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Who is more reliable?

An example: Assume we travel to a small village

l There are two doctors who can give suggestion on whether a
patient suffers from at least one type of serious cancers.

l Either "yes (y)" or "don’t know (y/n)" −→ go to the closest hospital for
further diagnosis

l People ask you "who is more reliable?" given historical record on
1000 patients.

True situations 50 y 50 y 400 n 500 n
Dr. A’s predictions 50 y 50 n 400 n 400 n + 100 y
Dr. B’s predictions 50 y 40 y/n + 10 n 400 n 400 n + 100 y
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Which model is more reliable?

Another example: Assume we travel to another village

l There are 3 pre-trained models which can give suggestion on
whether a patient suffers from at least one type of serious cancers.

l Either "yes (y)" or "don’t know (y/n)" −→ go to the closest hospital for
further diagnosis

l People ask you "which model is more reliable?" given historical
record on 1000 patients.

True situations 50 y 50 y 400 n 500 n
C’s predictions 50 y 50 n 400 n 400 n + 100 y
D’s predictions 50 y 40 y/n + 10 n 400 n 400 n + 100 y
E’s predictions 50 y 40 y/n + 10 n 400 n 450 n + 50 y/n
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Go beyond the predictive performance?

It might be safer to defer our answer until we know more about

l how the models were learned and make their predictions

l how robust their predictions are (under the presence of noise)

l the decision-making process (cost, consequence, etc.)

l ...
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Objectives

After this lecture students should be able to

l conceptually describe the Imprecise Dirichlet model (IDM) [1]

l use IDM in K-nn classifiers with fixed windows [8]

l evaluate classifiers based on IDM and related models [4, 10]
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Outline

l Inference from Multinomial Data

l Imprecise Dirichlet Model (IDM)

l (Parzen) Window Classifiers

l Evaluate Classifiers
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Basic setup:

l Univariate discrete variable V

l A finite set of possible outcomes v ∈ V

l Each possible outcome is assigned a probability value
θv :=P(V = v)=P({v })

Questions

l How to model and estimate θv ?

l How to do inference?

l How to handle small data?

l How to handle missing/partial data?
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Frequentist, Bayesian and Imprecise approaches

Axioms

1. Positive: θv ≥ 0 for all outcomes v ∈ V

2. Additive: P(S)=∑
v∈S θv for all events S ⊆ V

3. Normed: P(V )= 1

Three approaches (discussed in this lecture):

4F. Frequentist: θ = {θv |v ∈ V } is not a random variable (VR).

4B. Bayesian: θ = {θv |v ∈ V } is a RV ←− prior uncertainty (PU) is
described by a distribution.

4I. Imprecise: θ = {θv |v ∈ V } is a RV ←− PU is described by a set of
distribution θ ∈Θ.
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Some Inference Problems

Multinomial data:

l Given the observed data D where v appear nv times, v ∈ V :

l Let n =∑
v nv and n = {nv |v ∈ V }

Multinomial likelihood:

l ∝: is proportional to.

l L(θ|D)∝∏
v∈V (θv )

nv .

Make inferences about

l the unknown θ

l some derived parameter of interest g(θ)

l future observations D′
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(Few) Potential Applications

Multinomial data:

l Given the observed data D where v appear nv times, v ∈ V :

l Let n =∑
v nv and n = {nv |v ∈ V }

l Multinomial likelihood: L(θ|D)∝∏
x∈V (θv )

nv .

Make inferences about

l the unknown θ, e.g., its best estimate θ∗

l some derived parameter of interest g(θ)

You would find such a problem in

l Parzen window classifiers

l (Credal) Decision trees, Naive Bayesian/credal Classifier (Lecture 4)

l Ensembles (Trees, Neural Nets, etc.)

l Bayesian Neural Nets
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Frequentist (Recap)

Axioms

1. Positive: θv ≥ 0 for all outcomes v ∈ V

2. Additive: P(S)=∑
v∈V θv for all events S ⊆ V

3. Normed: P(V )= 1

4F. Frequentist: θ = {θv |v ∈ V } is not a random variable (VR).

Estimate θ:

l Frequencies: Maximum likelihood estimation (MLE) gives θ∗v = nv/n
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Frequentist: Comments

l Does not take into account the importance of sample size ←−
Sources of uncertainty!

Coin Small Large
Flips 2 2 ·106

Heads 50% 50%
Tails 50% 50%

m For both coins, a frequentist says
θ∗Head = θ∗Tail = 1/2

m What can you say about the reliability of
the estimate for each coin?

Coin Small Large
Flips 2 2 ·106

Heads 0% 0%
Tails 100% 100%

m For both coins, a frequentist says
θ∗Head = 0 and θ∗Tail = 1

m What can you say about the reliability of
the estimate for each coin?
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Frequentist: Comments (Cont.)

l Does not (naturally) take into account missing/partial data

Coin Small Large
Flips 2 2 ·106

Heads [0,1] [5,10]
Tails [1,2] [5,2 ·106]

m Can we use frequencies to estimate
θ∗Head and θ∗Tail?

m What can you say about the reliability
of the estimate for each coin?
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Bayesian (Recap)

Axioms

1. Positive: θv ≥ 0 for all outcomes v ∈ V

2. Additive: P(S)=∑
v∈V θv for all events S ⊆ V

3. Normed: P(V )= 1

4B. Bayesian: θ = {θv |v ∈ V } is a RV ←− prior uncertainty (PU) is
described by a distribution.

Bayesian estimates:

l posterior mean θ∗v of θv : E(θv )

l posterior mean θ∗v |D of θv |D: E(θv |D)

l We can also use posterior mode

Uncertainty Reasoning and Machine Learning 16
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Dirichlet Model

Prior uncertainty: θ ∼Diri(α)=Diri(sf )

l Prior strengths (hyperparameter): αv , v ∈ V

l Total strength (hyperparameter): s :=∑
v∈V αv

l Prior frequencies: f := {fv |v ∈ V } with fv := αv/s, v ∈ V

l θv ∼Beta(sfv ,s
∑

v ′ 6=v fv ′)

l θ|D ∼Diri(n+α)=Diri(n+sf )

l θx |D ∼Beta(nv +sfv ,
∑

v ′ 6=v nv ′ +s
∑

v ′ 6=v fv ′)

Bayesian estimates:

l posterior mean θ∗v of θv : E(θv )= fv
l posterior mean θ∗v |D of θv |D:

E(θk |D)= (nv+αv )/(n+s)= (nv+sfv )/(n+s)

Uncertainty Reasoning and Machine Learning 17
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Dirichlet Model: Hyperparameters

Solutions for fixed n are usually symmetric Dirichlet priors

l Prior frequencies: fv = 1/|V | , v ∈ V

l Total strength: s = g′(|V |)

Advocators αv s
Haldane (1948) 0 0

Perks (1947) 1/|V | 1
Jeffreys (1946, 1961) 1/2 |V |/2

Bayes-Laplace 1 |V |

Uncertainty Reasoning and Machine Learning 18
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The Importance of Sample Size (Exercise 1)

Coin Small Large
Flips 2 2 ·106

Heads 50% 50%
Tails 50% 50%

l For both coins, a frequentist says

pHeads = pTails = 1/2

l Do Bayesians say the same thing?

Coin Small Large
Flips 4 4 ·106

Heads 25% 25%
Tails 75% 75%

l For both coins, a frequentist says

pHeads = 0.25 ,pTails = 0.75
l Do Bayesians say the same thing?

Advocators αx s pS
H pS

T pL
H pL

T
Haldane (1948) 0 0 ??? ??? ??? ???

Perks (1947) 1/|V | 1 ??? ??? ??? ???
Jeffreys (1946, 1961) 1/2 |V |/2 ??? ??? ??? ???

Bayes-Laplace 1 |V | ??? ??? ??? ???
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The Importance of Sample Size (Solution 1)

Coin Small Large
Flips 2 2 ·106

Heads 50% 50%
Tails 50% 50%

l For both coins, a frequentist says

pHeads = pTails = 1/2

l Do Bayesians say the same thing? ←−
Yes!

Coin Small Large
Flips 4 4 ·106

Heads 25% 25%
Tails 75% 75%

l For both coins, a frequentist says

pHeads = 0.25 ,pTails = 0.75

l Do Bayesians say the same thing?

Advocators αv s pS
H pS

T pL
H pL

T
Haldane (1948) 0 0 0.25 0.75 0.25 0.75

Perks (1947) 1/|V | 1 0.3 0.7 0.25 0.75
Jeffreys (1946, 1961) 1/2 |V |/2 0.3 0.7 0.25 0.75

Bayes-Laplace 1 |V | 0.33 0.67 0.25 0.75
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The Importance of Sample Size (Exercise 2)

Coin Small Large
Flips 2 2 ·106

Heads 0% 0%
Tails 100% 100%

l For both coins, a frequentist says

pHeads = 0 ,pTails = 1

l Do Bayesians say the same thing?

Advocators αx s pS
H pS

T pL
H pL

T
Haldane (1948) 0 0 ??? ??? ??? ???

Perks (1947) 1/|V | 1 ??? ??? ??? ???
Jeffreys (1946, 1961) 1/2 |V |/2 ??? ??? ??? ???

Bayes-Laplace 1 |V | ??? ??? ??? ???
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The Importance of Sample Size (Exercise 2)
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Flips 2 2 ·106
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Tails 100% 100%

l For both coins, a frequentist says

pHeads = 0 ,pTails = 1

l Do Bayesians say the same thing?

Advocators αx s pS
H pS

T pL
H pL

T
Haldane (1948) 0 0 ??? ??? ??? ???
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The Importance of Sample Size (Solution 2)

Coin Small Large
Flips 2 2 ·106

Heads 0% 0%
Tails 100% 100%

l For both coins, a frequentist says

pHeads = 0 ,pTails = 1

l Do Bayesians say the same thing?

Advocators αx s pS
H pS

T pL
H pL

T
Haldane (1948) 0 0 0 1 0 1

Perks (1947) 1/|V | 1 0.17 0.83 3 ·10−7 1−3 ·10−7

Jeffreys 1/|V | 1 0.17 0.83 3 ·10−7 1−3 ·10−7

Bayes-Laplace 1 |V | 0.25 0.75 5 ·10−7 1−5 ·10−7
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Dirichlet Model (DM): Comments

l Does not (naturally) take into account missing/partial data

Coin Small Large
Flips 2 2 ·106

Heads [0,1] [5,10]
Tails [1,2] [5,2 ·106]

m Can we use DM to estimate
θ∗Head and θ∗Tail?

m What can you say about the reliability
of the estimate for each coin?
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Outline

l Inference from Multinomial Data

l Imprecise Dirichlet Model (IDM)
m Frequentist and Bayesian Approaches
m Imprecise Dirichlet Model

l (Parzen) Window Classifiers

l Evaluate Classifiers
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Imprecise (Recap)

Axioms
1. Positive: θv ≥ 0 for all outcomes v ∈ V

2. Additive: P(S)=∑
v∈V θv for all events S ⊆ V

3. Normed: P(V )= 1
4I. Imprecise: θ = {θv |v ∈ V } is a RV ←− prior uncertainty (PU) is

described by a set of distribution θ ∈Θ.

Interval estimates:

l posterior mean θ∗v of θv :

E(θv ) ∈ [E(θv ),E(θv )]

l posterior mean θ∗v |D of θv |D:

E(θv |D) ∈ [E(θv |D),E(θv |D)]
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Imprecise Dirichlet Model

Prior uncertainty: Θ= {θ ∼Diri(α)=Diri(sf )|∑v∈V αv = s}

l Hyperparameter: s = degree of imprecision in the inferences

l Prior frequencies: f := {fv |v ∈ V } with fv := αv/s, v ∈ V

l θv ∼Beta(sfv ,s
∑

v ′ 6=v fv ′)

l θ|D ∼Diri(n+α)=Diri(n+sf )

l θx |D ∼Beta(nv +sfv ,
∑

v ′ 6=v nv ′ +s
∑

v ′ 6=v fv ′)

Posterior mean θ∗v |D of θv |D:

E(θv |D) ∈ [E(θv |D),E(θv |D)] , (1)

E(θv |D)= nv/(n+s) , (2)

E(θv |D)= (nv+s)/(n+s) . (3)

Uncertainty Reasoning and Machine Learning 27



Inference from Multinomial Data Imprecise Dirichlet Model (IDM) (Parzen) Window Classifiers Evaluate Classifiers
Frequentist and Bayesian Approaches Imprecise Dirichlet Model

Imprecise Dirichlet Model
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The Importance of Sample Size (Exercise 3)

Coin Small Large
Flips 2 2 ·106

Heads 50% 50%
Tails 50% 50%

l For both coins, a frequentist says

θHeads = θTails = 1/2

l Bayesians would say the same thing

l Would IDM say the same thing?

PS
H P

S
H PL

H P
L
H

s = 1 ??? ??? ??? ???
s = 2 ??? ??? ??? ???
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The Importance of Sample Size (Solution 3)

Coin Small Large
Flips 2 2 ·106

Heads 50% 50%
Tails 50% 50%

l For both coins, a frequentist says

θHeads = θTails = 1/2

l Bayesians would say the same thing

l Would IDM say the same thing?

PS
H P

S
H PL

H P
L
H

s = 1 0.33 0.67 0.5−3 ·10−7 0.5+3 ·10−7

s = 2 0.25 0.75 0.5−5 ·10−7 0.5+5 ·10−7
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The Importance of Sample Size (Exercise 4)

Coin Small Large
Flips 2 2 ·106

Heads 0% 0%
Tails 100% 100%

l For both coins, a frequentist says

θHeads = 0 ,θTails = 1
l Bayesians would say different things

l What would IDM say?

Advocators αx s pS
H pS

T pL
H pL

T
Haldane (1948) 0 0 0 1 0 1

Perks (1947) 1/|V | 1 0.17 0.83 3 ·10−7 1−3 ·10−7

Jeffreys 1/|V | 1 0.17 0.83 3 ·10−7 1−3 ·10−7

Bayes-Laplace 1 |V | 0.25 0.75 5 ·10−7 1−5 ·10−7

IDM PS
H P

S
H PL

H P
L
H

s = 1 ??? ??? ??? ???
s = 2 ??? ??? ??? ???
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The Importance of Sample Size (Exercise 4)

Coin Small Large
Flips 2 2 ·106

Heads 0% 0%
Tails 100% 100%

l For both coins, a frequentist says

θHeads = 0 ,θTails = 1
l Bayesians would say different things

l What would IDM say?

Advocators αx s pS
H pS

T pL
H pL

T
Haldane (1948) 0 0 0 1 0 1

Perks (1947) 1/|V | 1 0.17 0.83 3 ·10−7 1−3 ·10−7

Jeffreys 1/|V | 1 0.17 0.83 3 ·10−7 1−3 ·10−7

Bayes-Laplace 1 |V | 0.25 0.75 5 ·10−7 1−5 ·10−7

IDM PS
H P

S
H PL

H P
L
H

s = 1 ??? ??? ??? ???
s = 2 ??? ??? ??? ???
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The Importance of Sample Size (Exercise 4)

Coin Small Large
Flips 2 2 ·106

Heads 0% 0%
Tails 100% 100%

l For both coins, a frequentist says

θHeads = 0 ,θTails = 1
l Bayesians would say different things

l What would IDM say?

Advocators αx s pS
H pS

T pL
H pL

T
Haldane (1948) 0 0 0 1 0 1

Perks (1947) 1/|V | 1 0.17 0.83 3 ·10−7 1−3 ·10−7

Jeffreys 1/|V | 1 0.17 0.83 3 ·10−7 1−3 ·10−7

Bayes-Laplace 1 |V | 0.25 0.75 5 ·10−7 1−5 ·10−7

IDM PS
H P

S
H PL

H P
L
H

s = 1 ??? ??? ??? ???
s = 2 ??? ??? ??? ???
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The Importance of Sample Size (Solution 4)

Coin Small Large
Flips 2 2 ·106

Heads 0% 0%
Tails 100% 100%

l For both coins, a frequentist says

θHeads = 0 ,θTails = 1
l Bayesians would say different things

l What would IDM say?

Advocators αx s pS
H pS

T pL
H pL

T
Haldane (1948) 0 0 0 1 0 1

Perks (1947) 1/|V | 1 0.17 0.83 3 ·10−7 1−3 ·10−7

Jeffreys 1/|V | 1 0.17 0.83 3 ·10−7 1−3 ·10−7

Bayes-Laplace 1 |V | 0.25 0.75 5 ·10−7 1−5 ·10−7

IDM PS
H P

S
H PL

H P
L
H

s = 1 0 0.33 0 5 ·10−7

s = 2 0 0.50 0 10−6
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The case of Partial/Missing Data

What if we only know nv ∈nv ⊂ {0,1, . . . ,n}?

l Imprecise approaches provide nice tools to handle such data sets [8]

l Uncertainty (due to the incompleteness) is described by a set of
possible precise data sets D = {D|nv ∈nv ,

∑
v∈V nv = n}

Interval posterior mean θ∗v |D of θv |D:

E(θv |D) ∈ [E(θv |D),E(θv |D)] , (4)

E(θv |D)=min
D∈D

E(θv |D)=min
D∈D

nv/(n+s) , (5)

E(θv |D)=max
D∈D

E(θv |D)=max
D∈D

(nv+s)/(n+s) . (6)
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Determine D (Exercise 5)

Coin Small Large
Flips 2 2 ·106

Heads [0,1] [5,10]
Tails [1,2] [5,2 ·106]

l Recap: D = {D|nv ∈nv ,
∑

v∈V nv = n}

l What is DS for the first coin?

l What is DL for the second coin?

Coin Small D1 D2
Flips 2 2 2
Heads [0,1] 0 1
Tails [1,2] 2 1

Coin Large D1 D2 D3 D4 D5 D6
Flips n = 2 ·106 n n n n n n
Heads [5,10] ??? ??? ??? ??? ??? ???
Tails [5,n] ??? ??? ??? ??? ??? ???

Uncertainty Reasoning and Machine Learning 33



Inference from Multinomial Data Imprecise Dirichlet Model (IDM) (Parzen) Window Classifiers Evaluate Classifiers
Frequentist and Bayesian Approaches Imprecise Dirichlet Model

Determine D (Exercise 5)

Coin Small Large
Flips 2 2 ·106

Heads [0,1] [5,10]
Tails [1,2] [5,2 ·106]

l Recap: D = {D|nv ∈nv ,
∑

v∈V nv = n}

l What is DS for the first coin?

l What is DL for the second coin?

Coin Small D1 D2
Flips 2 2 2
Heads [0,1] 0 1
Tails [1,2] 2 1

Coin Large D1 D2 D3 D4 D5 D6
Flips n = 2 ·106 n n n n n n
Heads [5,10] ??? ??? ??? ??? ??? ???
Tails [5,n] ??? ??? ??? ??? ??? ???

Uncertainty Reasoning and Machine Learning 33



Inference from Multinomial Data Imprecise Dirichlet Model (IDM) (Parzen) Window Classifiers Evaluate Classifiers
Frequentist and Bayesian Approaches Imprecise Dirichlet Model

Determine D (Exercise 5)

Coin Small Large
Flips 2 2 ·106

Heads [0,1] [5,10]
Tails [1,2] [5,2 ·106]

l Recap: D = {D|nv ∈nv ,
∑

v∈V nv = n}

l What is DS for the first coin?

l What is DL for the second coin?

Coin Small D1 D2
Flips 2 2 2
Heads [0,1] 0 1
Tails [1,2] 2 1

Coin Large D1 D2 D3 D4 D5 D6
Flips n = 2 ·106 n n n n n n
Heads [5,10] ??? ??? ??? ??? ??? ???
Tails [5,n] ??? ??? ??? ??? ??? ???

Uncertainty Reasoning and Machine Learning 33



Inference from Multinomial Data Imprecise Dirichlet Model (IDM) (Parzen) Window Classifiers Evaluate Classifiers
Frequentist and Bayesian Approaches Imprecise Dirichlet Model

Determine D (Solution 5)

Coin Small Large
Flips 2 2 ·106

Heads [0,1] [5,10]
Tails [1,2] [5,2 ·106]

l Recap: D = {D|nv ∈nv ,
∑

v∈V nv = n}

l What is DS for the first coin?

l What is DL for the second coin?

Coin Small D1 D2
Flips 2 2 2
Heads [0,1] 0 1
Tails [1,2] 2 1

Coin Large D1 D2 D3 D4 D5 D6
Flips n = 2 ·106 n n n n n n
Heads [5,10] 5 6 7 8 9 10
Tails [5,n] n−5 n−6 n−7 n−8 n−9 n−10
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Compute Lower and Upper Expectations (Exercise 6)

Interval posterior mean θ∗v |D of θv |D:

E(θv |D)=min
D∈D

E(θv |D)=min
D∈D

nv/(n+s) , (7)

E(θv |D)=max
D∈D

E(θv |D)=max
D∈D

(nv+s)/(n+s) . (8)

Coin Small D1 D2 E(θv |D) E(θv |D)
Flips 2 2 2
Heads [0,1] 0 1 ??? ???
Tails [1,2] 2 1 ??? ???

Coin Large D1 . . . D6 E(θv |D) E(θv |D)
Flips n = 2 ·106 n . . . n
Heads [5,10] 5 . . . 10 ??? ???
Tails [5,n] n−5 . . . n−10 ??? ???
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Compute Lower and Upper Expectations (Solution 6)

Interval posterior mean θ∗v |D of θv |D:

E(θv |D)=min
D∈D

E(θv |D)=min
D∈D

nv/(n+s) , (9)

E(θv |D)=max
D∈D

E(θv |D)=max
D∈D

(nv+s)/(n+s) . (10)

Coin Small D1 D2 E(θv |D) E(θv |D)
Flips 2 2 2
Heads [0,1] 0 1 0/(2+s) (1+s)/(2+s)

Tails [1,2] 2 1 1/(2+s) (2+s)/(2+s)

Coin Large D1 . . . D6 E(θv |D) E(θv |D)
Flips n = 2 ·106 n . . . n
Heads [5,10] 5 . . . 10 5/(n+s) (10+s)/(n+s)

Tails [5,n] n−5 . . . n−10 (n−10)/(n+s) (n−5+s)/(n+s)
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Compute Lower and Upper Expectations (Solution 6)
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Outline

l Inference from Multinomial Data

l Imprecise Dirichlet Model (IDM)

l (Parzen) Window Classifiers

l Evaluate Classifiers
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Pazen Window Classifiers [5]

Basic setup and assumption

l Given training data D ⊂X ×Y , a distance d(x ,x ′), and a threshold ε

l For each instance x , determine Dε(x)= {x ′ ∈D|d(x ,x ′)≤ ε}

l Dε(x) can be used to estimate θ|x := θ|Dε(x)

Optimal decision rules

l Let ` :Y ×Y 7−→R+ be any loss function.

l The Bayes-optimal prediction of ` on x is
yθ` = argmin

y∈Y

∑
y∈Y

`(y ,y)θy |x

l If ` is subset 0/1 loss, i.e. `(y ,y)= 1(y 6= y), then (Check!)
yθ` = argmax

y∈Y

θy |x
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Pazen Window Classifiers [5]
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Learning Problem

Given Dε(x), we can
l Count n = |Dε(x)| and ny , for any y ∈Y ←− ∑

y∈Y ny = n
l Estimate θ|x using MLE, DM, etc.

What would we do if D contains
l a small number of instances
l and/or missing/partial data?

x ′ ∈Dε(x) Y ′ ⊂Y = {Apple,Banana,Tomato}
x ′

1 Apple or Banana, but not Tomato
x ′

2 Banana or Tomato, but not Apple
x ′

3 Apple or Tomato, but not Banana
x ′

4 Tomato
x ′

5 Tomato
x ′

6 Banana
x ′

7 Banana
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Learning Problem (Cont.)

Given Dε(x), we can

l Count n = |Dε(x)| and ny for y ∈Y

l Determine D = {D|ny ∈ny ,
∑

y∈Y ny = n}

Using IDM to estimate interval posterior mean θ∗y |D of θy |D:

E(θy |x)=min
D∈D

E(θy |x)=min
D∈D

ny/(n+s) , (11)

E(θy |x)=max
D∈D

E(θy |D)=max
D∈D

(ny+s)/(n+s) . (12)
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Determine Possible Precise Data Set (Exercise 7)

x ′ ∈Dε(x) Y ⊂Y = {Apple,Banana,Tomato}
x ′

1 Apple or Banana, but not Tomato
x ′

2 Banana or Tomato, but not Apple
x ′

3 Apple or Tomato, but not Banana
x ′

4 Tomato
x ′

5 Tomato
x ′

6 Banana
x ′

7 Banana

n = 7 ,nA =??? ,nB =??? ,nT =??? (13)

D1 D2 D3 D4 D5 D6 D7 D8
nA ??? ??? ??? ??? ??? ??? ??? ???
nB ??? ??? ??? ??? ??? ??? ??? ???
nT ??? ??? ??? ??? ??? ??? ??? ???
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Determine Possible Precise Data Set (Solution 7)

x ′ ∈Dε(x) Y ⊂Y = {Apple,Banana,Tomato}
x ′

1 Apple or Banana, but not Tomato
x ′

2 Banana or Tomato, but not Apple
x ′

3 Apple or Tomato, but not Banana
x ′

4 Tomato
x ′

5 Tomato
x ′

6 Banana
x ′

7 Banana

n = 7 ,nA = {0,1,2} ,nB = {2,3,4} ,nT = {2,3,4} (14)

D1 D2 D3 D4 D5 D6 D7 D8
nA 0 0 1 1 1 2 2 2
nB 3 4 2 3 4 2 3 4
nT 4 3 4 3 2 4 3 3
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Compute Lower and Upper Expectations (Exercise 8)

D1 D2 D3 D4 D5 D6 D7 D8
nA 0 0 1 1 1 2 2 2
nB 3 4 2 3 4 2 3 4
nT 4 3 4 3 2 4 3 3

Using IDM to estimate interval posterior mean θ∗y |D of θy |D:

E(θy |x)=min
D∈D

E(θy |x)=min
D∈D

ny/(n+s) , (15)

E(θy |x)=max
D∈D

E(θy |D)=max
D∈D

(ny+s)/(n+s) . (16)

E(θy |x) E(θy |x)
A ??? ???
B ??? ???
T ??? ???
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Compute Lower and Upper Expectations (Solution 8)

D1 D2 D3 D4 D5 D6 D7 D8
nA 0 0 1 1 1 2 2 2
nB 3 4 2 3 4 2 3 4
nT 4 3 4 3 2 4 3 3

Using IDM to estimate interval posterior mean θ∗y |D of θy |D:

E(θy |x)=min
D∈D

E(θy |x)=min
D∈D

ny/(n+s) , (17)

E(θy |x)=max
D∈D

E(θy |D)=max
D∈D

(ny+s)/(n+s) . (18)

E(θy |x) E(θy |x)
A 0/(7+s) (2+s)/(7+s)

B 2/(7+s) (4+s)/(7+s)

T 2/(7+s) (4+s)/(7+s)
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Compute Lower and Upper Expectations

l For any y ∈Y , let

ny = ∑
x ′∈D

1(y =Y ′) , (19)

ny = ∑
x ′∈D

1(y ∈Y ′) . (20)

l Compute interval posterior mean θ∗y |D of θy |D:

E(θy |x)= ny/(n+s) , (21)

E(θy |x)= (ny+s)/(n+s) . (22)
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Compute Lower and Upper Bound Expectation (Again)

x ′ ∈Dε(x) Y ⊂Y = {Apple,Banana,Tomato}
x ′

1 Apple or Banana, but not Tomato
x ′

2 Banana or Tomato, but not Apple
x ′

3 Apple or Tomato, but not Banana
x ′

4 Tomato
x ′

5 Tomato
x ′

6 Banana
x ′

7 Banana

ny ny E(θy |x) E(θy |x)
A 0 2 0/(7+s) (2+s)/(7+s)

B 2 4 2/(7+s) (4+s)/(7+s)

T 2 4 2/(7+s) (4+s)/(7+s)
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Set-Valued Predictions [6, 7] (Recap)

E-admissibility Rule:

l An optimal prediction is

Y E
`,Θ|x = {y ∈Y |∃θ|x ∈Θ|x s.t. y = yθ|x

`
} .

l Computation: Solving linear programs, etc.

Maximality Rule:

l An optimal prediction is

Y M
`,Θ|x = {y ∈Y | 6 ∃y ′ s.t. y ′ Â`,Θ|x y } .

l Computation: Solving linear programs, Iterating over the extreme
points of Θ|x .

Package: github.com/Haifei-ZHANG/Probability-Sets-Model
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The cases of Singleton Prediction The cases of Set-Valued Predictions

(Few) Commonly Used Criteria

Predictive ability (on a test set):

l Let ` :Y ×Y 7−→R+ be any loss function.

l Compute (average) loss on the test set

(Few) Other criteria:

l Model complexity (Storage memory)

l Training and/or Inference time

l Robustness: Under the presence of noise

l Trustworthiness: Explainability, interpretability, etc.
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Calibration Error (See Lecture 4)

Confidence calibration [2]:

P(y = argmax
y∈Y

θy |x such that max
y∈Y

θy |x =β)=β ,∀β ∈ [0,1] . (23)

Classwise calibration [9]:

P(y such that θy |x =βy )=βy ,y ∈Y ,β ∈ [0,1] . (24)

l May be harder to ensure, compared to confidence calibration

Distribution calibration [3]:

P(y such that θ|x =q)=q ,∀q ∈4|Y | , (25)

where 4|Y | is the |Y |-dimensional simplex
l May be harder to ensure, compared to the above notions.
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(Few) Commonly Used Criteria

Predictive ability (on a test set):

l We can use any loss function ` : 2Y ×Y 7−→R+.

l If we use utility metric u = 1−`, replacing min by max.

l Set-based utility functions [10]: u(Y ,y)= 1(y ∈Y )g(|Y |)
l Few commonly used utility function [4]:

gα(|Y |)= α

|Y | +
α−1
|Y |2 , .

(Few) Other criteria:

l Model complexity (Storage memory)

l Training and/or Inference time

l Robustness: Under the presence of noise

l Trustworthiness: Explainability, interpretability, etc.
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Set-Based Utility Functions

Few commonly used utility functions:

gα(|Y |)= α

|Y | −
α−1
|Y |2 .

Reward to cautiousness:

l u50: α= 1 ←− no reward.

l u65: α= 1.6, moderate reward.

l u80: α= 2.2, big reward.

l higher α, higher reward
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Set-Based Utility Functions (Exercise 9)

Recap: Few commonly used utility functions:

gα(|Y |)= α

|Y | −
α−1
|Y |2 .

Exercise: The maximum value of α such that gα(|Y |)≤ 1, ∀Y ⊂Y \;?.
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Coverage Error (See Lecture 4)
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