Reasoning under severe uncertainty: lecture 1

Sébastien Destercke

CNRS researcher, Laboratoire Heudiasyc, Compiègne

AOS4 master courses

A simple example

How would you model your knowledge about my height?

A simple example

How would you model your knowledge about my height?
About whether I am taller than 1.85 m ? ($\mathrm{A}=[1.85,3]$)

2

A simple example

How would you model your knowledge about my height?
About whether I am taller than 1.85 m ? ($\mathrm{A}=[1.85,3]$)
How much would you give to play a game where you win 10 euros if A is true?

A simple example

How would you model your knowledge about my height?
About whether I am taller than 1.85 m ? ($\mathrm{A}=[1.85,3]$)
How much would you give to play a game where you win 10 euros if A is true?

How much would you give to play a game where you win 10 euros if $B=[2,3]$ is true?

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets
utc
Uiverobide Tactinologe
Compitgne

Basic modelling

- The state X of the world
- take values in some (finite or not) set \mathscr{X} of possible situations
- \mathscr{X} assumed exhaustive and of sufficient granularity
o is uncertainly known
- How to model our uncertainty about X ?
- by probabilities \rightarrow why???

Basic definitions

Basic tool

A probability distribution $p: \mathscr{X} \rightarrow[0,1]$ such that

- $p(x) \geq 0$
- $\sum_{x} p(x)=1$
from which for any subset we have
- $P(A)=\sum_{x \in A} p(x)$
- $P(A)=1-P\left(A^{c}\right)$: auto-dual

Example

Academic dice Assume a dice, we have $\mathscr{X}=\{1,2, \ldots, 6\}$:

$$
\begin{gathered}
p(1)=p(2)=p(3)=p(4)=p(5)=p(6)=1 / 6 \\
P(\{1,3,5\})=1 / 6+1 / 6+1 / 6=1 / 2
\end{gathered}
$$

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets

6

Three important guys

L. Savage

J. Von Neumann

B. De Finetti

All justify probabilities (and expected utilities) as uncertainty models without frequencies \rightarrow we will detail a bit how the second one does it

An example

A gamble/ticket f, whose reward depends on who win the most sets in next Rolland Garros

Nadal
$\mathrm{f}=$

Ruud
10

Cilic
0

Djokovic
5

What price $P(f)$ do you associate to this ticket?

Acceptable transaction

The price

$$
P(f)
$$

is the "fair" price you associate to the ticket/gamble f :

- You would buy for any price $P(f)-\epsilon$, earning

$$
f-(P(f)-\epsilon)
$$

- You would sell for any price $P(f)+\epsilon$, earning

$$
(P(f)+\epsilon)-f
$$

\rightarrow how should a "rational" agent specify prices?

Transaction on an event

Remember the bet on $A=[1.85,3]$?
Betting on an event A amounts to play the gamble

$$
\mathbb{a}_{A}= \begin{cases}1 & \text { if } A \text { happens } \\ 0 & \text { else }\end{cases}
$$

We can use A and \square_{A} interchangeably, i.e.

$$
P\left(\mathbb{D}_{A}\right)=P(A)
$$

Avoiding the dutch book ${ }^{1}$

- A set of gambles f_{1}, \ldots, f_{n}
- You set prices $P\left(f_{1}\right), \ldots, P\left(f_{n}\right)$
- I can sell $\left(\lambda_{i}>0\right)$ or buy $\left(\lambda_{i}<0\right)$ to you any number of gambles
- You are irrational if there is a dutch book, i.e., a combination with

$$
\sup _{x \in \mathscr{\mathscr { C }}} \sum \lambda_{i}\left(f_{i}(x)-P\left(f_{i}\right)\right)<0,
$$

meaning that whatever happens, you lose money.

- so, a rational agent should avoid sure losses when setting prices $P\left(f_{1}\right), \ldots, P\left(f_{n}\right)$

Probabilities and expectations (exercices)

Do the following:

- Prove that if you are rational, then $\inf f \leq P(f) \leq \sup f$
- Prove that if you are rational, then $P(f+g)=P(f)+P(g)$
- Deduce that $P(A \cup B)=P(A)+P(B)$ if $A \cap B=\varnothing$

A little bit more:

- Show that $\sum_{x \in \mathscr{X}} P(\{x\})=1$
- Show that $P(f)=\sum_{x \in \mathscr{X}} f(x) P(\{x\})$

Probabilities and expectations (exercices)

Do the following:

- Prove that if you are rational, then $\inf f \leq P(f) \leq \sup f$
- Prove that if you are rational, then $P(f+g)=P(f)+P(g)$
- Deduce that $P(A \cup B)=P(A)+P(B)$ if $A \cap B=\varnothing$

A little bit more:

- Show that $\sum_{x \in \mathscr{X}} P(\{x\})=1$
- Show that $P(f)=\sum_{x \in \mathscr{X}} f(x) P(\{x\})$

The first and second properties/axioms are enough to characterize probabilities and expectations.

Wrap-up so far

Subjective probabilities ${ }^{2}$:

- Betting behaviour in terms of fair price reflect (can be used to measure) your knowledge about the world
- If you are rational, those bets should conform with probabilities and expected utilities
- Those bets can be given for all kinds of events, including those that will happen only once
Yet, maybe there is a little more to the story.
${ }^{2}$ Often taken as an interpretation for Bayesian approaches

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Rationality
- Some axiomatics
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets

Experimental protocol

- Half the room goes out
- The rest pick a choice
- We exchange (inside goes outside, and vice-versa)

Urns and balls: case 1

9 balls, 3 are reds, 6 remaining are either yellow or black

What would you choose between A and B ?
A

$\mathrm{R}(\mathrm{ed})$	$\mathrm{B}($ lack $)$	$\mathrm{Y}($ ellow $)$
$100 \$$	$0 \$$	$0 \$$

B		
$\mathrm{R}(\mathrm{ed})$ $\mathrm{B}($ lack $)$ Y (ellow) $0 \$$ $100 \$$ $0 \$$		

Let us bet together (buying)

- Consider the event $A=$ "In exactly one year from now in the same place, the outdoor temperature will be colder"
- I have a ticket that pays 100 euros if A happens, zero else
- How much are you willing to pay me for this ticket?

Interlude during the change

Urns and balls: case 2

9 balls, 3 are reds, 6 remaining are either yellow or black

What would you choose between C and D?
C

R (ed)	B (lack)	$\mathrm{Y}($ ellow $)$
$100 \$$	$0 \$$	$100 \$$

- utc

Compitisne

Let us bet together (selling)

- Consider the event $A=$ "In exactly one year from now in the same place, the outdoor temperature will be colder"
- I propose the following gamble:
- I give you some money right now
o in exchange you have to pay me 100 euros if A happens, zero else (you keep the money)
- How much are you willing to pay me for this ticket?

An illustration of a possible use (more latter)

Is it a lioness? a cat? a puma? a bobcat?

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Rationality
- Some axiomatics
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets

Are buying and selling the same?

What if we considered that buying and selling prices for f modelling your knowledge could differ?

- For f, we now consider a maximal buying price $\underline{P}(f)$
- Meaning you would buy f for any price under $\underline{P}(f)$
- Any transaction $f-(\underline{P}(f)-\epsilon)$ is acceptable/desirable
- More formally:

$$
\underline{P}(f)=\sup \{x \in \mathbb{R}: f-x \text { is acceptable }\}
$$

Why not caring about selling prices?

- $\bar{P}(f)$ is your minimal selling price for f :

$$
\bar{P}(f)=\inf \{x \in \mathbb{R}: x-f \text { is acceptable }\}
$$

- Yet, we do have ${ }^{3}$:

$$
\begin{aligned}
\underline{P}(f) & =\sup \{x \in \mathbb{R}: f-x \text { is acceptable }\} \\
& =-\inf \{-x \in \mathbb{R}: f-x \text { is acceptable }\} \\
& =-\inf \{y \in \mathbb{R}: f+y \text { is acceptable }\} \\
& =-\inf \{y \in \mathbb{R}: y-(-f) \text { is acceptable }\} \\
& =-\bar{P}(-f)
\end{aligned}
$$

- By duality, we can only deal with buying prices.

[^0]
Being a rational agent: sure loss revisited

- A set of gambles $f_{1}, \ldots, f_{n} \in \mathscr{K}$
- You set prices $\underline{P}\left(f_{1}\right), \ldots, \underline{P}\left(f_{n}\right)$
- I can sell ${ }^{4}\left(\lambda_{i}>0\right)$ to you any number of gambles for these price or lower
- You are irrational and incur sure loss if there is a combination

$$
\sup _{x \in \mathscr{X}} \sum \lambda_{i}\left(f_{i}(x)-\underline{P}\left(f_{i}\right)\right)<0, \lambda_{i}>0
$$

- so, a rational agent should avoid sure loss when setting prices $\underline{P}\left(f_{1}\right), \ldots, \underline{P}\left(f_{n}\right)$
- It is strictly weaker than previously.
${ }^{4}$ But not buy anymore

Back to tennis

Nadal (a)

$$
\begin{array}{cc}
f_{i} & \square_{\{a\}} \\
\underline{P}\left(f_{i}\right)= & 0.35
\end{array}
$$

Ruud (b)
$\square_{\{b\}}$
0.2

Cilic (c)
$\square_{\{c\}}$
0.3

Djokovic (d) $\square_{\{d\}}$ 0.2

Are those assessments rational? Why?

Being a reasoning agent: natural extension

- Assume prices $\underline{P}\left(f_{i}\right)$ avoid sure loss
- Consider a new gamble/function g
- What can I deduced about $\underline{P}(g)$ from $\underline{P}\left(f_{i}\right)$?
- The process of natural extension provides the answer:
- Knowing that $f_{i}-\underline{P}\left(f_{i}\right)$ are acceptable
- Find the highest price $\underline{P}^{\prime}(g)$ making $g-\underline{P}^{\prime}(g)$ acceptable
- This amounts to solve

$$
\underline{P}^{\prime}(g)=\sup _{\alpha \in \mathbb{R}, \lambda_{i} \geq 0}\left\{\alpha: g-\alpha \geq \sum_{i} \lambda_{i}\left(f_{i}-\underline{P}\left(f_{i}\right)\right)\right\}
$$

- We know $g-\alpha$ acceptable, because $\sum_{i} \lambda_{i}\left(f_{i}-\underline{P}^{\prime}\left(f_{i}\right)\right)$ acceptable
- Applying this to f_{i} itself, I say that prices $\underline{P}\left(f_{i}\right)$ are coherent if

$$
\underline{P}^{\prime}\left(f_{i}\right)=\underline{P}\left(f_{i}\right), \quad \forall f_{i}
$$

Tennis again, rational assessments

Nadal (a)

f_{i}	$\mathbb{\square}_{\{a\}}$
$\underline{P}\left(f_{i}\right)$	$=$
f_{i}	0.35
$\underline{P}\left(f_{i}\right)$	$=$
$\begin{cases}\{b, c, d\}\end{cases}$	
	0.5

Ruud (b)

$$
\begin{gathered}
\mathbb{\square}_{\{b\}} \\
0.15 \\
\mathbb{a}_{\{a, c, d\}} \\
0.7
\end{gathered}
$$

Cilic (c)
$\square_{\{c\}}$
0.2
${ }^{\{ }\{a, b, d\}$
0.6

Djokovic (d) ${ }^{[}\{d\}$ 0.2
$\square_{\{a, b, c\}}$ 0.6

Are those assessments coherent? Why?
Tutc

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Rationality
- Some axiomatics
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets

A bit of vocabulary

- $\underline{P}(f), \bar{P}(f)$ often called lower/upper previsions,
- A rational $\underline{P}(f)$ is said to avoid sure loss
- $\underline{P}(f)$ that are deductively closed (= their natural extension) are called coherent
- When it is the case and for reasons that will become clear,, $\underline{P}(f), \bar{P}(f)$ also called lower/upper expectations
- Similarly, $\underline{P}\left(\mathbb{\square}_{A}\right)=\underline{P}(A)$ and $\bar{P}\left(\rrbracket_{A}\right)=\bar{P}(A)$ are called lower/upper probabilities

Coherence through betting on linear spaces

- assume space \mathscr{K} of gambles is linear

$$
\begin{aligned}
& g, f \in \mathscr{K} \Longrightarrow f+g \in \mathscr{K} \\
& g \in \mathscr{K}, \alpha g \in \mathscr{K} \text { for } \alpha \geq 0
\end{aligned}
$$

- Then \underline{P} is coherent if and only if

$$
\begin{aligned}
& \underline{P}(f) \geq \inf f \text { (sure bet) } \\
& \underline{P}(\lambda f)=\lambda \underline{P}(f) \text { (positive homogeneity) } \\
& \underline{P}(f+g) \geq \underline{P}(f)+\underline{P}(g) \text { (super-additivity) }
\end{aligned}
$$

- You get back De Finetti probabilities (a.k.a. linear previsions) if super-additivity becomes additivity

Coherence through desirability

- A gamble f is desirable if $\underline{P}(f)=0$
- A set \mathscr{D} of desirable gambles is coherent if and only if

$$
\begin{aligned}
& \text { If } \sup f \leq 0 \text {, then } f \notin \mathscr{D} \text {, if } f>0 \text {, then } f \in \mathscr{D} \\
& \text { If } f, g \in \mathscr{D} \text {, then } f+g \in \mathscr{D} \\
& \text { If } f \in \mathscr{D} \text {, then } \lambda f \in \mathscr{D} \text { if } \lambda \geq 0
\end{aligned}
$$

- Mathematically, a set \mathscr{D} is coherent if it forms a cone.

Coherence through desirability

- A gamble f is desirable if $\underline{P}(f)=0$
- A set \mathscr{D} of desirable gambles is coherent if and only if

$$
\begin{aligned}
& \text { If } \sup f \leq 0 \text {, then } f \notin \mathscr{D} \text {, if } f>0 \text {, then } f \in \mathscr{D} \\
& \text { If } f, g \in \mathscr{D} \text {, then } f+g \in \mathscr{D} \\
& \text { If } f \in \mathscr{D} \text {, then } \lambda f \in \mathscr{D} \text { if } \lambda \geq 0
\end{aligned}
$$

- Mathematically, a set \mathscr{D} is coherent if it forms a cone.

Coherence through probability sets (we will stick with that)

- We can interpret $\underline{P}(f)$ as a lower bound on expectation for probabilities, i.e.,

$$
\underline{P}(f) \leq P(f)=\sum_{x} p(x) f(x)
$$

where p is a probability mass $\left(\sum p(x)=1\right.$ and $\left.p(x) \geq 0\right)$.

- Given f_{1}, \ldots, f_{n} and $\underline{P}\left(f_{i}\right)$, we can define a set of dominating probabilities (a.k.a. credal sets)

$$
\mathscr{M}(\underline{P})=\{P: P(f) \geq \underline{P}(f)\}
$$

- \underline{P} avoids sure loss if and only if $\mathscr{M}(\underline{P}) \neq \varnothing$
- \underline{P} is coherent if and only if for any f_{i}, we have

$$
\underline{P}\left(f_{i}\right)=\inf _{P \in \mathscr{M}(\underline{P})} P\left(f_{i}\right)
$$

that is if \underline{P} is the lower enveloppe of \mathscr{M}

Thinking in terms of \mathscr{M}

If we start by specifying a set \mathscr{M} of probabilities:

- $\underline{P}\left(f_{i}\right)$ equivalent to provide expectation (linear operator) lower bounds
- Set \mathscr{D} of desirable gambles=set of random variables having positive lower expectation, i.e., $\underline{P}\left(f_{i}\right)=0$

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets

Probabilities

Probability mass on finite space $\mathscr{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ equivalent to a n dimensional vector

$$
p:=\left(p\left(x_{1}\right), \ldots, p\left(x_{n}\right)\right)
$$

Limited to the set $\mathbb{P}_{\mathscr{X}}$ of all probabilities

$$
p(x)>0, \quad \sum_{x \in \mathscr{X}} p(x)=1 \quad \text { and }
$$

The set $\mathbb{P}_{\mathscr{X}}$ is the $(n-1)$-unit simplex.

Point in unit simplex

Imprecise probability

Set \mathscr{M} defined as a set of n constraints

$$
\underline{P}\left(f_{i}\right) \leq \sum_{x \in \mathscr{X}} f_{i}(x) p(x) \leq \bar{P}\left(f_{i}\right)
$$

where $f_{i}: \rightarrow \mathbb{R}$ bounded functions

Example

$$
\begin{gathered}
p\left(x_{2}\right)-2 p\left(x_{3}\right) \geq 0 \\
f\left(x_{1}\right)=0, f\left(x_{2}\right)=1, f\left(x_{3}\right)=-2, \underline{P}(a)=0
\end{gathered}
$$

Lower/upper probabilities

Bounds $\underline{P}(A), \bar{P}(A)$ on event A equivalent to

$$
\underline{P}(A) \leq \sum_{x \in A} p(x) \leq \bar{P}(A)
$$

Set \mathscr{M} example

$$
p\left(x_{2}\right) \geq 2 p\left(x_{3}\right) \Rightarrow p\left(x_{2}\right)-2 p\left(x_{3}\right) \geq 0
$$

Credal set example

Usual alternative presentation: extreme points

- $p\left(x_{1}\right)=1, p\left(x_{2}\right)=0, p\left(x_{3}\right)=0$
- $p\left(x_{1}\right)=1 / 3, p\left(x_{2}\right)=2 / 3, p\left(x_{3}\right)=0$
- $p\left(x_{1}\right)=1 / 3, p\left(x_{2}\right)=4 / 9, p\left(x_{3}\right)=2 / 9$

Computing natural extension

- Given \mathscr{M} and a new function g, get

$$
\underline{P}(g)=\inf _{P \in \mathscr{M}} P(g) \text { or } \bar{P}(g)=\sup _{P \in \mathscr{M}} P(g)
$$

- First way: linear programming using $\underline{P}\left(f_{i}\right)$

$$
\underline{P}(g)=\min _{p(x)} \sum_{x \in \mathscr{X}} p(x) g(x)
$$

under

$$
\begin{gathered}
\bar{P}\left(f_{i}\right) \geq \sum_{x \in \mathscr{X}} p(x) f_{i}(x) \geq \underline{P}\left(f_{i}\right) \\
\sum_{x \in \mathscr{X}} p(x)=1, p(x) \geq 0
\end{gathered}
$$

- Second way: compute $\sum_{x \in \mathscr{X}} p(x) g(x)$ for every extreme point, take the minimum

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets
utc
Tharerolde Toct
Compliegne

Why looking at special cases?

- Lower previsions/expectations are quite expressive uncertainty models
- Their general use, especially in large spaces, may require heavy computation (linear optimisation in the best case, often more in complex problems ${ }^{5}$)
- Just as Gaussian makes probabilistic computations easier, so does focusing on specific lower previsions

[^1]
A first restriction: lower probabilities

- Lower previsions $\underline{P}\left(f_{i}\right)$ are defined for any function $f_{i}: \mathscr{X} \rightarrow \mathbb{R}$.
- Lower probabilities: focusing on events and considering $\underline{P}(A)$, i.e., restrict the space to $2^{\mathscr{X}}$.
- Upper probabilities are dual ${ }^{6}$:

$$
\underline{P}(A)=1-\bar{P}(A)
$$

- Already include a LOT of models used in practice
${ }^{6}$ We can focus on one of the two

A second reduction: 2-monotonicity

A lower probability $\underline{P}()$ is 2-monotone if

$$
\underline{P}(A \cup B)+\underline{P}(A \cap B) \geq \underline{P}(A)+\underline{P}(B)
$$

- Natural extension/lower expectation of g is given by Choquet integral

$$
\underline{P}(g)=\sum_{i=1}^{N}\left(g\left(x_{(i)}\right)-g\left(x_{(i-1)}\right)\right) \underline{P}\left(\left\{x_{(i)}, \ldots, x_{(N)}\right\}\right)
$$

with () permutation such that $g\left(x_{(0)}\right)=0, g\left(x_{(1)}\right) \leq \ldots \leq g\left(x_{(N)}\right)$

- Generating extreme points is easy. Take a permutation () of $\{1, \ldots, N\}$ and compute for each i

$$
p\left(x_{(i)}\right)=\underline{P}\left(\left\{x_{(i)}, \ldots, x_{(N)}\right\}\right)-\underline{P}\left(\left\{x_{(i+1)}, \ldots, x_{(N)}\right\}\right),
$$

then p is an extreme point of \mathscr{M}
utc
Uiversplde Tact
Complegne

A third reduction: belief functions

A belief function is a lower probability \underline{P} such that for any collection $\mathscr{A}=\left\{A_{1}, \ldots, A_{K} \subseteq \mathscr{X}\right\}$ with $K \leq 2^{\mathscr{X}}$, we do have

$$
\underline{P}\left(\cup_{A_{i} \in \mathscr{A}} A_{i}\right) \geq \sum_{\mathscr{B} \subseteq \mathscr{A}}(-1)^{|\mathscr{B}|+1} \underline{P}\left(\cap_{A_{i} \in \mathscr{B}} A_{i}\right),
$$

known as the property of complete (or ∞) monotonicity.
Side exercise: prove that a belief function is also 2 -monotone ${ }^{7}$
Side bonus: everything we just said also applies to belief function
${ }^{7}$ In fact, if \underline{P} is k -monotone, it is also ($\mathrm{k}-1$)-monotone.

An interesting tool: Mobius inverse

The Möbius inverse ${ }^{8} m: 2^{\mathscr{X}} \rightarrow \mathbb{R}$ of a given \underline{P} is

$$
m(A)=\sum_{B \subseteq A}(-1)^{|A \backslash B|} \underline{P}(B),
$$

and has some interesting properties when applied to belief functions:

- It is bijective with \underline{P} (true for any \underline{P}), as for any B

$$
\underline{P}(B)=\sum_{A \subseteq B} m(A)
$$

- For a new function $g, \underline{P}(g)$ can be computed ${ }^{9}$ as

$$
\underline{P}(g)=\sum_{A \subseteq \mathscr{X}} m(A) \cdot \inf _{x \in A} g(x)
$$

- m is positive (only true for belief functions) \rightarrow can be seen as a random distribution over subsets \rightarrow useful tool to simulate \underline{P}
${ }^{8}$ Apply in fact to general posets
${ }^{9}$ also applies as long as \underline{P} is 2 -monotone

Example 1: frequencies of imprecise observations

Imprecise poll: "Who will win the next Wimbledon tournament?"

- N(adal)
- F(ederer)
- D(jokovic)
- M(urray) ○O(ther)
60% replied $\{N, F, D\} \rightarrow m(\{N, F, D\})=0.6$
15% replied "I do not know" $\{N, F, D, M, O\} \rightarrow m(\mathscr{S})=0.15$
10 \% replied Murray $\{M\} \rightarrow m(\{M\})=0.1$
5% replied others $\{O\} \rightarrow m(\{O\})=0.05$

Example 2: Imprecise Distributions [4]

Expert providing percentiles

A pair $[F, \bar{F}]$ of cumulative distributions

Bounds over events $[-\infty, x$]

- Percentiles by experts;
- Kolmogorov-Smirnov bounds;

Can be extended to any pre-ordered space [2], [7] \Rightarrow multivariate spaces!

$$
\begin{gathered}
0 \leq P([-\infty, 12]) \leq 0.2 \\
0.2 \leq P([-\infty, 24]) \leq 0.4 \\
0.6 \leq P([-\infty, 36]) \leq 0.8
\end{gathered}
$$

A fourth reduction: possibility measure

A possibility measure is a maxitive upper probability \bar{P} :

$$
\bar{P}(A \cup B)=\max \{\bar{P}(A), \bar{P}(B)\}
$$

This has the following consequences:

- All information is encoded in $\bar{P}(\{x\})$, as

$$
\bar{P}(A)=\max _{x \in A} \bar{P}(\{x\})
$$

- The associated \underline{P} is a belief function
- The sets receiving positive Möbius mass are nested (form a sequence of included sets)

A simple example

A set E of most plausible values
A confidence degree $\alpha=\underline{P}(E)$
Two interesting cases:

- Expert providing most plausible values E
- E set of models of a formula ϕ

Both cases extend to multiple sets E_{1}, \ldots, E_{p} :

- confidence degrees over nested sets [5]
- hierarchical knowledge bases [3]

A simple example

A set E of most plausible values
A confidence degree $\alpha=\underline{P}(E)$
Two interesting cases:

- Expert providing most plausible values E
- E set of models of a formula ϕ Both cases extend to multiple sets E_{1}, \ldots, E_{p} :
- confidence degrees over nested sets [5]
- hierarchical knowledge bases [3]
variables p, q

$$
\begin{aligned}
& \Omega=\{p q, \neg p q, p \neg q, \neg p \neg q\} \\
& \underline{P}(p \Rightarrow q)=0.9 \\
&\sim \text { "almost certain" }) \\
& E=\{p q, p \neg q, \neg p \neg q\}
\end{aligned}
$$

- $\pi(p q)=\pi(p \neg q)=\pi(\neg p \neg q)=1$
- $\pi(\neg p q)=0.1$

A quick and incomplete summary

Able to model variability , Incompleteness tolerant

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets
- Example
- Ignorance, complete order
- Ignorance, partial orders
- Probability sets with illustration

Decision setting

- Still a set \mathscr{X} of states
- A set \mathscr{A} of actions
- To each action $a: \mathscr{X} \rightarrow \mathbb{R}$ corresponds a mapping such that $a(x)$ is the reward/utility of performing a when x is true
- Possibly a set \mathscr{M} modelling our knowledge about X

Decision problem (here): recommend one or multiple actions based on our knowledge about the states in \mathscr{X}

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets
- Example
- Ignorance, complete order
- Ignorance, partial orders
- Probability sets with illustration

An example

We want to cross a sea stretch:

- States: sea weather conditions
- Actions: type of transports

States \mathscr{X}

$$
x_{1}=\text { Calm sea } \quad x_{2}=\text { Agitated sea } \quad x_{3}=\text { Stormy weather }
$$

Actions \mathscr{A}
$a_{1}=$ Motor boat $a_{2}=$ Catamaran $a_{3}=$ Ferry boat

	x_{1}	x_{2}	x_{3}
a_{1}	12	0	-10
a_{2}	-2	8	0
a_{3}	1	5	10

Which action to choose?

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets
- Example
- Ignorance, complete order
- Ignorance, partial orders
- Probability sets with illustration

Maximin: pessimistic behaviour

- For each action a_{i}, compute $u_{\star}\left(a_{i}\right)=\min _{j} u\left(a_{i}, x_{j}\right)$
- Say that $a_{k}>M m a_{\ell}$ if $u_{\star}\left(a_{k}\right)>u_{\star}\left(a_{\ell}\right)$

	x_{1}	x_{2}	x_{3}	$u_{\star}\left(a_{i}\right)$
a_{1}	12	0	-10	-10
a_{2}	-2	8	0	-2
a_{3}	1	5	10	1
Max				1

- We get $a_{3}>a_{2}>a_{1}$, hence a_{3} is recommended
- Pessimistic attitude: best action in the worst case

Maximax: optimistic behaviour

- For each action a_{i}, compute $u^{\star}\left(a_{i}\right)=\max _{j} u\left(a_{i}, x_{j}\right)$
- Say that $a_{k}>_{M M} a_{\ell}$ if $u^{\star}\left(a_{k}\right)>u^{\star}\left(a_{\ell}\right)$

	x_{1}	x_{2}	x_{3}	$u^{\star}\left(a_{i}\right)$
a_{1}	12	0	-10	12
a_{2}	-2	8	0	8
a_{3}	1	5	10	10
Max				12

- We get $a_{1}>a_{3}>a_{2}$, hence a_{1} is recommended
- Optimistic attitude: best action in the best case

In-between: Hurwicz

- Pick a value $\alpha \in[0,1]$, called optimism index
- For a_{i}, compute

$$
u_{H(\alpha)}\left(a_{i}\right)=\alpha u^{\star}\left(a_{i}\right)+(1-\alpha) u_{\star}\left(a_{k}\right)
$$

- Say that $a_{k}>_{\alpha} a_{\ell}$ if $u_{H(\alpha)}\left(a_{k}\right)>u_{H(\alpha)}\left(a_{\ell}\right)$

	x_{1}	x_{2}	x_{3}	$u_{\star}\left(a_{i}\right)$	$u^{\star}\left(a_{i}\right)$	$u_{H(0.5)}\left(a_{i}\right)$
a_{1}	12	0	-10	-10	12	1
a_{2}	-2	8	0	-2	8	3
a_{3}	1	5	10	1	10	5.5
Max						5.5

- We get $a_{3}>a_{2}>a_{1}$, hence a_{3} is recommended
- Try to balance between optimistic and pessimistic

Savage Minimax regret

- For action a_{i}, compute $R\left(a_{i}, x_{j}\right)=\max _{k} u\left(a_{k}, x_{j}\right)-u\left(a_{i}, x_{j}\right)$ the regret of picking a_{i} in x_{j}, instead of the best possible action
- For a_{i}, compute $R^{\star}\left(a_{i}\right)=\max _{j} R\left(a_{i}, x_{j}\right)$
- Say that $a_{k}>_{R} a_{\ell}$ if $R^{\star}\left(a_{\ell}\right)>R^{\star}\left(a_{k}\right)$

	x_{1}	x_{2}	x_{3}	$R^{\star}\left(a_{i}\right)$
a_{1}	12	0	-10	
$R\left(a_{1}\right)$	0			
a_{2}	-2	8	0	
$R\left(a_{2}\right)$				
a_{3}	1	5	10	
$R\left(a_{3}\right)$				
Min				

Savage Minimax regret

- For action a_{i}, compute $R\left(a_{i}, x_{j}\right)=\max _{k} u\left(a_{k}, x_{j}\right)-u\left(a_{i}, x_{j}\right)$ the regret of picking a_{i} in x_{j}, instead of the best possible action
- For a_{i}, compute $R^{\star}\left(a_{i}\right)=\max _{j} R\left(a_{i}, x_{j}\right)$
- Say that $a_{k}>_{R} a_{\ell}$ if $R^{\star}\left(a_{\ell}\right)>R^{\star}\left(a_{k}\right)$

	x_{1}	x_{2}	x_{3}	$R^{\star}\left(a_{i}\right)$
a_{1}	12	0	-10	
$R\left(a_{1}\right)$	0	8		
a_{2}	-2	8	0	
$R\left(a_{2}\right)$				
a_{3}	1	5	10	
$R\left(a_{3}\right)$				
Min				

Savage Minimax regret

- For action a_{i}, compute $R\left(a_{i}, x_{j}\right)=\max _{k} u\left(a_{k}, x_{j}\right)-u\left(a_{i}, x_{j}\right)$ the regret of picking a_{i} in x_{j}, instead of the best possible action
- For a_{i}, compute $R^{\star}\left(a_{i}\right)=\max _{j} R\left(a_{i}, x_{j}\right)$
- Say that $a_{k}>_{R} a_{\ell}$ if $R^{\star}\left(a_{\ell}\right)>R^{\star}\left(a_{k}\right)$

	x_{1}	x_{2}	x_{3}	$R^{\star}\left(a_{i}\right)$
a_{1}	12	0	-10	
$R\left(a_{1}\right)$	0	8	20	
a_{2}	-2	8	0	
$R\left(a_{2}\right)$				
a_{3}	1	5	10	
$R\left(a_{3}\right)$				
Min				

Savage Minimax regret

- For action a_{i}, compute $R\left(a_{i}, x_{j}\right)=\max _{k} u\left(a_{k}, x_{j}\right)-u\left(a_{i}, x_{j}\right)$ the regret of picking a_{i} in x_{j}, instead of the best possible action
- For a_{i}, compute $R^{\star}\left(a_{i}\right)=\max _{j} R\left(a_{i}, x_{j}\right)$
- Say that $a_{k}>_{R} a_{\ell}$ if $R^{\star}\left(a_{\ell}\right)>R^{\star}\left(a_{k}\right)$

	x_{1}	x_{2}	x_{3}	$R^{\star}\left(a_{i}\right)$
a_{1}	12	0	-10	
$R\left(a_{1}\right)$	0	8	20	20
a_{2}	-2	8	0	
$R\left(a_{2}\right)$				
a_{3}	1	5	10	
$R\left(a_{3}\right)$				
Min				

Savage Minimax regret

- For action a_{i}, compute $R\left(a_{i}, x_{j}\right)=\max _{k} u\left(a_{k}, x_{j}\right)-u\left(a_{i}, x_{j}\right)$ the regret of picking a_{i} in x_{j}, instead of the best possible action
- For a_{i}, compute $R^{\star}\left(a_{i}\right)=\max _{j} R\left(a_{i}, x_{j}\right)$
- Say that $a_{k}>_{R} a_{\ell}$ if $R^{\star}\left(a_{\ell}\right)>R^{\star}\left(a_{k}\right)$

	x_{1}	x_{2}	x_{3}	$R^{\star}\left(a_{i}\right)$
a_{1}	12	0	-10	
$R\left(a_{1}\right)$	0	8	20	20
a_{2}	-2	8	0	
$R\left(a_{2}\right)$	14	0	10	14
a_{3}	1	5	10	
$R\left(a_{3}\right)$	11	3	0	11
Min				11

- We get $a_{3}>a_{2}>a_{1}$, hence a_{3} is recommended
- Minimize regret, but sensitive to addition of non-optimal alternatives

Minimax regret vs maximin

Consider the following case:

	x_{1}	\cdots	x_{99}	x_{100}	$R^{\star}\left(a_{i}\right)$
a_{1}	10	\cdots	10	1	
$R\left(a_{1}\right)$					
a_{2}	2	\cdots	2	2	
$R\left(a_{2}\right)$					
Min					

Minimax regret and irrelevant alternatives

Before: $a_{3}>a_{2}>a_{1}$

	x_{1}	x_{2}	x_{3}	$R^{\star}\left(a_{i}\right)$
a_{1}	12	0	-10	
$R\left(a_{1}\right)$				
a_{2}	-2	8	0	
$R\left(a_{2}\right)$				
a_{3}	1	5	10	
$R\left(a_{3}\right)$				
a_{4}	-5	20	-20	
$R\left(a_{4}\right)$				
Min				

After a_{4} :

Complete ordering: summary

- Minimax=pessimistic [8]
- Maximax=optimistic
- Hurwicz=in-between [1]
- Savage=Minimizing felt regret [6]

Whatever the chosen rule, we always get one optimal action. But we need to commit to a peculiar behaviour.

What if DM does not want to commit to peculiar behaviour?
What if DM wants to only know the actions that are potentially optimal, given our uncertainty?

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets
- Example
- Ignorance, complete order
- Ignorance, partial orders
- Probability sets with illustration

Lattice ordering

- Say that $a_{k} \geq_{L} a_{\ell}$ if $u^{\star}\left(a_{k}\right) \geq u^{\star}\left(a_{\ell}\right)$ and $u_{\star}\left(a_{k}\right) \geq u_{\star}\left(a_{\ell}\right)$

	x_{1}	x_{2}	x_{3}	$u_{\star}\left(a_{i}\right)$	$u^{\star}\left(a_{i}\right)$
a_{1}	12	0	-10	-10	12
a_{2}	-2	8	0	-2	8
a_{3}	1	5	10	1	10

- Only existing dominance is a_{2} by a_{3}, hence only a_{2} is considered non-optimal
- Can be seen as a robust Hurwicz (considering all α as possibilities)
- Note that with this criterion, we eliminate the best action in state x_{2}

Lattice ordering and information monotonicity

	x_{1}	x_{2}	x_{3}	x_{4}	$u_{\star}\left(a_{i}\right)$	$u^{\star}\left(a_{i}\right)$
a	10	12	14	15	10	15
b	13	11	16	14	11	16

$$
b>a
$$

All states possible

Lattice ordering and information monotonicity

	$*_{\top}$	x_{2}	x_{3}	x_{4}	$u_{\star}\left(a_{i}\right)$	$u^{\star}\left(a_{i}\right)$
a	40	12	14	15	12	15
b	40	11	16	14	11	16

$$
b><a
$$

We learn (gain info) x_{1} impossible
a and b becomes incomparable.

Lattice ordering and information monotonicity

	$*_{1}$	x_{2}	$*_{3}$	x_{4}	$u_{\star}\left(a_{i}\right)$	$u^{\star}\left(a_{i}\right)$
a	40	12	44	15	12	15
b	40	11	46	14	11	14

$$
b<a
$$

We learn (gain info) x_{3} impossible a is now preferred to b.

Interval dominance

- Say that $a_{k}>_{I D} a_{\ell}$ if $u_{\star}\left(a_{k}\right)>u^{\star}\left(a_{\ell}\right)$

	x_{1}	x_{2}	x_{3}	$u_{\star}\left(a_{i}\right)$	$u^{\star}\left(a_{i}\right)$
a_{1}	12	0	-10	-10	12
a_{2}	-2	8	0	-2	8
a_{3}	1	5	10	1	10

- no dominance at all
- overcautious criterion \rightarrow may retain Pareto-dominated solutions

Interval dominance: drawback example

- We add a fourth possible, expensive action $a_{4}=$ Helicopter

	x_{1}	x_{2}	x_{3}	$u_{\star}\left(a_{i}\right)$	$u^{\star}\left(a_{i}\right)$
a_{1}	12	0	-10	-10	12
a_{2}	-2	8	0	-2	8
a_{3}	1	5	10	1	10
a_{4}	8	8	4	4	8

- no dominance at all, even if a_{4} better (sometimes strictly) than a_{2} in every situation!

Difference dominance

- Say that $a_{k} \geq_{D} a_{\ell}$ if $u\left(a_{k}, x_{j}\right)-u\left(a_{\ell}, x_{j}\right) \geq 0$ for all x_{j} ($>$ if >0 for at least one x_{j})

	x_{1}	x_{2}	x_{3}
a_{1}	12	0	-10
a_{2}	-2	8	0
a_{3}	1	5	10
$a_{2}-a_{1}$	-14	8	10

- no dominance at all, again
- do we have the same problem as with interval dominance?

Difference comparison

- We add a fourth possible, expensive action $a_{4}=$ Helicopter

	x_{1}	x_{2}	x_{3}	$u_{\star}\left(a_{i}\right)$	$u^{\star}\left(a_{i}\right)$
a_{1}	12	0	-10	-10	12
a_{2}	-2	8	0	-2	8
a_{3}	1	5	10	1	10
a_{4}	8	8	4	4	8
$a_{4}-a_{2}$	10	0	4		

So far...

Options when true state of the world completely unknown:

- Complete ordering/one top recommendation
- Maximin: pessimistic DM
- Maximax: optimistic DM
- Hurwicz: attempt to in-between
- Partial ordering/multiple recommendations reflecitng lack of knowledge
- Lattice ordering: robust hurwicz, may miss potentially optimal actions
- Interval dominance: very conservative, may keep Pareto dominated options
- Difference dominance: will keep every non-Pareto dominated solution

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets
- Example
- Ignorance, complete order
- Ignorance, partial orders
o Probability sets with illustration

Previous decision rules adaptation

In general, replace u^{*} by upper expectation \bar{P}, u_{*} by lower expectation \underline{P}
Total order

- Maximax: $a \geq_{M M} b$ if $\bar{P}(a) \geq \bar{P}(b)$
- Maximin: $a \geq_{M m} b$ if $\underline{P}(a) \geq \underline{P}(b)$
- Hurwicz: $a \geq_{\alpha} b$ if $\alpha \bar{P}(a)+(1-\alpha) \underline{P}(a) \geq \alpha \bar{P}(b)+(1-\alpha) \underline{P}(b)$

Partial order

- Interval dominance: $a>_{I D} b$ if $\bar{P}(b) \leq \underline{P}(a)$
- Lattice: $a>_{L} b$ if $\bar{P}(b) \leq \bar{P}(a) \wedge \underline{P}(b) \leq \underline{P}(a)$
- Difference: $a>_{D} b$ if $\underline{P}(a-b) \geq 0$

Difference dominance

Under knowledge \mathscr{P}, action a_{k} is better than a_{ℓ} if

$$
\underline{P}\left(a_{k}-a_{\ell}\right)=\inf _{p \in \mathscr{P}} P\left(a_{k}-a_{\ell}\right),
$$

that is if in average, we gain something when exchanging a_{ℓ} for a_{k}

Special cases

- probabilities \equiv expected utility
- set \equiv difference dominance (filter out Pareto-dominated solutions)

E-admissibility

- Previous rules use orderings between alternatives
- Another way: pick potentially optimal answers
- For a given set \mathscr{A} of actions and a probability p, let

$$
\operatorname{Opt}(P, \mathscr{A})=\arg \max _{a \in \mathbb{A}} P(a)
$$

- The E-admissible rule returns the set

$$
\operatorname{Opt}_{E}(\mathscr{M}, \mathscr{A})=\cup_{P \in \mathscr{M}} \operatorname{Opt}(P, \mathscr{A})
$$

Links between rules

Given $>_{i}$, we denote $O p t_{>_{i}}(\mathscr{M}, \mathscr{A}):=\left\{a \in \mathbb{A}: \nexists a^{\prime}\right.$ s.t. $\left.a^{\prime}>_{i} a\right\}$ its set of maximal elements.

We have the following relations:

- $a \geq_{I D} b \Longrightarrow a \geq_{D} b \Longrightarrow a \geq_{L} b \Longrightarrow a \geq_{\alpha} b \quad \forall \alpha$
- $\operatorname{Opt}_{E}(\mathscr{M}, \mathscr{A}) \subseteq O p t_{>_{D}}(\mathscr{M}, \mathscr{A}) \subseteq O p t_{>_{I D}}(\mathscr{M}, \mathscr{A})$
- $\operatorname{Opt}_{>_{\alpha}}(\mathscr{M}, \mathscr{A}) \subseteq O p t_{>_{L}}(\mathscr{M}, \mathscr{A}) \subseteq O p t_{>_{D}}(\mathscr{M}, \mathscr{A})$

As an exercice, prove the implications of the first line, and the first inclusion of the second (other inclusions immediately follow from implications).

Back to Ellsberg

9 balls, 3 are reds, 6 remaining are either yellow or black

A		
$\mathrm{R}(\mathrm{ed})$	$\mathrm{B}($ lack $)$	$\mathrm{Y}($ ellow $)$
$100 \$$	$0 \$$	$0 \$$

B		
R(ed)	B(lack)	Y(ellow)
$0 \$$	$100 \$$	$0 \$$

C
D

$\mathrm{R}(\mathrm{ed})$	$\mathrm{B}($ lack $)$	$\mathrm{Y}($ ellow $)$
$100 \$$	$0 \$$	$100 \$$

R(ed)	B(lack)	Y(ellow)
$0 \$$	$100 \$$	$100 \$$

- What are the possible probability values? In terms of bounds over each colour?
- Compute the lower/upper expectations for each act
- What kind of comparison explain the most frequent behaviour $A \geq B$ but $D \geq C$?
utc
Tharerolde Toct
Compliegne

Back to Ellsberg

9 balls, 3 are reds, 6 remaining are either yellow or black

A

$\mathrm{R}(\mathrm{ed})$	B (lack)	Y (ellow)
$100 \$$	$0 \$$	$0 \$$

C

R(ed)	B(lack)	Y(ellow)
$100 \$$	$0 \$$	$100 \$$

B		
$\mathrm{R}(\mathrm{ed})$	$\mathrm{B}($ lack $)$	$\mathrm{Y}($ ellow $)$
$0 \$$	$100 \$$	$0 \$$

D

R(ed)	B(lack)	Y(ellow)
$0 \$$	$100 \$$	$100 \$$

Boat example

Agitated is the most likely state $\left(p\left(x_{2}\right) \geq p\left(x_{1}\right)\right.$ and $p\left(x_{2}\right) \geq p\left(x_{3}\right)+$ $\left.p\left(x_{i}\right) \geq 0+\sum p(x)=1\right)$. What is the associated credal set?

Boat example

Agitated is the most likely state $\left(p\left(x_{2}\right) \geq p\left(x_{1}\right)\right.$ and $p\left(x_{2}\right) \geq p\left(x_{3}\right)+$ $\left.p\left(x_{i}\right) \geq 0+\sum p(x)=1\right)$

	x_{1}	x_{2}	x_{3}	$\underline{P}\left(a_{i}\right)$	$\bar{P}\left(a_{i}\right)$
a_{1}	12	0	-10	-5	6
a_{2}	-2	8	0		
a_{3}	1	5	10		
a_{4}	8	8	4		

$$
\underline{P}\left(a_{1}\right)=0 \cdot 12+0.5 \cdot 0+0.5 \cdot-10=-5
$$

$$
\bar{P}\left(a_{1}\right)=0.5 \cdot 12+0.5 \cdot 0+0 \cdot-10=6
$$

utc
Uninereblete Toch
Complegne

Boat example

Agitated is the most likely state $\left(p\left(x_{2}\right) \geq p\left(x_{1}\right)\right.$ and $p\left(x_{2}\right) \geq p\left(x_{3}\right)+$ $\left.p\left(x_{i}\right) \geq 0+\sum p(x)=1\right)$

	x_{1}	x_{2}	x_{3}	$\underline{P}\left(a_{i}\right)$	$\bar{P}\left(a_{i}\right)$
a_{1}	12	0	-10	-5	6
a_{2}	-2	8	0	2	8
a_{3}	1	5	10	3	7.5
a_{4}	8	8	4	6	8

- Maximin: a_{4}
- Maximax: a_{4}
- Lattice ordering: $a_{4}>\left\{a_{2}, a_{3}\right\}>a_{1}$
- Interval dominance: only $a_{4}>a_{1}$ (a_{2} still possibly optimal)

Example

Agitated is the most likely state $\left(p\left(x_{2}\right) \geq p\left(x_{1}\right)\right.$ and $p\left(x_{2}\right) \geq p\left(x_{3}\right)+$ $\left.p\left(x_{i}\right) \geq 0+\sum p(x)=1\right)$

	x_{1}	x_{2}	x_{3}
a_{1}	12	0	-10
a_{4}	8	8	4
$a_{4}-a_{1}$	-4	8	14

$$
\underline{P}\left(a_{4}-a_{1}\right)=0.5 \cdot-4+0.5 \cdot 8+0 \cdot-6=2
$$

In the example, difference dominance give $a_{4}>a_{2}, a_{4}>a_{1}$

Example

Agitated is the most likely state $\left(p\left(x_{2}\right) \geq p\left(x_{1}\right)\right.$ and $p\left(x_{2}\right) \geq p\left(x_{3}\right)+$ $\left.p\left(x_{i}\right) \geq 0+\sum p(x)=1\right)$

	x_{1}	x_{2}	x_{3}
a_{2}	-2	8	0
a_{4}	8	8	4
$a_{4}-a_{2}$	6	0	4

$$
\underline{P}\left(a_{4}-a_{2}\right) \geq 0 \text { because of Pareto-dominance }
$$

In the example, difference dominance give $a_{4}>a_{2}, a_{4}>a_{1}$

Example

Agitated is the most likely state $\left(p\left(x_{2}\right) \geq p\left(x_{1}\right)\right.$ and $p\left(x_{2}\right) \geq p\left(x_{3}\right)+$ $\left.p\left(x_{i}\right) \geq 0+\sum p(x)=1\right)$

	x_{1}	x_{2}	x_{3}
a_{3}	1	5	10
a_{4}	8	8	4
$a_{4}-a_{3}$	7	3	-6
$a_{3}-a_{4}$	-7	-3	6

$$
\underline{P}\left(a_{4}-a_{3}\right)=0 \cdot 7+0.5 \cdot 3+0.5 \cdot-6=-1.5 \text { and } \underline{P}\left(a_{3}-a_{4}\right)=-5
$$

In the example, difference dominance give $a_{4}>a_{2}, a_{4}>a_{1}$

References I

[1] K. J. Arrow and L. Hurwicz.
An optimality criterion for decision-making under ignorance.
Uncertainty and expectations in economics, pages 1-11, 1972.
[2] S. Destercke, D. Dubois, and E. Chojnacki.
Unifying practical uncertainty representations: I generalized p-boxes.
Int. J. of Approximate Reasoning, 49:649-663, 2008.
[3] D. Dubois and H. Prade.
Possibilistic logic: a retrospective and prospective view.
Fuzzy Sets and Systems, 144(1):3-23, 2004.
[4] S. Ferson, L. Ginzburg, V. Kreinovich, D. Myers, and K. Sentz.
Constructing probability boxes and dempster-shafer structures.
Technical report, Sandia National Laboratories, 2003.
[5] S. Sandri, D. Dubois, and H. Kalfsbeek.
Elicitation, assessment and pooling of expert judgments using possibility theory.
IEEE Trans. on Fuzzy Systems, 3(3):313-335, August 1995.
[6] L. J. Savage.
The theory of statistical decision.
Journal of the American Statistical association, 46(253):55-67, 1951.
[7] M. C. M. Troffaes and S. Destercke.
Probability boxes on totally preordered spaces for multivariate modelling.
Int. J. Approx. Reasoning, 52(6):767-791, 2011.

References II

[8] A. Wald.
Statistical decision functions.
1950.

[^0]: ${ }^{3}$ Note that it does not imply $\bar{P}(f)=\underline{P}(f)$

[^1]: ${ }^{5}$ we will see some in the last courses

