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A simple example

How would you model your knowledge about my height?
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A simple example

How would you model your knowledge about my height?

About whether I am taller than 1.85m? (A=[1.85,3])

How much would you give to play a game where you win 10 euros
if A is true?
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A simple example

How would you model your knowledge about my height?

About whether I am taller than 1.85m? (A=[1.85,3])

How much would you give to play a game where you win 10 euros
if A is true?

How much would you give to play a game where you win 10 euros
if B = [2,3] is true?
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Outline

● Basics

● Probabilities as bets

● Going beyond betting probabilities: why and how?

● Probability sets, a.k.a. credal sets

● Practical models and computations

● Decision with probability sets
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Basic modelling

● The state X of the world
❍ take values in some (finite or not) set X of possible situations
❍ X assumed exhaustive and of sufficient granularity
❍ is uncertainly known

● How to model our uncertainty about X?
❍ by probabilities → why???
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Basic definitions

Basic tool
A probability distribution p :X → [0,1] such that

● p(x)≥ 0

●

∑
x p(x)= 1

from which for any subset we have

● P(A)=∑
x∈A p(x)

● P(A)= 1−P(Ac): auto-dual

Example
Academic dice Assume a dice, we have X = {1,2, . . . ,6}:

p(1)= p(2)= p(3)= p(4)= p(5)= p(6)= 1/6

P({1,3,5})= 1/6+ 1/6+ 1/6 = 1/2
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Three important guys

L. Savage J. Von Neumann B. De Finetti

All justify probabilities (and expected utilities) as uncertainty models
without frequencies → we will detail a bit how the second one does it
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An example

A gamble/ticket f , whose reward depends on who win the most sets in
next Rolland Garros

Nadal Ruud Cilic Djokovic
f= -2 10 0 5

What price P(f ) do you associate to this ticket?
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Acceptable transaction

The price

P(f )

is the "fair" price you associate to the ticket/gamble f :

● You would buy for any price P(f )−ϵ, earning

f − (P(f )−ϵ)

● You would sell for any price P(f )+ϵ, earning

(P(f )+ϵ)− f

→ how should a "rational" agent specify prices?
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Transaction on an event

Remember the bet on A= [1.85,3]?

Betting on an event A amounts to play the gamble

IA =
{

1 if A happens

0 else

We can use A and IA interchangeably, i.e.

P(IA)=P(A)
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Avoiding the dutch book1

● A set of gambles f1, . . . , fn
● You set prices P(f1), . . . ,P(fn)

● I can sell (λi > 0) or buy (λi < 0) to you any number of gambles

● You are irrational if there is a dutch book, i.e., a combination with

sup
x∈X

∑
λi

(
fi(x)−P(fi)

)
< 0,

meaning that whatever happens, you lose money.

● so, a rational agent should avoid sure losses when setting prices
P(f1), . . . ,P(fn)

1History unclear
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Probabilities and expectations (exercices)

Do the following:

● Prove that if you are rational, then inf f ≤P(f )≤ sup f

● Prove that if you are rational, then P(f +g)=P(f )+P(g)

● Deduce that P(A∪B)=P(A)+P(B) if A∩B =;
A little bit more:

● Show that
∑

x∈X P({x})= 1

● Show that P(f )=∑
x∈X f (x)P({x})
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Probabilities and expectations (exercices)

Do the following:

● Prove that if you are rational, then inf f ≤P(f )≤ sup f

● Prove that if you are rational, then P(f +g)=P(f )+P(g)

● Deduce that P(A∪B)=P(A)+P(B) if A∩B =;
A little bit more:

● Show that
∑

x∈X P({x})= 1

● Show that P(f )=∑
x∈X f (x)P({x})

The first and second properties/axioms are enough to characterize
probabilities and expectations.
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Wrap-up so far

Subjective probabilities2:

● Betting behaviour in terms of fair price reflect (can be used to
measure) your knowledge about the world

● If you are rational, those bets should conform with probabilities and
expected utilities

● Those bets can be given for all kinds of events, including those that
will happen only once

Yet, maybe there is a little more to the story.

2Often taken as an interpretation for Bayesian approaches
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Outline

● Basics

● Probabilities as bets

● Going beyond betting probabilities: why and how?
❍ Rationality
❍ Some axiomatics

● Probability sets, a.k.a. credal sets

● Practical models and computations

● Decision with probability sets
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Experimental protocol

● Half the room goes out

● The rest pick a choice

● We exchange (inside goes outside, and vice-versa)
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Urns and balls: case 1

9 balls, 3 are reds, 6 remaining are either yellow or black

What would you choose between A and B?

A

R(ed) B(lack) Y(ellow)
100 $ 0 $ 0$

B

R(ed) B(lack) Y(ellow)
0 $ 100 $ 0$
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Let us bet together (buying)

● Consider the event A="In exactly one year from now in the same
place, the outdoor temperature will be colder"

● I have a ticket that pays 100 euros if A happens, zero else

● How much are you willing to pay me for this ticket?
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Interlude during the change
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Urns and balls: case 2

9 balls, 3 are reds, 6 remaining are either yellow or black

What would you choose between C and D?

C

R(ed) B(lack) Y(ellow)
100 $ 0 $ 100$

D

R(ed) B(lack) Y(ellow)
0 $ 100 $ 100$
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Let us bet together (selling)

● Consider the event A="In exactly one year from now in the same
place, the outdoor temperature will be colder"

● I propose the following gamble:
❍ I give you some money right now
❍ in exchange you have to pay me 100 euros if A happens, zero else

(you keep the money)

● How much are you willing to pay me for this ticket?
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An illustration of a possible use (more latter)

Is it a lioness? a cat? a puma? a bobcat?
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Rationality Some axiomatics

Outline

● Basics

● Probabilities as bets

● Going beyond betting probabilities: why and how?
❍ Rationality
❍ Some axiomatics

● Probability sets, a.k.a. credal sets

● Practical models and computations

● Decision with probability sets
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Rationality Some axiomatics

Are buying and selling the same?

What if we considered that buying and selling prices for f modelling your
knowledge could differ?

● For f , we now consider a maximal buying price P(f )

● Meaning you would buy f for any price under P(f )

● Any transaction f − (P(f )−ϵ) is acceptable/desirable

● More formally:

P(f )= sup{x ∈R : f −x is acceptable }
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Rationality Some axiomatics

Why not caring about selling prices?

● P(f ) is your minimal selling price for f :

P(f )= inf{x ∈R : x − f is acceptable }

● Yet, we do have3:

P(f )= sup{x ∈R : f −x is acceptable }

=− inf{−x ∈R : f −x is acceptable }

=− inf{y ∈R : f +y is acceptable }

=− inf{y ∈R : y − (−f ) is acceptable }

=−P(−f )

● By duality, we can only deal with buying prices.

3Note that it does not imply P(f )=P(f )
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Rationality Some axiomatics

Being a rational agent: sure loss revisited

● A set of gambles f1, . . . , fn ∈K

● You set prices P(f1), . . . ,P(fn)

● I can sell4 (λi > 0) to you any number of gambles for these price or
lower

● You are irrational and incur sure loss if there is a combination

sup
x∈X

∑
λi

(
fi(x)−P(fi)

)
< 0,λi > 0

● so, a rational agent should avoid sure loss when setting prices
P(f1), . . . ,P(fn)

● It is strictly weaker than previously.

4But not buy anymore
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Rationality Some axiomatics

Back to tennis

Nadal (a) Ruud (b) Cilic (c) Djokovic (d)
fi I{a} I{b} I{c} I{d}

P(fi)= 0.35 0.2 0.3 0.2

Are those assessments rational? Why?
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Rationality Some axiomatics

Being a reasoning agent: natural extension

● Assume prices P(fi) avoid sure loss

● Consider a new gamble/function g

● What can I deduced about P(g) from P(fi)?
● The process of natural extension provides the answer:

❍ Knowing that fi −P(fi) are acceptable
❍ Find the highest price P ′(g) making g−P ′(g) acceptable
❍ This amounts to solve

P ′(g)= sup
α∈R,λi≥0

{α : g−α≥∑
i
λi(fi −P(fi))}

❍ We know g−α acceptable, because
∑

i λi(fi −P ′(fi)) acceptable

● Applying this to fi itself, I say that prices P(fi) are coherent if

P ′(fi)=P(fi), ∀fi
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Rationality Some axiomatics

Tennis again, rational assessments

Nadal (a) Ruud (b) Cilic (c) Djokovic (d)
fi I{a} I{b} I{c} I{d}

P(fi)= 0.35 0.15 0.2 0.2
fi I{b,c,d} I{a,c,d} I{a,b,d} I{a,b,c}

P(fi)= 0.5 0.7 0.6 0.6

Are those assessments coherent? Why?
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Outline

● Basics

● Probabilities as bets

● Going beyond betting probabilities: why and how?
❍ Rationality
❍ Some axiomatics

● Probability sets, a.k.a. credal sets

● Practical models and computations

● Decision with probability sets
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Rationality Some axiomatics

A bit of vocabulary

● P(f ),P(f ) often called lower/upper previsions,

● A rational P(f ) is said to avoid sure loss

● P(f ) that are deductively closed (= their natural extension) are called
coherent

● When it is the case and for reasons that will become clear„
P(f ),P(f ) also called lower/upper expectations

● Similarly, P(IA)=P(A) and P(IA)=P(A) are called lower/upper
probabilities
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Rationality Some axiomatics

Coherence through betting on linear spaces

● assume space K of gambles is linear

g, f ∈K =⇒ f +g ∈K

g ∈K ,αg ∈K for α≥ 0

● Then P is coherent if and only if

P(f )≥ inf f (sure bet)

P(λf )=λP(f ) (positive homogeneity)

P(f +g)≥P(f )+P(g) (super-additivity)

● You get back De Finetti probabilities (a.k.a. linear previsions) if
super-additivity becomes additivity
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Rationality Some axiomatics

Coherence through desirability

● A gamble f is desirable if P(f )= 0

● A set D of desirable gambles is coherent if and only if

If sup f ≤ 0, then f ̸∈D, if f > 0, then f ∈D

If f ,g ∈D, then f +g ∈D

If f ∈D, then λf ∈D if λ≥ 0

● Mathematically, a set D is coherent if it forms a cone.
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Rationality Some axiomatics

Coherence through probability sets (we will stick with that)

● We can interpret P(f ) as a lower bound on expectation for
probabilities, i.e.,

P(f )≤P(f )=∑
x

p(x)f (x)

where p is a probability mass (
∑

p(x)= 1 and p(x)≥ 0).
● Given f1, . . . , fn and P(fi), we can define a set of dominating

probabilities (a.k.a. credal sets)

M (P)= {P :P(f )≥P(f )}

● P avoids sure loss if and only if M (P) ̸= ;
● P is coherent if and only if for any fi , we have

P(fi)= inf
P∈M (P)

P(fi)

that is if P is the lower enveloppe of M
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Rationality Some axiomatics

Thinking in terms of M

If we start by specifying a set M of probabilities:

● P(fi) equivalent to provide expectation (linear operator) lower
bounds

● Set D of desirable gambles=set of random variables having positive
lower expectation, i.e., P(fi)= 0
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Outline

● Basics

● Probabilities as bets

● Going beyond betting probabilities: why and how?

● Probability sets, a.k.a. credal sets

● Practical models and computations

● Decision with probability sets
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Probabilities

Probability mass on finite space X = {x1, . . . ,xn} equivalent to a n
dimensional vector

p := (p(x1), . . . ,p(xn))

Limited to the set PX of all probabilities

p(x)> 0,
∑

x∈X

p(x)= 1 and

The set PX is the (n−1)-unit simplex.
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Point in unit simplex

p(x1)= 0.2, p(x2)= 0.5, p(x3)= 0.3

p(x3)

p(x1)

p(x2)

1
1

1

p(x2)

p(x3) p(x1)

∝ p(X1 )

∝
p
(x2

)

∝ p(x 3
)
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Imprecise probability

Set M defined as a set of n constraints

P(fi)≤
∑

x∈X

fi(x)p(x)≤P(fi)

where fi :→R bounded functions

Example
p(x2)−2p(x3)≥ 0

f (x1)= 0, f (x2)= 1, f (x3)=−2,P(a)= 0

Lower/upper probabilities

Bounds P(A),P(A) on event A equivalent to

P(A)≤ ∑
x∈A

p(x)≤P(A)
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Set M example

p(x2)≥ 2p(x3)⇒ p(x2)−2p(x3)≥ 0

p(x3)

p(x1)

p(x2)

1
1

1
p(x2)

p(x3) p(x1)
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Credal set example

p(x2)−2p(x3)≥ 0
p(x1)≥ 1/3

M

p(x3)

p(x1)

p(x2)

1
1

1
p(x2)

p(x3) p(x1)
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Usual alternative presentation: extreme points

● p(x1)= 1,p(x2)= 0,p(x3)= 0
● p(x1)= 1/3,p(x2)= 2/3,p(x3)= 0
● p(x1)= 1/3,p(x2)= 4/9,p(x3)= 2/9

p(x2)

p(x3) p(x1)
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Computing natural extension

● Given M and a new function g, get

P(g)= inf
P∈M

P(g) or P(g)= sup
P∈M

P(g)

● First way: linear programming using P(fi)

P(g)=min
p(x)

∑
x∈X

p(x)g(x)

under

P(fi)≥
∑

x∈X

p(x)fi(x)≥P(fi)∑
x∈X

p(x)= 1,p(x)≥ 0

● Second way: compute
∑

x∈X p(x)g(x) for every extreme point, take
the minimum
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Outline

● Basics

● Probabilities as bets

● Going beyond betting probabilities: why and how?

● Probability sets, a.k.a. credal sets

● Practical models and computations

● Decision with probability sets
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Why looking at special cases?

● Lower previsions/expectations are quite expressive uncertainty
models

● Their general use, especially in large spaces, may require heavy
computation (linear optimisation in the best case, often more in
complex problems5)

● Just as Gaussian makes probabilistic computations easier, so does
focusing on specific lower previsions

5we will see some in the last courses
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A first restriction: lower probabilities

● Lower previsions P(fi) are defined for any function fi :X →R.

● Lower probabilities: focusing on events and considering P(A), i.e.,
restrict the space to 2X .

● Upper probabilities are dual6:

P(A)= 1−P(A)

● Already include a LOT of models used in practice

6We can focus on one of the two
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A second reduction: 2-monotonicity

A lower probability P() is 2-monotone if

P(A∪B)+P(A∩B)≥P(A)+P(B)

● Natural extension/lower expectation of g is given by Choquet integral

P(g)=
N∑

i=1
(g(x(i))−g(x(i−1)))P({x(i), . . . ,x(N)})

with () permutation such that g(x(0))= 0,g(x(1))≤ . . . ≤ g(x(N))

● Generating extreme points is easy. Take a permutation () of
{1, . . . ,N} and compute for each i

p(x(i))=P({x(i), . . . ,x(N)})−P({x(i+1), . . . ,x(N)}),

then p is an extreme point of M
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A third reduction: belief functions

A belief function is a lower probability P such that for any collection
A = {A1, . . . ,AK ⊆X } with K ≤ 2X , we do have

P(∪Ai∈A Ai)≥
∑

B⊆A

(−1)|B|+1P(∩Ai∈BAi),

known as the property of complete (or ∞) monotonicity.

Side exercise: prove that a belief function is also 2-monotone7

Side bonus: everything we just said also applies to belief function

7In fact, if P is k-monotone, it is also (k-1)-monotone.
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An interesting tool: Mobius inverse

The Möbius inverse8 m : 2X →R of a given P is

m(A)= ∑
B⊆A

(−1)|A\B|P(B),

and has some interesting properties when applied to belief functions:
● It is bijective with P (true for any P), as for any B

P(B)= ∑
A⊆B

m(A)

● For a new function g, P(g) can be computed9 as

P(g)= ∑
A⊆X

m(A) · inf
x∈A

g(x)

● m is positive (only true for belief functions) → can be seen as a
random distribution over subsets → useful tool to simulate P

8Apply in fact to general posets
9also applies as long as P is 2-monotone
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Example 1: frequencies of imprecise observations

Imprecise poll: "Who will win the next Wimbledon tournament?"
N(adal) F(ederer) D(jokovic) M(urray) O(ther)

60 % replied {N ,F ,D} →m({N ,F ,D})= 0.6

15 % replied "I do not know" {N ,F ,D,M ,O} →m(S )= 0.15

10 % replied Murray {M} →m({M})= 0.1

5 % replied others {O} →m({O})= 0.05

. . .
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Example 2: Imprecise Distributions [4]

A pair [F ,F ] of cumulative
distributions

Bounds over events [−∞,x ]

● Percentiles by experts;

● Kolmogorov-Smirnov bounds;

Can be extended to any
pre-ordered space [2], [7] ⇒
multivariate spaces!

Expert providing percentiles

0≤P([−∞,12])≤ 0.2

0.2≤P([−∞,24])≤ 0.4

0.6≤P([−∞,36])≤ 0.8

0.5

1.0

6 12 18 24 30 36 42
E1

E2

E3

E4

E5
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A fourth reduction: possibility measure

A possibility measure is a maxitive upper probability P:

P(A∪B)=max{P(A),P(B)}

This has the following consequences:

● All information is encoded in P({x}), as

P(A)=max
x∈A

P({x})

● The associated P is a belief function

● The sets receiving positive Möbius mass are nested (form a
sequence of included sets)
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A simple example

A set E of most plausible values

A confidence degree α=P(E)

Two interesting cases:
● Expert providing most plausible

values E

● E set of models of a formula φ

Both cases extend to multiple
sets E1, . . . ,Ep:

● confidence degrees over nested
sets [5]

● hierarchical knowledge bases
[3]

pH value ∈ [4.5,5.5] with

α= 0.8 (∼ "quite probable")

π

3 4 4.5 5.5 6 7
0

0.2
0.4
0.6
0.8
1.0
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A simple example

A set E of most plausible values

A confidence degree α=P(E)

Two interesting cases:
● Expert providing most plausible

values E

● E set of models of a formula φ

Both cases extend to multiple
sets E1, . . . ,Ep:

● confidence degrees over nested
sets [5]

● hierarchical knowledge bases
[3]

variables p,q

Ω= {pq,¬pq,p¬q,¬p¬q}

P(p ⇒ q)= 0.9
(∼ "almost certain")

E = {pq,p¬q,¬p¬q}

● π(pq)=π(p¬q)=π(¬p¬q)= 1

● π(¬pq)= 0.1

pq p¬q ¬pq ¬p¬q
0

0.2
0.4
0.6
0.8
1.0
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A quick and incomplete summary

Imprecise
probability

Random sets
Belief functions

Possibility

Sets

Probability

Incompleteness tolerantAble to model variability
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Outline

● Basics

● Probabilities as bets

● Going beyond betting probabilities: why and how?

● Probability sets, a.k.a. credal sets

● Practical models and computations

● Decision with probability sets
❍ Example
❍ Ignorance, complete order
❍ Ignorance, partial orders
❍ Probability sets with illustration
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Decision setting

● Still a set X of states

● A set A of actions

● To each action a :X →R corresponds a mapping such that a(x) is
the reward/utility of performing a when x is true

● Possibly a set M modelling our knowledge about X

Decision problem (here): recommend one or multiple actions based on
our knowledge about the states in X
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Outline

● Basics

● Probabilities as bets

● Going beyond betting probabilities: why and how?

● Probability sets, a.k.a. credal sets

● Practical models and computations

● Decision with probability sets
❍ Example
❍ Ignorance, complete order
❍ Ignorance, partial orders
❍ Probability sets with illustration

Severe uncertainty reasoning 57



Basics Probabilities as bets Beyond proba. credal sets Practical models Credal decision
Example Ignorance, complete order Ignorance, partial orders Probability sets with illustration

An example

We want to cross a sea stretch:

● States: sea weather conditions

● Actions: type of transports
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States X

x1 =Calm sea x2 =Agitated sea x3 =Stormy weather

Actions A

a1 =Motor boat a2 =Catamaran a3 =Ferry boat
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The matrix U

x1 x2 x3

a1 12 0 −10
a2 −2 8 0
a3 1 5 10

Which action to choose?
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Outline

● Basics

● Probabilities as bets

● Going beyond betting probabilities: why and how?

● Probability sets, a.k.a. credal sets

● Practical models and computations

● Decision with probability sets
❍ Example
❍ Ignorance, complete order
❍ Ignorance, partial orders
❍ Probability sets with illustration
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Maximin: pessimistic behaviour

● For each action ai , compute u⋆(ai)=minj u(ai ,xj)

● Say that ak ≻Mm aℓ if u⋆(ak )> u⋆(aℓ)

x1 x2 x3 u⋆(ai)

a1 12 0 −10 −10
a2 −2 8 0 −2
a3 1 5 10 1

Max 1

● We get a3 ≻ a2 ≻ a1, hence a3 is recommended

● Pessimistic attitude: best action in the worst case
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Maximax: optimistic behaviour

● For each action ai , compute u⋆(ai)=maxj u(ai ,xj)

● Say that ak ≻MM aℓ if u⋆(ak )> u⋆(aℓ)

x1 x2 x3 u⋆(ai)

a1 12 0 −10 12
a2 −2 8 0 8
a3 1 5 10 10

Max 12

● We get a1 ≻ a3 ≻ a2, hence a1 is recommended

● Optimistic attitude: best action in the best case
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In-between: Hurwicz

● Pick a value α ∈ [0,1], called optimism index
● For ai , compute

uH(α)(ai)=αu⋆(ai)+ (1−α)u⋆(ak )

● Say that ak ≻α aℓ if uH(α)(ak )> uH(α)(aℓ)

x1 x2 x3 u⋆(ai) u⋆(ai) uH(0.5)(ai)

a1 12 0 −10 −10 12 1
a2 −2 8 0 −2 8 3
a3 1 5 10 1 10 5.5

Max 5.5

● We get a3 ≻ a2 ≻ a1, hence a3 is recommended
● Try to balance between optimistic and pessimistic
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Savage Minimax regret

● For action ai , compute R(ai ,xj)=maxk u(ak ,xj)−u(ai ,xj) the regret
of picking ai in xj , instead of the best possible action

● For ai , compute R⋆(ai)=maxj R(ai ,xj)

● Say that ak ≻R aℓ if R⋆(aℓ)>R⋆(ak )

x1 x2 x3 R⋆(ai)
a1 12 0 −10

R(a1) 0
a2 −2 8 0

R(a2)
a3 1 5 10

R(a3)
Min
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Savage Minimax regret

● For action ai , compute R(ai ,xj)=maxk u(ak ,xj)−u(ai ,xj) the regret
of picking ai in xj , instead of the best possible action

● For ai , compute R⋆(ai)=maxj R(ai ,xj)

● Say that ak ≻R aℓ if R⋆(aℓ)>R⋆(ak )

x1 x2 x3 R⋆(ai)
a1 12 0 −10

R(a1) 0 8
a2 −2 8 0

R(a2)
a3 1 5 10

R(a3)
Min
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Savage Minimax regret

● For action ai , compute R(ai ,xj)=maxk u(ak ,xj)−u(ai ,xj) the regret
of picking ai in xj , instead of the best possible action

● For ai , compute R⋆(ai)=maxj R(ai ,xj)

● Say that ak ≻R aℓ if R⋆(aℓ)>R⋆(ak )

x1 x2 x3 R⋆(ai)
a1 12 0 −10

R(a1) 0 8 20
a2 −2 8 0

R(a2)
a3 1 5 10

R(a3)
Min
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Savage Minimax regret

● For action ai , compute R(ai ,xj)=maxk u(ak ,xj)−u(ai ,xj) the regret
of picking ai in xj , instead of the best possible action

● For ai , compute R⋆(ai)=maxj R(ai ,xj)

● Say that ak ≻R aℓ if R⋆(aℓ)>R⋆(ak )

x1 x2 x3 R⋆(ai)
a1 12 0 −10

R(a1) 0 8 20 20
a2 −2 8 0

R(a2)
a3 1 5 10

R(a3)
Min
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Savage Minimax regret

● For action ai , compute R(ai ,xj)=maxk u(ak ,xj)−u(ai ,xj) the regret
of picking ai in xj , instead of the best possible action

● For ai , compute R⋆(ai)=maxj R(ai ,xj)

● Say that ak ≻R aℓ if R⋆(aℓ)>R⋆(ak )

x1 x2 x3 R⋆(ai)
a1 12 0 −10

R(a1) 0 8 20 20
a2 −2 8 0

R(a2) 14 0 10 14
a3 1 5 10

R(a3) 11 3 0 11
Min 11

● We get a3 ≻ a2 ≻ a1, hence a3 is recommended
● Minimize regret, but sensitive to addition of non-optimal alternatives
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Minimax regret vs maximin

Consider the following case:

x1 · · · x99 x100 R⋆(ai)

a1 10 · · · 10 1
R(a1)

a2 2 · · · 2 2
R(a2)

Min
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Minimax regret and irrelevant alternatives

Before: a3 ≻ a2 ≻ a1

x1 x2 x3 R⋆(ai)

a1 12 0 −10
R(a1)

a2 −2 8 0
R(a2)

a3 1 5 10
R(a3)

a4 −5 20 −20
R(a4)

Min

After a4:
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Complete ordering: summary

● Minimax=pessimistic [8]

● Maximax=optimistic

● Hurwicz=in-between [1]

● Savage=Minimizing felt regret [6]

Whatever the chosen rule, we always get one optimal action. But we
need to commit to a peculiar behaviour.

What if DM does not want to commit to peculiar behaviour?

What if DM wants to only know the actions that are potentially optimal,
given our uncertainty?
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Outline

● Basics

● Probabilities as bets

● Going beyond betting probabilities: why and how?

● Probability sets, a.k.a. credal sets

● Practical models and computations

● Decision with probability sets
❍ Example
❍ Ignorance, complete order
❍ Ignorance, partial orders
❍ Probability sets with illustration
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Lattice ordering

● Say that ak ⪰L aℓ if u⋆(ak )≥ u⋆(aℓ) and u⋆(ak )≥ u⋆(aℓ)

x1 x2 x3 u⋆(ai) u⋆(ai)

a1 12 0 −10 −10 12
a2 −2 8 0 −2 8
a3 1 5 10 1 10

a1

a2

a3

● Only existing dominance is a2 by a3, hence only a2 is considered
non-optimal

● Can be seen as a robust Hurwicz (considering all α as possibilities)

● Note that with this criterion, we eliminate the best action in state x2
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Lattice ordering and information monotonicity

x1 x2 x3 x4 u⋆(ai) u⋆(ai)

a 10 12 14 15 10 15
b 13 11 16 14 11 16

b ≻ a

All states possible
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Lattice ordering and information monotonicity

x1 x2 x3 x4 u⋆(ai) u⋆(ai)

a 10 12 14 15 12 15
b 13 11 16 14 11 16

b ≻≺ a

We learn (gain info) x1 impossible

a and b becomes incomparable.
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Lattice ordering and information monotonicity

x1 x2 x3 x4 u⋆(ai) u⋆(ai)

a 10 12 14 15 12 15
b 13 11 16 14 11 14

b ≺ a

We learn (gain info) x3 impossible

a is now preferred to b.
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Interval dominance

● Say that ak ≻ID aℓ if u⋆(ak )> u⋆(aℓ)

x1 x2 x3 u⋆(ai) u⋆(ai)

a1 12 0 −10 −10 12
a2 −2 8 0 −2 8
a3 1 5 10 1 10

a1

a2

a3

● no dominance at all

● overcautious criterion → may retain Pareto-dominated solutions
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Interval dominance: drawback example

● We add a fourth possible, expensive action a4=Helicopter

x1 x2 x3 u⋆(ai) u⋆(ai)

a1 12 0 −10 −10 12
a2 −2 8 0 −2 8
a3 1 5 10 1 10
a4 8 8 4 4 8

a1

a2a4

a3

● no dominance at all, even if a4 better (sometimes strictly) than a2 in
every situation!
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Difference dominance

● Say that ak ⪰D aℓ if u(ak ,xj)−u(aℓ,xj)≥ 0 for all xj (≻ if > 0 for at
least one xj )

x1 x2 x3

a1 12 0 −10
a2 −2 8 0
a3 1 5 10

a2 −a1 −14 8 10

a1

a2

a3

● no dominance at all, again

● do we have the same problem as with interval dominance?
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Difference comparison

● We add a fourth possible, expensive action a4=Helicopter

x1 x2 x3 u⋆(ai) u⋆(ai)

a1 12 0 −10 −10 12
a2 −2 8 0 −2 8
a3 1 5 10 1 10
a4 8 8 4 4 8

a4 −a2 10 0 4

a1

a2a4

a3
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So far. . .

Options when true state of the world completely unknown:
● Complete ordering/one top recommendation

❍ Maximin: pessimistic DM
❍ Maximax: optimistic DM
❍ Hurwicz: attempt to in-between

● Partial ordering/multiple recommendations reflecitng lack of
knowledge

❍ Lattice ordering: robust hurwicz, may miss potentially optimal actions
❍ Interval dominance: very conservative, may keep Pareto dominated

options
❍ Difference dominance: will keep every non-Pareto dominated solution
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Outline

● Basics

● Probabilities as bets

● Going beyond betting probabilities: why and how?

● Probability sets, a.k.a. credal sets

● Practical models and computations

● Decision with probability sets
❍ Example
❍ Ignorance, complete order
❍ Ignorance, partial orders
❍ Probability sets with illustration
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Previous decision rules adaptation

In general, replace u∗ by upper expectation P, u∗ by lower expectation P

Total order

● Maximax: a⪰MM b if P(a)≥P(b)

● Maximin: a⪰Mm b if P(a)≥P(b)

● Hurwicz: a⪰α b if αP(a)+ (1−α)P(a)≥αP(b)+ (1−α)P(b)

Partial order

● Interval dominance: a≻ID b if P(b)≤P(a)

● Lattice: a≻L b if P(b)≤P(a)∧P(b)≤P(a)

● Difference: a≻D b if P(a−b)≥ 0
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Difference dominance

Under knowledge P , action ak is better than aℓ if

P(ak −aℓ)= inf
p∈P

P(ak −aℓ),

that is if in average, we gain something when exchanging aℓ for ak

Special cases
● probabilities ≡ expected utility

● set ≡ difference dominance (filter out Pareto-dominated solutions)
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E-admissibility

● Previous rules use orderings between alternatives

● Another way: pick potentially optimal answers

● For a given set A of actions and a probability p, let

Opt(P,A )= argmax
a∈A

P(a)

● The E-admissible rule returns the set

OptE(M ,A )=∪P∈M Opt(P,A )
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Links between rules

Given ≻i , we denote Opt≻i (M ,A ) := {a ∈A : ̸ ∃a′ s.t. a′ ≻i a} its set of
maximal elements.

We have the following relations:

● a⪰ID b =⇒ a⪰D b =⇒ a⪰L b =⇒ a⪰α b ∀α
● OptE(M ,A )⊆Opt≻D(M ,A )⊆Opt≻ID(M ,A )

● Opt≻α
(M ,A )⊆Opt≻L(M ,A )⊆Opt≻D(M ,A )

As an exercice, prove the implications of the first line, and the first
inclusion of the second (other inclusions immediately follow from
implications).
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Back to Ellsberg

9 balls, 3 are reds, 6 remaining are either yellow or black

A

R(ed) B(lack) Y(ellow)
100 $ 0 $ 0$

B

R(ed) B(lack) Y(ellow)
0 $ 100 $ 0$

C

R(ed) B(lack) Y(ellow)
100 $ 0 $ 100$

D

R(ed) B(lack) Y(ellow)
0 $ 100 $ 100$

● What are the possible probability values? In terms of bounds over
each colour?

● Compute the lower/upper expectations for each act

● What kind of comparison explain the most frequent behaviour A≥B
but D ≥C?
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Back to Ellsberg

9 balls, 3 are reds, 6 remaining are either yellow or black

A

R(ed) B(lack) Y(ellow)
100 $ 0 $ 0$

B

R(ed) B(lack) Y(ellow)
0 $ 100 $ 0$

C

R(ed) B(lack) Y(ellow)
100 $ 0 $ 100$

D

R(ed) B(lack) Y(ellow)
0 $ 100 $ 100$
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Boat example

Agitated is the most likely state (p(x2)≥ p(x1) and p(x2)≥ p(x3) +
p(xi)≥ 0 +

∑
p(x)= 1). What is the associated credal set?
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Boat example

Agitated is the most likely state (p(x2)≥ p(x1) and p(x2)≥ p(x3) +
p(xi)≥ 0 +

∑
p(x)= 1)

x1 x2 x3 P(ai) P(ai)

a1 12 0 −10 −5 6
a2 −2 8 0
a3 1 5 10
a4 8 8 4

P(a1)= 0 ·12+0.5 ·0+0.5 ·−10=−5

P(a1)= 0.5 ·12+0.5 ·0+0 ·−10= 6
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Boat example

Agitated is the most likely state (p(x2)≥ p(x1) and p(x2)≥ p(x3) +
p(xi)≥ 0 +

∑
p(x)= 1)

x1 x2 x3 P(ai) P(ai)

a1 12 0 −10 −5 6
a2 −2 8 0 2 8
a3 1 5 10 3 7.5
a4 8 8 4 6 8

● Maximin: a4

● Maximax: a4

● Lattice ordering: a4 ≻ {a2,a3} ≻ a1

● Interval dominance: only a4 ≻ a1 (a2 still possibly optimal)

Severe uncertainty reasoning 85



Basics Probabilities as bets Beyond proba. credal sets Practical models Credal decision
Example Ignorance, complete order Ignorance, partial orders Probability sets with illustration

Example

Agitated is the most likely state (p(x2)≥ p(x1) and p(x2)≥ p(x3) +
p(xi)≥ 0 +

∑
p(x)= 1)

x1 x2 x3

a1 12 0 −10
a4 8 8 4

a4 −a1 −4 8 14
a1 a2

a4a3

P(a4 −a1)= 0.5 ·−4+0.5 ·8+0 ·−6= 2

In the example, difference dominance give a4 ≻ a2,a4 ≻ a1
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Example

Agitated is the most likely state (p(x2)≥ p(x1) and p(x2)≥ p(x3) +
p(xi)≥ 0 +

∑
p(x)= 1)

x1 x2 x3

a2 −2 8 0
a4 8 8 4

a4 −a2 6 0 4

a1 a2

a4a3

P(a4 −a2)≥ 0 because of Pareto-dominance

In the example, difference dominance give a4 ≻ a2,a4 ≻ a1
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Example

Agitated is the most likely state (p(x2)≥ p(x1) and p(x2)≥ p(x3) +
p(xi)≥ 0 +

∑
p(x)= 1)

x1 x2 x3

a3 1 5 10
a4 8 8 4

a4 −a3 7 3 −6
a3 −a4 −7 −3 6

a1 a2

a4a3

P(a4 −a3)= 0 ·7+0.5 ·3+0.5 ·−6=−1.5 and P(a3 −a4)=−5

In the example, difference dominance give a4 ≻ a2,a4 ≻ a1
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