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Abstract

Heart disease is the top elder killer in the world. To reduce the healthcare cost, it is a necessary tendency to deploy self-
organized, wireless heart disease monitoring hardware/software systems. Telemedicine platform based on ad hoc intercon-
nection of tiny ECG sensors, called medical ad hoc sensor networks (MASN), can provide a promising approach for
performing low-cost, real-time, remote cardiac patient monitoring at any time. The contribution of this research is the
design of a practical MASN hardware/software platform to perform real-time healthcare data collections. It has reliable,
cluster-based communication scheme. Due to the radio broadcasting nature of wireless networks, a MASN has the risk of
being attacked. This research also designs a low overhead medical security scheme to achieve confidential ECG data trans-
mission in the wireless medium. Finally, our MASN system has the capability of keeping track of cardiac patients and
extracting ECG features based on wavelet theories. Our MASN platform is very useful to practical medical monitoring
applications.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

CARDIOVASCULAR diseases are one of the
most wide-spread health problems and the single
largest cause of morbidity and mortality in US
and the Western world [1]. Based on the World
Health Report 2000, each year the Coronary Artery
Disease (CAD) kills an estimated 7 million people
representing 13% of all male deaths and 12% of all
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female deaths. No country spends more per capita
on healthcare delivery than the US. The entire
nation has doubled its healthcare expenditure over
the last two decades. Thus, low-cost, high-quality
cardiac delivery is a critical challenge.

The progressive adoption of new paradigms in
cardiovascular disease care (such as primary/sec-
ondary prevention and patient empowerment) pro-
motes the development of novel care approaches
[2,3] in which out-of-hospital monitoring and fol-
low-up are basic aspects [4–8]. Therefore, the devel-
opment and utilization of tele-cardiology systems
that provide new modes of cardiac patient contact
.
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with the health care system is of increasing interest
[35,36]. Most tele-cardiology systems use wearable
devices (such as portable ECG recorder, Sphygmo-
manometer, Pulse Oximetry, and so on) to collect
remote cardiac patients’ physiological data (includ-
ing 2 or 3 lead ECG, Blood pressure, Pulse rate).
For reducing the number of network flows per
patient, a wireless or wired Body Area Network
(BAN) [37,3] is used to coordinate the operations
of these body-worn medical devices and send the
data to the patient’s Personal Server (such as a
PDA, i.e. Personal Digital Assistant). After post-
processing (such as filtering ECG noise), the Per-
sonal Server then aggregates all the data into a
network flow (including Text and Numbers) to be
sent out to the health provider’s remote medical ser-
ver. In the following we classify the tele-cardiology
systems into four generations.

The First-Generation (1G) [60] cardiac patient
monitoring was based on traditional home tele-
phone systems that uses low speed (<30 kbps)
modems to modulate the collected ECG data into
telephone voice signals and then send them the phy-
sician’s office.

The Second-Generation (2G) [59] tele-cardiology
systems have included the most popular wireless
infrastructure–cellular networks. This allows physi-
cal mobility, i.e. the cardiac patients can be moni-
tored anytime both in and outside their homes.

The 3G tele-cardiology systems [59] have
attracted people’s attentions since last decade.
Many buildings or public places (such as airports,
hotels, etc.) have installed high-speed (>10 Mbps)
Wireless Local Area Networks (WLANs) or Blue-
tooth networks, which could be used to implement
tele-cardiology systems as long as the cardiac
patient’s PDA has IEEE 802.11/15 wireless inter-
faces. In the WLAN/Bluetooth, each patient’s
PDA communicates with a Base-station or Access
Point that then uses a high-speed Internet backbone
to connect to a remote medical server.

The latest 4G [60] tele-cardiology systems incor-
porate a new type of wireless networks, called
Mobile Ad hoc Networks (MANETs), which have
the following advantages compared to 3G systems:
(1) More flexible deployment: a 4G PDA can auto-
matically search a nearby PDA within a certain wire-
less communication range (typically 100 feet–1 mile
depending on the antenna power strength). Through
such a ‘‘hop-to-hop’’ wireless relay, a PDA can send
signals over a long distance with satisfactory trans-
mission speed (100 k �2 Mbps) and finally reach a
medical base-station that is connected to the Inter-
net; However, in 3G WLAN/Bluetooth, all PDAs
are required to directly (instead of using multi-hop)
talk with a central point. It limits the moving range
of a patient and also brings higher deployment cost
due to the installation of base-stations. (2) Lower
power consumption: ‘‘hop-to-hop’’ reduces wireless
communication energy consumption than direct
end-to-end communication [38,39]. This would
increase the PDA battery lifetime that is a major
concern in wireless systems.

It has been shown that Telemedicine through the
ad hoc interconnection of ECG sensors is a promis-
ing approach to perform ‘‘automatic’’ heart beat
anomaly detection [3]. Today, many ECG
machines, both standard and continuous, are mar-
keted as ‘‘portable’’ – but this does not always indi-
cate that they are small and unobtrusive. By
contrast, most such appliances receive power from
an electrical outlet and are sufficiently heavy that
they must be mounted on a cart and wheeled from
one location to the next.

Low-power medical ad hoc sensor networks
(MASN), consisting of mobile, low-cost ECG sen-
sors that are attached to the patients’ bodies, if
deployed in nursing homes, will have the potential
to significantly improve the ECG portability and
timeliness. The tiny ECG sensors (weight < 250 g;
size is comparable to a few coins) are particularly
advantageous because of their low cost, radio com-
munication capability, rapid deployment, and ease
of integration with existing hospital computer sys-
tems. In next decade, we could even use MEMS
(Micro-Electro-Mechanical System) technology to
make an ECG sensor smaller than one coin [4].

MASN can also be regarded as a special type of
wireless sensor networks (WSNs). WSN research is
originally motivated by military applications such
as battlefield surveillance. As the field slowly
matured and technology rapidly advanced, it has
found itself merging into many of the civilian appli-
cations as well, such as environment and habitat
monitoring, home automations, traffic control, and
more recently healthcare applications. Often
equipped with wireless communication devices (i.e.
RF boards) and microcontrollers, a WSN is a com-
puter network consisting of spatially distributed
autonomous devices using sensors to cooperatively
monitor physical or environmental conditions, such
as temperature, sound, vibration, pressure, motion
or pollutions, at different locations [25]. Tiny sen-
sors are most often referred as ‘‘motes’’.
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A simple MASN scenario is shown in Fig. 1
(Top). Each patient’s ECG signal could be automat-
ically collected and processed (such as Analog-to-
Digital conversion) by a small ECG sensor, and
then be wirelessly sent to a remote ECG server for
analysis purpose (such as using data classification
to find out arrhythmia). If an ECG sensor reports
any abnormal heart beat signals, an emergency
communication channel established between the
physician’s office and the patient’s wireless device
(such as a beeper or cellular phone), will be used
to send out alerts to provide the patient some med-
ical suggestions (such as taking drugs or performing
other further processing). In a more advanced
MASN, (see Fig. 1 (Bottom)), a patient’s ECG sen-
sor can even use a neighbor sensor to relay its data if
his/her distance is too far away from the ECG ser-
ver. This communication mode is called ‘‘Multi-
hop’’ wireless transmission. Multi-hop MASN not
only extends communication distance but also saves
the energy consumption of an ECG sensor since
direct sensor-server long distance wireless communi-
cation is avoided through hop-to-hop relay.

Our MASN hardware mainly includes tiny ECG
sensors and RF communication boards. The manu-
facturing cost for all the components of a sensor
(such as resistors, amplifiers, etc.) is less than $80
each. If produced in large amount (>1000), the cost
will be less than $50. Because our low-power design
Fig. 1. Tele-cardiology sensor networks (MASNs): (
(through voltage scaling, low duty cycle, less RF
collisions, and sleep control), the two AA batteries
could provide the entire ECG sensor board 13
months of lifetime. Compared to the current com-
mercial ECG measurement devices, our design is
much lighter (<250 g), much cheaper (<$80), more
portable without nurse’s help, and more power-effi-
cient (no AC power outlet is needed). Moreover,
our MASN includes a new RF board design (Sec-
tion 2), which saves more manufacturing cost than
current medical sensor networks (such as CodeBlue
[26]).

Our MASN has more advanced ECG transmis-
sion/processing software than current sensor net-
works such as CodeBlue [26]. For instance, our
MASN software can use Support Vector Machine
(SVM) [16] to classify different types of heart beats
at fast speed and high accuracy. We have also
enhanced CodeBlue MoteTrack [24] algorithm
based on our RF chip characteristics in order to
keep track of cardiac patients’ locations more accu-
rately (see Section 4). We have also built remote
ECG sensor control software.

On the other hand, many hospitals hesitate to use
advanced telemedicine systems because they are not
sure the privacy-preserving capability of such sys-
tems. We have thus designed a cluster-based, end-
to-end MASN security scheme in our MASN
software modules in order to keep confidentiality
Top): one-hop case; (Bottom) Multi-hop case.
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during the patient-doctor ECG transmission. Our
security algorithm considers the low-cost, low-mem-
ory characteristics of tiny ECG sensor boards. We
thus designed a low-communication-overhead,
low-complex encryption and decryption scheme.

This research serves the mission of cardiac
healthcare very well in terms of improving the car-
diac monitoring ‘‘quality’’ (a MASN can provide
remote, automatic medical data collection and can
thus capture emergency disease events from patients
at anytime and anywhere), ‘‘safety’’ (we will build a
secure wireless communication scheme), ‘‘effi-
ciency’’ (our MASN is able to perform labor-free,
low-delay patient monitoring), and ‘‘effectiveness’’
(our design targets ‘‘realistic’’ nursing home sce-
nario and all networking schemes are designed for
convenient healthcare).

The rest of this paper will be organized as fol-
lows: First, Section 2 explains our MASN hardware
design principle. In Section 3, we will describe our
reliable, cluster-based communication scheme. Sec-
tion 4 then provides our software architecture. It
also explains the positioning scheme in details.
Next, Section 5 discusses medical data mining
scheme. Section 6 has a low overhead medical data
security strategy. Section 7 briefly mentions MASN
hardware/software integration. Finally, Section 8
concludes this paper.

2. MASN hardware design

2.1. ECG sensors and RF communication hardware

Our MASN consists of large amount of wireless
ECG communication units. Each unit is called a
‘‘mobile platform’’ in this work. These mobile plat-
Fig. 2. Mobile platform appearance (in
forms are essentially the wearable ECG devices that
would be distributed among cardiac patients in
order to offer continuous monitoring of the patients’
vital signs.

As shown in Fig. 2, each platform is composed of
a customized ECG sensor board providing connec-
tions to a 3-Lead ECG monitoring system, which is
housed on a wireless communication board (also
called RF motes). While the ECG sensor board
gathers useful patient ECG data, the RF mote pro-
vides limited local signal processing capabilities
(such as ECG noise filtering), and more importantly
wireless communication for transmitting the ECG
signals back to the server for feature extraction.

Fig. 3 shows the logic architecture components of
the MASN mobile platform in Fig. 2.

2.1.1. ‘‘RF Mote’’ (see Fig. 2) design

Our original RF mote (see Fig. 2) was based on
TelosB motes from Crossbow Inc. [27]. The TelosB
mote is also referred to as the Tmote Sky. It is an
ultra low-power wireless module intended for sensor
networks applications. Regarded as the next-gener-
ation mote platform, it offers the on-chip RAM of
10 kB and also provides IEEE 802.15.4 Chipcon
radio [28] with an integrated on-board antenna pro-
viding up to 125 m of range. Constructed around a
TI MSP430 microcontroller [29], the TelosB worked
for this project for its on-board ADC peripherals
with expansion bays, from which the customized
sensor board is connected to.

However, we found out a few problems when
using TelosB: First, its unit price of TelosB is
high in terms of large-scale MASN deployment.
For instance, currently the TelosB RF mote is
around $150 each [27] and there is no discount for
cludes ECG sensor + RF Mote).
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educational purpose. Because we need to use the
MASN platform (with at least 30 motes in each
MASN network) to train large-amount of computer
engineering/science students, we decided to build
our own RF boards. Secondly, its power lifetime is
around 3–6 months depending on how often the
ECG signal is transmitted back to the server, which
is somewhat short for medical applications (ideally,
we wish the cardiac patient can carry such a low-cost
ECG sensor for at least one year without worrying
about power exhaustion). Thirdly, its radio compo-
nents cannot be enhanced (we cannot use a better
radio transceiver/antenna to reach a longer
distance).

Due to the above reasons, we have used Ember
CPU-RF chips [30] to build our own RF motes.
As shown in Fig. 4, it is also AA battery driven.
The RF mote size is a little larger than 2 AA batter-
ies. The cost for electronic parts is $11.06 per board.
The estimated quote of PCB fabrication (mass pro-
duction) is $1.93 per board. The estimated cost for
board assembly is $5.00 per board. This gives a total
cost of only $17.99 per mote (mass production). The
heart of the RF board is the Micro Central Unit
(MCU)/ZigBee [31] Transceiver unit. Multiple
options and configurations were considered before
selecting the final option. The two options that
Fig. 4. Our built RF Board with ECG w
resulted from this were using a separate MCU and
Transceiver or using a SoC (System-on-Chip) that
incorporates the two devices together. The SoC
option was chosen as it would be cheaper to imple-
ment, decrease programming complexity, and create
an easier Printed Circuit Board (PCB) layout, as
there will be fewer parts to layout.

The Ember EM250 SoC [30] was selected for use
in the ZigBee Data Forwarding Unit (DFU). The
EM250 also includes 128 kB of onboard Flash Read
Only Memory (ROM). It also allows for three dif-
ferent modes of operation. The Active operation
will allow for execution of the program code, typi-
cally using 8.5 mA of current. The Idle operation
allows for the MCU to shut down until an interrupt
occurs while allowing peripherals and the trans-
ceiver to operate normally. The EM250 also allows
for a Deep Sleep operation which powers down the
MCU and Transceiver until either an external inter-
rupt or a timer wakes the device. In the Deep Sleep
operation, the EM250 typically uses 1.5 mA of cur-
rent. The EM250 has four ADCs, of which two are
used for use of capturing analog data. The digital
interrupts can be used for receiving 1-bit digital data
while either ‘awake’ or ‘sleeping’. The EM250 also
has the capability of communicating over serial
peripheral interface (SPI), allowing for future revi-
ireless communication capabilities.
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sions to include serial data from sensors. Fig. 5
shows the schematic diagram of the core part of
the RF board – Ember integrated CPU-RF chip.

Fig. 5 shows the connection between ECG sensor
board (to be discussed later) and our built RF board.
The RF board takes the analog ECG data (sensed
from a patient’s body), converts it to digital format,
then uses network protocols to form packets, and
finally sends out through RF antenna (see Fig. 6 on
entire packet forming procedure). Its RF transceiver
can also receive ECG data from a neighbor RF board
(to achieve patient-to-patient relay communications).

2.1.2. Mobile platform – ECG sensor design

Our ECG sensor board design is assisted by Har-
vard University CodeBlue team [26]. The different
styles of packaging information are the surface
Fig. 5. The connection between ECG

Fig. 6. The working procedu
mounting types that correspond to the PCB layout
choices.

The ECG lead extensions from the sensor board
are pin-compatible and color coded to standard 3-
Lead ECG monitoring systems. While there are dif-
ferent flavors of physiological chest leads, this sys-
tem was designed to match any 3-Lead ECG Snap
Set Leadwires. The Snap Set may be used to collect
data by attaching to it the appropriate jellied ECG
conductive adhesive electrodes if real people were
to be used for testing purposes. An alternative
would be ECG signal simulators, as explained next.

2.2. ECG signal generator

The ECG generator used in this project is the
Model 430B, 12-lead ECG generator as shown in
sensor and our built RF mote.

re of a RF Mote [32].



Fig. 7. Model 430B Patient Simulator (see the white box).

1 In our MASN, we refer the ECG server as a ‘‘sink’’.
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Fig. 7 (see the white box). This generator provides a
complete PQRST waveform at six preset rates (60,
75, 100, 120, 150, and 200 BPM) as well as six preset
amplitudes (0.1, 0.2, 0.5, 1.0, 2.0, and 5.0 mV). It is
also capable of generating square waves using its 5
ECG snaps plus 10 banana jacks. This provides a
good testing interface even if this project will be
adapted into a 12-lead monitoring system in the
future. Fig. 9 also shows the connection between
430B ECG simulator and our designed RF commu-
nication boards. The ECG signal collected from
430B can be transmitted to a computer (not shown
in Fig. 7) through the RF board antenna.

The ECG data collection is a two-step process
(next section has more details). The first step
involves the sensor network communication that
takes place between the mobile platforms and the
receiving sensor mote connected to the workstation.
After this step, all of the useful patient data have
been collected and now reside onboard the worksta-
tion. The next level of communication occurs within
the workstation environment, where a MATLAB
server (a software module) is created to transfer
data from a Java runtime environment into the
MATLAB workspace via localhost connection.
This is the final procedure before sending the patient
data for signal processing, which leads to feature
extraction. Our RF mote devices have IEEE
802.15.4-compliant radio capabilities and a commu-
nication range of 125 m. These sensor motes operate
under the TinyOS environment and may be pro-
grammed using the NesC language (to be discussed
next).

3. Reliable MASN communication protocols

3.1. Enhanced cluster-based MASN data

transmission

It is important to achieve the fast and reliable
detection of the ECG signals from the patients.
Grouping the wireless sensor nodes in clusters to
detect signals is carried out for prolonged MASN
lifetime, load balancing and scalability. We propose
a cluster based, energy-aware ECG collection
scheme where the ECG data are reliably relayed
to the sink1 in the form of aggregated data packets.
The clustering scheme provides faster and better
event detection and reliability control capabilities
to the areas of the network where event is occurring.
It also reduces the overhead, latency and loss of
even information due to the cluster rotation.
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The clustering schemes have been previously
investigated as either stand-alone protocols for ad
hoc networks, e.g., [40–43], or in the context of
routing protocols, e.g., [44–48]. Several clustering
algorithms have been proposed for the purpose of
reducing energy consumption and extending lifetime
of a sensor network. Low Energy Adaptive Cluster-
ing Hierarchy (LEACH) [47] is a distributed algo-
rithm for sensor networks in which the sensors
elect themselves as Cluster-Heads (CHs)2 with some
probability and broadcast their decisions. It
assumes that all nodes can hear each other which
is not a good assumption for randomly distributed
sensor nodes. LEACH also assumes a large differ-
ence between the CH and normal node power
requirement. A small difference would cause
LEACH to become less effective.

Power Information Gathering in Sensor Infor-
mation Systems (PEGASIS) scheme [49] is an
improvement of LEACH, in which the key idea is
to form a chain among the sensor nodes so that each
node will receive from and transmit to its close
neighbors. The gathered data moves from node to
node, gets aggregated and eventually a leader node
transmits it to the sink. The leader node will rotate
in each round to have energy load evenly distributed
among the sensor nodes. Its disadvantage is large
time delay and faster energy depletion. The nodes
far away from the sink will require more energy to
transmit data to the sink.

A Hybrid, Energy-Efficient, Distributed Cluster-
ing approach for ad hoc sensor networks (HEED)
[49] periodically selects CHs according to a hybrid
of their node residual energy and a secondary
parameter, average minimum reachability power
(AMRP).

The above-mentioned clustering scheme cannot
send the event packets to the sink as fast as possible
without vital information loss. They also may have
considerable latency involved in the set up of the
clusters and overhead messages in the schemes due
to random rotation of the cluster heads. Most of
the schemes do not take into account the message
losses due to collisions and congestion at the sensor
nodes. The cluster rotation involves a complete
change over of the entire topology, which requires
synchronized control and consumes lot of sensor
2 Cluster-Head (CH): a small amount of sensors with higher
energy storage in LEACH are chosen as CHs. All sensors only
send data to a local CH. The CH then search a neighboring CH
to relay the data until finally reaching the sink.
energy. There is no reliability control in these
schemes for proper event detection at the sink,
which could also help in efficiently utilizing the
scarce energy resource of the sensor nodes.

Our proposed MASN routing scheme is different
from LEACH [47] and the abovementioned other
clustering schemes due to our consideration of
energy level determination of sensor nodes, event-
triggered and energy-aware cluster formation,
dynamic adaptation of reliability based on the clus-
ter member density and event proximity. The details
are as follows:

We assume that the sensor nodes know their
maximum energy (Emax), residual energy (ER) and
threshold energy (Eth). Here Eth is the minimum
energy required by the sensor nodes to identify
themselves in one of the ‘n’ energy levels. A sensor
node with ER 6 Eth belongs to the energy level ‘0’.
Initially the energy of a sensor node is divided into
n levels as shown below:

n ¼ logx

Emax

Eth

� �
; ð1Þ
where the energy range of a level L is defined as the
difference between the upper and lower energy val-
ues and ‘x’ is the ratio between the maximum and
minimum values of a level. The value of ‘x’ depends
on the requirement of the application. The energy
level (L) of a sensor node is determined as:

IfðER < EthÞL ¼ 0; Else L ¼ n� Emax

ER

� �
: ð2Þ

A sensor node decides to participate in the cluster
formation process if amplitude of the event param-
eter that it detects crosses a predetermined threshold
‘D’. Here the value of ‘D’ depends on the measured
event parameter.

While forming clusters the sensors with the high-
est energy level (L) are given opportunity to become
the CHs, to ensure longer cluster lifetime. In areas
lacking high energy sensor nodes the lower energy
sensor nodes take initiative to form CHs. This is
mainly to ensure that the primary purpose of reli-
able event detection at the sink is achieved. The sen-
sor nodes then elect their cluster heads based on the
energy level and the AMRP value. Here the AMRP
is defined as the average minimum power level
required by the ‘r’ neighboring nodes to reach the
sensor node claiming to become the CH as shown
below [50]:
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AMRP ¼
Pr

i¼1 min PWRi

r
; ð3Þ

where MinPWRi denotes the minimum power level
required by a node vi, 1 6 i 6 r, to communicate
with the CH and ‘r’ is the number of neighbor
nodes. The sensor nodes advertise themselves as
CH based on their energy level. The sensor node
claiming to be a CH broadcasts the advertisement
message to its neighbors using maximum power
(MaxPWR). The normalized AMRP is defined as
the ratio of AMRP to that of the MaxPWR.

The other sensor nodes on receiving the adver-
tisements decide to join a CH based on a function
of CH energy level and communication power.
Every sensor node waits for a random time before
advertising itself to other sensor nodes to become
a CH. This delay time for sending the advertisement
message is based on a function of the energy level
(L) of the sensor node and normalized average min-
imum reachability power (nAMRP).

The sink assigns a reliability value ‘REL’ for an
event in terms of the total number of packets of
the event required to be reported in a time ‘T’ at
the sink. This reliability factor is distributed among
the clusters formed in the event area based on (i) the
number of sensor nodes in the cluster, and (ii) the
cluster-event proximity. Every CH of the event area
transmits the number of its cluster members in the
aggregated data packet header to the sink through
multi-hop. Analyzing the values of the measured
event parameters in the aggregated data packets
the sink knows which of the CHs are closest to
the event. The sink assigns a reliability value to each
cluster shown below:

CRi ¼
REL � ðJ iÞðmiÞPz

i¼1J imi
; ð4Þ

where CRi is reliability assigned to ith cluster, z is
the number of clusters, Ji is the event proximity
for its cluster, and mi is the number of sensor nodes
in the cluster. If Ji = 1 then the reliability is distrib-
uted among all the clusters based on their member
density. By assigning higher value of Ji, the sink
can acquire more number of packets from the clus-
ters closer to the event. The event proximity param-
eter Ji varies from cluster to cluster from a
minimum value of 0 to a maximum value of 1.

The sink will vary the reliability values for the
clusters if the event propagates to other areas. If
the event propagates to other areas of the network,
their sensors will also form clusters based on the
values of the measured event parameters. This idea
of ‘Dynamic Reliability Adaptation’ at the sink is
helpful obtaining maximum information of the
event.

3.2. MASN routing performance

3.2.1. Energy consumption

A major concern in MASN networking design is
energy consumption. Our experiments have shown
that most of sensor battery is consumed in radio
communications instead of in local data processing
(such as ECG compression) or sensing (see Fig. 8).
Therefore, any MASN networking protocols (such
as finding optimal route) should be of low-complex-
ity to save energy consumption.

3.2.2. Throughput

For the better observation of a patient’s health
condition, a sensor can send out data at high report-
ing frequency and then use a high data rate to send
out the large amount of sensed data wirelessly.
Fig. 9 shows the packet reception ratio (the number
of ‘‘received’’ packets divided by the number of
‘‘transmitted’’ packets) for different sending rates
(number of network packets per second). We can
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see that the MASN performance drops sharply if
the sending rate is higher than 25 packets/s. Thus
it is important to use a reasonable reporting fre-
quency in each sensor.
3.2.3. Scalability

We have investigated the MASN performance
with the increasing of number of sensors (it also
means more patients since each patient carries one
sensor). Our MASN system can still maintain good
performance (reception ratio > 80%) even there are
large amount of MSS (see Fig. 10). It indicates that
our MASN will be suitable to a large Nursing
Home.
3.2.4. Mobility

We have tested the MASN delay performance
under users’ mobility behaviors. Currently, our sys-
tem cannot achieve real-time data collection
(delay > 10 s) if the users move quickly (such as at
30 mph) (see Fig. 11).
3.2.5. Delay

We define ‘‘aggregated packet delay’’ as the time
taken for the first aggregated event packet to reach
20%
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the sink from the time an event is detected by the
sensor nodes. This parameter represents the speed
of reaction of the network to the event occurrence.
In the proposed as well as HEED [50] schemes, we
consider that clusters are formed ‘on the fly’ when
the event occurs. In our experimental results (see
Fig. 12), HEED scheme consumes more time for
the first aggregate data packet to reach the sink
due to the set up phase. In this phase no packets
are reported to the sink and clusters are formed with
the help of overhead messages. In the proposed
scheme the event packets are transmitted to the sink
even as the clusters are being formed.

4. MASN software design

4.1. ECG sensor mote wireless communication

software

All of our MASN RF mote control software runs
in a special operating system called TinyOS [33].
Developed primarily by the University of Califor-
nia, Berkeley in cooperation with Intel Research,
TinyOS is an open-source embedded operating sys-
tem designed for wireless sensor networks. NesC is a
programming language designed for applications
targeting the TinyOS platform. Again by University
of California, Berkeley and Intel Research, it is an
extension to the C programming language that is
component based as the TinyOS operating system.
The most important feature of this programming
language is that it produces fairly small sized code
to be able to load on to sensor network nodes.

In our Medical Server that receives all patients’
ECG data, we can monitor the entire MASN net-
work topology. As shown in Fig. 13, each patient’s
ECG data can be collected remotely. The relative
location of each patient can also be monitored
through our patient tracking software (see Section
4.2). If two patients are close enough, a radio link
will be shown between them to indicate the possibil-
ity of transmitting ECG data between them (in
Fig. 13, ECG RF motes in Patient ID = 1 and
ID = 3 can talk with each other).

An important feature of our MASN software is
that we are able to control the ECG sensors’ perfor-
mance parameters (such as ECG detection thresh-
old) through the remote command transmission
from the server to any ECG sensor. Fig. 14 shows
our sensor control GUI (Graphical User Interface).
We can set up the ECG server (i.e. the MASN work-
station) control parameters to change the sensors’



0

0.5
1

1.5

2
2.5

3

HEED (100sec) HEED (50sec) HEED (20sec) our scheme
scheme

Fi
rs

t a
gg

re
ga

te
d 

pa
ck

et
 

de
la

y(
se

c)

Fig. 12. The first aggregated packet delay from the cluster head to the sink.

Fig. 13. Cardiac monitoring software for a simple Nursing Home with three cardiac patients.
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detection frequency (i.e. how many ECG values we
should collect in each second). As we know, a higher
detection frequency can bring higher ECG signal
quality, however, it also causes the higher power
consumption in each sensor, and more memory
storage overhead in each RF board. A good balance
is needed. Here we collect ECG values every 0.01
seconds, which is good enough to capture each
change of heart beats.

The software used to govern the sensor network
communication and displaying the received patient
data on the workstation is based on a program
called VitalDust Plus [26]. This software is essen-
tially a stripped down version of the CodeBlue
[26] software that provides a simple demonstration
of its wireless pulse oximeter and wireless ECK
devices. The software has two parts, the TinyOS
software for the mobile platforms to sample and
transmit vital sign data over the radio, and a Java
GUI application to display the vital signs a graphi-
cal form.

We have enhanced VitalDust Plus in many
aspects such as network topology monitoring,
real-time ECG display, etc. We call our MASN
monitoring software as Flavor RIT, which made
several functional additions to the Java applica-
tions. The most notable enhancements are the inclu-
sions of MATLAB support and the ability to select
data, at run time, from only the desired patient for
feature extraction (see Section 3.3). Some of the
unused features are also removed from the original
GUI. Fig. 15 shows a screen shot of Flavor RIT
while it is receiving patient data from two separate
mobile platforms: mote30 and mote40. The patient



Fig. 15. Enhanced VitalDust Plus – Flavor RIT.

Fig. 14. ECG sensor parameters remote control software.
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data field is displaying the ECG waveform associ-
ated with the selected mobile platform. Only data
from the currently selected mobile platform are sent
to MATLAB for signal processing. The link quality
field shows the quality of the wireless signal also
associated with the selected mobile platform.
4.2. Cardiac patients positioning software

Because our MASN software will be used for
nursing homes/hospitals patients monitoring, it is
important to keep track of patients’ locations when
they move around. By knowing the exact positions
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of the patients, the system can quickly lead the med-
ical professionals to the desired locations, thus sav-
ing treatment time. Determining the location of a
particular sensor in a wireless sensor network is an
extremely difficult problem facing the wireless sen-
sor network research community. GPS is far too
expensive a solution for wireless sensor networks.
The goal of producing wireless sensor nodes for less
than one dollar would be severely compromised.
Additionally GPS consumes far too much power
to be a realistic localization solution for sensor net-
works that run on limited battery power.

MoteTrack [24,53] is a robust, decentralized
localization algorithm to RF-based location track-
ing. Its purpose is the accurate location tracking
of motes, which are small, lower-power, battery
operated devices that can be readily embedded into
equipment or the environment. Using radio signal
information alone, it is possible to determine the
location of a roaming node at close to meter-level
accuracy. MoteTrack can tolerate the failure of up
to 60% of the beacon nodes without severely
degrading accuracy, making the system suitable
for deployment in highly volatile conditions. In
MoteTrack, a building or other area is populated
with a number of motes acting as beacon nodes.
Beacon nodes broadcast periodic signatures, which
consist of the format {sourceID, powerLevel, mean-
RSSI}. The sourceID is the unique identifier of the
beacon node, powerLevel is the transmission power
level used to broadcast the message, and meanRSSI
is the mean received signal strength indication
(RSSI) of a set of beacon messages received over
some time interval. Each mobile node that wishes
to determine its location listens for some period of
time to acquire a signature, consisting of the set of
beacon messages received over some time interval.
Finally, a reference signature is defined as a signa-
ture combined with a known three-dimensional
location (x,y,z).

The location estimation problem consists of a
two-phase process: an offline collection of reference
signatures followed by online location estimation.
As in other signature-based systems, the reference
signature database is acquired manually by a user
with a laptop and a radio receiver. Each reference
signature, shown as gray dots in Fig. 16 [53], con-
sists of a set of signature tuples of the form {source-
ID, powerLevel, meanRSSI}. sourceID is the
beacon node ID, powerLevel is the transmit power
level of the beacon message, and meanRSSI is the
mean received signal strength indication (RSSI) of
a set of beacon messages received over some time
interval. Each signature is mapped to a known
location by the user acquiring the signature
database.

In MoteTrack, beacon nodes broadcast beacon
messages at a range of transmission power levels.
Using multiple transmission power levels will cause
a signal to propagate at various levels in its medium
and therefore exhibit different characteristics at the
receiver. In the most extreme case, a slight increase
in the transmission power may make the difference
between whether or not a signal is heard by a recei-
ver. Varying transmission power therefore diversi-
fies the set of measurements obtained by receiving
nodes and in fact increases the accuracy of tracking
by several meters. The MoteTrack algorithm
assumes that the most relevant (closest in signature
space) reference signatures are stored on the beacon
node with the strongest signal. The mobile node
sends a request to the beacon node from which it
received the strongest RSSI, and only that beacon
node estimates the mobile node’s location. As long
as this beacon node stores an appropriate slice of
the reference signature database, this should pro-
duce very accurate results. The communication cost
is very low because only one reply is sent to the
mobile node containing its location coordinates.

4.2.1. Our enhancements to motetrack algorithm

After initial attempts to install and run the origi-
nal unaltered MoteTrack codes from Harvard [24],
it was discovered that the code would need to be
enhanced for our new designed RF boards. In par-
ticular, the RSSI scaling operations were not proper
and had to be rewritten from scratch. More trou-
bling is the fact that MoteTrack only supports a
specific frequency channel (typically at 2.4 GHz).
Typically beacon motes report the frequency chan-
nel upon which it is transmitting. When installed
on our RF board, however, the MoteTrack code
was designed to send no channel information at
all. On the mobile ECG sensor side, whenever it
receives a signal, it first checks to see if the signal
was transmitted on a channel it knows about. If
no channel is present it will never record the signal.
This means that nothing will ever be recorded by the
mobile ECG sensor and the algorithm can not run.
For this reason, new frequency channel reporting
must be designed in our RF platform beacon mote
code manually.

We have also corrected another problem in origi-
nal MoteTrack algorithm: all RSSI scaling algo-



Fig. 16. Example of stored reference signatures [24].
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rithms in MoteTrack depend on the detection of
battery power level in voltage supplied to the mote,
which means that it becomes less accurate as time
passes and the batteries drain.

Once these enhancements were made, the Mote-
Track program could be run in our RF board and
patients’ location data could be recorded. The first
step towards implementing the MoteTrack algo-
rithm is to determine the field in which tracking of
a mobile mote would be desired. Beacon mote code
must be altered to indicate how often each beacon
must transmit their signal, which contains the bea-
con identification that is used by mobile motes to
determine their locations. This length of time is
defined by the FREQ_LISTEN_PERIOD constant
and must be updated whenever the algorithm is
run. This code must be compiled and loaded to
the beacon motes. In the process of loading bea-
cons, one must provide a unique identification num-
ber for each one. These beacons must then be placed
throughout the environment at predetermined
locations which are recorded as coordinates in a
map. To make MoteTrack use this map properly
the METERS_PER_PIXEL parameter must be
defined. This parameter is the conversion between
meters and pixels on the map. This is used by Mote-
Track to place dots on the map to indicate mobile
mote locations. The environment used for this
experiment was the Department of Computer Engi-
neering at Rochester Institute of Technology. See
Fig. 17 for our chosen beacons and their locations.

Once the beacons have been placed, the next step
is to produce a reference signature database. This is
accomplished by programming a mobile mote to col-
lect reference data and provide that data to an
attached laptop computer. To program a mobile
mote to collect reference signatures, the length of
time that the mobile mote will record the transmis-
sions from the beacons it can see for each reference
signature point must be defined. This is the
DATA_COLLECTION_PERIOD parameter. Once
this is set, the mobile mote mode DATA_COLLEC-
TION must be defined preventing the mote from
operating in normal mode, and instead will forward
all collected data directly to the attached computer.

This code must then be compiled and loaded
onto the mobile mote. Once that has been com-
pleted, a serial forwarding program must be started
to ensure proper communication between the mote
and the laptop computer. Finally, the data collec-
tion program may be started. This program requires
the mobile mote to be moved to various locations
within the environment. At certain locations the
user may indicate a position on the map, and start
the data collection process for that location. This
will cause the mobile mote to record power strength
and identification numbers from each beacon it is
within range of. These signatures are recorded as
.dat files to be used later in generating the database.

A .dat file is produced for each and every loca-
tion for which a signature is recorded. These .dat
files must be combined into one and provided to a
program provided by MoteTrack that generates
two database files to be used in the main MoteTrack
program’s algorithms. Using these reference signa-
tures, the algorithm can estimate location based



Fig. 17. Patient tracking experiment field and beacon placements (at RIT).
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on the power strength and beacon identification.
This data collection process prevents the use of
MoteTrack in hostile environments. It is simply
not feasible to deploy beacon motes at predeter-
mined locations and create a reference signature
database. The system has now been set up. It is
now ready for mobile mote tracking.

4.2.2. Discussion on positioning accuracy

Compared to some other schemes, such as using
RTT measurements or propagation model and tri-
angulation theory [54–57], the advantages of the
above Mote-track based positioning scheme include
the following a few aspects: (1) Distributed, self-
organized processing: RF-based location tracking
is a well-studied problem [54]. However, existing
approaches to RF-based localization are centralized
(i.e., they require either a central server or the user’s
roaming node, such as PDA or laptop, to compute
the user’s location) and/or use a powered infrastruc-
ture. MoteTrack uses a decentralized approach to
computing locations that runs on the programmable
beacon nodes, rather than a back-end server. (2)
Reliability: most previous approaches are brittle in
that they do not account for lost information, such
as the failure of one or more transmitters, or pertur-
bations in RF signal propagation. As such, existing
approaches are inappropriate for safety-critical
medical applications. MoteTrack employs a
dynamic radio signature distance metric that adapts
to loss of information, partial failures of the beacon
infrastructure, and perturbations in the RF signal.
(3) Fault tolerance: the location signature database
is replicated across the beacon nodes themselves in
a fashion that minimizes per-node storage overhead
and achieves high robustness to failure.

On the other hand, it also has some drawbacks.
For instance, it may be prone to large change of
antenna placement/orientation, and the slightest
change to the beacon infrastructure requires repeti-
tion of the training procedure. However, the above
shortcomings are not significant: first, all RF-based
positioning schemes have variable accuracy when
antenna performance changes a lot; second, the sig-
nature database has low-cost self-replication proto-
col such that the training procedure has low-
overhead.

5. ECG data mining

Here we will discuss our data mining algorithms
for the ECG data collected from RF sensors.

Feature extraction is a commonly used term in
image processing and pattern recognition. It is a
form of dimensionality reduction that locates points
of interest from a multidimensional space. In the
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scope of this research, feature extraction is con-
ducted by applying wavelet analysis techniques to
patient data, thus providing ECG characteristic
point detection capabilities. Since most recently
published detectors are based on standard database
libraries, this real-time application is an attempt to
expand the horizons of current research efforts. It
also offers a significant function extension to exist-
ing vital sign monitoring systems and brings them
one step closer to medical care realization.

Although MATLAB has proven itself to be a
very powerful instrument in both academia and
industry, it does not provide command line support
for its functions and libraries outside the MATLAB
working environment. This is particular cumber-
some for its intended applications in this research.
MATLAB and its wavelet toolbox provide a good
option for the desired signal wavelet analysis and
feature extraction, but the patient data are passed
in automatically via a Java application in a com-
plete separate working environment. While MAT-
LAB does provide Java Virtual Machine support,
it is not possible the other way around to access
MATLAB functions from a Java program outside.
To maintain the real-time behavior of this applica-
tion, the patient data must be passed into the MAT-
LAB workspace promptly for signal processing.

The solution to the above problems is to setup a
MATLAB server establishing a connection to the
localhost that enables communication within the
workstation. A number of additional files are required
to make this work classified into the server side and the
client side. The MATLAB server is based on a small
application named MatlabControl.java developed
byKaminWhitehouseduring his studiesatUniversity
of California, Berkeley. This is a Java program
intended to access MATLAB commands while run-
ning inside the MATLAB working environment. This
is made possible by MATLAB’s support for the Java
Virtual Environment and the abilities to execute nor-
mal Java programs.

The MATLAB server is based on the Matlab-
Control file. It establishes a localhost connection
and awaits communication from the outside pro-
grams. Upon receiving messages, it either redirects
them to the appropriate MATLAB functions via
MatlabControl.java, or responds with a predefined
solution back to the awaiting clients. One of the
problems that exist with running a Java program
inside the MATLAB environment is the fact that
MATLAB provides only one single thread, there-
fore the termination of any Java application initi-
ated from inside MATLAB would also exit
MATLAB as well.

The client side of program is incorporated into
the Flavor RIT application by reading patient data
from Flavor RIT and communicates it to the MAT-
LAB server via the established localhost connection.
However due to the continuous input of patient
data from the mobile platforms, it is impossible to
send all of them at the same time, especially during
times when there are more than one connected
mobile platform. The design choice was to only send
in data associated with the currently selected in Fla-
vor RIT for wavelet analysis after every 600 packets
have been collected. This provides a meaningful
mediation for data processing and data displaying.
A sample extraction result is shown in Fig. 18.

To improve the ECG classification accuracy in
terms of identifying different types of abnormal
heart beats, we have investigated the theory of Sup-
port Vector Machine (SVM), which has been
proved to be able to minimize the probability of
misclassifying yet-to-be-seen patterns [16,17].

Our SVM algorithms are based on the biology
signals data mining principle in [58]. The basic pro-
cedure of SVM algorithm is as follows [16,18,58]:
Considering the problem of separating the set of
training vectors belonging to two separate classes:

S ¼ fðx; yÞjfðx1; y1Þ; ðx2; y2Þ . . . ðxL; yLÞg;
x 2 Rn; y 2 ð�1; 1Þg: ð5Þ

The above vectors are said to be optimally separated
by the hyperplane if they are separated without er-
ror and the distance between the closest vector to
the hyperplane is maximal. We can then transform
the input data into a higher dimensional feature
space to enable linear classification. Specifically we
can define an appropriate kernel function in the in-
put space in place of the dot product in the high
dimensional feature space. Next, we can formulate
the dual of the convex quadratic programming
problem to obtain the unique global solution for
the classifier.

To apply the above SVM theory, we need to
extract some dominant features from ECG data to
serve as the SVM classification vectors. Wavelets
analysis is well known for its feature extraction effi-
ciency. The Wavelet Transform of a function f is a
convolution product of the time series with the
scaled and translated kernel, and is given by:

W S;X 0 ¼
Z þ1

�1

1

s
�W x� x0

s

� �
� f ðxÞdx; ð6Þ



Fig. 18. Data displayed every 600 packets.
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where s is a scale parameter and x0 is a space
parameter.

To find out the ‘‘features’’ (i.e. the singularity
points) of the above wavelet function, here we intro-
duce the concept of ‘‘Local Holder Exponent
(LHE)’’ [16]. The LHE of a function f() at the point
x0, denoted as h(x0), is defined as the largest expo-
nent such that there exists a polynomial Pn(x) of
order n satisfying the following condition for a in
a neighborhood of x0:

jf ðxÞ � P nðx� x0Þj 6 C � jx� x0jh: ð7Þ

In fact, the polynomial Pn(x) is the n-order Tay-
lor series of f(Æ) in the neighborhood of x0. If
h(x0) 2 [n,n + 1], then s in Eq. (2) is n times (but
not n + 1 times) differentiable at point x0. We can
thus see that h(x0) measures the ‘‘singularity’’ level
(i.e. ‘‘irregularity’’) of function f(Æ) at the point x0.
A larger h(x0) indicates a better regularity. It also
characterizes the local scaling range of a function.
Thus we can exploit the distinct scaling behavior
of different ECG signals to classify ECG time series.
Since the Wavelet analysis provides a way to ana-
lyze the local behavior of a time series, the local
behavior of f(Æ) is mirrored by the following wavelet
characteristics:

W s;x0ðf Þ / jsjhðx0Þ
; s! 0þ: ð8Þ
Hence, based on the Log–Log plot of the wavelet
‘‘Amplitude vs. scale a’’, we can then extract the lo-
cal LHE h(x0). In fact, it has been shown that Wave-
lets can remove polynomial trends that could cause
previously used box-counting techniques to fail to
quantify the local scaling of the signal [19].

Definition 1. Wavelet Transform Modulus Maxima
(WTMM): To reduce the regular wavelet analysis
redundancy and calculation complexity, WTMM
[18] proposes to change the ‘‘continuous’’ sum over
space (see Eq. (2)) to a ‘‘discrete’’ sum over the local
Maxima of |Ws,x0(f)|. Denote Z(s,q) as a partition
function, and X (s) as the set of all Maxima [16] at
scale s, then WTMM can efficiently use the follow-
ing ‘‘Space-Scale’’ partitioning:

Zðs; qÞ ¼
X
XðsÞ
jW s;x0ðf Þjq ; and Zðs; qÞ / ssðqÞ; ð9Þ

where s(q) represents a scaling range. We have the
following relationship between the singularity
strength h(q), the spectrum of singularities (denoted
as D[h(q)]) and s(q): (using the Legendre Transfor-
mation theorem in [16]):

hðqÞ ¼ dsðqÞ
dq

; D½hðqÞ� ¼ q � hðqÞ � sðqÞ: ð10Þ

The importance of WTMM lies in its Maxima Lines
(MLs): For any LHE h(x0), there is at least one ML
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that points towards x0. For any fractal signals, the
number of MLs will diverge in the limit s! 0+ [16].

Although WTMM provides efficient estimation
for ‘‘Global’’ scaling of ECG time series, it has been
shown that the ‘‘Local’’ scaling analysis could pro-
vide more relevant information on feature extrac-
tion [20]. The idea of ‘‘Local’’ scaling analysis can
be summarized as follows (for details, see [20]):

First, let us define a function G(s) as follows
(through the partition function Z(s,q), see Eq. (5)):

GðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zðs; 2Þ=Zðs; 0Þ

p
: ð11Þ

Then the Mean LHE (denoted as �h) is determined
by:

�h ¼ log½GðsÞ� � C
logðsÞ ; ð12Þ

where C is a constant depending on the ECG ampli-
tude normalization ratio.

Through the Struzik Multiplicative Cascade
Model [20], and using s = 1 in the wavelet analysis,
we can estimate the LHE (denoted as ĥðx0Þ) at sin-
gularity x0 as the slope (see Eq. (9)):

ĥðx0; sÞ ¼
logðjW s;x0ðf ÞjÞ � ð�h � logðsÞ þ CÞ

logðsÞ � logðsLÞ
; ð13Þ

where SL is the length of the entire wavelet ML
(Maxima Line) Tree.

Wrapper algorithm for ECG Feature Reduction:
Even though the wavelet analysis and LHE can pro-
vide us a series of ECG features, it is necessary to
increase the accuracy of the induction algorithms
1. Adaptive Wavelet (use software threshold wavelet 

Input ECG Time Series (from our EC

2. WTMM Transformation 2a. Genera

3a. Holder Exponent Estimation (equation (9))

4. Wrapper algorithm [16] for feature reduction 

Fig. 19. ECG data series feature ex
through the reduction of parameters. Here we use
Wrapper approach in [16] to conduct a search in
the wavelet space. Our Wrapper algorithm [16]
includes a ‘‘State’’ that is a vector of LHE, an initial
state (we set to empty), a heuristic evaluation
through fivefold cross-validation (repeated multiple
times with a small penalty for every ECG feature),
and a Hill-climbing search algorithm.

To validate our LHE/WTMM-based feature
extraction and classification, we have used the
following ECG data sets: (1) 50 Normal Sinus
Rhythms (NSR) recorded from real ECG sensors;
(2) Other Arrhythmia came from PhysioNet [21],
which provides a set of databases that group records
of one or more digitized ECG signals, as well as a set
of their corresponding beat and rhythm annotations.
Especially, we have used (a) PhysioNet MIT-BIH
Noise Stress Test Database that contains typical
noises in ambulatory ECG recordings, and (b) Phys-
ioNet MIT-BIH Arrhythmia Database, which is
used to study the different types of arrhythmias.

Regarding Arrhythmia, we have chosen the fol-
lowing four types: (1) Paced rhythm; (2) Atrial
Fibrillation; (3) Nodal (A-V junctional) rhythm;
and (4) Ventricular fibrillation. For each of the five
rhythms (i..e Normal (NSR), Paced, A-Fib, Nordal,
and V-Fib), we have used the following procedure
(see Fig. 19) to extract the WTMM LHEs that will
be used for the input vectors of Support Vector
Machine model.

Please note that Step 3a (in Fig. 20) does not
directly use the ‘‘single-value’’ Holder exponents
since we have used statistical analysis based on large
[16] for easier scaling analysis) 

G sensors or PhysioNet [21])

te WTMM coefficients and Maxima Lines 

3. Struzik Multiplicative Cascade 
Algorithm [20] 

5. SVM ECG Classification 

traction software components.
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amount of MIT-BIH arrhythmia record flows (each
record flow has 10-second of ECG data series).
Thus we have calculated the Probability Densities
of different LHEs and then fitted those densities into
a Gaussian model. The LHEs for the five rhythms
were found to be in the range of (�0.5, 1.5). We
then divided this range into 10 sub-ranges and took
the 10 mid-points (Fig. 21) of those 10 sub-ranges in
the Probability Density Function. We have used
multiples runs of fivefold cross validation in Step 4.
Confuse Matrix ¼

NSR Paced A� fib Nordal V � fib

NSR 67:3 0:89 0:13 1:12 0:89

Paced 0:77 19:35 0 0 0

A� fib 1:31 0 9:98 0 0

Nordal 0:91 0 0 20:14 0

V � fib 1:11 0 0 0 3:41

2
666666664

3
777777775
: ð14Þ
Our SVM-based classification results are shown
in Fig. 23. In that diagram, we have also compared
our classification performance to two of the best
ECG classification algorithms, i.e. Bayesian Classi-
fier [23] and Decision Tree [22]. Although the accu-
racy for NSR is similar between ours and others, the
accuracy to identify arrhythmia is higher in our
scheme. More importantly, our algorithm can use
WTMM/Wrapper to efficiently extract multiple fea-
tures from a ‘‘large-scale’’ ECG database within a
reasonable small calculation time.

The below equation shows the Confuse Matrix
(for all Arrhythmia, not including NSR) where the
Fig. 20. Probability density–LHEs.
WTMM coefficients were computed at scale [1:20]
and the LHEs were estimated at scale 1. Both the
leads were used for classification purpose. We can
see that there are very few non-diagonal numbers
present. The diagonal values represent the correct
identification of the respective rhythms. Another
important observation is that all the all the arrhyth-
mia rhythms are very well separable. In the right-
bottom (6 · 6) matrix, all the non-diagonal numbers
are zero (or negligible).
6. Trustworthy medical transmission

6.1. Security requirements in MANET-based

tele-cardiology networks

Medical Security is important in the healthcare
organizations of all over the world. For instance,
US HHS issued patient privacy protections as part
of the Health Insurance Portability and Account-
ability Act of 1996 (HIPAA) [34]. HIPAA included
provisions designed to encourage electronic transac-
tions and also required new safeguards to protect
the security and confidentiality of health informa-
tion. Most health insurers, pharmacies, doctors
and other health care providers were required to
comply with these federal standards beginning April
14, 2003 [34].

To protect the two important aspects of cardiac
patient ‘‘privacy’’ in MASN systems, i.e. (1) confi-
dentiality, i.e. only the source/destination can
understand the medical data through crypto-keys,
and (2) integrity, i.e. no data falsifying during trans-
mission, we need to apply strong end-to-end secu-
rity mechanisms to the cardiac data packets that
are transmitted between any two network entities
(such as between a patient’s sensor and a physician’s
server). On the other hand, in a practical commu-
nity/hospital tele-cardiology system that is based
on sensor network architecture, we should consider
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the following two constraints when designing pri-
vacy-preservation mechanisms:

(1) Low-energy/low-overhead security protocols:
A major concern in medical security protocols
design is energy-efficiency. Our experiments
[9,10] have shown that most of sensor battery
is consumed in radio communications instead
of in ECG signal processing or sensing (see
Fig. 19, a pie graph). Therefore, the security
protocols should not use too many message
exchanges between patients’ sensors and net-
work. Moreover the security schemes should
be of low-complexity. Therefore Symmetric-
crypto could be a better choice than traditional
Asymmetric-crypto based on public/private
keys having high computational overhead.

(2) Multi-hop vs. Single-hop security: We should
use multi-hop wireless relay among patients
instead of single-hop communications (i.e.,
direct patient-doctor wireless forwarding)
due to the following reasons: First, by deploy-
ing a multi-hop data forwarding network,
packets can be routed around radio obstruc-
Fig. 22. Tele-cardiology MANET
tions in a community. While a single-hop,
i.e. long-distance (>100 m), line-of-sight radio
communications may not be possible. Second,
Packet forwarding via multiple mall radii
transmissions requires less energy than a single
large radius transmission for radio communi-
cations [11,12]. The energy savings afforded
by multi-hop forwarding would help conserve
sensor batteries.
6.2. Security design for ‘‘one-hop’’ ECG data

transmission

Security in each individual hop is the prerequisite
of the multi-hop MASN security. As the starting
point of our security research, we have implemented
a low-energy, low-overhead security scheme for
one-hop (e.g., patient-to-doctor) wireless communi-
cations [12,13]. As shown in Fig. 22, the security
software is built in both the sensor and the Mote
Interface Board (MIB) that serves as the transition
gateway between a sensor and a server.

Our one-hop security mechanism uses the follow-
ing two security primitives: (1) IV: Initialization vec-
security: single patient case.
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tors (IVs). One implication of semantic security is
that encrypting the same plaintext two times should
give two different ciphertexts. The main purpose of
IVs is to add variation to the encryption process
when there is little variation in the set of messages.
(2) Block cipher choice. Triple-DES [13] is too slow
for software implementation in embedded medical
PDAs or sensors. We found RC5 [13] and SkipJack
[14] to be most appropriate for embedded microcon-
trollers. Although RC5 is slightly faster, it is pat-
ented. Also, for good performance, RC5 requires
the key schedule to be pre-computed, which uses
104 extra bytes of RAM per key. Because of these
drawbacks, we selected Skipjack.

It is difficult to directly measure energy consump-
tion of security mechanisms from sensors. We have
thus resorted to an accurate simulator called Power
Tossim [15] where hardware peripherals (such as
the radio, EEPROM, LEDs, and so forth) are instru-
mented to obtain a trace of each device’s activity dur-
ing the simulation run. Through the obtained real-
time traces of the current drawn in our SkipJack-
based Symmetric crypto and RSA-based Symmetric
crypto [13], we have computed the energy consump-
tion of major components (such as CPU idle, CPU
active, Radio, etc.) in sensors (see Table 2).

From Table 1, we can see that for the two most
important components, i.e. CPU active and Radio
transmission, our proposed security scheme shows
significant power-saving improvements over RSA
security scheme (the energy efficiency is improved
by 92% and 154%, respectively).
Table 1
Security energy consumption comparisons

(in milli-joules mJ) Skipjack RSA

CPU active 26 51
Radio 1002 2542
Memory access 11 25
Total 1680 3360

Fig. 23. Multi-patient case:
6.3. Wireless cardiac data transmission security:

‘‘multi- patient’’ case

To get closer to the real tele-cardiology MANET
scenario, we have extended the above single-patient
transmission security to a multi-patient case.

It is challenging to securely deliver data from a
remote ECG sensor to an Internet Gateway through
multi-hop transmission as it requires integration of
the security scheme with energy-efficient MASN
routing protocols. As shown in Fig. 23, we partition
patients’ sensors into a number of ‘‘clusters’’. In
each cluster, exactly one sensor is chosen as the clus-
ter head (CH). Thus each sensor only needs one-hop
communication to send the ECG signals to its CH,
which searches for a neighboring CH for data relay
to the Gateway. This cluster-based concept has also
been used in many hierarchical routing MASN pro-
tocols to save energy [51,52]. To avoid the battery
overusing in a CH, the selection of CH could be
rotated periodically among the sensors belonging
to the same cluster.

We have used the aforementioned SkipJack to
achieve Intra-cluster Security (i.e. inside each clus-
ter). For secure the data transmission between clus-
ters, an Inter-Cluster Session-Key (SK) is used (see
Fig. 24). A new SK is periodically distributed to
all CHs by the Gateway. All new SKs are derived
from a one-way hash function H(0). The Gateway
first pre-computes a long one-way sequence of keys:
{SKM, SKM � 1, . . . ,SKn,SKn � 1, . . . ,SK0} (size
M� n), where SKi = H(SKi+1). Initially only SKn

(instead of the whole M-size key sequence) is dis-
tributed to each CH. Then a CH can utilize H(0)
to figure out SKn�1, . . . ,SK0. The n keys {SKn,
SKn�1, . . . ,SK1} are stored in a local key buffer.
However, SK0 is not in the buffer because it is used
for the current data packet encryption /decryption.
After the initial SKn delivery, the Gateway periodi-
cally sends SKn+1, SKn+2, . . . ,SKM (one key distri-
bution in each period) to all CHs.
cluster-based security.
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After receiving a new SK, the CH keeps applying
H(0) to it for some time, in order to find a key
match in its key buffer. For instance, assume that
a CH receives a new key SKj and its key buffer
already holds n SKs as follows:

fSKi;SKi�1; . . . ;SKi�nþ1g:
If HðHðH . . . ðHðSKjÞÞÞÞ 62 fSKi;SKi�1; � � �SKi�nþ1g

ð15Þ

the authentication fails and the SKj will be dis-
carded. Otherwise, if the authentication is success-
ful, the key buffer is shifted one position and the
SK shifted out of the buffer is pushed into the ‘‘ac-
tive key slot’’ to be used as the current SK (Fig. 25).
The empty position is filled with a new key SK’, de-
rived from the received SKjthrough H which meets
the following two conditions:

SK0 ¼ HðHðHð. . . HðSKjÞÞÞÞ; and HðSK 0Þ ¼ SKi:

ð16Þ
6.4. Security analysis

(1) Gateway attacks: Because the distribution of
new SKs is managed by the Gateway, it is pos-
sible for an attacker to compromise the Gate-
way and thus attack any future SK
disclosures. Thanks to the SK buffer, there is
a delay between receiving the new SK and
actually using it. If the distribution interval
is D’ (i.e., the re-keying period) and n is the
buffer length, the new SK will not be used
until n · D 0 later. As long as we can detect
the Gateway compromise within n · D 0 time
interval and renew SKs, the cardiac data pack-
ets will maintain security performance.
(2) SK attacks among CHs: The attacker may
modify the transmitting SK, inject phony
SK, or use wireless channel interference to
damage security packets. Our scheme can eas-
ily defeat these attacks. Thanks to the one-way
characteristics of the hash function keys, any
false SKs cannot pass the authentication test,
that is, after L times (L 6 n) of using hash
function, if we still can NOT satisfy the fol-
lowing formula, we will regard that it is a false
SK: (in the following formula, SKFAKE is a
false SK andSKNOW is the currently used SK.)
HðHð. . . ðHð|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
L

SKFAKEÞ . . .ÞÞÞ ¼ SKNOW : ð17Þ
(3) Cardiac Packet attacks (such as faking the
ECG data): Our scheme defeats it through
SK re-keying every D 0, and inclusion of Sen-
sor_ID and per-packet IV (which will also be
updated from packet to packet) in the genera-
tion of key-streams to counter the key-stream
reuse problem.

(4) Main-in-the-middle attacks: Our scheme can
also defeat Main-in-the-middle attacks (where
an attacker fools the CHs as if he/she were a
legal CH). Our strategy is to perform a trans-
mission of MAC in the re-keying procedure as
follows:
Gateway!CH : EðD0jnjSK0jMACðD0jnjSK0ÞÞ:
ð18Þ
To test our MASN security performance, we
have collected the following statistics: within a cer-
tain amount of network data transmitted between
all ECG sensors and a medical server, how much
percentage of data belong to MASN security con-
trol messages (such as keying messages). The
remaining data thus belong to other purposes (such
as raw ECG values, MASN routing protocols, etc.).
Fig. 25 shows our MASN security overhead col-
lected from 1-hop away sensors (i.e. there is only
one radio link between the ECG sensor and the ser-
ver), 2-hop away sensors (i.e. ECG sensors need to
travel 2 radio links to reach the server), and 3-hop
away.

As we can see from Fig. 25, it takes higher secu-
rity control overhead when the ECG data has more
bytes in each communication unit (i.e. a network
packet). And more hops away means higher security
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overhead since it is more difficult to control a longer
distance ECG sensor.

7. System integration

After we have discussed different pieces of our
MASN system in the above sections, this section
will discuss the integrated MASN deployment pro-
cedure when used in practical cardiac monitoring
systems. Our current MASN system includes dozens
of mobile ECG sensors with RF wireless communi-
cation boards (deployed in different rooms), patient
simulators (to simulate ECG data generation), one
receiving station (to receive all ECG data and
record them into a medical database) and the work-
station (with the medical database). The patient
simulator is used to generate ECG signals for testing
purposes, which eliminates the inconvenience of
having a live testing subject. The receiving station
receives the patient and communicates with the
workstation via the USB port. The Flavor RIT soft-
ware picks up the ECG signal, displays it onto the
screen, and then sends them via the MATLAB ser-
ver for ECG feature extraction. The MATLAB pro-
gram segments the data into 600-point packets and
applies feature extraction algorithms to one segment
at a time.

When used in practical cardiac monitoring appli-
cations, the patient simulators will be replaced by
real cardiac patients who can move around (in our
testbed, we hold each ECG sensor and walk around
to simulate patient mobility). The current sensor-to-
sensor RF communication range is around 90 m,
which is good enough for a real nursing home/ hos-
pital scenario with many cardiac patients in a large
building. As we mentioned in Introduction section,
those patients’ ECG sensors can use hop-to-hop
relay communication to reach a long distance until
finally getting the data to the ‘‘receiving station’’
that is connected to a medical server.

Next we will exemplify some instructions on
installing our MASN system software. The first step



Fig. 26. Feature extraction: (a) Tab Mote30; (b) Tab Mote40.
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is to start the Medical server with Matlab-based
ECG processing software and database manage-
ment software. Due to the using of a sensor mote
as the receiving station, it is important to configure
the data port for successful data transmission. The
receiving mote is running the generic program TOS-
Base, which may be found with any TinyOS distri-
bution. The first step is to find out the actual port
number assigned to the ECG sensor board by using
the command motelist. The next step is to configure
the MOTECOM system variable by issuing the
command export MOTECOM=serial@COM3:
telos. This associates the MOTECOM variable with
the serial communication port COM3 at the data
rate defined by telos, which is 57,600.

After having configured the environment, it is
now possible to start our Flavor RIT program by
typing in vitaldust.gui.java.VitalDust in the com-
mand line, and the system would be up and running
as shown in Fig. 26. Once the first 600 data points
have been collected, the data would be sent out
for feature extraction and a MATLAB window
would appear with the associated characteristic
points.

8. Conclusions

The objective of this research was to take advan-
tage of the modern low-cost, low-power sensor and
wireless communication technology, to create a tele-
cardiology sensor network (MASN) for remote
ECG monitoring purposes. Our MASN system
can provide continuous vital sign monitoring capa-
bilities without the exhaustion of any manpower. In
fact, it is intended to give support to the current
health care environments and free up medical pro-
fessionals for more urgent functions. By automating
the vital sign monitoring process, the most updated
information for all patients are made available at all
times. Based on wireless sensor network technology,
there are the wearable mobile platforms distributed
to the patients of concern. These mobile platforms
are responsible for gathering patient vital sign using
a 3-Lead ECG monitoring system. The gathered
data are transmitted wirelessly over radio to the
receiving station connected to a workstation where
the data are processed. ECG Feature extraction/
classification techniques are applied to the patient
data and the characteristic points of interests
extracted. These data provide meaningful informa-
tion for the diagnosis of possible cardiovascular dis-
eases. This is especially useful for extended
recordings of ECG signals where human processing
is not only time consuming, but also error prone. In
addition to these functionalities, the system is
designed to also provide security measurements
against malicious attacks and stealing of patient
information. Finally a future expansion possibility
is studied for patient location tracking. This is an
important expansion because the original intention
of this system is to decrease the amount of time
required for medical response to patients in need.
By having the exactly patient locations in hand, it
is possible to further reduce the response time.
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In a nut shell, although there have been many
research efforts in both of the fields of vital sign mon-
itoring and ECG signal feature extraction. Most of
them stay theoretical at the best. This research marks
an attempt to bridge the two research fields by pro-
viding a product that is more realizable and would
directly benefit the consumers in the medical field.
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