*8 (A-H,O-Z)
PARAMETER (NDGL=3,NGRID=11,LWORK=8*NDGL+11+NGRID,LIWORK=10)
PARAMETER (NRDENS=1,LRCONT=500,LICONT=NRDENS+1)
DIMENSION Y(NDGL),WORK(LWORK),IWORK(LIWORK)
COMMON/STATRE/NFCN,NSTEP,NACCPT,NREJCT
COMMON /CORER/RCONT(LRCONT)
COMMON /COREI/ICONT(LICONT)
EXTERNAL FCN,SOLOUT

C --- DIMENSION OF THE SYSTEM
N=NDGL

C --- OUTPUT ROUTINE IS USED DURING INTEGRATION
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IOUT=1
C --- INITIAL VALUES AND ENDPOINT OF INTEGRATION

X=0.0D0
Y(1)=5.0D0
Y(2)=0.1D0
Y(3)=1.0D0
XEND=40.D0

C --- REQUIRED (RELATIVE AND ABSOLUTE) TOLERANCE
ITOL=0
RTOL=1.0D-5
ATOL=RTOL

C --- DEFAULT VALUES FOR PARAMETERS
DO 10 I=1,10
IWORK(I)=0

10 WORK(I)=0.D0
C --- SECOND COMPONENT USES RETARDED ARGUMENT

IWORK(5)=NRDENS
ICONT(2)=2

C --- USE AS GRID-POINTS
IWORK(6)=NGRID
DO 12 I=1,NGRID-1

12 WORK(10+I)=I
WORK(10+NGRID)=20.D0

C --- CALL OF THE SUBROUTINE RETARD
CALL RETARD(N,FCN,X,Y,XEND,

+ RTOL,ATOL,ITOL,
+ SOLOUT,IOUT,
+ WORK,LWORK,IWORK,LIWORK,LRCONT,LICONT,IDID)

C --- PRINT FINAL SOLUTION
WRITE (6,99) Y(1),Y(2),Y(3)

99 FORMAT(1X,’X = XEND Y =’,3E18.10)
C --- PRINT STATISTICS

WRITE (6,91) RTOL,NFCN,NSTEP,NACCPT,NREJCT
91 FORMAT(’ tol=’,D8.2,’ fcn=’,I5,’ step=’,I4,

+ ’ accpt=’,I4,’ rejct=’,I3)
STOP
END

C
C

SUBROUTINE SOLOUT (NR,XOLD,X,Y,N,IRTRN)
C --- PRINTS SOLUTION AT EQUIDISTANT OUTPUT-POINTS

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION Y(N)
EXTERNAL PHI
COMMON /INTERN/XOUT
IF (NR.EQ.1) THEN

WRITE (6,99) X,Y(1),NR-1
XOUT=X+5.D0

ELSE
10 CONTINUE

IF (X.GE.XOUT) THEN
WRITE (6,99) X,Y(1),NR-1
XOUT=XOUT+5.D0
GOTO 10

END IF
END IF

99 FORMAT(1X,’X =’,F6.2,’ Y =’,E18.10,’ NSTEP =’,I4)
RETURN
END

C
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SUBROUTINE FCN(N,X,Y,F)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION Y(N),F(N)
EXTERNAL PHI
Y2L1=YLAG(2,X-1.D0,PHI)
Y2L10=YLAG(2,X-10.D0,PHI)
F(1)=-Y(1)*Y2L1+Y2L10
F(2)=Y(1)*Y2L1-Y(2)
F(3)=Y(2)-Y2L10
RETURN
END

C
FUNCTION PHI(I,X)
IMPLICIT REAL*8 (A-H,O-Z)
IF (I.EQ.2) PHI=0.1D0
RETURN
END

The result, obtained on an Apollo workstation, is the following:

X = 0.00 Y = 0.5000000000E+01 NSTEP = 0
X = 5.00 Y = 0.2533855892E+00 NSTEP = 18
X = 10.00 Y = 0.3328560326E+00 NSTEP = 32
X = 15.29 Y = 0.4539376456E+01 NSTEP = 40
X = 20.00 Y = 0.1706635702E+00 NSTEP = 52
X = 25.22 Y = 0.2524799457E+00 NSTEP = 62
X = 30.48 Y = 0.5134266860E+01 NSTEP = 68
X = 35.10 Y = 0.3610797907E+00 NSTEP = 78
X = 40.00 Y = 0.9125544555E-01 NSTEP = 89
X = XEND Y = 0.9125544555E-01 0.2029882456E-01 0.5988445730E+01

tol=0.10E-04 fcn= 586 step= 97 accpt= 89 rejct= 8

Subroutine RETARD

Modification of the code DOPRI5 for delay differential equations (see Sec-
tion II.17). The missing parts of the description are identical to those of DOPRI5.

SUBROUTINE RETARD(N,FCN,X,Y,XEND,
+ RTOL,ATOL,ITOL,
+ SOLOUT,IOUT,
+ WORK,LWORK,IWORK,LIWORK,LRCONT,LICONT,IDID)

C ----------------------------------------------------------
C NUMERICAL SOLUTION OF A SYSTEM OF FIRST 0RDER DELAY
C ORDINARY DIFFERENTIAL EQUATIONS Y’(X)=F(X,Y(X),Y(X-A),...).
C THIS CODE IS BASED ON AN EXPLICIT RUNGE-KUTTA METHOD OF
C ORDER (4)5 DUE TO DORMAND & PRINCE (WITH STEPSIZE CONTROL
C AND DENSE OUTPUT).
.........
C
C VERSION OF APRIL 24, 1992
.........
C
C FCN NAME (EXTERNAL) OF SUBROUTINE COMPUTING THE RIGHT-
C HAND-SIDE OF THE DELAY EQUATION, E.G.,
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C SUBROUTINE FCN(N,X,Y,F)
C REAL*8 X,Y(N),F(N)
C EXTERNAL PHI
C F(1)=(1.4D0-YLAG(1,X-1.D0,PHI))*Y(1)
C F(2)=... ETC.
C FOR AN EXPLICATION OF YLAG SEE BELOW.
C DO NOT USE YLAG(I,X-0.D0,PHI) !
C THE INITIAL FUNCTION HAS TO BE SUPPLIED BY:
C FUNCTION PHI(I,X)
C REAL*8 PHI,X
C WHERE I IS THE COMPONENT AND X THE ARGUMENT
.........
C
C Y(N) INITIAL VALUES FOR Y (MAY BE DIFFERENT FROM PHI (I,X),
C IN THIS CASE IT IS HIGHLY RECOMMENDED TO SET IWORK(6)
C AND WORK(11),..., SEE BELOW)
.........
C
C ----- CONTINUOUS OUTPUT: -----
C DURING CALLS TO "SOLOUT" AS WELL AS TO "FCN", A
C CONTINUOUS SOLUTION IS AVAILABLE THROUGH THE FUNCTION
C >>> YLAG(I,S,PHI) <<<
C WHICH PROVIDES AN APPROXIMATION TO THE I-TH
C COMPONENT OF THE SOLUTION AT THE POINT S. THE VALUE S
C HAS TO LIE IN AN INTERVAL WHERE THE NUMERICAL SOLUTION
C IS ALREADY COMPUTED. IT DEPENDS ON THE SIZE OF LRCONT
C (SEE BELOW) HOW FAR BACK THE SOLUTION IS AVAILABLE.
C
C IOUT SWITCH FOR CALLING THE SUBROUTINE SOLOUT:
C IOUT=0: SUBROUTINE IS NEVER CALLED
C IOUT=1: SUBROUTINE IS USED FOR OUTPUT.
C
C WORK ARRAY OF WORKING SPACE OF LENGTH "LWORK".
C "LWORK" MUST BE AT LEAST 8*N+11+NGRID
C WHERE NGRID=IWORK(6)
.........
C
C LRCONT DECLARED LENGTH OF COMMON BLOCK
C >>> COMMON /CORER/RCONT(LRCONT) <<<
C WHICH MUST BE DECLARED IN THE CALLING PROGRAM.
C "LRCONT" MUST BE SUFFICIENTLY LARGE. IF THE DENSE
C OUTPUT OF MXST BACK STEPS HAS TO BE STORED, IT MUST
C BE AT LEAST
C MXST * ( 5 * NRDENS + 2 )
C WHERE NRDENS=IWORK(5) (SEE BELOW).
C
C LICONT DECLARED LENGTH OF COMMON BLOCK
C >>> COMMON /COREI/ICONT(LICONT) <<<
C WHICH MUST BE DECLARED IN THE CALLING PROGRAM.
C "LICONT" MUST BE AT LEAST
C NRDENS + 1
C THESE COMMON BLOCKS ARE USED FOR STORING THE COEFFICIENTS
C OF THE CONTINUOUS SOLUTION AND MAKES THE CALLING LIST FOR
C THE FUNCTION "CONTD5" AS SIMPLE AS POSSIBLE.
.........
C
C WORK(11),...,WORK(10+NGRID) PRESCRIBED POINTS, WHICH THE
C INTEGRATION METHOD HAS TO TAKE AS GRID-POINTS
C X < WORK(11) < WORK(12) < ... < WORK(10+NGRID) <= XEND
.........
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C
C IWORK(5) = NRDENS = NUMBER OF COMPONENTS, FOR WHICH DENSE OUTPUT
C IS REQUIRED (EITHER BY "SOLOUT" OR BY "FCN");
C DEFAULT VALUE (FOR IWORK(5)=0) IS IWORK(5)=N;
C FOR 0 < NRDENS < N THE COMPONENTS (FOR WHICH DENSE
C OUTPUT IS REQUIRED) HAVE TO BE SPECIFIED IN
C ICONT(2),...,ICONT(NRDENS+1);
C FOR NRDENS=N THIS IS DONE BY THE CODE.
C
C IWORK(6) = NGRID = NUMBER OF PRESCRIBED POINTS IN THE
C INTEGRATION INTERVAL WHICH HAVE TO BE GRID-POINTS
C IN THE INTEGRATION. USUALLY, AT THESE POINTS THE
C SOLUTION OR ONE OF ITS DERIVATIVE HAS A DISCONTINUITY.
C DEFINE THESE POINTS IN WORK(11),...,WORK(10+NGRID)
C DEFAULT VALUE: IWORK(6)=0
.........
C
C IDID REPORTS ON SUCCESSFULNESS UPON RETURN:
C IDID= 1 COMPUTATION SUCCESSFUL,
C IDID= 2 COMPUT. SUCCESSFUL (INTERRUPTED BY SOLOUT)
C IDID=-1 INPUT IS NOT CONSISTENT,
C IDID=-2 LARGER NMAX IS NEEDED,
C IDID=-3 STEP SIZE BECOMES TOO SMALL.
C IDID=-4 PROBLEM IS PROBABLY STIFF (INTERRUPTED).
C IDID=-5 COMPUT. INTERRUPTED BY YLAG
.........
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J. Albrecht (1955): Beiträge zum Runge-Kutta-Verfahren. ZAMM, Vol.35, p.100-110. [II.13],
[II.14]

P. Albrecht (1978): Explicit, optimal stability functionals and their application to cyclic
discretization methods. Computing, Vol.19, p.233-249. [III.8]

P. Albrecht (1979): Die numerische Behandlung gewöhnlicher Differentialgleichungen. Aka-
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492 Bibliography

plusieurs corps qui agissent les uns sur les autres, d’une maniére quelconque. à Paris,
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M. Calvé & R. Vaillancourt (1990): Interpolants for Runge-Kutta pairs of order four and
five. Computing, Vol.45, p.383-388. [II.6]



496 Bibliography

M. Calvo, J.I. Montijano & L. Rández (1990): A new embedded pair of Runge-Kutta formu-
las of orders 5 and 6. Computers Math. Applic., Vol.20, p.15-24. [II.6]

M. Calvo, J.I. Montijano & L. Rández (1992): New continuous extensions for the Dormand
and Prince RK method. In: Computational ordinary differential equations, ed. by J.R.
Cash & I. Gladwell, Clarendon Press, Oxford, p.135-164. [II.6]

M.P. Calvo & J.M. Sanz-Serna (1992): Order conditions for canonical Runge-Kutta-Nyström
methods. BIT, Vol.32, p.131-142. [II.16]

M.P. Calvo & J.M. Sanz-Serna (1992b): High order symplectic Runge-Kutta-Nyström meth-
ods. SIAM J. Sci. Stat. Comput., Vol.14 (1993), p.1237-1252. [II.16]

M.P. Calvo & J.M. Sanz-Serna (1992c): Reasons for a failure. The integration of the two-
body problem with a symplectic Runge-Kutta method with step changing facilities. Intern.
Conf. on Differential Equations, Vol. 1, 2 (Barcelona, 1991), 93-102, World Sci. Publ.,
River Edge, NJ, 1993. [II.16]

J.M. Carnicer (1991): A lower bound for the number of stages of an explicit continuous
Runge-Kutta method to obtain convergence of given order. BIT, Vol.31, p.364-368. [II.6]

E. Cartan (1899): Sur certaines expressions différentielles et le problème de Pfaff. Ann. Ecol.
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numériques). Dunod Paris, 372pp.; english translation: Numerical solutions of initial
value problems, Prentice Hall 1966 [II.5], [II.7]

P.J. Channell & C. Scovel (1990): Symplectic integration of Hamiltonian systems. Nonlin-
earity, Vol.3, p.231-259. [II.16]

A.C. Clairaut (1734): Solution de plusieurs problèmes où il s’agit de trouver des courbes
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G. H. Darwin (Sir George) (1898): Periodic orbits. Acta Mathematica, Vol.21, p.99-242,
plates I-IV. [II.0]

S.M. Davenport, see L.F. Shampine, H.A. Watts & S.M. Davenport.

F. Debaune (1638): Letter to Descartes. lost; answer of Descartes: Feb 20, 1639. [I.2]

J.P. Den Hartog (1930): Forced vibrations with combined viscous and Coulomb damping.
Phil. Mag. Ser.7, Vol.9, p.801-817. [II.6]

J. Descloux (1963): A note on a paper by A. Nordsieck. Report No.131, Dept. of Comp. Sci.,
Univ. of Illinois at Urbana-Champaign. [III.6]

P. Deuflhard (1980): Recent advances in multiple shooting techniques. In: Computational
techniques for ordinary differential equations (Gladwell-Sayers, ed.), Section 10, p.217-
272, Academic Press. [I.15]

P. Deuflhard (1983): Order and stepsize control in extrapolation methods. Num. Math.,
Vol.41, p.399-422. [II.9], [II.10]

P. Deuflhard (1985): Recent progress in extrapolation methods for ordinary differential
equations. SIAM Rev., Vol.27, p.505-535. [II.14]

P. Deuflhard & U. Nowak (1987): Extrapolation integrators for quasilinear implicit ODEs.
In: P. Deuflhard, B. Engquist (eds.), Large-scale scientific computing, Birkhäuser, Boston.
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royale des Sciences et Belles-Lettres, Berlin. Oeuvres, Vol.4, p.159. [I.4], [III.3]
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S.D. Poisson (1835): Théorie mathématique de la chaleur. Paris, Bachelier, 532pp., Supplé-
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I.J. Schoenberg, see F.R. Loscalzo & I.J. Schoenberg.



Bibliography 515

I. Schur (1909): Ueber die charakteristischen Wurzeln einer linearen Substitution mit einer
Anwendung auf die Theorie der Integralgleichungen. Math. Ann., Vol.66, p.488-510.
[I.12]

C. Scovel, see P.J. Channell & C. Scovel.

W.L. Seward, see R.W. Brankin, I. Gladwell, J.R. Dormand, P.J. Prince & W.L. Seward.

L.F. Shampine (1979): Storage reduction for Runge-Kutta codes. ACM Trans. Math. Soft-
ware, Vol.5, p.245-250. [II.5]

L.F. Shampine (1985): Interpolation for Runge-Kutta methods. SIAM J. Numer. Anal.,
Vol.22, p.1014-1027. [II.6]

L.F. Shampine (1986): Some practical Runge-Kutta formulas. Math. Comp., Vol.46, p.135-
150. [II.5], [II.6]

L.F. Shampine & L.S. Baca (1983): Smoothing the extrapolated midpoint rule. Numer.
Math., Vol.41, p.165-175. [II.9]

L.F. Shampine & L.S. Baca (1986): Fixed versus variable order Runge-Kutta. ACM Trans.
Math. Softw., Vol.12, p.1-23. [II.9]

L.F. Shampine, L.S. Baca & H.-J. Bauer (1983): Output in extrapolation codes. Comp. &
Maths. with Appls., Vol.9, p.245-255. [II.9]

L.F. Shampine & M.K. Gordon (1975): Computer Solution of Ordinary Differential Equa-
tions, The Initial Value Problem. Freeman and Company, San Francisco, 318pp. [III.7]

L.F. Shampine & H.A. Watts (1979): The art of writing a Runge-Kutta code. II. Appl. Math.
Comput., Vol.5, p.93-121. [II.4], [III.7]

L.F. Shampine, H.A. Watts & S.M. Davenport (1976): Solving nonstiff ordinary differential
equations - The state of the art. SIAM Rev., Vol.18, p.376-410. [II.6]

L.F. Shampine, see also I. Gladwell, L.F. Shampine & R.W. Brankin, P. Bogacki & L.F.
Shampine.

E.B. Shanks (1966): Solutions of differential equations by evaluations of functions. Math. of
Comp., Vol.20, p.21-38. [II.5]

Shi Songling (1980): A concrete example of the existence of four limit cycles for plane
quadratic systems. Sci. Sinica, Vol.23, p.153-158. [I.16]

G.F. Simmons (1972): Differential equations with applications and historical notes. MC
Graw-Hill, 465pp. [I.16]

H.H. Simonsen (1990): Extrapolation methods for ODE’s: continuous approximations, a
parallel approach. Dr.Ing. Thesis, Norwegian Inst. Tech., Div. of Math. Sciences. [II.9]

S.W. Skan, see R.A. Frazer, W.P. Jones & S.W. Skan.

R. Skeel (1976): Analysis of fixed-stepsize methods. SIAM J. Numer. Anal., Vol.13, p.664-
685. [III.4], [III.8], [III.9]

R.D. Skeel (1979): Equivalent forms of multistep formulas. Math. Comput., Vol.33, p.1229-
1250. [III.6]

R.D. Skeel, see also D. Okunbor & R.D. Skeel.

B.P. Sommeijer, see P.J. van der Houwen & B.P. Sommeijer.



516 Bibliography

D. Sommer (1965): Numerische Anwendung impliziter Runge-Kutta-Formeln. ZAMM, Vol.
45, Sonderheft, p. T77-T79. [II.7]

F. Sommer, see H. Behnke & F. Sommer.

A. Sommerfeld (1942): Vorlesungen über theoretische Physik. Bd.1., Mechanik; translated
from the 4th german ed.: Acad. Press. [II.10], [II.14]

D.C. Sorensen, see R. Fletcher & D.C. Sorensen.
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integrating the systems ẍ = −∂U/∂x . Zh. Vychisl. Mat. i Mat. Fiz., vol 29, p.202-211
(in Russian); same as U.S.S.R. Comput. Maths. Phys., vol 29., p.138-144. [II.16]

Y.B. Suris (1990): Hamiltonian Runge-Kutta type methods and their variational formulation.
Mathematical Simulation, Vol.2, p.78-87 (Russian). [II.16]

V. Szebehely (1967): Theory of orbits. The restricted problem of three bodies. Acad. Press,
New York, 668pp. [II.0]
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P.F. Verhulst (1845): Recherches mathématiques sur la loi d’accroissement de la population.
Nuov. Mem. Acad. Roy. Bruxelles, Vol.18, p.3-38. [II.17]

J.H. Verner (1971): On deriving explicit Runge-Kutta methods. Proc. Conf. on Appl. Numer.
Analysis, Lecture Notes in Mathematics 228, Springer Verlag, p.340-347. [II.5]

J.H. Verner (1978): Explicit Runge-Kutta methods with estimates of the local truncation
error. SIAM J.Numer. Anal., Vol.15, p.772-790. [II.5]

J.H. Verner, see also G.J. Cooper & J.H. Verner.



518 Bibliography

L. Vietoris (1953): Der Richtungsfehler einer durch das Adamssche Interpolationsverfahren
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Sect. de Math., Univ. Genève 1982; in german in: Jahrbuch Ueberblicke Mathematik
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