

Decision under uncertainty

Sébastien Destercke

CNRS researcher, Laboratoire Heudiasyc, Compiègne

Master courses

Did I drink tea this morning?

Did I drink tea this morning?

You win 100 euros if I had tea this morning. What's the max you would bet on it?

Did I drink tea this morning?

You win 100 euros if I had tea this morning. What's the max you would bet on it?

You win 100 euros if I had no tea this morning. What's the max you would bet on it?

Did I drink tea this morning?

You win 100 euros if I had tea this morning. What's the max you would bet on it?

You win 100 euros if I had no tea this morning. What's the max you would bet on it?

Ok, now your neighbour can buy/sell as many tickets as he/she wants. His/her task is, if possible, to be sure to win money.

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets

Basic modelling

- The state X of the world
 - o take values in some (finite or not) set ${\mathscr X}$ of possible situations
 - \circ ${\mathscr X}$ assumed exhaustive and of sufficient granularity
 - is uncertainly known
- How to model our uncertainty about X?
 - o by probabilities → why???

Basic definitions

Basic tool

A probability distribution $p: \mathcal{X} \rightarrow [0,1]$ such that

- $p(x) \ge 0$
- $\sum_{x} p(x) = 1$

from which for any subset we have

- $P(A) = \sum_{x \in A} p(x)$
- $P(A) = 1 P(A^c)$: auto-dual

Example

Academic dice Assume a dice, we have $\mathcal{X} = \{1, 2, ..., 6\}$:

$$p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = 1/6$$

$$P({1,3,5}) = 1/6 + 1/6 + 1/6 = 1/2$$

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets

Three important guys

J. Von Neumann

B. De Finetti

All justify probabilities (and expected utilities) as uncertainty models without frequencies \rightarrow we will detail a bit how the second one does it

Probabilities as bets Beyond proba. credal sets Practical models Credal deci

An example

A gamble/ticket f, whose reward depends on who win the most sets in next Rolland Garros

Nadal f= -2

Ruud 10

Cilic

Djokovic 5

What price P(f) do you associate to this ticket?

Acceptable transaction

The price

is the "fair" price you associate to the ticket/gamble *f*:

• You would buy for any price $P(f) - \epsilon$, earning

$$f - (P(f) - \epsilon)$$

• You would sell for any price $P(f) + \epsilon$, earning

$$(P(f)+\epsilon)-f$$

→ how should a "rational" agent specify prices?

Transaction on an event

Remember the bet on tea?

Betting on an event A amounts to play the gamble

$$\mathbb{I}_A = \begin{cases} 1 & \text{if } A \text{ happens} \\ 0 & \text{else} \end{cases}$$

We can use A and \mathbb{I}_A interchangeably, i.e.

$$P(\mathbb{I}_A) = P(A)$$

Avoiding the dutch book¹

- A set of gambles f₁,..., f_n
- You set prices $P(f_1),...,P(f_n)$
- I can sell $(\lambda_i > 0)$ or buy $(\lambda_i < 0)$ to you any number of gambles
- You are irrational if there is a dutch book, i.e., a combination with

$$\sup_{x\in\mathscr{X}}\sum \lambda_i\Big(f_i(x)-P(f_i)\Big)<0,$$

meaning that whatever happens, you lose money.

• so, a **rational** agent should avoid sure losses when setting prices $P(f_1), ..., P(f_n)$

¹History unclear

Probabilities and expectations (exercices)

Do the following:

- Prove that if you are rational, then $\inf f \le P(f) \le \sup f$
- Prove that if you are rational, then P(f+g) = P(f) + P(g)
- Deduce that $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \emptyset$

A little bit more:

- Show that $\sum_{x \in \mathcal{X}} P(\{x\}) = 1$
- Show that $P(f) = \sum_{x \in \mathcal{X}} f(x) P(\{x\})$

Probabilities and expectations (exercices)

Do the following:

- Prove that if you are rational, then $\inf f \le P(f) \le \sup f$
- Prove that if you are rational, then P(f+g) = P(f) + P(g)
- Deduce that $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \emptyset$

A little bit more:

- Show that $\sum_{x \in \mathcal{X}} P(\lbrace x \rbrace) = 1$
- Show that $P(f) = \sum_{x \in \mathcal{X}} f(x) P(\{x\})$

The first and second properties/axioms are enough to characterize probabilities and expectations.

Wrap-up so far

Subjective probabilities²:

- Betting behaviour in terms of fair price reflect (can be used to measure) your knowledge about the world
- If you are rational, those bets should conform with probabilities and expected utilities
- Those bets can be given for all kinds of events, including those that will happen only once

Yet, maybe there is a little more to the story.

²Often taken as an interpretation for Bayesian approaches

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
 - Rationality
 - Some axiomatics
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets

Experimental protocol

- Half the room goes out
- The rest pick a choice
- We exchange (inside goes outside, and vice-versa)

Urns and balls: case 1

9 balls, 3 are reds, 6 remaining are either yellow or black

What would you choose between A and B?

Α

R(ed)	B(lack)	Y(ellow)
100 \$	0 \$	0\$

В

R(ed)	B(lack)	Y(ellow)
0\$	100 \$	0\$

Interlude during the change

Urns and balls: case 2

9 balls, 3 are reds, 6 remaining are either yellow or black

What would you choose between C and D?

C

R(ed)	B(lack)	Y(ellow)
100 \$	0 \$	100\$

R(ed)	B(lack)	Y(ellow)
0 \$	100 \$	100\$

Basics Probabilities as bets Beyond proba. credal sets Practical models Credal decis

An illustration of a possible use (more latter)

Is it a lioness? a cat? a puma? a bobcat?

Outline

Rationality Some axiomatics

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
 - Rationality
 - Some axiomatics
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets

Are buying and selling the same?

What if we considered that buying and selling prices for *f* modelling your knowledge could differ?

- For f, we now consider a maximal buying price $\underline{P}(f)$
- Meaning you would **buy** f for any price under $\underline{P}(f)$
- Any transaction $f (\underline{P}(f) \epsilon)$ is acceptable/desirable
- More formally:

$$\underline{P}(f) = \sup\{x \in \mathbb{R} : f - x \text{ is acceptable }\}$$

Why not caring about selling prices?

• $\overline{P}(f)$ is your minimal selling price for f:

$$\overline{P}(f) = \inf\{x \in \mathbb{R} : x - f \text{ is acceptable } \}$$

Yet, we do have³:

$$\underline{P}(f) = \sup\{x \in \mathbb{R} : f - x \text{ is acceptable }\}$$

$$= -\inf\{-x \in \mathbb{R} : f - x \text{ is acceptable }\}$$

$$= -\inf\{y \in \mathbb{R} : f + y \text{ is acceptable }\}$$

$$= -\inf\{y \in \mathbb{R} : y - (-f) \text{ is acceptable }\}$$

$$= -\overline{P}(-f)$$

By duality, we can only deal with buying prices.

³Note that it does not imply $\overline{P}(f) = \underline{P}(f)$

Being a rational agent: sure loss revisited

- A set of gambles $f_1, ..., f_n \in \mathcal{K}$
- **You** set prices $\underline{P}(f_1), \dots, \underline{P}(f_n)$
- I can sell⁴ ($\lambda_i > 0$) to you any number of gambles for these price or lower
- You are irrational and incur sure loss if there is a combination

$$\sup_{x \in \mathcal{X}, \lambda_i > 0} \sum \lambda_i \Big(f_i(x) - \underline{P}(f_i) \Big) < 0$$

- so, a **rational** agent should avoid sure loss when setting prices $\underline{P}(f_1), \dots, \underline{P}(f_n)$
- It is strictly weaker than previously.

⁴But not buy anymore

Back to tennis

 $f_{i} \qquad \qquad \mathbb{I}_{\{a\}}$ $\underline{P}(f_{i}) = \qquad \qquad 0.35$

Ruud (b) $\mathbb{I}_{\{b\}}$ 0.2

Cilic (c)

[{c}
0.3

Djokovic (d) $\mathbb{I}_{\{d\}}$ 0.2

Are those assessments rational? Why?

Being a reasoning agent: natural extension

- Assume prices <u>P</u>(f_i) avoid sure loss
- Consider a new gamble/function g
- What can I deduced about $\underline{P}(g)$ from $\underline{P}(f_i)$?
- The process of natural extension provides the answer:
 - Knowing that $f_i \underline{P}(f_i)$ are acceptable
 - Find the highest price $\underline{P}'(g)$ making $g \underline{P}'(g)$ acceptable
 - This amounts to solve

$$\underline{P}'(g) = \sup_{\alpha \in \mathbb{R}, \lambda_i \ge 0} \{\alpha : g - \alpha \ge \sum_i \lambda_i (f_i - \underline{P}(f_i))\}$$

- We know $g \alpha$ acceptable, because $\sum_i \lambda_i (f_i \underline{P}'(f_i))$ acceptable
- Applying this to f_i itself, I say that prices $\underline{P}(f_i)$ are **coherent** if

$$\underline{P}'(f_i) = \underline{P}(f_i), \quad \forall f_i$$

Tennis again, rational assessments

Nadal (a) $I_{\{a\}}$ $\underline{P}(f_i) =$ 0.35 [b,c,d] $\underline{P}(f_i) =$ 0.5

Cilic (c) []{c} 0.2 $\mathbb{I}_{\{a,b,d\}}$ 0.6

Djokovic (d) [{d} 0.2 $\mathbb{I}_{\{a,b,c\}}$

0.6

Are those assessments coherent? Why?

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
 - Rationality
 - Some axiomatics
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets

A bit of vocabulary

- $\underline{P}(f)$, $\overline{P}(f)$ often called **lower/upper previsions**,
- A rational $\underline{P}(f)$ is said to **avoid sure loss**
- <u>P</u>(f) that are deductively closed (= their natural extension) are called coherent
- When it is the case and for reasons that will become clear,, $\underline{P}(f)$, $\overline{P}(f)$ also called **lower/upper expectations**
- Similarly, $\underline{P}(\mathbb{I}_A) = \underline{P}(A)$ and $\overline{P}(\mathbb{I}_A) = \overline{P}(A)$ are called **lower/upper probabilities**

Coherence through betting on linear spaces

assume space K of gambles is linear

$$g, f \in \mathcal{K} \implies f + g \in \mathcal{K}$$

 $g \in \mathcal{K}, \alpha g \in \mathcal{K} \text{ for } \alpha \ge 0$

Then <u>P</u> is coherent if and only if

$$\underline{P}(f) \ge \inf f$$
 (sure bet)
 $\underline{P}(\lambda f) = \lambda \underline{P}(f)$ (positive homogeneity)
 $\underline{P}(f+g) \ge \underline{P}(f) + \underline{P}(g)$ (super-additivity)

 You get back De Finetti probabilities (a.k.a. linear previsions) if super-additivity becomes additivity

Coherence through desirability

- A gamble f is desirable if $\underline{P}(f) = 0$
- A set 𝒯 of desirable gambles is coherent if and only if

If
$$\sup f \le 0$$
, then $f \notin \mathcal{D}$, if $f > 0$, then $f \in \mathcal{D}$
If $f, g \in \mathcal{D}$, then $f + g \in \mathcal{D}$
If $f \in \mathcal{D}$, then $\lambda f \in \mathcal{D}$ if $\lambda \ge 0$

Mathematically, a set 𝒯 is coherent if it forms a cone.

Rationality Some axiomatics

Coherence through desirability

- A gamble f is desirable if $\underline{P}(f) = 0$
- A set 𝒯 of desirable gambles is coherent if and only if

If
$$\sup f \le 0$$
, then $f \notin \mathcal{D}$, if $f > 0$, then $f \in \mathcal{D}$
If $f, g \in \mathcal{D}$, then $f + g \in \mathcal{D}$
If $f \in \mathcal{D}$, then $\lambda f \in \mathcal{D}$ if $\lambda \ge 0$

Mathematically, a set 𝒯 is coherent if it forms a cone.

Coherence through probability sets (we will stick with that)

 We can interpret <u>P</u>(f) as a lower bound on expectation for probabilities, i.e.,

$$\underline{P}(f) \le P(f) = \sum_{x} p(x) f(x)$$

where p is a probability mass $(\sum p(x) = 1 \text{ and } p(x) \ge 0)$.

• Given $f_1, ..., f_n$ and $\underline{P}(f_i)$, we can define a set of dominating probabilities (a.k.a. credal sets)

$$\mathcal{M}(\underline{P}) = \{P : P(f) \ge \underline{P}(f)\}$$

- \underline{P} avoids sure loss if and only if $\mathcal{M}(\underline{P}) \neq \emptyset$
- \underline{P} is coherent if and only if for any f_i , we have

$$\underline{P}(f_i) = \inf_{P \in \mathcal{M}(\underline{P})} P(f_i)$$

that is if P is the lower enveloppe of \mathcal{M}

Thinking in terms of \mathcal{M}

If we start by specifying a set \mathcal{M} of probabilities:

- $\underline{P}(f_i)$ equivalent to provide expectation (linear operator) lower bounds
- Set 𝒯 of desirable gambles=set of random variables having positive lower expectation, i.e., <u>P</u>(f_i) = 0

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets

Probabilities

Probability mass on finite space $\mathcal{X} = \{x_1, ..., x_n\}$ equivalent to a n dimensional vector

$$p := (p(x_1), \ldots, p(x_n))$$

Limited to the set $\mathbb{P}_{\mathscr{X}}$ of all probabilities

$$p(x) > 0$$
, $\sum_{x \in \mathcal{X}} p(x) = 1$ and

The set $\mathbb{P}_{\mathscr{X}}$ is the (n-1)-unit simplex.

Point in unit simplex

Imprecise probability

Set \mathcal{M} defined as a set of n constraints

$$\underline{P}(f_i) \leq \sum_{x \in \mathcal{X}} f_i(x) p(x) \leq \overline{P}(f_i)$$

where $f_i : \rightarrow \mathbb{R}$ bounded functions

Example

$$p(x_2) - 2p(x_3) \ge 0$$

$$f(x_1) = 0, f(x_2) = 1, f(x_3) = -2, P(a) = 0$$

Lower/upper probabilities

Bounds $\underline{P}(A)$, $\overline{P}(A)$ on event A equivalent to

$$\underline{P}(A) \leq \sum_{x \in A} p(x) \leq \overline{P}(A)$$

Set \mathcal{M} example

$$p(x_2) \ge 2p(x_3) \Rightarrow p(x_2) - 2p(x_3) \ge 0$$

Credal set example

$$p(x_2) - 2p(x_3) \ge 0$$
$$p(x_1) \ge 1/3$$
$$\mathcal{M}$$

Usual alternative presentation: extreme points

•
$$p(x_1) = 1, p(x_2) = 0, p(x_3) = 0$$

•
$$p(x_1) = 1/3, p(x_2) = 2/3, p(x_3) = 0$$

•
$$p(x_1) = 1/3, p(x_2) = 4/9, p(x_3) = 2/9$$

Computing natural extension

• Given \mathcal{M} and a new function g, get

$$\underline{P}(g) = \inf_{P \in \mathcal{M}} P(g) \text{ or } \overline{P}(g) = \sup_{P \in \mathcal{M}} P(g)$$

• First way: linear programming using $\underline{P}(f_i)$

$$\underline{P}(g) = \min_{p(x)} \sum_{x \in \mathcal{X}} p(x)g(x)$$

under

$$\overline{P}(f_i) \ge \sum_{x \in \mathcal{X}} p(x) f_i(x) \ge \underline{P}(f_i)$$
$$\sum_{x \in \mathcal{X}} p(x) = 1, p(x) \ge 0$$

• Second way: compute $\sum_{x \in \mathcal{X}} p(x)g(x)$ for every extreme point, take the minimum

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets

Why looking at special cases?

- Lower previsions/expectations are quite expressive uncertainty models
- Their general use, especially in large spaces, may require heavy computation (linear optimisation in the best case, often more in complex problems⁵)
- Just as Gaussian makes probabilistic computations easier, so does focusing on specific lower previsions

⁵we will see some in the last courses

A first restriction: lower probabilities

- Lower previsions $\underline{P}(f_i)$ are defined for any function $f_i : \mathcal{X} \to \mathbb{R}$.
- Lower probabilities: focusing on events and considering $\underline{P}(A)$, i.e., restrict the space to $2^{\mathcal{X}}$.
- Upper probabilities are dual⁶:

$$\underline{P}(A) = 1 - \overline{P}(A)$$

Already include a LOT of models used in practice

⁶We can focus on one of the two

A second reduction: 2-monotonicity

A lower probability P() is 2-monotone if

$$\underline{P}(A \cup B) + \underline{P}(A \cap B) \ge \underline{P}(A) + \underline{P}(B)$$

Natural extension/lower expectation of g is given by Choquet integral

$$\underline{P}(g) = \sum_{i=1}^{N} (g(x_{(i)}) - g(x_{(i-1)})) \underline{P}(\{x_{(i)}, \dots, x_{(N)}\})$$

with () permutation such that $g(x_{(0)}) = 0, g(x_{(1)}) \le ... \le g(x_{(N)})$

 Generating extreme points is easy. Take a permutation () of {1,..., N} and compute for each i

$$p(x_{(i)}) = \underline{P}(\{x_{(i)}, \dots, x_{(N)}\}) - \underline{P}(\{x_{(i+1)}, \dots, x_{(N)}\}),$$

then p is an extreme point of \mathcal{M}

A very practical example: probability intervals

Given lower/upper previsions on the events {*x*},

$$\underline{P}(\{x\}), \overline{P}(\{x\})$$

Easy to check that $\mathcal{M}(\underline{P}) \neq \emptyset$:

$$\sum_{x} \underline{P}(\{x\}) \le 1, \sum_{x} \overline{P}(\{x\}) \ge 1$$

and to check that \underline{P} is coherent:

$$\forall y, \sum_{y \neq x} \underline{P}\big(\{x\}\big) + \overline{P}\big(\{y\}\big) \leq 1, \sum_{y \neq x} \overline{P}\big(\{x\}\big) + \underline{P}\big(\{y\}\big) \geq 1$$

A very practical example: probability intervals (cont.)

Natural extension to events very easy:

$$\underline{P}(A) = \max(\sum_{x \in A} \underline{P}(\{x\}), 1 - \sum_{x \notin A} \overline{P}(\{x\}))$$

$$\overline{P}(A) = \min(\sum_{x \in A} \overline{P}(\{x\}), 1 - \sum_{x \notin A} \underline{P}(\{x\}))$$

Interest: P can be proved to be 2-monotone

A simple example

Consider the following output of a (credal) classifier:

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄
$\overline{P}(\{x_i\})$ $\underline{P}(\{x_i\})$	0.3	0.4	0.1	0.5
$\underline{P}(\{x_i\})$	0.1	0.1	0	0.2

Does it avoids sure loss? Is it coherent?

What are the lower probabilities of the different events?

Can you compute the lower expectation of $a(x_1) = 2$, $a(x_2) = -3$, $a(x_3) = -1$, $a(x_4) = 5$?

A third reduction: belief functions

A belief function is a lower probability \underline{P} such that for any collection $\mathscr{A} = \{A_1, \dots, A_K \subseteq \mathscr{X}\}$ with $K \le 2^{\mathscr{X}}$, we do have

$$\underline{P}(\cup_{A_i\in\mathscr{A}}A_i)\geq \sum_{\mathscr{B}\subseteq\mathscr{A}}(-1)^{|\mathscr{B}|+1}\underline{P}(\cap_{A_i\in\mathscr{B}}A_i),$$

known as the property of complete (or ∞) monotonicity.

Side exercise: prove that a belief function is also 2-monotone⁷

Side bonus: everything we just said also applies to belief function

⁷In fact, if *P* is k-monotone, it is also (k-1)-monotone.

An interesting tool: Mobius inverse

The Möbius inverse⁸ $m: 2^{\mathscr{X}} \to \mathbb{R}$ of a given \underline{P} is

$$m(A) = \sum_{B \subseteq A} (-1)^{|A \setminus B|} \underline{P}(B),$$

and has some interesting properties when applied to belief functions:

• It is bijective with \underline{P} (true for any \underline{P}), as for any B

$$\underline{P}(B) = \sum_{A \subseteq B} m(A)$$

• For a new function g, $\underline{P}(g)$ can be computed⁹ as

$$\underline{P}(g) = \sum_{A \subseteq \mathscr{X}} m(A) \cdot \inf_{x \in A} g(x)$$

 m is positive (only true for belief functions) → can be seen as a random distribution over subsets → useful tool to simulate P

⁸Apply in fact to general posets

⁹also applies as long as <u>P</u> is 2-monotone

Example 1: frequencies of imprecise observations

Imprecise poll: "Who will win the next Wimbledon tournament?" \circ N(adal) \circ F(ederer) \circ D(jokovic) \circ M(urray) \circ O(ther)

```
60 % replied \{N, F, D\} \rightarrow m(\{N, F, D\}) = 0.6
```

15 % replied "I do not know"
$$\{N, F, D, M, O\} \rightarrow m(\mathcal{S}) = 0.15$$

10 % replied Murray
$$\{M\} \to m(\{M\}) = 0.1$$

5 % replied others
$$\{O\} \to m(\{O\}) = 0.05$$

. . .

Another frequentist one

Set of labellers replying between \circ L(ioness) \circ P(uma) \circ C(at) \circ O(celot)

- 25% reply $\{L, P\} \rightarrow m(\{L, P\}) = 0.2$
- 10% reply $\{L, P, O\} \rightarrow m(\{L, P, O\}) = 0.1$
- 15% reply $\{C, O, P\} \rightarrow m(\{C, O, P\}) = 0.15$
- 10% reply $\{L\} \to m(\{L\}) = 0.1$
- 40% reply {L, P, C, O} → m(𝒮) = 0.4

Assess how likely it is to be a lioness, according to opinions

Another frequentist one

Set of labellers replying between o L(ioness) o P(uma) o C(at) o O(celot)

- 25% reply $\{L, P\} \rightarrow m(\{L, P\}) = 0.2$
- 10% reply $\{L, P, O\} \rightarrow m(\{L, P, O\}) = 0.1$
- 15% reply $\{C, O, P\} \rightarrow m(\{C, O, P\}) = 0.15$
- 10% reply $\{L\} \to m(\{L\}) = 0.1$
- 40% reply $\{L, P, C, O\} \rightarrow m(\mathcal{S}) = 0.4$

Assess how likely it is to be a lioness, according to opinions

$$\underline{P}(\{L\}) = m(\{L\}) = 0.1$$

Another frequentist one

Set of labellers replying between \circ L(ioness) \circ P(uma) \circ C(at) \circ O(celot)

- 25% reply $\{L, P\} \rightarrow m(\{L, P\}) = 0.2$
- 10% reply $\{L, P, O\} \rightarrow m(\{L, P, O\}) = 0.1$
- 15% reply $\{C, O, P\} \rightarrow m(\{C, O, P\}) = 0.15$
- 10% reply $\{L\} \to m(\{L\}) = 0.1$
- 40% reply $\{L, P, C, O\} \rightarrow m(\mathcal{S}) = 0.4$

Assess how likely it is to be a lioness, according to opinions

$$\underline{P}(\{L\}) = m(\{L\}) = 0.1$$

$$\overline{P}(\{L\}) = m(\{L\}) + m(\{L, P, O\}) + m(\{L, P\}) + m(\mathscr{S}) = 0.85$$

Example 2: Imprecise Distributions [4]

A pair $[\underline{F}, \overline{F}]$ of cumulative distributions

Bounds over events $[-\infty, x]$

- · Percentiles by experts;
- Kolmogorov-Smirnov bounds;

Can be extended to any pre-ordered space [2], [8] ⇒ multivariate spaces!

Expert providing percentiles

$$0 \le P([-\infty, 12]) \le 0.2$$

$$0.2 \le P([-\infty, 24]) \le 0.4$$

$$0.6 \le P([-\infty, 36]) \le 0.8$$

A fourth reduction: possibility measure

A possibility measure is a maxitive upper probability \overline{P} :

$$\overline{P}(A \cup B) = \max{\{\overline{P}(A), \overline{P}(B)\}}$$

This has the following consequences:

• All information is encoded in $\overline{P}(\{x\})$, as

$$\overline{P}(A) = \max_{x \in A} \overline{P}(\{x\})$$

- The associated <u>P</u> is a belief function
- The sets receiving positive Möbius mass are nested (form a sequence of included sets)

A simple example

A set E of most plausible values A confidence degree $\alpha = \underline{P}(E)$ Two interesting cases:

- Expert providing most plausible values E
- E set of models of a formula ϕ

Both cases extend to multiple sets $E_1,...,E_p$:

- confidence degrees over nested sets [6]
- hierarchical knowledge bases
 [3]

pH value \in [4.5,5.5] with $\alpha = 0.8$ (~ "quite probable")

A simple example

A set E of most plausible values A confidence degree $\alpha = \underline{P}(E)$ Two interesting cases:

- Expert providing most plausible values E
- E set of models of a formula ϕ

Both cases extend to multiple sets $E_1,...,E_p$:

- confidence degrees over nested sets [6]
- hierarchical knowledge bases
 [3]

variables p, q $\Omega = \{pq, \neg pq, p \neg q, \neg p \neg q\}$ $\underline{P}(p \Rightarrow q) = 0.9$ (~ "almost certain") $E = \{pq, p \neg q, \neg p \neg q\}$

$$\pi(pq) = \pi(p \neg q) = \pi(\neg p \neg q) = 1$$

•
$$\pi(\neg pq) = 0.1$$

A quick and incomplete summary

Basics

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets
 - Probabilities
 - Ignorance, complete order
 - o Ignorance, partial orders
 - Probability sets with illustration

Decision setting

- Still a set X of states
- A set A of actions
- To each action $a: \mathcal{X} \to \mathbb{R}$ corresponds a mapping such that a(x) is the reward/utility of performing a when x is true
- Possibly a set M modelling our knowledge about X

Decision problem (here): recommend one or multiple actions based on our knowledge about the states in ${\mathscr X}$

An example

What we see when walking at night

- States: the kind of animal
- Actions: what you choose to do

States ${\mathscr X}$

$$x_1 = (L)$$
ioness $x_2 = (P)$ uma $x_3 = (C)$ at $x_4 = (O)$ celot

States \mathscr{X}

$$x_1 = (L)$$
ioness $x_2 = (P)$ uma $x_3 = (C)$ at $x_4 = (O)$ celot

$$a_1 = (R)un$$

States ${\mathscr X}$

$$x_1 = (L)$$
ioness $x_2 = (P)$ uma $x_3 = (C)$ at $x_4 = (O)$ celot

$$a_1 = (R)un$$
 $a_2 = (S)hout$

States ${\mathscr X}$

$$x_1 = (L)$$
ioness $x_2 = (P)$ uma $x_3 = (C)$ at $x_4 = (O)$ celot

$$a_1 = (R)un$$

$$a_2 = (S)$$
hou

$$a_1 = (R)un$$
 $a_2 = (S)hout$ $a_3 = (D)o$ nothing

The matrix $\mathscr U$

	L	Р	С	0
R	7	-3	3	5
S	-10	4	4	11
D	-5	-5	5	7

Which action to choose?

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets
 - Probabilities
 - Ignorance, complete order
 - o Ignorance, partial orders
 - Probability sets with illustration

A quick reminder of expected utility

- Set of states X
- Probability masses p(x) for each state
- Act/decision a maps each state to a utility

$$a: \mathscr{X} \to \mathbb{R}$$

Expected utility of a

$$P(a) = \sum_{x} p(x) a(x)$$

An easy decision rule

One possible interpretation: P(a) is your price/value¹⁰ of act a, then

$$a > b$$
 if and only if $P(a) > P(b)$

that is, you would "spend" more to buy a than b.

¹⁰In a linear utility. Quique, que es muy elegante y intelligente, explained it yesterday.

Three important guys

L. Savage [7]

J. Von Neumann [9]

B. De Finetti [5]

All justify probabilities (and expected utilities) as uncertainty models without frequencies.

An example

This looks like a big animal, so more a puma or lioness than a cat or ocelot (P(L) = P(P) = 0.3, P(C) = P(O) = 0.2)

	L	Р	С	0	P(a)
_	_	_		_	
R	/	-3	3	5	2.8
S	-10	4	4	11	
D	-5	-5	5	7	
Max					

$$P(R) = 0.3 \cdot 7 + 0.3 \cdot -3 + 0.2 \cdot 3 + 0.2 \cdot 5 = 2.8$$

An example

This looks like a big animal, so more a puma or lioness than a cat or ocelot (P(L) = P(P) = 0.3, P(C) = P(O) = 0.2)

	L	Р	С	0	P(a)
R	7	-3	3	5	2.8
S	-10	4	4	11	1.2
D	-5	-5	5	7	-0.6
Max					2.8

$$R \succ_P S \succ_P D$$

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets
 - Probabilities
 - Ignorance, complete order
 - o Ignorance, partial orders
 - Probability sets with illustration

Maximin: pessimistic behaviour

- For each action a_i , compute $\underline{P}(a_i) = \min_{x_i \in \mathcal{X}} a_i(x_i)$
- Say that $a_k >_{Mm} a_\ell$ if $\underline{P}(a_k) > \underline{P}(a_\ell)$

	L	Р	С	0	<u>P</u> (a)
_					
R	7	-3	3	5	-3
$\overset{\smile}{\mathcal{S}}$	-10	4	4	11	-10
D	-5	-5	5	7	-5
Мах					-3

- We get $R >_{Mm} D >_{Mm} S$, hence R is recommended
- Pessimistic attitude: best action in the worst case

Why (not) maximin?

Pros:

- Provide strong guarantees on selected option
- Is very-well studied in the literature

Cons:

- Can be very conservative
- Selected option may be suboptimal in all cases

			L	Р	С	0	<u>P</u> (a)
	R		7	-3	3	5	-3
	S	_	10	4	4	11	-10
	D	-	-5	-5	5	7	-5
	K	-	-2	-2	-2	-2	-2
-/	Мах						(-2)

K never the best solution!

Maximax: optimistic behaviour

- For each action a_i , compute $\overline{P}(a_i) = \max_{x_j \in \mathcal{X}} a_i(x_j)$
- Say that $a_k >_{MM} a_\ell$ if $\overline{P}(a_k) > \overline{P}(a_\ell)$

	L	Р	С	0	$\overline{P}(a)$
R	7	-3	3	5	7
\bigcirc	-10	4	4	11	11
D	-5	-5	5	7	7
Мах					11

- We get $S \succ_{MM} D \approx_{MM} R$, hence S is recommended
- Optimistic attitude: best action in the best case

Why (not) maximax?

Pros:

- Often computationally easier (max/max problem)
- Solution always potentially optimal

Cons:

- May be rather bold (and in our case your last decision)
- Do not provide strong guarantees on reward

In-between: Hurwicz

- Pick a value $\alpha \in [0, 1]$, called optimism index
- For a_i, compute

$$u_{H(\alpha)}(a_i) = \alpha \overline{P}(a_i) + (1 - \alpha)\underline{P}(a_k)$$

• Say that $a_k \succ_{\alpha} a_\ell$ if $u_{H(\alpha)}(a_k) > u_{H(\alpha)}(a_\ell)$

	L	Р	С	0	<u>P</u> (a _i)	$P(a_i)$	$u_{H(0.5)}(a_i)$
\bigcirc R	7	-3	3	5	-3	7	2
S	-10	4	4	11	-10	11	0.5
D	-5	-5	5	7	-5	7	1
Max							2

- We get $R >_{H(0.5)} D >_{H(0.5)} S$, hence R is recommended
- Try to balance between optimistic and pessimistic

Why (not) Hurwicz

Pros:

- Try to find a compromise between minimax/maximax
- Well-axiomatised

Cons:

- None of the guarantees of minimax/maximax
- All their defaults, but to a lesser extent
- Operational elicitation of α challenging

- For action a_i , compute $Re(a_i, x_j) = \max_{a_k \in \mathscr{A}} a_k(x_j) a_i(x_j)$ the regret of picking a_i in x_j , instead of the best possible action
- For a_i , compute $Re^*(a_i) = \max_j Re(a_i, x_j)$
- Say that $a_k \succ_{Re} a_\ell$ if $Re^*(a_\ell) > Re^*(a_k)$

	L	P	С	0	$Re^*(a_i)$
R	7	-3	3	5	
Re(R)	0				
S	-10	4	4	11	
Re(S)					
D	-5	-5	5	7	
Re(D)					
Min					

- For action a_i , compute $Re(a_i, x_j) = \max_{a_k \in \mathcal{A}} a_k(x_j) a_i(x_j)$ the regret of picking a_i in x_j , instead of the best possible action
- For a_i , compute $Re^*(a_i) = \max_j Re(a_i, x_j)$
- Say that $a_k \succ_{Re} a_\ell$ if $Re^*(a_\ell) > Re^*(a_k)$

	L	P	С	0	$Re^*(a_i)$
R	7	-3	3	5	
Re(R)	0	7			
S	-10	4	4	11	
Re(S)					
D	-5	-5	5	7	
Re(D)					
Min					

- For action a_i , compute $Re(a_i, x_j) = \max_{a_k \in \mathcal{A}} a_k(x_j) a_i(x_j)$ the regret of picking a_i in x_j , instead of the best possible action
- For a_i , compute $Re^*(a_i) = \max_j Re(a_i, x_j)$
- Say that $a_k >_{Re} a_\ell$ if $Re^*(a_\ell) > Re^*(a_k)$

	L	Р	С	0	$Re^*(a_i)$
R	7	-3	3	5	
Re(R)	0	7	2	6	7
S	-10	4	4	11	
Re(S)					
D	-5	-5	5	7	
Re(D)					
Min					

- For action a_i , compute $Re(a_i, x_j) = \max_{a_k \in \mathscr{A}} a_k(x_j) a_i(x_j)$ the regret of picking a_i in x_j , instead of the best possible action
- For a_i , compute $Re^*(a_i) = \max_j Re(a_i, x_j)$
- Say that $a_k >_{Re} a_\ell$ if $Re^*(a_\ell) > Re^*(a_k)$

	L	Ρ	С	0	$Re^*(a_i)$
R	7	-3	3	5	
Re(R)	0	7	2	6	7
S	-10	4	4	11	
Re(S)	17	0	1	0	17
D	-5	-5	5	7	
Re(D)	12	9	0	4	12
Min					

- For action a_i , compute $Re(a_i, x_j) = \max_{a_k \in \mathscr{A}} a_k(x_j) a_i(x_j)$ the regret of picking a_i in x_j , instead of the best possible action
- For a_i , compute $Re^*(a_i) = \max_j Re(a_i, x_j)$
- Say that $a_k >_{Re} a_\ell$ if $Re^*(a_\ell) > Re^*(a_k)$

	L	Ρ	C	0	$Re^*(a_i)$
R	7	-3	3	5	
Re(R)	0	7	2	6	7
S	-10	4	4	11	
Re(S)	17	0	1	0	17
Ď	-5	-5	5	7	
Re(D)	12	9	0	4	12
Min					7

- We get $R >_{Re} D >_{Re} S$, hence R is recommended
- Minimize regret, but sensitive to addition of non-optimal alternatives

Minimax regret vs maximin

Consider the following case:

	<i>x</i> ₁	• • •	<i>X</i> 99	<i>x</i> ₁₀₀	$R^*(a_i)$	<u>P</u> (a₁)
a ₁	10	• • •	10	1		
$R(a_1)$						
R(a ₁) a ₂	2		2	2		
$R(a_2)$						
Min						

Minimax regret vs maximin

Consider the following case:

	<i>X</i> ₁	•••	<i>X</i> 99	<i>x</i> ₁₀₀	$R^*(a_i)$	<u>P</u> (a _i)
a ₁	10		10	1		1
$R(a_1)$	0	• • •	0	1	1	
a_2	2	• • •	2	2		2
$R(a_2)$	8	• • •	8	0	8	
Min					1	2

• Maximin: a2

Minimax regret: a₁

Minimax regret and irrelevant alternatives

Before: $R >_{Re} D >_{Re} S$

Now I get (A)nti-puma!

	L	P	С	0	Re*(a _i)
R	7	-3	3	5	
Re(R)					
S	-10	4	4	11	
Re(S)					
Ď	-5	-5	5	7	
Re(D)					
Ä	-15	15	-2	0	
Re(A)					
Min					

After A is possible:

Minimax regret and irrelevant alternatives

Before: $R >_{Re} D >_{Re} S$

Now I get (A)nti-puma!

	L	Р	С	0	Re*(a _i)
R	7	-3	3	5	
Re(R)	0	18	2	6	18
S	-10	4	4	11	
Re(S)	17	11	1	0	17
D	-5	-5	5	7	
Re(D)	12	10	0	4	12
A	-15	15	-2	0	
Re(A)	22	0	5	11	22
Min					12

After A is possible: $D >_{Re} S >_{Re} R >_{Re} A$ (change on preferences not involving A)

Complete ordering: summary

- Minimax=pessimistic [10]
- Maximax=optimistic
- Hurwicz=in-between [1]
- Savage=Minimizing felt regret [7]

Whatever the chosen rule, we always get one optimal action. But we need to commit to a peculiar behaviour.

What if DM does not want to commit to peculiar behaviour?

What if DM wants to only know the actions that are potentially optimal, given our uncertainty?

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets
 - Probabilities
 - Ignorance, complete order
 - o Ignorance, partial orders
 - Probability sets with illustration

Lattice ordering

• Say that $a_k \succeq_L a_\ell$ if $\overline{P}(a_k) \succeq \overline{P}(a_\ell)$ and $\underline{P}(a_k) \succeq \underline{P}(a_\ell)$

R 7 -3 3 5 -3 7 S -10 4 4 11 -10 11		L	Р	С	0	<u>P</u> (a _i)	$\overline{P}(a_i)$
S -10 4 4 11 -10 11		_			_	_	_
	R	7	-3	3	5	-3	7
$D \mid -5 -5 5 7 \mid -5 7$	S	-10	4	4	11	-10	11
$D \mid -3 -3 \ 3 \ 1 \mid -3 \ 1$	D	-5	-5	5	7	-5	7

- Only existing dominance is D by R, hence only D is considered non-optimal
- ullet Can be seen as a robust Hurwicz (considering all lpha as possibilities)
- Note that with this criterion, we eliminate the best action in state C
- This rule looks good, why should I not use it?

Information-monotonic preferences

Principle

A (partial) decision rule is information monotonic if gaining more information can only refine our current preferences

Definition for imprecise information

A decision rule \succeq is information monotonic if for any pair of actions a, b and for $E' \subseteq E$, we have

$$(E \Longrightarrow a \succeq b) \Longrightarrow (E' \Longrightarrow a \succeq b),$$

meaning that the preference relation can only be refined by getting more precise

Lattice ordering and information monotonicity

	<i>x</i> ₁	<i>X</i> ₂	<i>x</i> ₃	<i>x</i> ₄	$\underline{P}(a_i)$	$\overline{P}(a_i)$
а	10	12	14	15	10	15
b	13	11	16	14	10 11	16

b > a

All states possible

Lattice ordering and information monotonicity

		X T	<i>X</i> ₂	<i>X</i> 3	<i>x</i> ₄	<u>P</u> (a _i)	$\overline{P}(a_i)$
a 10 12 14 15 12 15 b 13 11 16 14 11 16	a b						15

We learn (gain info) x_1 impossible a and b becomes incomparable.

Lattice ordering and information monotonicity

	X T	<i>X</i> ₂	X 3	<i>x</i> ₄	<u>P</u> (a _i)	$\overline{P}(a_i)$
a b					12 11	15 14

We learn (gain info) x_3 impossible a is now preferred to b.

Refining Pareto

Principle

A (partial) decision rule refines Pareto if it ensures that its preference order refines Pareto dominance

Definition for imprecise information

A decision rule \geq refines Pareto if for any pair of actions a, b

$$a \succeq_P b \Longrightarrow a \succeq b$$
,

where \succeq_P is Pareto dominance

Interval dominance

• Say that $a_k >_{ID} a_\ell$ if $\underline{P}(a_k) > \overline{P}(a_\ell)$

	L	Р	С	0	<u>P</u> (a _i)	$\overline{P}(a_i)$
R	7	-3	3	5	-3	7
S	-10	4	4	11	-10	11
D	-5	-5	5	7	-5	7

(s)

D

- no dominance at all
- overcautious criterion → may retain Pareto-dominated solutions

Interval dominance: drawback example

• We add a fourth possible action Pe=Pet the animal

	L	Р	С	0	<u> </u>	$\overline{P}(a_i)$
R	7	-3	3	5	-3	7
S	-10	4	4	11	-10	11
D	-5	-5	5	7	-5	7
Pe	-5	-5	2	-5	-5	2

- no dominance, all intervals intersect
- even if D better (sometimes strictly) than Pe in every situation!

Difference dominance

• Say that $a_k \succeq_D a_\ell$ if $a_k(x_j) - a_\ell(x_j) \ge 0$ for all x_j (> if > 0 for at least one x_j)

	L	Ρ	С	0
R	7	-3	3	5
S	-10	4	4	11
D	-5	-5	5	7
R-S	17	-7	-1	-6

- no dominance at all, again
- do we have the same problem as with interval dominance?

Difference comparison

• We add a fourth possible action Pe=Pet the animal

	L	Р	С	0
R	7	-3	3	5
S	-10	4	4	11
D	-5	-5	5	7
Pe	-5	-5	2	-5
D – Pe	0	0	3	12

• In the ignorance case, exactly Pareto ordering!

So far...

Options when true state of the world completely unknown:

- Complete ordering/one top recommendation
 - Maximin: pessimistic DM
 - Maximax: optimistic DM
 - Hurwicz: attempt to in-between
 - Regret minimax: pessimistic DM w.r.t. regret
- Partial ordering/multiple recommendations refleciting lack of knowledge
 - Lattice ordering: robust hurwicz, may miss potentially optimal actions
 - Difference dominance: will keep every non-Pareto dominated solution
 - Interval dominance: very conservative, may keep Pareto dominated options

A summary of the different rules

Property	> _{Mm}	> _{MM}	\succ_R	$\succ_{H(\alpha)}$	\succ_L	\succ_D	> _{ID}
Complete	✓	✓	√	√	Х	Х	Х
Reco possibly optimal	<i>x</i> *	\checkmark	χ^*	<i>x</i> *	\checkmark	\checkmark	\checkmark
Guaranteed value	\checkmark	X	\checkmark	X	N.A.	N.A.	N.A.
a > b depends only on a, b	\checkmark	\checkmark	Χ	\checkmark	\checkmark	\checkmark	\checkmark
Refines Pareto	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	X
Information monotonic	X	X	X	X	X	\checkmark	\checkmark

We also have $\succ_L \subseteq \succ_D \subseteq \succ_{ID}$, going from the most precise to the least

^{*} Not guaranteed to be.

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets
 - Probabilities
 - Ignorance, complete order
 - o Ignorance, partial orders
 - Probability sets with illustration

Previous decision rules adaptation

In general, replace u^* by upper expectation \overline{P} , u_* by lower expectation \underline{P} . Total order

- Maximax: $a \succeq_{MM} b$ if $\overline{P}(a) \ge \overline{P}(b)$
- Maximin: $a \succeq_{Mm} b$ if $\underline{P}(a) \ge \underline{P}(b)$
- Hurwicz: $a \succeq_{\alpha} b$ if $\alpha \overline{P}(a) + (1 \alpha)\underline{P}(a) \ge \alpha \overline{P}(b) + (1 \alpha)\underline{P}(b)$

Partial order

- Interval dominance: $a >_{ID} b$ if $\overline{P}(b) \leq \underline{P}(a)$
- Lattice: $a >_L b$ if $\overline{P}(b) \le \overline{P}(a) \land \underline{P}(b) \le \underline{P}(a)$
- Difference: $a >_D b$ if $\underline{P}(a-b) \ge 0$

Difference dominance

Under knowledge \mathscr{P} , action a_k is better than a_ℓ if

$$\underline{P}(a_k-a_\ell)=\inf_{p\in\mathscr{P}}P(a_k-a_\ell),$$

that is if in average, we gain something when exchanging a_{ℓ} for a_k

Special cases

- probabilities = expected utility
- set ≡ difference dominance (filter out Pareto-dominated solutions)

E-admissibility

- Previous rules use orderings between alternatives
- Another way: pick potentially optimal answers
- For a given set \mathscr{A} of actions and a probability p, let

$$Opt(P, \mathscr{A}) = \arg\max_{a \in \mathbb{A}} P(a)$$

The E-admissible rule returns the set

$$Opt_E(\mathcal{M}, \mathcal{A}) = \cup_{P \in \mathcal{M}} Opt(P, \mathcal{A})$$

Links between rules

Given \succ_i , we denote $Opt_{\succ_i}(\mathcal{M}, \mathcal{A}) := \{a \in \mathbb{A} : \exists a' \text{ s.t. } a' \succ_i a\}$ its set of maximal elements.

We have the following relations:

- $a \succeq_{ID} b \Longrightarrow a \succeq_{D} b \Longrightarrow a \succeq_{L} b \Longrightarrow a \succeq_{\alpha} b \quad \forall \alpha$
- $Opt_{E}(\mathcal{M}, \mathcal{A}) \subseteq Opt_{\succ_{D}}(\mathcal{M}, \mathcal{A}) \subseteq Opt_{\succ_{ID}}(\mathcal{M}, \mathcal{A})$
- $Opt_{\succ_{\alpha}}(\mathcal{M}, \mathcal{A}) \subseteq Opt_{\succ_{L}}(\mathcal{M}, \mathcal{A}) \subseteq Opt_{\succ_{D}}(\mathcal{M}, \mathcal{A})$

As an exercice, prove the implications of the first line, and the first inclusion of the second (other inclusions immediately follow from implications).

Back to Ellsberg

9 balls, 3 are reds, 6 remaining are either yellow or black

Α

R(ed)	B(lack)	Y(ellow)
100 \$	0 \$	0\$

В

R(ed)	B(lack)	Y(ellow)
0 \$	100 \$	0\$

(

R(ed)	B(lack)	Y(ellow)
100 \$	0 \$	100\$

D

R(ed)	B(lack)	Y(ellow)
0\$	100 \$	100\$

- What are the possible probability values? In terms of bounds over each colour?
- Compute the lower/upper expectations for each act
- What kind of comparison explain the most frequent behaviour A ≥ B but D ≥ C?

A more elaborate example

Set of labellers replying between

◦ L(ioness) ◦ P(uma) ◦ C(at) ◦ O(celot)

- 20% reply $\{L, P\} \rightarrow m(\{L, P\}) = 0.2$
- 10% reply {L, P, O} → m({L, P, O}) = 0.1
- 15% reply $\{C, O, P\} \rightarrow m(\{C, O, P\}) = 0.15$
- 10% reply $\{L\} \rightarrow m(\{L\}) = 0.1$
- 40% reply $\{L, P, C, O\} \rightarrow m(\mathcal{S}) = 0.4$

Is *R* better than *S*, or the other way around?

	L	Р	С	0
Run	7	-3	3	5
Shout	-10	4	4	11
Do nothing	-5	-5	5	7

•
$$m(\{L, P\}) = 0.2$$

•
$$m(\{L, P, O\}) = 0.1$$

•
$$m({C, O, P}) = 0.15$$

•
$$m(\{L\}) = 0.1$$

•
$$m(\mathscr{S}) = 0.4$$

Evaluation: averaging utility + attitude (pessimist/optimist/robust)

Is R better than S, or the other way around?

	L	Р	С	0
Run	7	-3	3	5
Shout	-10	4	4	11
Do nothing	-5	-5	5	7

•
$$m(\{L, P\}) = 0.2$$

•
$$m(\{L, P, O\}) = 0.1$$

•
$$m({C, O, P}) = 0.15$$

•
$$m(\{L\}) = 0.1$$

•
$$m(\mathcal{S}) = 0.4$$

Evaluation: averaging utility + attitude (pessimist/optimist/robust)

$$\underline{P}(Run) = 0.2 \times -3 + 0.1 \times -3 + 0.15 \times -3 + 0.1 \times 7 + 0.4 \times -3 = -2$$

$$\underline{P}(Shout) = 0.2 \times -10 + 0.1 \times -10 + 0.15 \times 4 + 0.1 \times -10 + 0.4 \times -10 = -7.9$$
Seems better to Run than Shout

Is R better than S, or the other way around?

	L	Р	С	0
Run	7	-3	3	5
Shout	-10	4	4	11
Do nothing	-5	-5	5	7

•
$$m(\{L, P\}) = 0.2$$

•
$$m(\{L, P, O\}) = 0.1$$

•
$$m({C, O, P}) = 0.15$$

•
$$m(\{L\}) = 0.1$$

•
$$m(\mathscr{S}) = 0.4$$

Evaluation: averaging utility + attitude (pessimist/optimist/robust)

$$\overline{P}(Run) = 0.2 \times 7 + 0.1 \times 7 + 0.15 \times 5 + 0.1 \times 7 + 0.4 \times 7 = 6.7$$

 $\overline{P}(Shout) = 0.2 \times 4 + 0.1 \times 11 + 0.15 \times 11 + 0.1 \times -10 + 0.4 \times 11 = 6.95$
Seems better to Shout than Run

Is R better than S, or the other way around?

	L	Р	С	0
Run	7	-3	3	5
Shout	-10	4	4	11
Do nothing	-5	-5	5	7

•
$$m(\{L, P\}) = 0.2$$

•
$$m(\{L, P, O\}) = 0.1$$

•
$$m({C, O, P}) = 0.15$$

•
$$m(\{L\}) = 0.1$$

•
$$m(\mathscr{S}) = 0.4$$

Evaluation: averaging utility + attitude (pessimist/optimist/robust)

$$[\underline{P}(Run), \overline{P}(Run)] = [-2, 6.7]$$
$$[\underline{P}(Shout), \overline{P}(Shout)] = [-7.9, 6.95]$$

Not entirely clear what is the best (as Puma and Lion are both likely)

References I

- [1] K. J. Arrow and L. Hurwicz.
 - An optimality criterion for decision-making under ignorance.

Uncertainty and expectations in economics, pages 1-11, 1972.

- [2] S. Destercke, D. Dubois, and E. Choinacki,
 - Unifying practical uncertainty representations: I generalized p-boxes. *Int. J. of Approximate Reasoning*, 49:649–663, 2008.
- [3] D. Dubois and H. Prade.
 - Possibilistic logic: a retrospective and prospective view.

Fuzzy Sets and Systems, 144(1):3 – 23, 2004.

- [4] S. Ferson, L. Ginzburg, V. Kreinovich, D. Myers, and K. Sentz. Constructing probability boxes and dempster-shafer structures. Technical report, Sandia National Laboratories, 2003.
- [5] B. Finetti.
 - Theory of probability, volume 1-2.

Wiley, NY, 1974.

Translation of 1970 book.

- [6] S. Sandri, D. Dubois, and H. Kalfsbeek.
 - Elicitation, assessment and pooling of expert judgments using possibility theory.

IEEE Trans. on Fuzzy Systems, 3(3):313-335, August 1995.

- [7] L. J. Savage.
 - The theory of statistical decision.

Journal of the American Statistical association, 46(253):55-67, 1951.

References II

- [8] M. C. M. Troffaes and S. Destercke.
 Probability boxes on totally preordered spaces for multivariate modelling.
 Int. J. Approx. Reasoning, 52(6):767–791, 2011.
- J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Princeton University Press, 1944.
- [10] A. Wald. Statistical decision functions. 1950.

