

Reasoning under severe uncertainty: lecture 1

Sébastien Destercke

CNRS researcher, Laboratoire Heudiasyc, Compiègne

AOS4 master courses

How would you model your knowledge about my height?

How would you model your knowledge about my height?

About whether I am taller than 1.85m? (A=[1.85,3])

How would you model your knowledge about my height?

About whether I am taller than 1.85m? (A=[1.85,3])

How much would you give to play a game where you win 10 euros if *A* is true?

How would you model your knowledge about my height?

About whether I am taller than 1.85m? (A=[1.85,3])

How much would you give to play a game where you win 10 euros if *A* is true?

How much would you give to play a game where you win 10 euros if B = [2,3] is true?

Outline

Basics

- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets

Basic modelling

- The state X of the world
 - $\,\circ\,$ take values in some (finite or not) set ${\mathscr X}$ of possible situations
 - $\circ \ {\mathscr X}$ assumed exhaustive and of sufficient granularity
 - is uncertainly known
- How to model our uncertainty about X?
 - by probabilities \rightarrow why???

Basic definitions

Basic tool

A probability distribution $p: \mathscr{X} \to [0, 1]$ such that

- $p(x) \ge 0$
- $\sum_{x} p(x) = 1$

from which for any subset we have

- $P(A) = \sum_{x \in A} p(x)$
- $P(A) = 1 P(A^{c})$: auto-dual

Example

Academic dice Assume a dice, we have $\mathscr{X} = \{1, 2, \dots, 6\}$:

$$p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = \frac{1}{6}$$

$$P(\{1,3,5\}) = 1/6 + 1/6 + 1/6 = 1/2$$

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets

Three important guys

L. Savage

J. Von Neumann

B. De Finetti

All justify probabilities (and expected utilities) as uncertainty models without frequencies \rightarrow we will detail a bit how the second one does it

An example

A gamble/ticket *f*, whose reward depends on who win the most sets in next Rolland Garros

What price P(f) do you associate to this ticket?

f=

Acceptable transaction

The price

P(f)

is the "fair" price you associate to the ticket/gamble f:

• You would buy for any price $P(f) - \epsilon$, earning

 $f-(P(f)-\epsilon)$

• You would sell for any price $P(f) + \epsilon$, earning

 $(P(f)+\epsilon)-f$

 \rightarrow how should a "rational" agent specify prices?

Transaction on an event

Remember the bet on A = [1.85, 3]?

Betting on an event A amounts to play the gamble

$$\mathbb{I}_A = \begin{cases} 1 & \text{if } A \text{ happens} \\ 0 & \text{else} \end{cases}$$

We can use A and \mathbb{I}_A interchangeably, i.e.

$$P(\mathbb{I}_A) = P(A)$$

Avoiding the dutch book¹

- A set of gambles f_1, \ldots, f_n
- **You** set prices *P*(*f*₁),...,*P*(*f*_n)
- I can sell $(\lambda_i > 0)$ or buy $(\lambda_i < 0)$ to you any number of gambles
- You are irrational if there is a dutch book, i.e., a combination with

$$\sup_{x\in\mathscr{X}}\sum\lambda_i\Big(f_i(x)-P(f_i)\Big)<0,$$

meaning that whatever happens, you lose money.

• so, a **rational** agent should avoid sure losses when setting prices $P(f_1), \ldots, P(f_n)$

¹History unclear

Probabilities and expectations (exercices)

Do the following:

- Prove that if you are rational, then $\inf f \le P(f) \le \sup f$
- Prove that if you are rational, then P(f+g) = P(f) + P(g)
- Deduce that $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \emptyset$

A little bit more:

- Show that $\sum_{x \in \mathscr{X}} P(\{x\}) = 1$
- Show that $P(f) = \sum_{x \in \mathscr{X}} f(x) P(\{x\})$

Probabilities and expectations (exercices)

Do the following:

- Prove that if you are rational, then $\inf f \le P(f) \le \sup f$
- Prove that if you are rational, then P(f+g) = P(f) + P(g)
- Deduce that $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \emptyset$

A little bit more:

- Show that $\sum_{x \in \mathscr{X}} P(\{x\}) = 1$
- Show that $P(f) = \sum_{x \in \mathcal{X}} f(x) P(\{x\})$

The first and second properties/axioms are enough to characterize probabilities and expectations.

Wrap-up so far

Subjective probabilities²:

- Betting behaviour in terms of fair price reflect (can be used to measure) your knowledge about the world
- If you are rational, those bets should conform with probabilities and expected utilities
- Those bets can be given for all kinds of events, including those that will happen only once

Yet, maybe there is a little more to the story.

²Often taken as an interpretation for Bayesian approaches

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
 - o Rationality
 - Some axiomatics
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets

Experimental protocol

- Half the room goes out
- The rest pick a choice
- We exchange (inside goes outside, and vice-versa)

Urns and balls: case 1

9 balls, 3 are reds, 6 remaining are either yellow or black

What would you choose between A and B?

A				В			
R(ed)	B(lack)	Y(ellow)		R(ed)	B(lack)	Y(ellow)	
100 \$	0\$	0\$		0\$	100 \$	0\$	

Let us bet together (buying)

- Consider the event *A*="In exactly one year from now in the same place, the outdoor temperature will be colder"
- I have a ticket that pays 100 euros if A happens, zero else
- How much are you willing to pay me for this ticket?

Interlude during the change

Urns and balls: case 2

9 balls, 3 are reds, 6 remaining are either yellow or black

What would you choose between C and D?

С				D		
R(ed)	B(lack)	Y(ellow)		R(ed)	B(lack)	Y(ellow)
100 \$	0\$	100\$		0\$	100 \$	100\$

Let us bet together (selling)

- Consider the event A="In exactly one year from now in the same place, the outdoor temperature will be colder"
- I propose the following gamble:
 - I give you some money right now
 - in exchange you have to pay me 100 euros if A happens, zero else (you keep the money)
- How much are you willing to pay me for this ticket?

An illustration of a possible use (more latter)

Is it a lioness? a cat? a puma? a bobcat?

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
 Rationality
 - Some axiomatics
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets

Are buying and selling the same?

What if we considered that buying and selling prices for *f* modelling your knowledge could differ?

- For f, we now consider a maximal buying price $\underline{P}(f)$
- Meaning you would **buy** f for any price under $\underline{P}(f)$
- Any transaction $f (\underline{P}(f) \epsilon)$ is acceptable/desirable
- More formally:

 $\underline{P}(f) = \sup\{x \in \mathbb{R} : f - x \text{ is acceptable } \}$

Why not caring about selling prices?

• $\overline{P}(f)$ is your minimal selling price for *f*:

$$\overline{P}(f) = \inf\{x \in \mathbb{R} : x - f \text{ is acceptable }\}$$

• Yet, we do have³:

$$\underline{P}(f) = \sup\{x \in \mathbb{R} : f - x \text{ is acceptable }\}\$$

$$= -\inf\{-x \in \mathbb{R} : f - x \text{ is acceptable }\}\$$

$$= -\inf\{y \in \mathbb{R} : f + y \text{ is acceptable }\}\$$

$$= -\inf\{y \in \mathbb{R} : y - (-f) \text{ is acceptable }\}\$$

$$= -\overline{P}(-f)$$

• By duality, we can only deal with buying prices.

³Note that it does not imply $\overline{P}(f) = \underline{P}(f)$

Being a rational agent: sure loss revisited

- A set of gambles $f_1, \ldots, f_n \in \mathcal{K}$
- **You** set prices <u>*P*</u>(*f*₁),...,<u>*P*</u>(*f*_n)
- I can sell⁴ (λ_i > 0) to you any number of gambles for these price or lower
- You are irrational and incur sure loss if there is a combination

$$\sup_{x\in\mathscr{X}}\sum \lambda_i \Big(f_i(x) - \underline{P}(f_i)\Big) < 0, \lambda_i > 0$$

- so, a **rational** agent should avoid sure loss when setting prices $\underline{P}(f_1), \dots, \underline{P}(f_n)$
- It is strictly weaker than previously.

⁴But not buy anymore

Back to tennis

Are those assessments rational? Why?

fi

Being a reasoning agent: natural extension

- Assume prices $\underline{P}(f_i)$ avoid sure loss
- Consider a new gamble/function g
- What can I deduced about <u>P(g)</u> from <u>P(f_i)</u>?
- The process of natural extension provides the answer:
 - Knowing that $f_i \underline{P}(f_i)$ are acceptable
 - Find the highest price $\underline{P}'(g)$ making $g \underline{P}'(g)$ acceptable
 - This amounts to solve

$$\underline{P}'(g) = \sup_{\alpha \in \mathbb{R}, \lambda_i \ge 0} \{ \alpha : g - \alpha \ge \sum_i \lambda_i (f_i - \underline{P}(f_i)) \}$$

• We know $g - \alpha$ acceptable, because $\sum_i \lambda_i (f_i - \underline{P}'(f_i))$ acceptable

• Applying this to *f_i* itself, I say that prices <u>*P*</u>(*f_i*) are **coherent** if

$$\underline{P}'(f_i) = \underline{P}(f_i), \quad \forall f_i$$

Tennis again, rational assessments

Are those assessments coherent? Why?

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
 - o Rationality
 - $_{\odot}\,$ Some axiomatics
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets

A bit of vocabulary

- $\underline{P}(f), \overline{P}(f)$ often called **lower/upper previsions**,
- A rational <u>P(f)</u> is said to avoid sure loss
- <u>P(f)</u> that are deductively closed (= their natural extension) are called coherent
- When it is the case and for reasons that will become clear, $\underline{P}(f), \overline{P}(f)$ also called **lower/upper expectations**
- Similarly, $\underline{P}(\mathbb{I}_A) = \underline{P}(A)$ and $\overline{P}(\mathbb{I}_A) = \overline{P}(A)$ are called **lower/upper** probabilities

Coherence through betting on linear spaces

• assume space ${\mathcal K}$ of gambles is linear

$$g, f \in \mathcal{K} \implies f + g \in \mathcal{K}$$
$$g \in \mathcal{K}, \alpha g \in \mathcal{K} \text{ for } \alpha \ge 0$$

Then <u>P</u> is coherent if and only if

 $\underline{P}(f) \ge \inf f \text{ (sure bet)}$ $\underline{P}(\lambda f) = \lambda \underline{P}(f) \text{ (positive homogeneity)}$ $\underline{P}(f+g) \ge \underline{P}(f) + \underline{P}(g) \text{ (super-additivity)}$

 You get back De Finetti probabilities (a.k.a. linear previsions) if super-additivity becomes additivity

Coherence through desirability

- A gamble f is desirable if $\underline{P}(f) = 0$
- A set ${\mathscr D}$ of desirable gambles is coherent if and only if

If $\sup f \le 0$, then $f \notin \mathcal{D}$, if f > 0, then $f \in \mathcal{D}$ If $f, g \in \mathcal{D}$, then $f + g \in \mathcal{D}$ If $f \in \mathcal{D}$, then $\lambda f \in \mathcal{D}$ if $\lambda \ge 0$

• Mathematically, a set \mathcal{D} is coherent if it forms a cone.

Coherence through desirability

- A gamble f is desirable if $\underline{P}(f) = 0$
- A set ${\mathscr D}$ of desirable gambles is coherent if and only if

If $\sup f \le 0$, then $f \notin \mathcal{D}$, if f > 0, then $f \in \mathcal{D}$ If $f, g \in \mathcal{D}$, then $f + g \in \mathcal{D}$ If $f \in \mathcal{D}$, then $\lambda f \in \mathcal{D}$ if $\lambda \ge 0$

• Mathematically, a set \mathcal{D} is coherent if it forms a cone.

Basics Probabilities as bets Beyond proba. credal sets Practical models Credal decis: Rationality Some axiomatics

Coherence through probability sets (we will stick with that)

 We can interpret <u>P(f)</u> as a lower bound on expectation for probabilities, i.e.,

$$\underline{P}(f) \le P(f) = \sum_{x} p(x)f(x)$$

where *p* is a probability mass $(\sum p(x) = 1 \text{ and } p(x) \ge 0)$.

• Given f_1, \ldots, f_n and $\underline{P}(f_i)$, we can define a set of dominating probabilities (a.k.a. credal sets)

$$\mathcal{M}(\underline{P}) = \{P : P(f) \ge \underline{P}(f)\}$$

- <u>*P*</u> avoids sure loss if and only if $\mathcal{M}(\underline{P}) \neq \emptyset$
- <u>*P*</u> is coherent if and only if for any *f_i*, we have

$$\underline{P}(f_i) = \inf_{P \in \mathcal{M}(\underline{P})} P(f_i)$$

that is if \underline{P} is the lower enveloppe of \mathcal{M}

neudiasvc

Thinking in terms of \mathcal{M}

If we start by specifying a set \mathcal{M} of probabilities:

- <u>*P*</u>(*f_i*) equivalent to provide expectation (linear operator) lower bounds
- Set 𝔅 of desirable gambles=set of random variables having positive lower expectation, i.e., <u>P</u>(f_i) = 0

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets

Probabilities

Probability mass on finite space $\mathscr{X} = \{x_1, ..., x_n\}$ equivalent to a *n* dimensional vector

$$p := (p(x_1), \ldots, p(x_n))$$

Limited to the set $\mathbb{P}_{\mathscr{X}}$ of all probabilities

$$p(x) > 0$$
, $\sum_{x \in \mathcal{X}} p(x) = 1$ and

The set $\mathbb{P}_{\mathscr{X}}$ is the (n-1)-unit simplex.

Point in unit simplex

Imprecise probability

Set \mathcal{M} defined as a set of *n* constraints

$$\underline{P}(f_i) \leq \sum_{x \in \mathscr{X}} f_i(x) p(x) \leq \overline{P}(f_i)$$

where $f_i : \rightarrow \mathbb{R}$ bounded functions

Example

$$p(x_2)-2p(x_3)\geq 0$$

$$f(x_1) = 0, f(x_2) = 1, f(x_3) = -2, \underline{P}(a) = 0$$

Lower/upper probabilities

Bounds $\underline{P}(A), \overline{P}(A)$ on event A equivalent to

$$\underline{P}(A) \le \sum_{x \in A} p(x) \le \overline{P}(A)$$

Set *M* example

$p(x_2) \ge 2p(x_3) \Rightarrow p(x_2) - 2p(x_3) \ge 0$

Credal set example

Usual alternative presentation: extreme points

•
$$p(x_1) = 1, p(x_2) = 0, p(x_3) = 0$$

•
$$p(x_1) = \frac{1}{3}, p(x_2) = \frac{2}{3}, p(x_3) = 0$$

•
$$p(x_1) = \frac{1}{3}, p(x_2) = \frac{4}{9}, p(x_3) = \frac{2}{9}$$

Computing natural extension

• Given \mathcal{M} and a new function g, get

$$\underline{P}(g) = \inf_{P \in \mathcal{M}} P(g) \text{ or } \overline{P}(g) = \sup_{P \in \mathcal{M}} P(g)$$

• First way: linear programming using <u>P(f_i)</u>

$$\underline{P}(g) = \min_{p(x)} \sum_{x \in \mathscr{X}} p(x)g(x)$$

under

$$\overline{P}(f_i) \ge \sum_{x \in \mathscr{X}} p(x)f_i(x) \ge \underline{P}(f_i)$$
$$\sum_{x \in \mathscr{X}} p(x) = 1, p(x) \ge 0$$

 Second way: compute ∑_{x∈𝔅} p(x)g(x) for every extreme point, take the minimum

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets

Why looking at special cases?

- Lower previsions/expectations are quite expressive uncertainty models
- Their general use, especially in large spaces, may require heavy computation (linear optimisation in the best case, often more in complex problems⁵)
- Just as Gaussian makes probabilistic computations easier, so does focusing on specific lower previsions

⁵we will see some in the last courses

A first restriction: lower probabilities

- Lower previsions $\underline{P}(f_i)$ are defined for any function $f_i : \mathscr{X} \to \mathbb{R}$.
- Lower probabilities: focusing on events and considering $\underline{P}(A)$, i.e., restrict the space to $2^{\mathscr{X}}$.
- Upper probabilities are dual⁶:

$$\underline{P}(A) = 1 - \overline{P}(A)$$

Already include a LOT of models used in practice

⁶We can focus on one of the two

A second reduction: 2-monotonicity

A lower probability P() is 2-monotone if

$$\underline{P}(A \cup B) + \underline{P}(A \cap B) \ge \underline{P}(A) + \underline{P}(B)$$

• Natural extension/lower expectation of g is given by Choquet integral

$$\underline{P}(g) = \sum_{i=1}^{N} (g(x_{(i)}) - g(x_{(i-1)}))\underline{P}(\{x_{(i)}, \dots, x_{(N)}\})$$

with () permutation such that $g(x_{(0)}) = 0, g(x_{(1)}) \le \ldots \le g(x_{(N)})$

• Generating extreme points is easy. Take a permutation () of {1,..., *N*} and compute for each *i*

$$p(x_{(i)}) = \underline{P}(\{x_{(i)}, \dots, x_{(N)}\}) - \underline{P}(\{x_{(i+1)}, \dots, x_{(N)}\}),$$

then p is an extreme point of \mathcal{M}

A third reduction: belief functions

A belief function is a lower probability \underline{P} such that for any collection $\mathscr{A} = \{A_1, \ldots, A_K \subseteq \mathscr{X}\}$ with $K \leq 2^{\mathscr{X}}$, we do have

$$\underline{P}(\cup_{A_i\in\mathscr{A}}A_i)\geq \sum_{\mathscr{B}\subseteq\mathscr{A}}(-1)^{|\mathscr{B}|+1}\underline{P}(\cap_{A_i\in\mathscr{B}}A_i),$$

known as the property of complete (or ∞) monotonicity.

Side exercise: prove that a belief function is also 2-monotone⁷

Side bonus: everything we just said also applies to belief function

⁷In fact, if <u>P</u> is k-monotone, it is also (k-1)-monotone.

An interesting tool: Mobius inverse

The Möbius inverse⁸ $m: 2^{\mathscr{X}} \to \mathbb{R}$ of a given <u>P</u> is

$$m(A) = \sum_{B \subseteq A} (-1)^{|A \setminus B|} \underline{P}(B),$$

and has some interesting properties when applied to belief functions:

It is bijective with <u>P</u> (true for any <u>P</u>), as for any B

$$\underline{P}(B) = \sum_{A \subseteq B} m(A)$$

• For a new function $g, \underline{P}(g)$ can be computed⁹ as

$$\underline{P}(g) = \sum_{A \subseteq \mathscr{X}} m(A) \cdot \inf_{x \in A} g(x)$$

m is positive (only true for belief functions) → can be seen as a random distribution over subsets → useful tool to simulate <u>P</u>

⁸Apply in fact to general posets

⁹also applies as long as <u>P</u> is 2-monotone

Example 1: frequencies of imprecise observations

60 % replied $\{N, F, D\} \rightarrow m(\{N, F, D\}) = 0.6$ 15 % replied "I do not know" $\{N, F, D, M, O\} \rightarrow m(\mathscr{S}) = 0.15$ 10 % replied Murray $\{M\} \rightarrow m(\{M\}) = 0.1$ 5 % replied others $\{O\} \rightarrow m(\{O\}) = 0.05$

. . .

Example 2: Imprecise Distributions [4]

A pair $[\underline{F}, \overline{F}]$ of cumulative distributions

Bounds over events $[-\infty, x]$

- Percentiles by experts;
- Kolmogorov-Smirnov bounds;

Can be extended to any pre-ordered space [2], [7] \Rightarrow multivariate spaces!

Expert providing percentiles

 $0 \le P([-\infty, 12]) \le 0.2$

 $0.2 \le P([-\infty, 24]) \le 0.4$

 $0.6 \le P([-\infty, 36]) \le 0.8$

A fourth reduction: possibility measure

A possibility measure is a maxitive upper probability \overline{P} :

$$\overline{P}(A \cup B) = \max\{\overline{P}(A), \overline{P}(B)\}$$

This has the following consequences:

• All information is encoded in $\overline{P}(\{x\})$, as

$$\overline{P}(A) = \max_{x \in A} \overline{P}(\{x\})$$

- The associated <u>P</u> is a belief function
- The sets receiving positive Möbius mass are nested (form a sequence of included sets)

A simple example

A set *E* of most plausible values

A confidence degree $\alpha = \underline{P}(E)$

Two interesting cases:

- Expert providing most plausible values *E*
- E set of models of a formula ϕ

Both cases extend to multiple sets E_1, \ldots, E_p :

- confidence degrees over nested sets [5]
- hierarchical knowledge bases
 [3]

pH value $\in [4.5, 5.5]$ with

 $\alpha = 0.8$ (~ "quite probable")

A simple example

- A set *E* of most plausible values
- A confidence degree $\alpha = \underline{P}(E)$
- Two interesting cases:
 - Expert providing most plausible values *E*
 - E set of models of a formula ϕ

Both cases extend to multiple sets E_1, \ldots, E_p :

- confidence degrees over nested sets [5]
- hierarchical knowledge bases
 [3]

variables p, q $\Omega = \{pq, \neg pq, p\neg q, \neg p\neg q\}$ $\underline{P}(p \Rightarrow q) = 0.9$ (~ "almost certain") $E = \{pq, p\neg q, \neg p\neg q\}$

•
$$\pi(pq) = \pi(p \neg q) = \pi(\neg p \neg q) = 1$$

A quick and incomplete summary

Severe uncertainty reasoning

Outline

heudiasyc

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets
 - o Example
 - Ignorance, complete order
 - Ignorance, partial orders
 - Probability sets with illustration

Decision setting

- Still a set ${\mathscr X}$ of states
- A set A of actions
- To each action a: X → R corresponds a mapping such that a(x) is the reward/utility of performing a when x is true
- Possibly a set \mathcal{M} modelling our knowledge about X

Decision problem (here): recommend one or multiple actions based on our knowledge about the states in $\mathscr X$

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets
 - o Example
 - Ignorance, complete order
 - Ignorance, partial orders
 - Probability sets with illustration

Basics Probabilities as bets Beyond proba. credal sets Practical models Credal decision Example Ignorance, complete order Ignorance, partial orders Probability sets with illustration

An example

We want to cross a sea stretch:

- States: sea weather conditions
- Actions: type of transports

Basics Probabilities as bets Beyond proba. credal sets Practical models Credal decision Example Ignorance, complete order Ignorance, partial orders Probability sets with illustration

States \mathscr{X}

$x_1 = \text{Calm sea}$ $x_2 = \text{Agitated sea}$ $x_3 = \text{Stormy weather}$

Actions *A*

 a_1 = Motor boat a_2 = Catamaran a_3 = Ferry boat

Basics Probabilities as bets Beyond proba. credal sets Practical models Credal decision Example Ignorance, complete order Ignorance, partial orders Probability sets with illustration

The matrix 𝔐

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3
•	12	0	10
a_1	12	0	-10
a ₁ a ₂ a ₃	-2	8	0
<i>a</i> 3	1	5	10

Which action to choose?

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets
 - o Example
 - o Ignorance, complete order
 - Ignorance, partial orders
 - Probability sets with illustration

Maximin: pessimistic behaviour

- For each action a_i , compute $u_{\star}(a_i) = \min_j u(a_i, x_j)$
- Say that $a_k \succ_{Mm} a_\ell$ if $u_\star(a_k) > u_\star(a_\ell)$

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	$u_{\star}(a_i)$
_	10	•	10	10
a ₁	12	0	-10	-10
a_2	-2	8	0	-2
(a 3)	1	5	10	1
Max				1

- We get $a_3 > a_2 > a_1$, hence a_3 is recommended
- Pessimistic attitude: best action in the worst case

Maximax: optimistic behaviour

- For each action a_i , compute $u^*(a_i) = \max_j u(a_i, x_j)$
- Say that $a_k \succ_{MM} a_\ell$ if $u^*(a_k) > u^*(a_\ell)$

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$u^{\star}(a_i)$
	12	0	-10	12
$\widetilde{a_2}$	-2	8	0	8
a_3	1	5	10	10
Max				(12)

- We get $a_1 > a_3 > a_2$, hence a_1 is recommended
- Optimistic attitude: best action in the best case

In-between: Hurwicz

- Pick a value $\alpha \in [0, 1]$, called optimism index
- For *a_i*, compute

$$u_{H(\alpha)}(a_i) = \alpha u^{\star}(a_i) + (1-\alpha)u_{\star}(a_k)$$

• Say that $a_k \succ_{\alpha} a_\ell$ if $u_{H(\alpha)}(a_k) > u_{H(\alpha)}(a_\ell)$

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	$u_{\star}(a_i)$	$u^{\star}(a_i)$	$u_{H(0.5)}(a_i)$
a ₁	12	0	-10	-10	12	1
a_2	-2	8	0	-2	8	3
(a ₃)	1	5	10	1	10	5.5
Max						5.5

- We get $a_3 > a_2 > a_1$, hence a_3 is recommended
- Try to balance between optimistic and pessimistic

Savage Minimax regret

- For action a_i, compute R(a_i, x_j) = ma×_k u(a_k, x_j) u(a_i, x_j) the regret of picking a_i in x_j, instead of the best possible action
- For a_i , compute $R^*(a_i) = \max_j R(a_i, x_j)$
- Say that $a_k >_R a_\ell$ if $R^*(a_\ell) > R^*(a_k)$

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	R*(a _i)
a ₁	12	0	-10	
$R(a_1)$	0			
a ₂	-2	8	0	
$R(a_2)$				
a ₃	1	5	10	
$R(a_3)$				
Min				

65

Savage Minimax regret

- For action a_i, compute R(a_i, x_j) = ma×_k u(a_k, x_j) u(a_i, x_j) the regret of picking a_i in x_j, instead of the best possible action
- For a_i , compute $R^*(a_i) = \max_j R(a_i, x_j)$
- Say that $a_k >_R a_\ell$ if $R^*(a_\ell) > R^*(a_k)$

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	R*(a _i)
a ₁	12	0	-10	
$R(a_1)$	0	8		
a ₂	-2	8	0	
$R(a_2)$				
a_3	1	5	10	
$R(a_3)$				
Min				

65

Savage Minimax regret

- For action a_i, compute R(a_i, x_j) = ma×_k u(a_k, x_j) u(a_i, x_j) the regret of picking a_i in x_j, instead of the best possible action
- For a_i , compute $R^*(a_i) = \max_j R(a_i, x_j)$
- Say that $a_k \succ_R a_\ell$ if $R^*(a_\ell) > R^*(a_k)$

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	R*(a _i)
a ₁	12	0	-10	
$R(a_1)$	0	8	20	
a ₂	-2	8	0	
R(a ₂) a ₃				
a_3	1	5	10	
$R(a_3)$				
Min				

65

Savage Minimax regret

- For action a_i, compute R(a_i, x_j) = ma×_k u(a_k, x_j) u(a_i, x_j) the regret of picking a_i in x_j, instead of the best possible action
- For a_i , compute $R^*(a_i) = \max_j R(a_i, x_j)$
- Say that $a_k >_R a_\ell$ if $R^*(a_\ell) > R^*(a_k)$

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	$R^{\star}(a_i)$
a ₁	12	0	-10	
$R(a_1)$	0	8	20	20
a ₂	-2	8	0	
$R(a_2)$				
a_3	1	5	10	
$R(a_3)$				
Min				

65

Savage Minimax regret

- For action a_i, compute R(a_i, x_j) = ma×_k u(a_k, x_j) u(a_i, x_j) the regret of picking a_i in x_j, instead of the best possible action
- For a_i , compute $R^*(a_i) = \max_j R(a_i, x_j)$
- Say that $a_k \succ_R a_\ell$ if $R^*(a_\ell) > R^*(a_k)$

•	We get $a_3 > a_2 > a_3$	1, hence a ₃	is recommended
---	--------------------------	-------------------------	----------------

Minimize regret, but sensitive to addition of non-optimal alternatives

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	R*(a _i)
a ₁	12	0	-10	
$R(a_1)$	0	8	20	20
a ₂	-2	8	0	
$R(a_2)$	14	0	10	14
<i>a</i> 3	1	5	10	
$R(a_3)$	11	3	0	11
Min				11

Minimax regret vs maximin

Consider the following case:

	<i>x</i> ₁	•••	<i>X</i> 99	<i>x</i> ₁₀₀	$R^{\star}(a_i)$
a ₁	10	•••	10	1	
a ₁ R(a ₁) a ₂ R(a ₂)					
<i>a</i> ₂	2	•••	2	2	
$R(a_2)$					
Min					

Minimax regret and irrelevant alternatives

Before: $a_3 > a_2 > a_1$

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	$R^{\star}(a_i)$
a ₁	12	0	-10	
$R(a_1)$				
a_2	-2	8	0	
$R(a_2)$				
a_3	1	5	10	
$R(a_3)$				
a_4	-5	20	-20	
$R(a_4)$				
Min				

Complete ordering: summary

- Minimax=pessimistic [8]
- Maximax=optimistic
- Hurwicz=in-between [1]
- Savage=Minimizing felt regret [6]

Whatever the chosen rule, we always get one optimal action. But we need to commit to a peculiar behaviour.

What if DM does not want to commit to peculiar behaviour?

What if DM wants to only know the actions that are potentially optimal, given our uncertainty?

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets
 - o Example
 - o Ignorance, complete order
 - o Ignorance, partial orders
 - Probability sets with illustration

Lattice ordering

• Say that $a_k \succeq_L a_\ell$ if $u^*(a_k) \ge u^*(a_\ell)$ and $u_*(a_k) \ge u_*(a_\ell)$

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	$u_{\star}(a_i)$	$u^{\star}(a_i)$	(a_1) (a_3)
a ₁	12	0	-10	-10	12	
a ₂	-2	8	0	-2	8	
a ₃	1	5	10	1	10	

- Only existing dominance is *a*₂ by *a*₃, hence only *a*₂ is considered non-optimal
- Can be seen as a robust Hurwicz (considering all *α* as possibilities)
- Note that with this criterion, we eliminate the best action in state x₂

Lattice ordering and information monotonicity

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	$u_{\star}(a_i)$	$u^{\star}(a_i)$
a	10	12	14	15	10	15
b	13	11	16	14	11	16

b≻a

All states possible

Lattice ordering and information monotonicity

	X1	<i>x</i> ₂	<i>X</i> 3	<i>x</i> ₄	$u_{\star}(a_i)$	$u^{\star}(a_i)$
a	10	12	14	15	<mark>12</mark>	15
b	13	11	16	14	11	16

b≻≺a

We learn (gain info) x₁ impossible

a and b becomes incomparable.

Lattice ordering and information monotonicity

	X1	<i>x</i> ₂	*3	<i>x</i> ₄	$u_{\star}(a_i)$	$u^{\star}(a_i)$
a	10	12	14	15	12	15
b	13	11	16	14	11	14

b≺a

We learn (gain info) x₃ impossible

a is now preferred to b.

Interval dominance

• Say that $a_k \succ_{ID} a_\ell$ if $u_\star(a_k) > u^\star(a_\ell)$

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	$u_{\star}(a_i)$	u*(a _i)	(a_1) (a_3)
a ₁	12	0	-10	-10	12	
	-2	8	0	-10 -2	8	
<i>a</i> 3	1	5	10	1	10	

- no dominance at all
- overcautious criterion → may retain Pareto-dominated solutions

Interval dominance: drawback example

• We add a fourth possible, expensive action a4=Helicopter

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	$u_{\star}(a_i)$	$u^{\star}(a_i)$		\frown
<i>a</i> 1	12	0	-10	-10	12		
a ₂	-2	8	0	-2	8	(a_4)	
<i>a</i> 3	1	5	10	1	10	\bigcirc	\bigcirc
a_4	8	8	4	4	8		

 no dominance at all, even if a₄ better (sometimes strictly) than a₂ in every situation!

Difference dominance

Say that a_k ≥_D a_ℓ if u(a_k, x_j) − u(a_ℓ, x_j) ≥ 0 for all x_j (> if > 0 for at least one x_j)

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	
<i>a</i> 1	12	0	-10	(a_1) (a_3)
a ₁ a ₂	-2	8	-	
a_3	1	5	10	
<i>a</i> ₂ – <i>a</i> ₁	-14	8	10	

- no dominance at all, again
- do we have the same problem as with interval dominance?

Difference comparison

• We add a fourth possible, expensive action a₄=Helicopter

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	$u_{\star}(a_i)$	u*(a _i)		
a ₁	12	0	-10	-10	12		
a_2	-2	8	0	-2	8		
a_3	1	5	10	1	10	(a ₄)—	$\rightarrow a_2$
a_4	8	8	4	4	8	_	_
$a_4 - a_2$	10	0	4				

So far...

Options when true state of the world completely unknown:

- Complete ordering/one top recommendation
 - Maximin: pessimistic DM
 - Maximax: optimistic DM
 - Hurwicz: attempt to in-between
- Partial ordering/multiple recommendations refleciting lack of knowledge
 - $\,\circ\,$ Lattice ordering: robust hurwicz, may miss potentially optimal actions
 - Interval dominance: very conservative, may keep Pareto dominated options
 - Difference dominance: will keep every non-Pareto dominated solution

Outline

- Basics
- Probabilities as bets
- Going beyond betting probabilities: why and how?
- Probability sets, a.k.a. credal sets
- Practical models and computations
- Decision with probability sets
 - o Example
 - o Ignorance, complete order
 - Ignorance, partial orders
 - Probability sets with illustration

Previous decision rules adaptation

In general, replace u^* by upper expectation \overline{P} , u_* by lower expectation \underline{P} . Total order

- Maximax: $a \succeq_{MM} b$ if $\overline{P}(a) \ge \overline{P}(b)$
- Maximin: $a \succeq_{Mm} b$ if $\underline{P}(a) \ge \underline{P}(b)$
- Hurwicz: $a \succeq_{\alpha} b$ if $\alpha \overline{P}(a) + (1 \alpha)\underline{P}(a) \ge \alpha \overline{P}(b) + (1 \alpha)\underline{P}(b)$

Partial order

- Interval dominance: $a >_{ID} b$ if $\overline{P}(b) \le \underline{P}(a)$
- Lattice: $a \succ_L b$ if $\overline{P}(b) \le \overline{P}(a) \land \underline{P}(b) \le \underline{P}(a)$
- Difference: $a \succ_D b$ if $\underline{P}(a-b) \ge 0$

Difference dominance

Under knowledge \mathcal{P} , action a_k is better than a_ℓ if

$$\underline{P}(a_k-a_\ell)=\inf_{p\in\mathscr{P}}P(a_k-a_\ell),$$

that is if in average, we gain something when exchanging a_{ℓ} for a_k

Special cases

- probabilities = expected utility
- set = difference dominance (filter out Pareto-dominated solutions)

E-admissibility

- Previous rules use orderings between alternatives
- Another way: pick potentially optimal answers
- For a given set A of actions and a probability p, let

$$Opt(P, \mathscr{A}) = \arg \max_{a \in \mathbb{A}} P(a)$$

• The E-admissible rule returns the set

$$Opt_{E}(\mathcal{M}, \mathcal{A}) = \cup_{P \in \mathcal{M}} Opt(P, \mathcal{A})$$

Links between rules

Given \succ_i , we denote $Opt_{\succ_i}(\mathcal{M}, \mathcal{A}) := \{a \in \mathbb{A} : \exists a' \text{ s.t. } a' \succ_i a\}$ its set of maximal elements.

We have the following relations:

•
$$a \ge_{ID} b \Longrightarrow a \ge_{D} b \Longrightarrow a \ge_{L} b \Longrightarrow a \ge_{\alpha} b \quad \forall \alpha$$

•
$$Opt_{E}(\mathcal{M},\mathcal{A}) \subseteq Opt_{\geq_{D}}(\mathcal{M},\mathcal{A}) \subseteq Opt_{\geq_{ID}}(\mathcal{M},\mathcal{A})$$

• $Opt_{\succ_{\alpha}}(\mathcal{M},\mathcal{A}) \subseteq Opt_{\succ_{L}}(\mathcal{M},\mathcal{A}) \subseteq Opt_{\succ_{D}}(\mathcal{M},\mathcal{A})$

As an exercice, prove the implications of the first line, and the first inclusion of the second (other inclusions immediately follow from implications).

Back to Ellsberg

۸

9 balls, 3 are reds, 6 remaining are either yellow or black

	A				В	
R(ed)	B(lack) Y(ellow)			R(ed)	B(lack)	Y(ellow)
100 \$	0 \$ 0\$			0\$	100 \$	0\$
	С				D	
R(ed)	B(lack)	Y(ellow)		R(ed)	B(lack)	Y(ellow)
100 \$	0\$	100\$		0\$	100 \$	100\$
What are the possible probability values? In terms of bounds over						

- What are the possible probability values? In terms of bounds over each colour?
- Compute the lower/upper expectations for each act
- What kind of comparison explain the most frequent behaviour A ≥ B but D ≥ C?

Back to Ellsberg

9 balls, 3 are reds, 6 remaining are either yellow or black

А В R(ed) B(lack) Y(ellow) R(ed) B(lack) Y(ellow) 100 \$ 0\$ 0\$ 100 \$ 0\$ 0\$ С D R(ed) B(lack) Y(ellow) B(lack) Y(ellow) R(ed) 100 \$ 0\$ 100\$ 0\$ 100 \$ 100\$

Boat example

Agitated is the most likely state ($p(x_2) \ge p(x_1)$ and $p(x_2) \ge p(x_3) + p(x_i) \ge 0 + \sum p(x) = 1$). What is the associated credal set?

Boat example

Agitated is the most likely state $(p(x_2) \ge p(x_1))$ and $p(x_2) \ge p(x_3) + p(x_2)$ $p(x_i) \ge 0 + \sum p(x) = 1$

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<u>P</u> (a _i)	$\overline{P}(a_i)$
a ₁	12	0	-10	-5	6
а ₁ а ₂	-2	8	0		
a 3	1	5	10		
а ₃ а ₄	8	8	4		

 $P(a_1) = 0 \cdot 12 + 0.5 \cdot 0 + 0.5 \cdot -10 = -5$

 $\overline{P}(a_1) = 0.5 \cdot 12 + 0.5 \cdot 0 + 0 \cdot -10 = 6$

85

Boat example

Agitated is the most likely state $(p(x_2) \ge p(x_1) \text{ and } p(x_2) \ge p(x_3) + p(x_i) \ge 0 + \sum p(x) = 1)$

	<i>x</i> 1	<i>x</i> ₂	<i>x</i> 3	<u>P</u> (a _i)	$\overline{P}(a_i)$
				_	
a ₁	12	0	-10	-5	6
а ₁ а ₂	-2	8	0	2	8
<i>a</i> 3	1	5	10	3	7.5
a_4	8	8	4	6	8

- Maximin: a4
- Maximax: a₄
- Lattice ordering: $a_4 > \{a_2, a_3\} > a_1$
- Interval dominance: only a₄ > a₁ (a₂ still possibly optimal)

Example

Agitated is the most likely state $(p(x_2) \ge p(x_1) \text{ and } p(x_2) \ge p(x_3) + p(x_i) \ge 0 + \sum p(x) = 1)$

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3			\frown
					(6	a 3)	(a ₄)
ć	a ₁	12	0	-10		$\stackrel{\scriptstyle }{\prec}$	
ć	a 4	8	8	4	(é	a ₁) ((a ₂)
a_4	- a ₁	-4	8	14			\bigcirc

$$\underline{P}(a_4 - a_1) = 0.5 \cdot -4 + 0.5 \cdot 8 + 0 \cdot -6 = 2$$

In the example, difference dominance give $a_4 > a_2$, $a_4 > a_1$

Example

Agitated is the most likely state $(p(x_2) \ge p(x_1) \text{ and } p(x_2) \ge p(x_3) + p(x_i) \ge 0 + \sum p(x) = 1)$

	<i>x</i> 1	<i>x</i> ₂	<i>x</i> 3	(a_3) (a_4)
<i>a</i> ₂	-2	8	0	
a_4	8	8	4	(a_1) (a_2)
$a_4 - a_2$	6	0	4	-

 $\underline{P}(a_4 - a_2) \ge 0$ because of Pareto-dominance

In the example, difference dominance give $a_4 > a_2$, $a_4 > a_1$

Example

Agitated is the most likely state $(p(x_2) \ge p(x_1) \text{ and } p(x_2) \ge p(x_3) + p(x_i) \ge 0 + \sum p(x) = 1)$

 X_1 X2 Х3 a₃ a_4 5 10 a_3 8 8 4 a_2 a₄ a_1 7 3 -6 $a_4 - a_3$ -7 -36 $a_3 - a_4$

<u> $P(a_4 - a_3) = 0.7 + 0.5 \cdot 3 + 0.5 \cdot -6 = -1.5$ and <u> $P(a_3 - a_4) = -5$ </u></u>

In the example, difference dominance give $a_4 > a_2$, $a_4 > a_1$

References I

- K. J. Arrow and L. Hurwicz. An optimality criterion for decision-making under ignorance. Uncertainty and expectations in economics, pages 1–11, 1972.
- [2] S. Destercke, D. Dubois, and E. Chojnacki. Unifying practical uncertainty representations: I generalized p-boxes. Int. J. of Approximate Reasoning, 49:649–663, 2008.
- [3] D. Dubois and H. Prade. Possibilistic logic: a retrospective and prospective view. *Fuzzy Sets and Systems*, 144(1):3 – 23, 2004.
- [4] S. Ferson, L. Ginzburg, V. Kreinovich, D. Myers, and K. Sentz. Constructing probability boxes and dempster-shafer structures. Technical report, Sandia National Laboratories, 2003.
- [5] S. Sandri, D. Dubois, and H. Kalfsbeek. Elicitation, assessment and pooling of expert judgments using possibility theory. *IEEE Trans. on Fuzzy Systems*, 3(3):313–335, August 1995.
- [6] L. J. Savage. The theory of statistical decision. Journal of the American Statistical association, 46(253):55–67, 1951.
- [7] M. C. M. Troffaes and S. Destercke. Probability boxes on totally preordered spaces for multivariate modelling. *Int. J. Approx. Reasoning*, 52(6):767–791, 2011.

References II

[8] A. Wald. Statistical decision functions. 1950.

