

Uncertainty reasoning and machine learning Uncertainty, Decision and Evaluation in Machine Learning

Vu-Linh Nguyen

Chaire de Professeur Junior, Laboratoire Heudiasyc Université de technologie de Compiègne

AOS4 master courses

Who is more reliable?

An example: Assume we travel to a small village

- There are **two doctors** who can give suggestion on whether a patient suffers from at least one type of serious cancers.
- Either "yes (y)" or "don't know (y/n)" → go to the closest hospital for further diagnosis
- People ask you "who is more reliable?" given historical record on 1000 patients.

True situations	50 y	50 y	400 n	500 n
Dr. A's predictions	50 y	50 n	400 n	400 n + 100 y
Dr. B's predictions	50 y	40 y/n + 10 n	400 n	400 n + 100 y

Which model is more reliable?

Another example: Assume we travel to another village

- There are **3 pre-trained models** which can give suggestion on whether a patient suffers from at least one type of serious cancers.
- Either "yes (y)" or "don't know (y/n)" → go to the closest hospital for further diagnosis
- People ask you "which model is more reliable?" given historical record on 1000 patients.

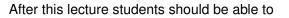
True situations	50 y	50 y	400 n	500 n
C's predictions	50 y	50 n	400 n	400 n + 100 y
D's predictions	50 y	40 y/n + 10 n	400 n	400 n + 100 y
E's predictions	50 y	40 y/n + 10 n	400 n	450 n + 50 y/n

Go beyond the predictive performance?

It might be safer to defer our answer until we know more about

- how the models were learned and make their predictions
- how robust their predictions are (under the presence of noise)
- the decision-making process (cost, consequence, etc.)

• ...



- conceptually describe the Imprecise Dirichlet model (IDM) [1]
- use IDM in K-nn classifiers with fixed windows [8]
- evaluate classifiers based on IDM and related models [4, 10]

Outline

- Inference from Multinomial Data
- Imprecise Dirichlet Model (IDM)
- (Parzen) Window Classifiers
- Evaluate Classifiers

Classifiers

Basic setup:

- Univariate discrete variable V
- A finite set of possible outcomes $v \in \mathcal{V}$
- Each possible outcome is assigned a probability value θ_v := P(V = v) = P({v})

- Univariate discrete variable V
- A finite set of possible outcomes $v \in \mathcal{V}$
- Each possible outcome is assigned a probability value θ_v := P(V = v) = P({v})

Questions

- How to model and estimate θ_{v} ?
- How to do inference?
- How to handle small data?
- How to handle missing/partial data?

Frequentist, Bayesian and Imprecise approaches

Axioms

- 1. Positive: $\theta_v \ge 0$ for all outcomes $v \in \mathcal{V}$
- 2. Additive: $P(S) = \sum_{v \in S} \theta_v$ for all events $S \subseteq V$
- 3. Normed: $P(\mathcal{V}) = 1$

Frequentist, Bayesian and Imprecise approaches

Axioms

- 1. Positive: $\theta_v \ge 0$ for all outcomes $v \in \mathcal{V}$
- 2. Additive: $P(S) = \sum_{v \in S} \theta_v$ for all events $S \subseteq V$
- 3. Normed: $P(\mathcal{V}) = 1$

Three approaches (discussed in this lecture):

- 4F. Frequentist: $\theta = \{\theta_{V} | v \in \mathcal{V}\}$ is not a random variable (VR).
- 4B. Bayesian: $\theta = \{\theta_{V} | v \in V\}$ is a RV \leftarrow prior uncertainty (PU) is described by a distribution.
 - 41. Imprecise: $\theta = \{\theta_{V} | v \in \mathcal{V}\}$ is a RV \leftarrow PU is described by a set of distribution $\theta \in \Theta$.

Some Inference Problems

Multinomial data:

- Given the observed data **D** where v appear n_v times, $v \in V$:
- Let $n = \sum_{v} n_{v}$ and $\boldsymbol{n} = \{n_{v} | v \in \mathcal{V}\}$

Multinomial likelihood:

- ∞ : is proportional to.
- $L(\boldsymbol{\theta}|\boldsymbol{D}) \propto \prod_{v \in \mathcal{V}} (\theta_v)^{n_v}$.

Make inferences about

- the **unknown** θ
- some derived parameter of interest $g(\theta)$
- future observations D'

(Few) Potential Applications

Multinomial data:

- Given the observed data **D** where v appear n_v times, $v \in V$:
- Let $n = \sum_{v} n_{v}$ and $\boldsymbol{n} = \{n_{v} | v \in \mathcal{V}\}$
- Multinomial likelihood: $L(\boldsymbol{\theta}|\boldsymbol{D}) \propto \prod_{x \in \mathcal{V}} (\theta_v)^{n_v}$.

Make inferences about

- the **unknown** $\boldsymbol{\theta}$, e.g., its best estimate $\boldsymbol{\theta}^*$
- some derived parameter of interest $g(\theta)$

(Few) Potential Applications

Multinomial data:

- Given the observed data **D** where v appear n_v times, $v \in V$:
- Let $n = \sum_{v} n_{v}$ and $\boldsymbol{n} = \{n_{v} | v \in \mathcal{V}\}$
- Multinomial likelihood: $L(\boldsymbol{\theta}|\boldsymbol{D}) \propto \prod_{x \in \mathcal{V}} (\theta_v)^{n_v}$.

Make inferences about

- the **unknown** $\boldsymbol{\theta}$, e.g., its best estimate $\boldsymbol{\theta}^*$
- some derived parameter of interest $g(\theta)$

You would find such a problem in

- Parzen window classifiers
- (Credal) Decision trees, Naive Bayesian/credal Classifier (Lecture 4)
- Ensembles (Trees, Neural Nets, etc.)
- Bayesian Neural Nets

Outline

- Inference from Multinomial Data
- Imprecise Dirichlet Model (IDM)
 - Frequentist and Bayesian Approaches
 - Imprecise Dirichlet Model
- (Parzen) Window Classifiers
- Evaluate Classifiers

lassifiers

Outline

- Inference from Multinomial Data
- Imprecise Dirichlet Model (IDM)
 - Frequentist and Bayesian Approaches
 - Imprecise Dirichlet Model
- (Parzen) Window Classifiers
- Evaluate Classifiers

Frequentist (Recap)

Axioms

- 1. Positive: $\theta_v \ge 0$ for all outcomes $v \in \mathcal{V}$
- 2. Additive: $P(S) = \sum_{v \in V} \theta_v$ for all events $S \subseteq V$
- 3. Normed: $P(\mathcal{V}) = 1$
- 4F. Frequentist: $\theta = \{\theta_{V} | v \in \mathcal{V}\}$ is not a random variable (VR).

Frequentist (Recap)

Axioms

- 1. Positive: $\theta_v \ge 0$ for all outcomes $v \in \mathcal{V}$
- 2. Additive: $P(S) = \sum_{v \in V} \theta_v$ for all events $S \subseteq V$
- 3. Normed: $P(\mathcal{V}) = 1$
- 4F. Frequentist: $\theta = \{\theta_{V} | v \in \mathcal{V}\}$ is not a random variable (VR).

Estimate θ:

• Frequencies: Maximum likelihood estimation (MLE) gives $\theta_v^* = n_v/n$

 Does not take into account the importance of sample size ← Sources of uncertainty!

Does not take into account the importance of sample size
 Sources of uncertainty!

Coin	Small	Large
Flips	2	2 · 10 ⁶
Heads	50%	50%
Tails	50%	50%

• For both coins, a frequentist says

$$\theta^*_{\text{Head}} = \theta^*_{\text{Tail}} = 1/2$$

lassifiers '

Does not take into account the importance of sample size
 Sources of uncertainty!

Coin	Small	Large	 For both coins, a frequentist says
Flips	2	2 · 10 ⁶	$\theta^*_{\text{Head}} = \theta^*_{\text{Tail}} = 1/2$
Heads	50%	50%	 What can you say about the reliability of
Tails	50%	50%	the estimate for each coin?

Classifiers

 Does not take into account the importance of sample size ← Sources of uncertainty!

Coin	Small	Large	 For both coins, a frequentist says θ[*]_{Head} = θ[*]_{Tail} = 1/2 What can you say about the reliability of the estimate for each coin?
Flips	2	2 · 10 ⁶	
Heads	50%	50%	
Tails	50%	50%	
Coin	Small	Large	• For both coins, a frequentist says $\theta^*_{\text{Head}} = 0$ and $\theta^*_{\text{Tail}} = 1$
Flips	2	2 · 10 ⁶	
Heads	0%	0%	
Tails	100%	100%	

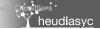
 Does not take into account the importance of sample size ← Sources of uncertainty!

Coin	Small	Large	 For both coins, a frequentist says θ[*]_{Head} = θ[*]_{Tail} = 1/2 What can you say about the reliability of the estimate for each coin?
Flips	2	2 · 10 ⁶	
Heads	50%	50%	
Tails	50%	50%	
Coin	Small	Large	 For both coins, a frequentist says θ[*]_{Head} = 0 and θ[*]_{Tail} = 1 What can you say about the reliability of the estimate for each coin?
Flips	2	2 · 10 ⁶	
Heads	0%	0%	
Tails	100%	100%	

lassifiers

Frequentist: Comments (Cont.)

Does not (naturally) take into account missing/partial data



Frequentist: Comments (Cont.)

• Does not (naturally) take into account missing/partial data

Coin	Small	Large
Flips	2	2 · 10 ⁶
Heads	[0,1]	[5,10]
Tails	[1,2]	[5,2·10 ⁶]

- $\,\circ\,$ Can we use frequencies to estimate $\,\theta^*_{\rm Head}$ and $\theta^*_{\rm Tail}?$
- What can you say about the reliability of the estimate for each coin?

Bayesian (Recap)

Axioms

- 1. Positive: $\theta_{v} \ge 0$ for all outcomes $v \in \mathcal{V}$
- 2. Additive: $P(S) = \sum_{v \in V} \theta_v$ for all events $S \subseteq V$
- 3. Normed: $P(\mathcal{V}) = 1$
- 4B. Bayesian: $\theta = \{\theta_v | v \in \mathcal{V}\}$ is a RV \leftarrow prior uncertainty (PU) is described by a distribution.

Bayesian (Recap)

Axioms

- 1. Positive: $\theta_{v} \ge 0$ for all outcomes $v \in \mathcal{V}$
- 2. Additive: $P(S) = \sum_{v \in V} \theta_v$ for all events $S \subseteq V$
- 3. Normed: $P(\mathcal{V}) = 1$
- 4B. Bayesian: $\theta = \{\theta_v | v \in \mathcal{V}\}$ is a RV \leftarrow prior uncertainty (PU) is described by a distribution.

Bayesian estimates:

- posterior mean θ_v^* of θ_v : $E(\theta_v)$
- posterior mean $\theta_v^* | \boldsymbol{D}$ of $\theta_v | \boldsymbol{D}$: $E(\theta_v | \boldsymbol{D})$

Bayesian (Recap)

Axioms

- 1. Positive: $\theta_{v} \ge 0$ for all outcomes $v \in \mathcal{V}$
- 2. Additive: $P(S) = \sum_{v \in V} \theta_v$ for all events $S \subseteq V$
- 3. Normed: $P(\mathcal{V}) = 1$
- 4B. Bayesian: $\theta = \{\theta_v | v \in \mathcal{V}\}$ is a RV \leftarrow prior uncertainty (PU) is described by a distribution.

Bayesian estimates:

- posterior mean θ_v^* of θ_v : $E(\theta_v)$
- posterior mean $\theta_v^* | \boldsymbol{D}$ of $\theta_v | \boldsymbol{D}$: $E(\theta_v | \boldsymbol{D})$
- We can also use posterior mode

Dirichlet Model

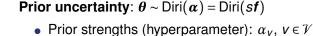
Prior uncertainty: $\theta \sim \text{Diri}(\alpha) = \text{Diri}(sf)$

- Prior strengths (hyperparameter): $\alpha_v, v \in \mathcal{V}$
- Total strength (hyperparameter): $s := \sum_{v \in \mathcal{V}} \alpha_v$
- Prior frequencies: $f := \{f_V | v \in \mathcal{V}\}$ with $f_V := \alpha_v / s, v \in \mathcal{V}$

•
$$\theta_V \sim \text{Beta}(sf_V, s\sum_{V' \neq V} f_{V'})$$

- $\boldsymbol{\theta} | \boldsymbol{D} \sim \text{Diri}(\boldsymbol{n} + \boldsymbol{\alpha}) = \text{Diri}(\boldsymbol{n} + \boldsymbol{s}\boldsymbol{f})$
- $\theta_X | \boldsymbol{D} \sim \text{Beta}(n_V + sf_V, \sum_{V' \neq V} n_{V'} + s \sum_{V' \neq V} f_{V'})$

Classifiers



- Total strength (hyperparameter): $s := \sum_{v \in \mathcal{V}} \alpha_v$
- Prior frequencies: $\mathbf{f} := \{f_{\mathcal{V}} | \mathcal{V} \in \mathcal{V}\}$ with $f_{\mathcal{V}} := \alpha_{\mathcal{V}}/s, \ \mathcal{V} \in \mathcal{V}$

•
$$\theta_V \sim \text{Beta}(sf_V, s\sum_{V' \neq V} f_{V'})$$

•
$$\boldsymbol{\theta} | \boldsymbol{D} \sim \text{Diri}(\boldsymbol{n} + \boldsymbol{\alpha}) = \text{Diri}(\boldsymbol{n} + s\boldsymbol{f})$$

• $\theta_x | \boldsymbol{D} \sim \text{Beta}(n_v + sf_v, \sum_{v' \neq v} n_{v'} + s \sum_{v' \neq v} f_{v'})$

Bayesian estimates:

Dirichlet Model

- posterior mean θ_v^* of θ_v : $E(\theta_v) = f_v$
- posterior mean $\theta_v^* | D$ of $\theta_v | D$:

$$E(\theta_k | \boldsymbol{D}) = (n_v + \alpha_v) / (n + s) = (n_v + sf_v) / (n + s)$$

Dirichlet Model: Hyperparameters

Solutions for fixed *n* are usually symmetric Dirichlet priors

- Prior frequencies: $f_V = 1/|\mathcal{V}|$, $V \in \mathcal{V}$
- Total strength: $s = g'(|\mathcal{V}|)$

Dirichlet Model: Hyperparameters

Solutions for fixed *n* are usually symmetric Dirichlet priors

- Prior frequencies: $f_V = 1/|\mathcal{V}|$, $V \in \mathcal{V}$
- Total strength: $s = g'(|\mathcal{V}|)$

Advocators	α_{v}	S
Haldane (1948)	0	0
Perks (1947)	$1/ \mathcal{V} $	1
Jeffreys (1946, 1961)	1/2	$ \mathcal{V} /2$
Bayes-Laplace	1	$ \mathcal{V} $

Inference from Multinomial Data Imprecise Dirichlet Model (IDM) (Parzen) Window Classifi s Evalua Frequentist and Bayesian Approaches Imprecise Dirichlet Model

9.0

ទ

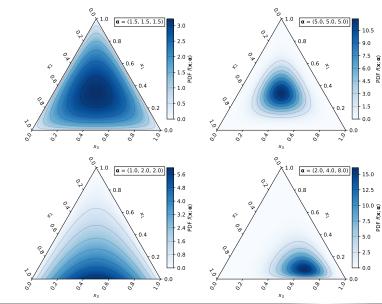
÷,

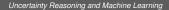
PDF

12.5

0.0

PDF f(x; c





The Importance of Sample Size (Exercise 1)

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	50%	50%
Tails	50%	50%

• For both coins, a frequentist says

$$p_{\text{Heads}} = p_{\text{Tails}} = 1/2$$

Do Bayesians say the same thing?

The Importance of Sample Size (Exercise 1)

Coin Flips Heads	Small 2 50%	Large 2 · 10 ⁶ 50%
Tails	50%	50%
Coin	Small	Large
Flips	4	4 · 10 ⁶
Heads	25%	25%
Tails	75%	75%

• For both coins, a frequentist says

```
p_{\text{Heads}} = p_{\text{Tails}} = 1/2
```

- Do Bayesians say the same thing?
- For both coins, a frequentist says

 $p_{\text{Heads}} = 0.25$, $p_{\text{Tails}} = 0.75$

Do Bayesians say the same thing?

The Importance of Sample Size (Exercise 1)

Coin	Small Large			
Flips	2 2.10			
Heads	50%	50%		
Tails	50%	50%		
Coin	Small	Large		
Flips	4	4 · 10 ⁶		
Heads	25%	25%		
Tails	75%	75%		

• For both coins, a frequentist says

```
p_{\text{Heads}} = p_{\text{Tails}} = 1/2
```

- Do Bayesians say the same thing?
- For both coins, a frequentist says

 $p_{\text{Heads}} = 0.25$, $p_{\text{Tails}} = 0.75$

Do Bayesians say the same thing?

Advocators	α_x	s	$p_{\rm H}^S$	p_{T}^S	$p_{\rm H}^L$	$p_{\rm T}^L$
Haldane (1948)	0	0	???	???	???	???
Perks (1947)	$1/ \mathcal{V} $	1	???	???	???	???
Jeffreys (1946, 1961)	1/2	$ \mathcal{V} /2$???	???	???	???
Bayes-Laplace	1	$ \mathcal{V} $???	???	???	???

The Importance of Sample Size (Solution 1)

Coin	Small	Large
Flips	2	2 · 10 ⁶
Heads	50%	50%
Tails	50%	50%
Coin	Small	Large
Flips	4	4 · 10 ⁶
Heads	25%	25%
Tails	75%	75%

• For both coins, a frequentist says

 $p_{\text{Heads}} = p_{\text{Tails}} = 1/2$

- Do Bayesians say the same thing? ← Yes!
- For both coins, a frequentist says $p_{\text{Heads}} = 0.25$, $p_{\text{Tails}} = 0.75$
- Do Bayesians say the same thing?

The Importance of Sample Size (Solution 1)

Coin	Small	Large
Flips	2	2 · 10 ⁶
Heads	50%	50%
Tails	50%	50%
Coin	Small	Lorgo
	Smail	Large
Flips	4	4 · 10 ⁶

25%

75%

25%

75%

Heads

Tails

• For both coins, a frequentist says

 $p_{\text{Heads}} = p_{\text{Tails}} = 1/2$

- Do Bayesians say the same thing? ← Yes!
- For both coins, a frequentist says $p_{\text{Heads}} = 0.25$, $p_{\text{Tails}} = 0.75$
- Do Bayesians say the same thing?

Advocators	α_v	s	$p_{\rm H}^{S}$	p_{T}^{S}	$p_{\rm H}^L$	$p_{\rm T}^L$
Haldane (1948)	0	0	0.25	0.75	0.25	0.75
Perks (1947)	1/ _V	1	0.3	0.7	0.25	0.75
Jeffreys (1946, 1961)	1/2	$ \mathcal{V} /2$	0.3	0.7	0.25	0.75
Bayes-Laplace	1	$ \mathcal{V} $	0.33	0.67	0.25	0.75

The Importance of Sample Size (Exercise 2)

Coin	Small	Large
Flips	2	2 · 10 ⁶
Heads	0%	0%
Tails	100%	100%

• For both coins, a frequentist says

 $p_{\text{Heads}} = 0$, $p_{\text{Tails}} = 1$

• Do Bayesians say the same thing?

The Importance of Sample Size (Exercise 2)

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	0%	0%
Tails	100%	100%

- For both coins, a frequentist says $p_{\text{Heads}} = 0, p_{\text{Tails}} = 1$
- Do Bayesians say the same thing?

Advocators	α_x	S	$p_{\rm H}^S$	p_T^S	$p_{\rm H}^L$	p_{T}^{L}
Haldane (1948)	0	0	???	???	???	???
Perks (1947)	1/ 1/	1	???	???	???	???
Jeffreys (1946, 1961)	1/2	$ \mathcal{V} /2$???	???	???	???
Bayes-Laplace	1	$ \mathcal{V} $???	???	???	???

The Importance of Sample Size (Solution 2)

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	0%	0%
Tails	100%	100%

- For both coins, a frequentist says $p_{\text{Heads}} = 0, p_{\text{Tails}} = 1$
- Do Bayesians say the same thing?

Advocators	α_x	s	$p_{\rm H}^S$	p_{T}^S	$p_{\rm H}^L$	$p_{\rm T}^L$
Haldane (1948)	0	0	0	1	0	1
Perks (1947)	$1/ \mathcal{V} $	1	0.17		3·10 ⁻⁷	
Jeffreys	$1/ \mathcal{V} $	1	0.17		3·10 ⁻⁷	
Bayes-Laplace	1	$ \mathcal{V} $	0.25	0.75	5·10 ⁻⁷	$1 - 5 \cdot 10^{-7}$

Dirichlet Model (DM): Comments

• Does not (naturally) take into account missing/partial data

Dirichlet Model (DM): Comments

Does not (naturally) take into account missing/partial data

Coin	Small	Large
Flips	2	2 · 10 ⁶
Heads	[0,1]	[5,10]
Tails	[1,2]	[5,2·10 ⁶]

- $\,\circ\,$ Can we use DM to estimate $\,\theta^*_{\rm Head}$ and $\theta^*_{\rm Tail}?$
- What can you say about the reliability of the estimate for each coin?

Outline

- Inference from Multinomial Data
- Imprecise Dirichlet Model (IDM)
 - Frequentist and Bayesian Approaches
 - Imprecise Dirichlet Model
- (Parzen) Window Classifiers
- Evaluate Classifiers

Imprecise (Recap)

Axioms

- 1. Positive: $\theta_v \ge 0$ for all outcomes $v \in \mathcal{V}$
- 2. Additive: $P(S) = \sum_{v \in V} \theta_v$ for all events $S \subseteq V$
- 3. Normed: $P(\mathcal{V}) = 1$
- 41. Imprecise: $\theta = \{\theta_{V} | v \in V\}$ is a RV \leftarrow prior uncertainty (PU) is described by a set of distribution $\theta \in \Theta$.

Classifiers

heudiasvc

Imprecise (Recap)

Axioms

- 1. Positive: $\theta_v \ge 0$ for all outcomes $v \in \mathcal{V}$
- 2. Additive: $P(S) = \sum_{v \in V} \theta_v$ for all events $S \subseteq V$
- 3. Normed: $P(\mathcal{V}) = 1$
- 41. Imprecise: $\theta = \{\theta_{V} | v \in V\}$ is a RV \leftarrow prior uncertainty (PU) is described by a set of distribution $\theta \in \Theta$.

Interval estimates:

• posterior mean θ_v^* of θ_v :

$$E(\theta_v) \in [\underline{E}(\theta_v), \overline{E}(\theta_v)]$$

• posterior mean $\theta_v^* | D$ of $\theta_v | D$:

$$E(\theta_{v}|\boldsymbol{D}) \in [\underline{E}(\theta_{v}|\boldsymbol{D}), \overline{E}(\theta_{v}|\boldsymbol{D})]$$

heudiasvc

Imprecise Dirichlet Model

Prior uncertainty: $\Theta = \{\theta \sim \text{Diri}(\alpha) = \text{Diri}(sf) | \sum_{v \in \mathcal{V}} \alpha_v = s\}$

- Hyperparameter: *s* = degree of imprecision in the inferences
- Prior frequencies: $f := \{f_V | v \in \mathcal{V}\}$ with $f_V := \alpha_v / s, v \in \mathcal{V}$
- $\theta_V \sim \text{Beta}(sf_V, s\sum_{V' \neq V} f_{V'})$
- $\boldsymbol{\theta} | \boldsymbol{D} \sim \text{Diri}(\boldsymbol{n} + \boldsymbol{\alpha}) = \text{Diri}(\boldsymbol{n} + \boldsymbol{s}\boldsymbol{f})$
- $\theta_X | \boldsymbol{D} \sim \text{Beta}(n_V + sf_V, \sum_{V' \neq V} n_{V'} + s \sum_{V' \neq V} f_{V'})$

Imprecise Dirichlet Model

Prior uncertainty: $\Theta = \{\theta \sim \text{Diri}(\alpha) = \text{Diri}(sf) | \sum_{v \in \mathcal{V}} \alpha_v = s\}$

- Hyperparameter: *s* = degree of imprecision in the inferences
- Prior frequencies: $f := \{f_V | v \in \mathcal{V}\}$ with $f_V := \alpha_v / s, v \in \mathcal{V}$
- $\theta_V \sim \text{Beta}(sf_V, s\sum_{V' \neq V} f_{V'})$

•
$$\boldsymbol{\theta} | \boldsymbol{D} \sim \text{Diri}(\boldsymbol{n} + \boldsymbol{\alpha}) = \text{Diri}(\boldsymbol{n} + s\boldsymbol{f})$$

• $\theta_{X} | \boldsymbol{D} \sim \text{Beta}(n_{v} + sf_{v}, \sum_{v' \neq v} n_{v'} + s \sum_{v' \neq v} f_{v'})$

Posterior mean $\theta_v^* | \boldsymbol{D}$ of $\theta_v | \boldsymbol{D}$:

$$E(\theta_{V}|\boldsymbol{D}) \in [\underline{E}(\theta_{V}|\boldsymbol{D}), \overline{E}(\theta_{V}|\boldsymbol{D})], \qquad (1)$$

$$\underline{E}(\theta_{V}|\boldsymbol{D}) = n_{v}/(n+s), \qquad (2)$$

$$\overline{E}(\theta_V | \boldsymbol{D}) = (n_V + s)/(n + s).$$
(3)

heudiasvc

The Importance of Sample Size (Exercise 3)

Coin	Small	Large
Flips	2	2 · 10 ⁶
Heads	50%	50%
Tails	50%	50%

• For both coins, a frequentist says

 $\theta_{\text{Heads}} = \theta_{\text{Tails}} = 1/2$

- Bayesians would say the same thing
- Would IDM say the same thing?

The Importance of Sample Size (Exercise 3)

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	50%	50%
Tails	50%	50%

• For both coins, a frequentist says

 $\theta_{\text{Heads}} = \theta_{\text{Tails}} = 1/2$

- Bayesians would say the same thing
- Would IDM say the same thing?

The Importance of Sample Size (Solution 3)

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	50%	50%
Tails	50%	50%

For both coins, a frequentist says

 $\theta_{\text{Heads}} = \theta_{\text{Tails}} = 1/2$

- Bayesians would say the same thing
- Would IDM say the same thing?

The Importance of Sample Size (Exercise 4)

- Coin
 Small
 Large

 Flips
 2
 2 · 10⁶

 Heads
 0%
 0%

 Tails
 100%
 100%
- For both coins, a frequentist says

 $\theta_{\text{Heads}} = 0$, $\theta_{\text{Tails}} = 1$

- Bayesians would say different things
- What would IDM say?

The Importance of Sample Size (Exercise 4)

Small 2			• F	or both
0%	0%		• E	Bayesiar
100%	1	00%	• V	Vhat wo
ocators		α_{x}	s	$p_{\rm H}^S$
Haldane (1948)			0	0
Perks (1947)			1	0.17
Jeffreys			1	0.17
Bayes-Laplace			$ \mathcal{V} $	0.25
	2 0% 100% ocators ne (1948 s (1947) ffreys	2 2 0% 100% 1 ocators ne (1948) s (1947) ffreys	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 $2 \cdot 10^6$ 0% 0% • E 100% 100% • V ocators α_x s ne (1948) 0 0 s $1/ \mathcal{V} $ 1 ifreys $1/ \mathcal{V} $ 1

coins, a frequentist says

 $\theta_{\text{Heads}} = 0, \theta_{\text{Tails}} = 1$

- ns would say different things
- ould IDM say?

dvocators	α_x	s	$p_{\rm H}^S$	p_{T}^S	$p_{\rm H}^L$	$p_{\rm T}^L$
dane (1948)	0	0	0	1	0	1
rks (1947)	$1/ \mathcal{V} $	1	0.17	0.83	3 · 10 ^{−7}	$1 - 3 \cdot 10^{-7}$
Jeffreys	$1/ \mathcal{V} $	1	0.17	0.83	3 · 10 ^{−7}	$1 - 3 \cdot 10^{-7}$
es-Laplace	1	$ \mathcal{V} $	0.25	0.75	5.10 ⁻⁷	$1 - 5 \cdot 10^{-7}$

The Importance of Sample Size (Exercise 4)

Coin	Small	Large
Flips	2	2 · 10 ⁶
Heads	0%	0%
Tails	100%	100%

• For both coins, a frequentist says

 $\theta_{\text{Heads}} = 0, \theta_{\text{Tails}} = 1$

- Bayesians would say different things
- What would IDM say?

Advocators	α_x	s	$p_{\rm H}^S$	р ^S	$p_{\rm H}^L$	$\rho_{\rm T}^L$
Haldane (1948)	0	0	0	1	0	1
Perks (1947)	$1/ \mathcal{V} $	1			3 · 10 ^{−7}	
Jeffreys	$1/ \mathcal{V} $	1			3·10 ⁻⁷	
Bayes-Laplace	1	$ \mathcal{V} $	0.25	0.75	5.10 ⁻⁷	$1 - 5 \cdot 10^{-7}$

The Importance of Sample Size (Solution 4)

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	0%	0%
Tails	100%	100%
Δ	П	

• For both coins, a frequentist says

 $\theta_{Heads} = 0$, $\theta_{Tails} = 1$

- Bayesians would say different things
- What would IDM say?

Advocators	α_x	s	$p_{\rm H}^S$	p_{T}^{S}	$p_{\rm H}^L$	$\rho_{\rm T}^L$
Haldane (1948)	0	0	0	1	0	1
Perks (1947)	$1/ \mathcal{V} $	1	0.17		3 · 10 ^{−7}	
Jeffreys	$1/ \mathcal{V} $	1	0.17		3·10 ⁻⁷	
Bayes-Laplace	1	$ \mathcal{V} $	0.25	0.75	5.10 ⁻⁷	$1 - 5 \cdot 10^{-7}$

The case of Partial/Missing Data

What if we only know $n_v \in \mathbf{n}_v \subset \{0, 1, \dots, n\}$?



The case of Partial/Missing Data

What if we only know $n_v \in \mathbf{n}_v \subset \{0, 1, \dots, n\}$?

- Imprecise approaches provide nice tools to handle such data sets [8]
- Uncertainty (due to the incompleteness) is described by a set of possible precise data sets D = {D|n_v ∈ n_v, ∑_{v∈V} n_v = n}

The case of Partial/Missing Data

What if we only know $n_v \in \mathbf{n}_v \subset \{0, 1, \dots, n\}$?

- Imprecise approaches provide nice tools to handle such data sets [8]
- Uncertainty (due to the incompleteness) is described by a set of possible precise data sets D = {D | n_v ∈ n_v, ∑_{v∈V} n_v = n}

Interval posterior mean $\theta_v^* | \mathcal{D}$ of $\theta_v | \mathcal{D}$:

$$E(\theta_{\nu}|\mathscr{D}) \in [\underline{E}(\theta_{\nu}|\mathscr{D}), \overline{E}(\theta_{\nu}|\mathscr{D})], \qquad (4)$$

$$\underline{\underline{E}}(\theta_{V}|\mathscr{D}) = \min_{\boldsymbol{D}\in\mathscr{D}} \underline{\underline{E}}(\theta_{V}|\boldsymbol{D}) = \min_{\boldsymbol{D}\in\mathscr{D}} n_{V}/(n+s),$$
(5)

$$\overline{E}(\theta_{V}|\mathscr{D}) = \max_{\boldsymbol{D}\in\mathscr{D}} \overline{E}(\theta_{V}|\boldsymbol{D}) = \max_{\boldsymbol{D}\in\mathscr{D}} (n_{V}+s)/(n+s).$$
(6)

heudiasvc

Determine \mathcal{D} (Exercise 5)

Coin	Small	Large
Flips	2	2 · 10 ⁶
Heads	[0,1]	[5, 10]
Tails	[1,2]	[5,2·10 ⁶

• Recap:
$$\mathcal{D} = \{ \boldsymbol{D} | n_v \in \boldsymbol{n}_v, \sum_{v \in \mathcal{V}} n_v = n \}$$

- What is \mathcal{D}^S for the first coin?
- What is \mathcal{D}^L for the second coin?

Determine *Determine* **(Exercise 5)**

Small	Large
2	2 · 10 ⁶
[0, 1]	[5, 10]
[1,2]	[5,2·10 ⁶]
	2 [0,1]

• Recap:
$$\mathcal{D} = \{ \boldsymbol{D} | n_v \in \boldsymbol{n}_v, \sum_{v \in \mathcal{V}} n_v = n \}$$

- What is \mathcal{D}^S for the first coin?
- What is \mathscr{D}^L for the second coin?

Coin	Small	D ₁	D ₂
Flips	2	2	2
Heads	[0,1]	0	1
Tails	[1,2]	2	1

lassifiers

heudiasyc

Determine \mathcal{D} (Exercise 5)

Coin Flips Heads Tails	Smal 2 [0,1] [1,2]	I Large 2 ⋅ 10 ⁶ [5,10] [5,2 ⋅ 10 ⁶	•	What i	is	$\{\mathbf{D} n_{v}\in \mathbf{f}\}$ for the for the s	irst coi	in?	: n }
		Coin Flips Heac Tails	s Is [(mall 2 0,1] 1,2]	D 1 2 0 2	D ₂ 2 1 1			
Co	in	Large	D ₁	D ₂	D 3	D_4	D 5	D_6	
Flip	os	<i>n</i> = 2 ⋅ 10 ⁶	n	n	п	п	n	n	
Hea	ads	[5,10]	???	???	???	???	???	???	
Tai	ls	[5, <i>n</i>]	???	???	???	???	???	???	

Determine \mathcal{D} (Solution 5)

Coin Flips Heads Tails	Small 2 [0,1] [1,2]	Lar 2 · 1 [5, 2 ·	10 ⁶ 10]	 Recap: D = {D n_v ∈ n_v, ∑_{v∈V} n_v = n What is D^S for the first coin? What is D^L for the second coin? 					
		F	oin lips eads ails	Small 2 [0,1] [1,2]	D 1 2 0 2	D ₂ 2 1 1			
Coin Flips Heads Tails	Lar n = 2 [5, ⁻ [5,	·10 ⁶ 10]	D 1 n 5 n-5	D 2 n 6 n-6	D 3 n 7 n-7	D 4 n 8 n-8	D 5 n 9 n-9	D ₆ n 10 n-10	

Compute Lower and Upper Expectations (Exercise 6)

Interval posterior mean $\theta_v^* | \mathcal{D}$ of $\theta_v | \mathcal{D}$:

$$\underline{E}(\theta_{V}|\mathscr{D}) = \min_{\boldsymbol{D}\in\mathscr{D}} \underline{E}(\theta_{V}|\boldsymbol{D}) = \min_{\boldsymbol{D}\in\mathscr{D}} n_{V}/(n+s),$$
(7)

$$\overline{\overline{E}}(\theta_{\nu}|\mathscr{D}) = \max_{\boldsymbol{D}\in\mathscr{D}} \overline{\overline{E}}(\theta_{\nu}|\boldsymbol{D}) = \max_{\boldsymbol{D}\in\mathscr{D}} (n_{\nu}+s)/(n+s).$$
(8)

Compute Lower and Upper Expectations (Exercise 6)

Interval posterior mean $\theta_v^* | \mathscr{D}$ of $\theta_v | \mathscr{D}$:

$$\underline{E}(\theta_{V}|\mathscr{D}) = \min_{\boldsymbol{D}\in\mathscr{D}} \underline{E}(\theta_{V}|\boldsymbol{D}) = \min_{\boldsymbol{D}\in\mathscr{D}} \frac{n_{v}}{(n+s)}, \tag{7}$$

$$\overline{E}(\theta_{\nu}|\mathscr{D}) = \max_{\boldsymbol{D}\in\mathscr{D}} \overline{E}(\theta_{\nu}|\boldsymbol{D}) = \max_{\boldsymbol{D}\in\mathscr{D}} (n_{\nu}+s)/(n+s).$$
(8)

Coin	Small	D 1	D 2	$\underline{E}(\theta_{v} \mathcal{D})$	$\overline{E}(\theta_{v} \boldsymbol{D})$
Flips	2	2	2		
Heads	[0,1]	0	1	???	???
Tails	[1,2]	2	1	???	???

Compute Lower and Upper Expectations (Exercise 6)

Interval posterior mean $\theta_v^* | \mathscr{D}$ of $\theta_v | \mathscr{D}$:

$$\underline{E}(\theta_{V}|\mathscr{D}) = \min_{\boldsymbol{D}\in\mathscr{D}} \underline{E}(\theta_{V}|\boldsymbol{D}) = \min_{\boldsymbol{D}\in\mathscr{D}} \frac{n_{v}}{(n+s)}, \tag{7}$$

$$\overline{E}(\theta_{\nu}|\mathscr{D}) = \max_{\boldsymbol{D}\in\mathscr{D}} \overline{E}(\theta_{\nu}|\boldsymbol{D}) = \max_{\boldsymbol{D}\in\mathscr{D}} \frac{(n_{\nu}+s)}{(n+s)}.$$
(8)

	Coin	Small	D 1	D ₂	$\underline{E}(\theta_{v} $	\mathscr{D}) $\overline{E}(\theta_{v} $	D)
	Flips	2	2	2			
	Heads	[0,1]	0	1	???	????)
	Tails	[1,2]	2	1	???	????)
Coin	Larg	ge	D ₁		D 6	$\underline{E}(\theta_{v} \mathcal{D})$	$\overline{E}(\theta_{v} \boldsymbol{D})$
Flips	n = 2 ·	10 ⁶	n	•••	n		
Heads	i [5, 1	0]	5		10	???	???
Tails		ז [ר	1-5		<i>n</i> – 10	???	???

Compute Lower and Upper Expectations (Solution 6)

Interval posterior mean $\theta_v^* | \mathscr{D}$ of $\theta_v | \mathscr{D}$:

$$\underline{E}(\theta_{V}|\mathscr{D}) = \min_{\boldsymbol{D}\in\mathscr{D}} \underline{E}(\theta_{V}|\boldsymbol{D}) = \min_{\boldsymbol{D}\in\mathscr{D}} \frac{n_{V}}{(n+s)},$$
(9)

$$\overline{E}(\theta_{\nu}|\mathscr{D}) = \max_{\boldsymbol{D}\in\mathscr{D}} \overline{E}(\theta_{\nu}|\boldsymbol{D}) = \max_{\boldsymbol{D}\in\mathscr{D}} (n_{\nu}+s)/(n+s).$$
(10)

Coin	Small	D ₁	D ₂	$\underline{E}(\theta_{v} \mathcal{D})$	$\overline{E}(\theta_{v} \boldsymbol{D})$
Flips	2	2	2		
Heads	[0,1]	0	1	0/(2+ <i>s</i>)	(1+s)/(2+s)
Tails	[1,2]	2	1	1/(2+s)	(2+s)/(2+s)

Compute Lower and Upper Expectations (Solution 6)

Interval posterior mean $\theta_v^* | \mathscr{D}$ of $\theta_v | \mathscr{D}$:

$$\underline{E}(\theta_{V}|\mathscr{D}) = \min_{\boldsymbol{D}\in\mathscr{D}} \underline{E}(\theta_{V}|\boldsymbol{D}) = \min_{\boldsymbol{D}\in\mathscr{D}} n_{V}/(n+s),$$
(9)

$$\overline{E}(\theta_{\nu}|\mathscr{D}) = \max_{\boldsymbol{D}\in\mathscr{D}} \overline{E}(\theta_{\nu}|\boldsymbol{D}) = \max_{\boldsymbol{D}\in\mathscr{D}} (n_{\nu}+s)/(n+s).$$
(10)

Coin	Small	D ₁	D ₂	$\underline{E}(\theta_{v} \mathcal{D})$	$\overline{E}(\theta_{v} \boldsymbol{D})$
Flips	2	2	2		
Heads	[0,1]	0	1	⁰ /(2+ <i>s</i>)	(1+s)/(2+s)
Tails	[1,2]	2	1	1/(2+s)	(2+ <i>s</i>)/(2+ <i>s</i>)

 $\overline{E}(\theta_{v}|\boldsymbol{D})$ $E(\theta_{v}|\mathcal{D})$ Coin Large D_6 D_1 . . . $n = 2 \cdot 10^6$ Flips n ... n Heads [5,10] 5 10 5/(n+s) (10+s)/(n+s)... ... n-10 (n-10)/(n+s) (n-5+s)/(n+s)Tails [5,*n*] n-5

Outline

- Inference from Multinomial Data
- Imprecise Dirichlet Model (IDM)
- (Parzen) Window Classifiers
- Evaluate Classifiers

Classifiers

heudiasyc

Pazen Window Classifiers [5]

Basic setup and assumption

- Given training data $D \subset \mathscr{X} \times \mathscr{Y}$, a distance $d(\mathbf{x}, \mathbf{x}')$, and a threshold ϵ
- For each instance \boldsymbol{x} , determine $\boldsymbol{D}_{\boldsymbol{\varepsilon}}(\boldsymbol{x}) = \{\boldsymbol{x}' \in \boldsymbol{D} | d(\boldsymbol{x}, \boldsymbol{x}') \leq \boldsymbol{\varepsilon}\}$
- $D_{\varepsilon}(\mathbf{x})$ can be used to estimate $\theta | \mathbf{x} := \theta | D_{\varepsilon}(\mathbf{x})$

Basic setup and assumption

- Given training data $D \subset \mathscr{X} \times \mathscr{Y}$, a distance $d(\mathbf{x}, \mathbf{x}')$, and a threshold ϵ
- For each instance \boldsymbol{x} , determine $\boldsymbol{D}_{\boldsymbol{\varepsilon}}(\boldsymbol{x}) = \{\boldsymbol{x}' \in \boldsymbol{D} | d(\boldsymbol{x}, \boldsymbol{x}') \leq \boldsymbol{\varepsilon}\}$
- $D_{\varepsilon}(\mathbf{x})$ can be used to estimate $\boldsymbol{\theta} | \mathbf{x} := \boldsymbol{\theta} | D_{\varepsilon}(\mathbf{x})$

Optimal decision rules

- Let $\ell : \mathscr{Y} \times \mathscr{Y} \longmapsto \mathbb{R}_+$ be any loss function.
- The Bayes-optimal prediction of ℓ on \boldsymbol{x} is $y_{\ell}^{\boldsymbol{\theta}} = \operatorname{argmin}_{\overline{y} \in \mathscr{Y}} \sum_{y \in \mathscr{Y}} \ell(\overline{y}, y) \theta_{y} | \boldsymbol{x}$

heudiasvc

Basic setup and assumption

- Given training data $D \subset \mathscr{X} \times \mathscr{Y}$, a distance $d(\mathbf{x}, \mathbf{x}')$, and a threshold ϵ
- For each instance \boldsymbol{x} , determine $\boldsymbol{D}_{\boldsymbol{\varepsilon}}(\boldsymbol{x}) = \{\boldsymbol{x}' \in \boldsymbol{D} | d(\boldsymbol{x}, \boldsymbol{x}') \leq \boldsymbol{\varepsilon}\}$
- $D_{\varepsilon}(\mathbf{x})$ can be used to estimate $\boldsymbol{\theta} | \mathbf{x} := \boldsymbol{\theta} | D_{\varepsilon}(\mathbf{x})$

Optimal decision rules

- Let $\ell : \mathscr{Y} \times \mathscr{Y} \longmapsto \mathbb{R}_+$ be any loss function.
- The Bayes-optimal prediction of ℓ on \boldsymbol{x} is $y_{\ell}^{\boldsymbol{\theta}} = \operatorname{argmin}_{\overline{y} \in \mathscr{Y}} \sum_{y \in \mathscr{Y}} \ell(\overline{y}, y) \theta_{y} | \boldsymbol{x}$
- If ℓ is subset 0/1 loss, i.e. $\ell(\overline{y}, y) = \mathbb{1}(\overline{y} \neq y)$, then (Check!) $y_{\ell}^{\theta} = \underset{\overline{y} \in \mathscr{Y}}{\operatorname{argmax}} \theta_{\overline{y}} | \mathbf{x}$

heudiasvc

Learning Problem

Given $\boldsymbol{D}_{\epsilon}(\boldsymbol{x})$, we can

- Count $n = |\mathbf{D}_{\epsilon}(\mathbf{x})|$ and n_y , for any $y \in \mathscr{Y} \longleftarrow \sum_{y \in \mathscr{Y}} n_y = n$
- Estimate $\theta | x$ using MLE, DM, etc.

Learning Problem

Given $\boldsymbol{D}_{\epsilon}(\boldsymbol{x})$, we can

- Count $n = |\mathbf{D}_{\epsilon}(\mathbf{x})|$ and n_y , for any $y \in \mathscr{Y} \longleftarrow \sum_{y \in \mathscr{Y}} n_y = n$
- Estimate $\theta | x$ using MLE, DM, etc.

What would we do if **D** contains

- a small number of instances
- and/or missing/partial data?

Learning Problem

Given $\boldsymbol{D}_{\epsilon}(\boldsymbol{x})$, we can

- Count $n = |\mathbf{D}_{\epsilon}(\mathbf{x})|$ and n_y , for any $y \in \mathscr{Y} \longleftarrow \sum_{y \in \mathscr{Y}} n_y = n$
- Estimate $\theta | x$ using MLE, DM, etc.

What would we do if **D** contains

- a small number of instances
- and/or missing/partial data?

$m{x}'\inm{D}_{\epsilon}(m{x})$	$Y' \subset \mathscr{Y} = \{\text{Apple}, \text{Banana}, \text{Tomato}\}$
x ' ₁	Apple or Banana, but not Tomato
\mathbf{x}_{2}^{i}	Banana or Tomato, but not Apple
x' ₂ x' ₃ x' ₄ x' ₅ x' ₆ x' ₇	Apple or Tomato, but not Banana
\mathbf{x}_{4}^{\prime}	Tomato
\mathbf{x}_{5}^{\prime}	Tomato
\mathbf{x}_{6}^{\prime}	Banana
\mathbf{x}_7^{\prime}	Banana

Learning Problem (Cont.)

Given $D_{\epsilon}(\mathbf{x})$, we can

- Count $n = |\mathbf{D}_{\epsilon}(\mathbf{x})|$ and \mathbf{n}_{γ} for $\gamma \in \mathscr{Y}$
- Determine $\mathcal{D} = \{ \boldsymbol{D} | n_y \in \boldsymbol{n}_y, \sum_{y \in \mathcal{Y}} n_y = n \}$

Learning Problem (Cont.)

Given $D_{\epsilon}(\mathbf{x})$, we can

- Count $n = |\mathbf{D}_{\epsilon}(\mathbf{x})|$ and \mathbf{n}_{γ} for $\gamma \in \mathscr{Y}$
- Determine $\mathcal{D} = \{ \boldsymbol{D} | n_y \in \boldsymbol{n}_y, \sum_{y \in \mathcal{Y}} n_y = n \}$

Using IDM to estimate interval posterior mean $\theta_v^* | \mathscr{D}$ of $\theta_v | \mathscr{D}$:

$$\underline{E}(\theta_{y}|\boldsymbol{x}) = \min_{\boldsymbol{D} \in \mathscr{D}} \underline{E}(\theta_{y}|\boldsymbol{x}) = \min_{\boldsymbol{D} \in \mathscr{D}} n_{y}/(n+s), \qquad (11)$$

$$\overline{E}(\theta_{y}|\boldsymbol{x}) = \max_{\boldsymbol{D} \in \mathscr{D}} \overline{E}(\theta_{y}|\boldsymbol{D}) = \max_{\boldsymbol{D} \in \mathscr{D}} (n_{y}+s)/(n+s).$$
(12)

Determine Possible Precise Data Set (Exercise 7)

$Y \subset \mathscr{Y} = \{Apple, Banana, Tomato\}$
Apple or Banana, but not Tomato
Banana or Tomato, but not Apple
Apple or Tomato, but not Banana
Tomato
Tomato
Banana
Banana

$$n = 7, \boldsymbol{n}_A = ???, \boldsymbol{n}_B = ???, \boldsymbol{n}_T = ???$$
 (13)

Determine Possible Precise Data Set (Exercise 7)

$oldsymbol{x}'\inoldsymbol{D}_{\epsilon}oldsymbol{x}oldsymbol{)}$	$Y \subset \mathscr{Y} = \{Apple, Banana, Tomato\}$
x ' ₁	Apple or Banana, but not Tomato
\mathbf{x}_{2}^{\prime}	Banana or Tomato, but not Apple
$\mathbf{x}_{3}^{\overline{i}}$	Apple or Tomato, but not Banana
$x'_{3} x'_{4}$	Tomato
	Tomato
x ' ₅ x ' ₆	Banana
x [×] ₇	Banana

Determine Possible Precise Data Set (Solution 7)

$Y \subset \mathscr{Y} = \{Apple, Banana, Tomato\}$
Apple or Banana, but not Tomato
Banana or Tomato, but not Apple
Apple or Tomato, but not Banana
Tomato
Tomato
Banana
Banana

$$n = 7, \boldsymbol{n}_A = \{0, 1, 2\}, \boldsymbol{n}_B = \{2, 3, 4\}, \boldsymbol{n}_T = \{2, 3, 4\}$$
 (14)

Determine Possible Precise Data Set (Solution 7)

$oldsymbol{x}'\inoldsymbol{D}_{arepsilon}(oldsymbol{x})$	$Y \subset \mathscr{Y} = \{Apple, Banana, Tomato\}$
x ' ₁	Apple or Banana, but not Tomato
\mathbf{x}_{2}^{\prime}	Banana or Tomato, but not Apple
$\mathbf{x}_{3}^{\overline{i}}$	Apple or Tomato, but not Banana
$\mathbf{x}_{\mathbf{A}}^{\mathbf{V}}$	Tomato
\mathbf{x}_{5}^{\prime}	Tomato
x'2 x'3 x'4 x'5 x'6 x'7	Banana
x [×] ₇	Banana

Compute Lower and Upper Expectations (Exercise 8)

	D ₁	D ₂	D 3	D_4	D 5	D 6	D_7	D 8
n _A	0	0	1	1	1	2	2	2
n _B	3	0 4 3	2	3	4	2	3	4
n _T	4	3	4	3	2	4	3	3

Using IDM to estimate **interval posterior mean** $\theta_{v}^{*}|\mathcal{D}$ of $\theta_{v}|\mathcal{D}$:

$$\underline{E}(\theta_{y}|\boldsymbol{x}) = \min_{\boldsymbol{D}\in\mathscr{D}} \underline{E}(\theta_{y}|\boldsymbol{x}) = \min_{\boldsymbol{D}\in\mathscr{D}} n_{y}/(n+s), \quad (15)$$

$$\overline{E}(\theta_{y}|\boldsymbol{x}) = \max_{\boldsymbol{D}\in\mathscr{D}} \overline{E}(\theta_{y}|\boldsymbol{D}) = \max_{\boldsymbol{D}\in\mathscr{D}} \frac{(n_{y}+s)}{(n+s)}.$$
(16)

Compute Lower and Upper Expectations (Exercise 8)

	D ₁	D ₂	D 3	D_4	D 5	D 6	D_7	D 8
n _A	0	0	1	1	1	2	2	2
n _B	3	0 4 3	2	3	4	2	3	4
n _T	4	3	4	3	2	4	3	3

Using IDM to estimate **interval posterior mean** $\theta_{v}^{*}|\mathcal{D}$ of $\theta_{v}|\mathcal{D}$:

$$\underline{E}(\theta_{y}|\boldsymbol{x}) = \min_{\boldsymbol{D}\in\mathscr{D}} \underline{E}(\theta_{y}|\boldsymbol{x}) = \min_{\boldsymbol{D}\in\mathscr{D}} n_{y}/(n+s),$$
(15)

$$\overline{E}(\theta_{y}|\boldsymbol{x}) = \max_{\boldsymbol{D}\in\mathscr{D}} \overline{E}(\theta_{y}|\boldsymbol{D}) = \max_{\boldsymbol{D}\in\mathscr{D}} (n_{y}+s)/(n+s).$$
(16)

$$\begin{array}{c|c}
\underline{E}(\theta_{y}|\boldsymbol{x}) & \overline{E}(\theta_{y}|\boldsymbol{x}) \\
\hline A & ??? & ??? \\
B & ??? & ??? \\
T & ??? & ??? \\
\end{array}$$

43

Uncertainty Reasoning and Machine Learning

Compute Lower and Upper Expectations (Solution 8)

	D ₁	D ₂	D 3	D_4	D 5	D 6	D_7	D 8
n _A	0	0	1	1	1	2	2	2
n _B	3	0 4 3	2	3	4	2	3	4
n _T	4	3	4	3	2	4	3	3

Using IDM to estimate **interval posterior mean** $\theta_y^* | \mathscr{D}$ of $\theta_y | \mathscr{D}$:

$$\underline{E}(\theta_{y}|\boldsymbol{x}) = \min_{\boldsymbol{D}\in\mathscr{D}} \underline{E}(\theta_{y}|\boldsymbol{x}) = \min_{\boldsymbol{D}\in\mathscr{D}} n_{y}/(n+s), \quad (17)$$

$$\overline{E}(\theta_{y}|\boldsymbol{x}) = \max_{\boldsymbol{D}\in\mathscr{D}} \overline{E}(\theta_{y}|\boldsymbol{D}) = \max_{\boldsymbol{D}\in\mathscr{D}} (n_{y}+s)/(n+s).$$
(18)

$$\begin{array}{c|c} \underline{E}(\theta_{y}|{\bm{x}}) & \overline{E}(\theta_{y}|{\bm{x}}) \\ \hline A & 0/(7+s) & (2+s)/(7+s) \\ B & 2/(7+s) & (4+s)/(7+s) \\ T & 2/(7+s) & (4+s)/(7+s) \end{array}$$

Uncertainty Reasoning and Machine Learning

Compute Lower and Upper Expectations

• For any $y \in \mathcal{Y}$, let

$$\underline{n}_{y} = \sum_{\mathbf{x}' \in \mathbf{D}} \mathbb{1}(y = Y'), \qquad (19)$$

$$\overline{n}_{y} = \sum_{\boldsymbol{x}' \in \boldsymbol{D}} \mathbb{1}(y \in Y').$$
(20)

• Compute interval posterior mean $\theta_y^* | \mathcal{D}$ of $\theta_y | \mathcal{D}$:

$$\underline{\underline{E}}(\theta_{y}|\mathbf{x}) = \underline{n}_{y}/(n+s),$$
(21)
$$\overline{\underline{E}}(\theta_{y}|\mathbf{x}) = (\overline{n}_{y}+s)/(n+s).$$
(22)

Compute Lower and Upper Bound Expectation (Again)

$Y \subset \mathscr{Y} = \{Apple, Banana, Tomato\}$
Apple or Banana, but not Tomato
Banana or Tomato, but not Apple
Apple or Tomato, but not Banana
Tomato
Tomato
Banana
Banana

Compute Lower and Upper Bound Expectation (Again)

$oldsymbol{x}'\inoldsymbol{D}_{arepsilon}(oldsymbol{x})$	$Y \subset \mathscr{Y} = \{Apple, Banana, Tomato\}$
x ' ₁	Apple or Banana, but not Tomato
\mathbf{x}_{2}^{\prime}	Banana or Tomato, but not Apple
x' ₂ x' ₃ x' ₄ x' ₅ x' ₆ x' ₇	Apple or Tomato, but not Banana
$\mathbf{x}_{4}^{}$	Tomato
\mathbf{x}_{5}^{\prime}	Tomato
x ['] ₆	Banana
x ⁷ ₇	Banana

$$\begin{array}{c|c|c|c|c|c|c|c|c|}\hline & \underline{n}_y & \overline{n}_y & \underline{E}(\theta_y | \mathbf{x}) & \overline{E}(\theta_y | \mathbf{x}) \\ \hline A & 0 & 2 & 0/(7+s) & (2+s)/(7+s) \\ \hline B & 2 & 4 & 2/(7+s) & (4+s)/(7+s) \\ \hline T & 2 & 4 & 2/(7+s) & (4+s)/(7+s) \\ \hline \end{array}$$

Set-Valued Predictions [6, 7] (Recap)

E-admissibility Rule:

• An optimal prediction is

$$Y_{\ell,\Theta|\mathbf{x}}^{E} = \{ y \in \mathcal{Y} | \exists \theta | \mathbf{x} \in \Theta | \mathbf{x} \text{ s.t. } y = y_{\ell}^{\theta|\mathbf{x}} \}.$$

• Computation: Solving linear programs, etc.

Set-Valued Predictions [6, 7] (Recap)

E-admissibility Rule:

An optimal prediction is

$$Y_{\ell,\Theta|\boldsymbol{x}}^{\boldsymbol{E}} = \{ \boldsymbol{y} \in \mathscr{Y} | \exists \boldsymbol{\theta} | \boldsymbol{x} \in \Theta | \boldsymbol{x} \text{ s.t. } \boldsymbol{y} = \boldsymbol{y}_{\ell}^{\boldsymbol{\theta}|\boldsymbol{x}} \}.$$

• Computation: Solving linear programs, etc.

Maximality Rule:

An optimal prediction is

$$Y_{\ell,\Theta|\mathbf{x}}^{M} = \{ y \in \mathcal{Y} \mid \exists y' \text{ s.t. } y' \succ_{\ell,\Theta|\mathbf{x}} y \}.$$

• Computation: Solving linear programs, Iterating over the extreme points of $\Theta|x$.

Set-Valued Predictions [6, 7] (Recap)

E-admissibility Rule:

An optimal prediction is

$$Y_{\ell,\Theta|\boldsymbol{x}}^{\boldsymbol{E}} = \{ \boldsymbol{y} \in \mathcal{Y} | \exists \boldsymbol{\theta} | \boldsymbol{x} \in \Theta | \boldsymbol{x} \text{ s.t. } \boldsymbol{y} = \boldsymbol{y}_{\ell}^{\boldsymbol{\theta}|\boldsymbol{x}} \}.$$

• Computation: Solving linear programs, etc.

Maximality Rule:

An optimal prediction is

$$Y_{\ell,\Theta|\mathbf{x}}^{M} = \{ y \in \mathcal{Y} \mid \exists y' \text{ s.t. } y' \succ_{\ell,\Theta|\mathbf{x}} y \}.$$

• Computation: Solving linear programs, Iterating over the extreme points of $\Theta|x$.

Package: github.com/Haifei-ZHANG/Probability-Sets-Model

Outline

- Inference from Multinomial Data
- Imprecise Dirichlet Model (IDM)
- (Parzen) Window Classifiers
- Evaluate Classifiers
 - The cases of Singleton Prediction
 - The cases of Set-Valued Predictions

aluate Classifiers

heudiasyc

Outline

- Inference from Multinomial Data
- Imprecise Dirichlet Model (IDM)
- (Parzen) Window Classifiers
- Evaluate Classifiers
 - $\,\circ\,$ The cases of Singleton Prediction
 - The cases of Set-Valued Predictions

(Few) Commonly Used Criteria

Predictive ability (on a test set):

- Let $\ell : \mathscr{Y} \times \mathscr{Y} \longmapsto \mathbb{R}_+$ be any loss function.
- Compute (average) loss on the test set

(Few) Commonly Used Criteria

Predictive ability (on a test set):

- Let $\ell : \mathscr{Y} \times \mathscr{Y} \longmapsto \mathbb{R}_+$ be any loss function.
- Compute (average) loss on the test set

(Few) Other criteria:

- Model complexity (Storage memory)
- Training and/or Inference time
- Robustness: Under the presence of noise
- Trustworthiness: Explainability, interpretability, etc.

aluate chasitiers heudiasyc

Calibration Error (See Lecture 4)

Confidence calibration [2]:

$$P(y = \arg\max_{y \in \mathscr{Y}} \theta_y | \boldsymbol{x} \text{ such that } \max_{y \in \mathscr{Y}} \theta_y | \boldsymbol{x} = \beta) = \beta, \forall \beta \in [0, 1].$$
(23)

Calibration Error (See Lecture 4)

Confidence calibration [2]:

 $P(y = \arg\max_{y \in \mathscr{Y}} \theta_{y} | \boldsymbol{x} \text{ such that } \max_{y \in \mathscr{Y}} \theta_{y} | \boldsymbol{x} = \beta) = \beta, \forall \beta \in [0, 1].$ (23)

Classwise calibration [9]:

$$P(y \text{ such that } \theta_y | \mathbf{x} = \beta_y) = \beta_y, y \in \mathcal{Y}, \beta \in [0, 1].$$
(24)

May be harder to ensure, compared to confidence calibration

aluate Classifiers '

heudiasyc

Calibration Error (See Lecture 4)

Confidence calibration [2]:

 $P(y = \arg\max_{y \in \mathscr{Y}} \theta_{y} | \boldsymbol{x} \text{ such that } \max_{y \in \mathscr{Y}} \theta_{y} | \boldsymbol{x} = \beta) = \beta, \forall \beta \in [0, 1].$ (23)

Classwise calibration [9]:

$$P(y \text{ such that } \theta_y | \mathbf{x} = \beta_y) = \beta_y, y \in \mathcal{Y}, \beta \in [0, 1].$$
(24)

May be harder to ensure, compared to confidence calibration

Distribution calibration [3]:

$$P(y \text{ such that } \boldsymbol{\theta} | \boldsymbol{x} = \boldsymbol{q}) = \boldsymbol{q}, \forall \boldsymbol{q} \in \triangle^{|\mathscr{Y}|}, \qquad (25)$$

where $\Delta^{|\mathscr{Y}|}$ is the $|\mathscr{Y}|$ -dimensional simplex

• May be harder to ensure, compared to the **above notions**.

aluate Classifiers '

heudiasvc

Outline

- Inference from Multinomial Data
- Imprecise Dirichlet Model (IDM)
- (Parzen) Window Classifiers
- Evaluate Classifiers
 - $_{\odot}\,$ The cases of Singleton Prediction
 - The cases of Set-Valued Predictions

(Few) Commonly Used Criteria

Predictive ability (on a test set):

- We can use any loss function $\ell : 2^{\mathscr{Y}} \times \mathscr{Y} \longmapsto \mathbb{R}_+$.
- If we use utility metric $u = 1 \ell$, replacing min by max.
- Set-based utility functions [10]: $u(Y, y) = \mathbb{1}(y \in Y)g(|Y|)$
- Few commonly used utility function [4]:

$$g_{\alpha}(|Y|) = \frac{\alpha}{|Y|} + \frac{\alpha-1}{|Y|^2},$$

aluate Classifiers '

heudiasvc

(Few) Commonly Used Criteria

Predictive ability (on a test set):

- We can use any loss function $\ell : 2^{\mathscr{Y}} \times \mathscr{Y} \longmapsto \mathbb{R}_+$.
- If we use utility metric $u = 1 \ell$, replacing min by max.
- Set-based utility functions [10]: $u(Y, y) = \mathbb{1}(y \in Y)g(|Y|)$
- Few commonly used utility function [4]:

$$g_{\alpha}(|Y|) = \frac{\alpha}{|Y|} + \frac{\alpha-1}{|Y|^2},$$

(Few) Other criteria:

- Model complexity (Storage memory)
- Training and/or Inference time
- Robustness: Under the presence of noise
- Trustworthiness: Explainability, interpretability, etc.

aluate Clássifiers

heudiasvc

aluate Clásšifiers ' heudiasyc

Set-Based Utility Functions

Few commonly used utility functions:

$$g_{\alpha}(|Y|) = \frac{\alpha}{|Y|} - \frac{\alpha-1}{|Y|^2}.$$

aluate Clássifiers ' heudiasyc

Set-Based Utility Functions

Few commonly used utility functions:

$$g_{\alpha}(|Y|) = \frac{\alpha}{|Y|} - \frac{\alpha - 1}{|Y|^2}$$

Reward to cautiousness:

- u_{50} : $\alpha = 1 \leftarrow no$ reward.
- u_{65} : $\alpha = 1.6$, moderate reward.
- u_{80} : $\alpha = 2.2$, big reward.
- higher α , higher reward

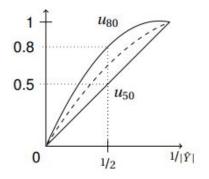
Set-Based Utility Functions

Few commonly used utility functions:

$$g_{\alpha}(|Y|) = \frac{\alpha}{|Y|} - \frac{\alpha - 1}{|Y|^2}$$

Reward to cautiousness:

- u_{50} : $\alpha = 1 \leftarrow no$ reward.
- u_{65} : $\alpha = 1.6$, moderate reward.
- u_{80} : $\alpha = 2.2$, big reward.
- higher α , higher reward



aluate Classifiers '

heudiasyc

Set-Based Utility Functions (Exercise 9)

Recap: Few commonly used **utility functions**: $g_{\alpha}(|Y|) = \frac{\alpha}{|Y|} - \frac{\alpha - 1}{|Y|^2}.$

Exercise: The maximum value of α such that $g_{\alpha}(|Y|) \leq 1, \forall Y \subset \mathcal{Y} \setminus \emptyset$?

Uncertainty Reasoning and Machine Learning

Coverage Error (See Lecture 4)

References I

J.-M. Bernard. [1] An introduction to the imprecise dirichlet model for multinomial data. International Journal of Approximate Reasoning, 39(2-3):123-150, 2005. C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. [2] On calibration of modern neural networks In Proceedings of the 34th International Conference on Machine Learning (ICML), pages 1321-1330, 2017. M Kull and P Flach [3] Novel decompositions of proper scoring rules for classification: score adjustment as precursor to calibration. In Proceedings of the 2015th European Conference on Machine Learning and Knowledge Discovery in Databases (ECML-PKDD), pages 68-85, 2015, [4] T. Mortier, M. Wydmuch, K. Dembczyński, E. Hüllermeier, and W. Waegeman, Efficient set-valued prediction in multi-class classification. Data Mining and Knowledge Discovery, 35(4):1435-1469, 2021. [5] V.-L. Nouven, M. H. Shaker, and E. Hüllermeier, How to measure uncertainty in uncertainty sampling for active learning. Machine Learning, 111(1):89-122, 2022. V.-L. Nouven, H. Zhang, and S. Destercke, [6] Learning sets of probabilities through ensemble methods. In Proceedings of the 17th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty

(ECSQARU), 2023.

[7] M. C. Troffaes.

Decision making under uncertainty using imprecise probabilities. International journal of approximate reasoning, 45(1):17–29, 2007.

References II

- [8] L. V. Utkin and T. Augustin. Decision making under incomplete data using the imprecise dirichlet model. International Journal of Approximate Reasoning, 44(3):322–338, 2007.
- B. Zadrozny and C. Elkan. Transforming classifier scores into accurate multiclass probability estimates. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining (SIGKDD), pages 694–699, 2002.
- [10] M. Zaffalon, G. Corani, and D. Mauá. Evaluating credal classifiers by utility-discounted predictive accuracy. International Journal of Approximate Reasoning, 53(8):1282–1301, 2012.

