Cat! Yay!

Dog! This is easy!
'; -~
e

Um... dog? What is... I don’t... okay, dog

i § -5

g0y Cat or dog?

e
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Who is more reliable?

An example: Assume we travel to a small village

e There are two doctors who can give suggestion on whether a
patient suffers from at least one type of serious cancers.

e Either "yes (y)" or "don’t know (y/n)" — go to the closest hospital for
further diagnosis

e People ask you "who is more reliable?" given historical record on

1000 patients.

True situations 50y 50y 400 n 500 n
Dr. A’s predictions | 50 y 50 n 400n 400n+100y
Dr. B’s predictions | 50y 40y/n+10n | 400n 400n+ 100y

Uncertainty Reasoning and Machine Learning %
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Which model is more reliable?

Another example: Assume we travel to another village
e There are 3 pre-trained models which can give suggestion on
whether a patient suffers from at least one type of serious cancers.

e Either "yes (y)" or "don’t know (y/n)" — go to the closest hospital for
further diagnosis

o People ask you "which model is more reliable?" given historical
record on 1000 patients.

True situations | 50y 50y 400 n 500 n

C’s predictions | 50y 50 n 400n 400n+100y
D’s predictions | 50y 40y/n+10n | 400n 400n+100y
E’s predictions | 50y 40y/n+10n | 400n 450 n + 50 y/n
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Go beyond the predictive performance?

It might be safer to defer our answer until we know more about
o how the models were learned and make their predictions
e how robust their predictions are (under the presence of noise)
e the decision-making process (cost, consequence, etc.)

Uncertainty Reasoning and Machine Learning @
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Objectives

After this lecture students should be able to

e conceptually describe the Imprecise Dirichlet model (IDM) [1]
e use IDM in K-nn classifiers with fixed windows [8]

e evaluate classifiers based on IDM and related models [4, 10]

Uncertainty Reasoning and Machine Learning @
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Outline

e Inference from Multinomial Data
e Imprecise Dirichlet Model (IDM)
e (Parzen) Window Classifiers

e Evaluate Classifiers
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Basic setup:
e Univariate discrete variable V

o A finite set of possible outcomes ve 7

e Each possible outcome is assigned a probability value
Oy :=P(V=v)=P({v})

Uncertainty Reasoning and Machine Learning @
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Basic setup:
e Univariate discrete variable V
o A finite set of possible outcomes ve 7

e Each possible outcome is assigned a probability value
Oy :=P(V=v)=P({v})

Questions
o How to model and estimate 6, ?
e How to do inference?
o How to handle small data?
e How to handle missing/partial data?

Uncertainty Reasoning and Machine Learning %
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Frequentist, Bayesian and Imprecise approaches

Axioms
1. Positive: 8, =0 for all outcomes ve 7V
2. Additive: P(S) =Y ,cs0, for allevents Sc¥
3. Normed: P(7) =1

Uncertainty Reasoning and Machine Learning @
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Frequentist, Bayesian and Imprecise approaches

Axioms
1. Positive: 8, =0 for all outcomes ve 7V
2. Additive: P(S) =Y ,cs6, for all events Sc 7
3. Normed: P(7) =1

Three approaches (discussed in this lecture):
4F. Frequentist: 8 ={6,|v € 7} is not a random variable (VR).
4B. Bayesian: 0 = {6,|ve 7} is a RV — prior uncertainty (PU) is
described by a distribution.
41. Imprecise: 8 ={0,|ve ¥} is a RV — PU is described by a set of
distribution 0 € 0.

Uncertainty Reasoning and Machine Learning %
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Some Inference Problems

Multinomial data:
e Given the observed data D where v appear n, times, ve 7
e Letn=Y,n,and n={n,|ve’}

Multinomial likelihood:
e : is proportional to.
o L(0ID) o< ITyey(6y)™.

Make inferences about
e the unknown 6
e some derived parameter of interest g(0)
o future observations D’

Uncertainty Reasoning and Machine Learning @ ’ utc
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(Few) Potential Applications

Multinomial data:
e Given the observed data D where v appear n, times, ve 7
e Letn=Y,n,and n={n,|ve’”}
o Multinomial likelihood: L(@|D) o< [1xey (0y)™.
Make inferences about
o the unknown @, e.g., its best estimate 8*
e some derived parameter of interest g(0)

Uncertainty Reasoning and Machine Learning @
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(Few) Potential Applications

Multinomial data:
e Given the observed data D where v appear n, times, ve 7
e Letn=Y,n,and n={n,|ve’”}
o Multinomial likelihood: L(@|D) o< [1xey (0y)™.
Make inferences about
o the unknown @, e.g., its best estimate 8*
e some derived parameter of interest g(0)
You would find such a problem in
o Parzen window classifiers

(Credal) Decision trees, Naive Bayesian/credal Classifier (Lecture 4)
o Ensembles (Trees, Neural Nets, etc.)
e Bayesian Neural Nets

Uncertainty Reasoning and Machine Learning @
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Outline

e Inference from Multinomial Data

e Imprecise Dirichlet Model (IDM)
o Frequentist and Bayesian Approaches
o Imprecise Dirichlet Model

e (Parzen) Window Classifiers

e Evaluate Classifiers
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Outline

e Inference from Multinomial Data

e Imprecise Dirichlet Model (IDM)
o Frequentist and Bayesian Approaches
o Imprecise Dirichlet Model

e (Parzen) Window Classifiers

e Evaluate Classifiers
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Frequentist (Recap)

Axioms
1. Positive: 8, = 0 for all outcomes ve 7V
2. Additive: P(S) =Y ,cv 0, for all events Sc ¥
3. Normed: P(7) =1
4F. Frequentist: 8 = {0,|v € 7} is not a random variable (VR).

Uncertainty Reasoning and Machine Learning @
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Frequentist (Recap)

Axioms
1. Positive: 8, = 0 for all outcomes ve ¥
2. Additive: P(S) =Y ,cv 0, for all events Sc ¥
3. Normed: P(7) =
4F. Frequentist: 8 = {0,|v € 7} is not a random variable (VR).

Estimate 0:
o Frequencies: Maximum likelihood estimation (MLE) gives 6 = nv/n

Uncertainty Reasoning and Machine Learning @
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e Does not take into account the importance of sample size —
Sources of uncertainty!
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Frequentist and Bayesian Approaches Impre

Frequentist: Comments

e Does not take into account the importance of sample size —
Sources of uncertainty!

Coin Small Large o For both coins, a frequentist says
Flips 2 2-10° elflead = 91*'ai| =1/2
Heads 50% 50%

Tails 50% 50%

Uncertainty Reasoning and Machine Learning @
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e Does not take into account the importance of sample size —
Sources of uncertainty!

Coin Small Large o For both coins, a frequentist says
Flips 2 2-108 Ofiead = O7ail = 1/2

Heads 50% 50% o What can you say about the reliability of
Tails 50%  50% the estimate for each coin?

Uncertainty Reasoning and Machine Learning @




Inference from Multinomial Data Imprecise Dirichlet Model (IDM) (Parzen) Window Classis

Frequentist and Bayesian Approaches Imprecise Dirichlet Model

“Y heudiasyc

Frequentist: Comments

e Does not take into account the importance of sample size —
Sources of uncertainty!

Coin Small Large o For both coins, a frequentist says

Flips 2 2-108 Ofiead = O7ail = 1/2
Heads 50% 50% o What can you say about the reliability of
Tails 50%  50% the estimate for each coin?

Coin Small Large o For both coins, a frequentist says
Flips 2 2:10° Ofieaq = 0 and Oy =1
Heads 0% 0%

Tails 100% 100%

Uncertainty Reasoning and Machine Learning %
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Frequentist: Comments

o Does not take into account the importance of sample size —
Sources of uncertainty!

Coin Small Large o For both coins, a frequentist says
Flips 2 2-108 Ofiead = O7ail = 1/2

Heads 50% 50% What can you say about the reliability of
Tails 50%  50% the estimate for each coin?

@)

Coin Small Large o For both coins, a frequentist says
Flips 2 2.10° Ofieaq =0 and O3 =1

Heads 0% 0% What can you say about the reliability of
Tails 100% 100% the estimate for each coin?

Uncertainty Reasoning and Machine Learning %
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Frequentist: Comments (Cont.)

e Does not (naturally) take into account missing/partial data

Uncertainty Reasoning and Machine Learning @
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Frequentist and Bayesian Approaches Imprecise Dirichlet Model

Frequentist: Comments (Cont.)

e Does not (naturally) take into account missing/partial data

Coin Small Large o Can we use frequencies to estimate
Flips 2 2.108 Ofieaq and Oy ?

Heads [0,1] [5,10] 5 What can you say about the reliability
Tails  [1,2] [5,2-108] of the estimate for each coin?

Uncertainty Reasoning and Machine Learning @ ’ utc
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Frequentist and Bayesian Approaches Impre

Bayesian (Recap)

Axioms
1. Positive: 8, = 0 for all outcomes ve ¥

2. Additive: P(S) =X ,cy 0, for all events Sc ¥
3. Normed: P(7) =

4B. Bayesian: 0 = {6,|v e 7} is a RV — prior uncertainty (PU) is
described by a distribution.

Uncertainty Reasoning and Machine Learning @
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Bayesian (Recap)
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Axioms
1. Positive: 8, = 0 for all outcomes ve ¥
2. Additive: P(S) =X ,cy 0, for all events Sc ¥
3. Normed: P(7) =1
4B. Bayesian: 0 = {6,|v e 7} is a RV — prior uncertainty (PU) is
described by a distribution.
Bayesian estimates:
e posterior mean 6; of 0,: E(6,)
e posterior mean 0 |D of 6,|D: E(6,|D)

Uncertainty Reasoning and Machine Learning @ ’ utc




Inference from Multinomial Data Imprecise Dirichlet Model (IDM) (Parzen) Window Classis
Frequentist and Bayesian Approaches Imprecise Dirichlet Model

Bayesian (Recap)

heudiasyc

Axioms
1. Positive: 8, = 0 for all outcomes ve ¥
2. Additive: P(S) =X ,cy 0, for all events Sc ¥
3. Normed: P(7) =1
4B. Bayesian: 0 = {6,|v e 7} is a RV — prior uncertainty (PU) is
described by a distribution.
Bayesian estimates:
e posterior mean 6; of 0,: E(6,)
e posterior mean 0 |D of 6,|D: E(6,|D)
o We can also use posterior mode

Uncertainty Reasoning and Machine Learning @




> % °
Inference from Multinomial Data Imprecise Dirichlet Model (IDM) (Parzen) Window Classits BCKss|jiers *
Frequentist and Bayesian Approaches Impre chlet Mode Y heudiasyc

Dirichlet Model

Prior uncertainty: 6 ~ Diri(a) = Diri(sf)
e Prior strengths (hyperparameter): ay,, ve¥
o Total strength (hyperparameter): s:=3 ey ayv
e Prior frequencies: f:={f,|ve 7} with f, :=av/s, veV
e 0, ~Beta(sf,,sY iz, fv)
0|D ~ Diri(n+ ) = Diri(n + sf)
0x|D ~Beta(ny + sfy, X2y N + 8L iy fur)

Uncertainty Reasoning and Machine Learning @
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Dirichlet Model

Prior uncertainty: 6 ~ Diri(a) = Diri(sf)

e Prior strengths (hyperparameter): ay,, ve¥

o Total strength (hyperparameter): s:=3 ,cy ay

e Prior frequencies: f:={f,|ve 7} with f, :=av/s, veV

e 0, ~Beta(sf,,sY iz, fv)

e 0|D ~ Diri(n+ &) = Diri(n+ sf)

e O0x|D~Beta(ny +sfy, Y yzy Ny +SY 2y fyr)
Bayesian estimates:

e posterior mean 6; of ,: E(6,) =1,

e posterior mean 6;|D of 6, |D:

E(Hle) = (nv+06v)/(n+s) = (nv+3fv)/(n+s)
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Dirichlet Model: Hyperparameters

Solutions for fixed n are usually symmetric Dirichlet priors
e Prior frequencies: f, =1/iv|, ve¥?
o Total strength: s=g'(171)

Uncertainty Reasoning and Machine Learning @ ’ %
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Dirichlet Model: Hyperparameters

Solutions for fixed n are usually symmetric Dirichlet priors
e Prior frequencies: f, =1/iv|, ve¥?
o Total strength: s=g'(171)

Advocators | a | s

Haldane (1948) 0 | 0

Perks (1947) Y | 1
Jeffreys (1946, 1961) || 1/2 | 71)2
Bayes-Laplace 1 V4

Uncertainty Reasoning and Machine Learning @
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Frequentist and Bayesian Approaches Imj lodel

The Importance of Sample Size (Exercise 1)

Coin Small Large
Flips 2 2.108

= Do = 1
Heads 50%  50% Do Ba esiaﬁ:e:gs th?igme/tiin ?
Tails 50% 50%  ° y Y v

e For both coins, a frequentist says

Uncertainty Reasoning and Machine Learning @
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Coin Small Large
Flips 2 2.108

= Do = 1
Heads 50%  50% Do Ba esiaﬁ:esgs th@igme/tiin ?
Tails 50% 50%  ° y Y v

e For both coins, a frequentist says

Coin Small Large

Flips 4  4-10°
Heazs 259, 259, PHeads = 0.25 » PTails = 0.75

Tails  75%  75% Do Bayesians say the same thing?

e For both coins, a frequentist says

Uncertainty Reasoning and Machine Learning @
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Frequentist and Bayesian Approaches Imprecise Dirichlet Model

The Importance of Sample Size (Exercise 1)

Coin  Small Large | korpoth coins, a frequentist says

Flips 2 2.108
P PHeads = PTails = 1/2

Heads 50% 50% . .
?
Tails 50%  50% e Do Bayesians say the same thing~

Coin Small Large

Flips 4  4-10°
Heads 25% 25%

Tails 75%  75%

e For both coins, a frequentist says

PHeads = 0.25, Prails = 0.75
e Do Bayesians say the same thing?

Advocators || ax | s | pS | pf | ph | pt
Haldane (1948) 0 0 29?7 | 7?7 || 27?7 | ??7?
Perks (1947) V| 1 || 222 | 222 || 222 | 7222
Jeffreys (1946, 1961) || 1/2 | IWl/2 || 222 | 222 | 2?22 | 772
Bayes-Laplace 1 (V| || 22?2 | 2?27 || ??7 | 7?7
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The Importance of Sample Size (Solution 1)

Coin Small Large e For both coins, a frequentist says

Flips 2 2-10° PHeads = Prails = 1/2
Heads 50% 50% e Do Bayesians say the same thing? —
Tails 50%  50% Yes!

Coin Small Large o For both coins, a frequentist says

Flips 4 4.108
Heads 25% 25% PHeads Prails

Tails 75%  75% e Do Bayesians say the same thing?

Uncertainty Reasoning and Machine Learning @



Inference from Multinomial Data Imprecise Dirichlet Model (IDM) (Parzen) Window Classis

Frequentist and Bayesian Approaches Imprecise Dirichlet Model

“Y heudiasyc

The Importance of Sample Size (Solution 1)

Coin Small Large e For both coins, a frequentist says

Flips 2 2-10° PHeads = Prails = 1/2
Heads 50% 50% e Do Bayesians say the same thing? —
Tails 50%  50% Yes!

Coin Small Large o For both coins, a frequentist says

) phv
Hzgzz 2540/ 425109 PHeads = 0.25, Prajls = 0.75
Tails 75% 75%  © Do Bayesians say the same thing?

Advocators || ay | s | p§ | pf | B | o
Haldane (1948) 0 0 0.25 | 0.75 || 0.25 | 0.75
Perks (1947) Vv | 1 03 | 0.7 || 025 | 0.75
Jeffreys (1946, 1961) || 1/2 | "l/2 || 0.3 | 0.7 || 0.25 | 0.75
Bayes-Laplace 1 7] || 0.33 | 0.67 || 0.25 | 0.75
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Frequentist and Bayesian Approaches Imj lodel

The Importance of Sample Size (Exercise 2)

Coin Small Larg% e For both coins, a frequentist says
Flips 2 2-10
= 07 ils = 1
Heads Oo/o 0% . pHeadS pTalIS .
Tails 100% 100% ©® Do Bayesians say the same thing?
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Frequentist and Bayesian Approaches Imprecise Dirichlet Model

The Importance of Sample Size (Exercise 2)

Coin  Small Larg% e For both coins, a frequentist says
Flips 2 2-10 PHeads = 0, Prails = 1

Heads 0% 0% _ .
Tails 100% 100% e Do Bayesians say the same thing?

Advocators | ax | s || oS | P2 || PL | PE
Haldane (1948) 0 0 2?7 | 277 ?79 2729
Perks (1947) | 1 || 222 | 222 || 222 | 272
Jeffreys (1946, 1961) || 1/2 | w12 || 222 | 222 || 222 | 222
299 | 292

Bayes-Laplace 1 V| || 2?22 | 72?7
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The Importance of Sample Size (Solution 2)

Coin Small Large o For both coins, a frequentist says

. 106
HZ:E: 03/ 20170 PHeads = 0, Prails = 1
Tails 100% 100% e Do Bayesians say the same thing?

Advocators || a | s | pS | pf | ph | Pt
Haldane (1948) 0 0 0 1 0 1
Perks (1947) || 1/w1| 1 | 017 | 0.83 || 3-10°7 | 1-3-107/
Jeffreys 1| 1 || 017 | 0.83 | 3-1077 | 1-3-1077
Bayes-Laplace 1 |7 025|075 5107 | 1-5-107"
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Dirichlet Model (DM): Comments

e Does not (naturally) take into account missing/partial data

Uncertainty Reasoning and Machine Learning @
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Frequentist and Bayesian Approaches Imprecise Dirichlet Model

Dirichlet Model (DM): Comments

e Does not (naturally) take into account missing/partial data

Coin Small Large o Can we use DM to estimate

F"Ps 2 2- 106 elflead and H;ail?

Heads [0,1] [5,10] > What can you say about the reliability
Tails  [1,2] [5,2-108] of the estimate for each coin?

Uncertainty Reasoning and Machine Learning @ ’ utc
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Outline

e Inference from Multinomial Data

e Imprecise Dirichlet Model (IDM)
o Frequentist and Bayesian Approaches
o Imprecise Dirichlet Model

e (Parzen) Window Classifiers

e Evaluate Classifiers

Uncertainty Reasoning and Machine Learning @



Lo .
Inference from Multinomial Data Imprecise Dirichlet Model (IDM) (Parzen) Window Classits BCKss|jiers *
Fre tist and Baye. es Imprecise Dirichlet Model - heudiasyc

Imprecise (Recap)

Axioms
1. Positive: 8, =0 for all outcomes ve 7V
2. Additive: P(S) =Y ,cy 0, for all events Sc 7
3. Normed: P(7) =1
4l. Imprecise: 0 ={0,|ve ¥} is a RV — prior uncertainty (PU) is
described by a set of distribution 6 € ©.
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Axioms
1. Positive: 8, =0 for all outcomes ve 7V
2. Additive: P(S) =X ,cy 0, for all events Sc ¥
3. Normed: P(7) =1

4l. Imprecise: 0 ={0,|ve ¥} is a RV — prior uncertainty (PU) is
described by a set of distribution 6 € ©.

Interval estimates:
e posterior mean 0 of 0,:

E(0v) € [E(6v),E(6v)]
e posterior mean 6;|D of 6, |D:

E(6,ID)€[E(6,ID),E(6,ID)]

Uncertainty Reasoning and Machine Learning %
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Imprecise Dirichlet Model

Prior uncertainty: © = {6 ~ Diri(a) = Diri(sf)| L,y ay = s}
o Hyperparameter: s = degree of imprecision in the inferences
e Prior frequencies: f:={f,|lve 7} with f,:=av/s, ve¥V
e 0, ~Beta(sf,,sY 4, fv)
e 0|D ~ Diri(n+ &) = Diri(n + sf)
e O0x|D~Beta(ny +sfy, Y sy Ny +SY 2y fyr)
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Frequentist and Bayesian Approaches Imprecise Dirichlet Model

Imprecise Dirichlet Model

Prior uncertainty: © = {6 ~ Diri(a) = Diri(sf)| L,y ay = s}
o Hyperparameter: s = degree of imprecision in the inferences
e Prior frequencies: f:={f,|lve 7} with f,:=av/s, ve¥V
e 0, ~Beta(sf,,sY 4, fv)
e 0|D ~ Diri(n+ &) = Diri(n + sf)
e O0x|D~Beta(ny +sfy, Y sy Ny +SY 2y fyr)

Posterior mean 6;|D of 6,|D:

E(6vID) € [E(0,ID),E(6,ID)], (1)
§(0V|D) = ”v/(n+s), (2)
E(6,1D) = (nv+5)/(n+s). (3)
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Frequentist and Bayesi: proaches Imprecise Dirichlet Model

The Importance of Sample Size (Exercise 3)

Coin Small Large e For both coins, a frequentist says

Flips 2  2.10° OHeads = Oails = 1/2
Heads 50% 50% e Bayesians would say the same thing

Tails 50% 50% e Would IDM say the same thing?

Uncertainty Reasoning and Machine Learning @ ' utc
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The Importance of Sample Size (Exercise 3)

Inference from Multinomial Data Imprecise Dirichlet Model (IDM)

Coin Small Large e For both coins, a frequentist says

Flips 2  2.10° OHeads = Oails = 1/2
Heads 50% 50% e Bayesians would say the same thing

Tails 50% 50% e Would IDM say the same thing?

—s —L
H_Pﬁ‘PHH_Pﬁ Py
s=1 P || ??? | ??7?
s=2 |l 222 | 222 || 272 | 72?2




Inference from Multinomial Data Imprecise Dirichlet Model (IDM) (Parzen) Window Classit

“Y heudiasyc

Frequentist and Bayesian Approaches Imprecise Dirichlet Model

The Importance of Sample Size (Solution 3)

Coin Small Large e For both coins, a frequentist says

Flips 2  2.10° OHeads = Oails = 1/2
Heads 50% 50% e Bayesians would say the same thing

Tails 50% 50% e Would IDM say the same thing?

=S —L

lpS Pl P | P
s=11033]06705-3-107]05+3-107
s=2|025|0.75| 05-5-10"7 | 0.5+5-10~7
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Frequentist and Bayesi: proaches Imprecise Dirichlet Model

The Importance of Sample Size (Exercise 4)

Coin Small Large e For both coins, a frequentist says
Flips 2 2.10° OHeads = 0, Oails = 1

Heads 0% 0% e Bayesians would say different things
Tails 100% 100% ¢ What would IDM say?
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Frequentist and Bayesian Approaches Imprecise Dirichlet Model

“Y heudiasyc

The Importance of Sample Size (Exercise 4)

Coin Small Large e For both coins, a frequentist says

Flips 2 2-10° Oteads = 0, Oails = 1
Heads 0% 0% Bayesians would say different things

Tails 100% 100%

e What would IDM say?
Advocators || ay | s | pS | P | Py | ot
Haldane (1948) 0 0 0 1 0 1
Perks (1947) || 1/%1 | 1 | 017 | 0.83 || 3-107 | 1-3-107/
Jeffreys 1| 1 | 017 | 0.83 | 3-1077 | 1-3-1077
Bayes-Laplace 1 | 7] ||025|075]| 51077 | 1-5-10~/
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Inference from Multinomial Data Imprecise Dirichlet Model (IDM) (Parzen) Window Classis

Frequentist and Bayesian Approaches Imprecise Dirichlet Model

The Importance of Sample Size (Exercise 4)

“Y heudiasyc

Coin Small Large e For both coins, a frequentist says
Flips 2 2-10° OHeads = 0, O1ajls = 1

Heads 0% 0% e Bayesians would say different things
Tails 100% 100% ¢ What would IDM say?

Advocators || ay | s | pS | P | Py | ot
Haldane (1948) 0 0 0 1 0 1
Perks (1947) || 1/%1 | 1 | 017 | 0.83 || 3-107 | 1-3-107/
Jeffreys 1| 1 | 017 | 0.83 | 3-1077 | 1-3-1077
Bayes-Laplace 1 | 7] ||025|075]| 51077 | 1-5-10~/
om || S | PR || P | P
s=11 222222 2?22 [ 222
s=2 1 7?7 | 22?2 || 7277 | 722
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Frequentist and Bayesian Approaches Imprecise Dirichlet Model

The Importance of Sample Size (Solution 4)

“Y heudiasyc

Coin Small Large e For both coins, a frequentist says
Flips 2 2-10° OHeads = 0, O1ajls = 1

Heads 0% 0% Bayesians would say different things
Tails 100% 100% What would IDM say?

Advocators || ax | s || pS | P | ek | ph
Haldane (1948) 0 0 0 1 0 1
Perks (1947) || /%1 | 1 | 017 | 0.83 || 31077 | 1-3-107
Jeffreys 1| 1 || 017 | 0.83 | 3-1077 | 1-3-1077
Bayes-Laplace 1 |71 ||025|075]| 51077 | 1-5-107/
om || PS | Ph | PE| Py
=1/ 0 [033] 0 |[5-1077
s=2| 0 |050 | 0 | 10°®




Imprecise Dirichlet Model (IDM) fis EvalUSusgs Ty S "
Imprecise Dirichlet Model - heudiasyc

The case of Partial/Missing Data

What if we only know n, € n, c{0,1,...,n}?

Uncertainty Reasoning and Machine Learning @



Lo .
Inference from Multinomial Data Imprecise Dirichlet Model (IDM) (Parzen) Window Classits BCKss|jiers *
Fre ist and Bayesian A es Imprecise Dirichlet Model - heudiasyc

The case of PartlaI/Mlssmg Data

What if we only know n, € n, c{0,1,...,n}?
o Imprecise approaches provide nice tools to handle such data sets [8]

e Uncertainty (due to the incompleteness) is described by a set of
possible precise data sets 2 ={D|n, e n,,Y ,cy Ny, = N}
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Frequentist and Bayesian Approaches Imprecise Dirichlet Model

The case of Partial/Missing Data

“Y heudiasyc

What if we only know n, € n, c{0,1,...,n}?
o Imprecise approaches provide nice tools to handle such data sets [8]

e Uncertainty (due to the incompleteness) is described by a set of
possible precise data sets 2 ={D|n, e n,,Y ,cy Ny, = N}

Interval posterior mean 6|2 of 0, |2:

E(0v12) € [E(6112), E(6,12)], (4)
E(6,12) = m|nE( vID) = mln”v/(n+s (5)
E(6,12) = maxE(GVID) max(nv+5)/(n+s (6)
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Determine 2 (Exercise 5)

Coin Small Largtfe3 e Recap: 2 ={DIn,eny,} ey Ny =n}
Flips 2 2-10° o What is @S for the first coin?

Heads |[0,1 5,10 . :
Tails {1 2} [5[2.136] e What is 2 for the second coin?
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Determlne @ (Exercise 5)

“Y heudiasyc

Coin Small Large o Recap: 2 ={D|n,en,,Y ey Ny =n}

. 6

II-:IIIPZ 021 25' 11% e What is 25 for the first coin?
eads ) , . .

Tails {1 2} [5[2. 1(16] e What is 2 for the second coin?

Coin Small Dy D>
Flips 2 2 2
Heads [0,1] O 1
Tails 1,20 2 1
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Frequentist and Bayesian Approaches Imprecise Dirichlet Model

Determine 2 (Exercise 5)

“Y heudiasyc

Coin Small Large o Recap: 2 ={D|n,en,,Y ey Ny =N}

. 6

II-:IIIPZ 021 25' 11% e What is 25 for the first coin?
eads ) , . .

Tails {1 2} [5[2. 1(16] e What is 2 for the second coin?

Coin Small Dy D>
Flips 2 2 2
Heads [0,1] O 1
Tails 1,20 2 1

Coin Large D D> D5 Dy Ds Dg
Fips n=2-10® n n n n n n

Heads [5,10] 29?9?77 0?77 M 7?7?77
Tails [5,n] 2?7 7?7 ??7 7?7 7 ?7?
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Determine 2 (Solution 5)

“Y heudiasyc

Coin Small Large o Recap: 2 ={D|n,en,,Y ey Ny =N}

. 6

II-:IIIPZ 021 25' 11% e What is 25 for the first coin?
eads ) , . .

Tails {1 2} [5[2. 1(16] e What is 2 for the second coin?

Coin Small Dy D>
Flips 2 2 2
Heads [0,1] O 1
Tails 1,20 2 1

Coin Large D D> D5 Dy D5 Dg

Flips n=2-10° n n n n n n
Heads  [5,10] 5 6 7 8 9 10
Tails [5,n] n-5 n-6 n-7 n-8 n-9 n-10
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Compute Lower and Upper Expectations (Exercise 6)

Interval posterior mean 6;|2 of 0,|2:
E(6/12)= m|n E(HVID) m|n nv/(n+s (7)
E(6,12) = max E(6,ID) = max(nv+S)/(n+s). (8)
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Inference from Multinomial Data Imprecise Dirichlet Model (IDM) (Parzen) Window Classits

Frequentist and Bayesian Approaches Imprecise Dirichlet Model
Compute Lower and Upper Expectations (Exercise 6)

Interval posterior mean 6;|2 of 0,|2:

E(6/12)= m|nE(0v|D) m|5nv/(n+s) (7)
E(6,12) = maxE( vID) = max(nv+S)/(n+s) (8)

Coin Small D; D, E(6,/2) E(6,ID)

Flips 2 2 2

Heads [0,1] O 1 2?7 277
Tails [1,2] 2 1 277 227
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Inference from Multinomial Data Imprecise Dirichlet Model (IDM) (Parzen) Window Classis

Frequentist and Bayesian Approaches Imprecise Dirichlet Model
Compute Lower and Upper Expectations (Exercise 6)

Interval posterior mean 6;|2 of 0,|2:

E(6/12)= m|n E(OVID) m|5nv/(n+s) (7)

E(6,12) = maxE( vID) = max(nv+S)/(n+s) (8)

Coin Small D; D, E(6,/2) E(6,ID)
Flips 2 2 2

Heads [0,1] 0 1 222 227
Tails [1,2] 2 1 227 272
Coin Large Dy .. Dg E6,2) E®6,D)
Flips n=2-108 n .. n
Heads [5,10] 5 ... 10 227 227
Tails [5,n] n-5 ... n-10 ?2?7? ?2?7?
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Frequentist and Bayesian Approaches Imprecise Dirichlet Model

Compute Lower and Upper Expectations (Solution 6)

Interval posterior mean 6;|2 of 0,|2:
E(6v12)= mlnE(H D) = mlggnv/(ms),
E(6,12) = maxE(GVID) max (n+5)/(n+s).

Coin Small D; D, E(6,/2) E(6,ID)
Flips 2 2 2

Heads [0,1] O 1 0/(2+s)  (1+8)/(2+s)

Tails 1,21 2 1 1/(2+4s)  (2+9)/(2+s)
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Frequentist and Bayesian Approaches Imprecise Dirichlet Model

Compute Lower and Upper Expectations (Solution 6)

Interval posterior mean 6;|2 of 0,|2:
E(6,12)= mmE(H D) = mmnv/(n+s), 9)
E(6,12) = maxE(GVID) max (n+5)/(n+s). (10)

Coin Small D; D, E(6,/2) E(6,ID)
Flips 2 2 2

Heads [0,1] O 1 0/(2+s)  (1+5)/(2+s)
Tails 1,21 2 1 1/(2+4s)  (2+9)/(2+s)

Coin Large Dy .. D E(0,12) E(6,1D)
Flips n=2-10° n .. n

Heads [5,10] 5 .. 10 5/(n+s) (10+8)/(n+s)
Tails [5,n] n-5 ... n-10 ((-10)/(n+s) (n-5+5)/(n+s)
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Outline

e Inference from Multinomial Data
e Imprecise Dirichlet Model (IDM)
e (Parzen) Window Classifiers

e Evaluate Classifiers
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Pazen Window Classifiers [5]

Basic setup and assumption
e Given training data Dc & x %, a distance d(x, x’), and a threshold ¢
e For each instance x, determine D.(x) = {x' € D|d(x,x") < ¢}
e D.(x) can be used to estimate 6|x := 0|D.(x)
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Pazen Window Classifiers [5]

Basic setup and assumption
e Given training data Dc & x %, a distance d(x, x’), and a threshold ¢
e For each instance x, determine D.(x) = {x' € D|d(x,x") < ¢}
e D.(x) can be used to estimate 6|x := 0|D.(x)

Optimal decision rules
o Let /:% x% — R, be any loss function.
e The Bayes-optimal prediction of ¢ on x is

yg =argmin Z (y,y)0ylx
YW  yedy
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Pazen Window Classifiers [5]

Basic setup and assumption
e Given training data Dc & x %, a distance d(x, x’), and a threshold ¢
e For each instance x, determine D.(x) = {x' € D|d(x,x") < ¢}
e D.(x) can be used to estimate 6|x := 0|D.(x)

Optimal decision rules
o Let /:% x% — R, be any loss function.
e The Bayes-optimal prediction of ¢ on x is

yg =argmin Z (y,y)0ylx
YW  yedy

o If ¢ is subset 0/1 loss, i.e. £(y,y) =1(y #y), then (Check!)

0 _
Yo = argmaxeylx
ye¥
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Learning Problem

Given D,(x), we can
e Count n=|D.(x)| and ny, forany y e ¥ «— ¥ eq ny=n
e Estimate @|x using MLE, DM, etc.
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Learning Problem

Given D,(x), we can
e Count n=|D.(x)| and ny, forany y e ¥ «— ¥ eq ny=n
e Estimate @|x using MLE, DM, etc.
What would we do if D contains
e a small number of instances
e and/or missing/partial data?
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Learning Problem

Given D,(x), we can
e Count n=|D.(x)| and ny, forany y e ¥ «— ¥ eq ny=n
e Estimate @|x using MLE, DM, etc.
What would we do if D contains
e a small number of instances
e and/or missing/partial data?

x" € D.(x) | Y c% ={Apple,Banana, Tomato}
x| Apple or Banana, but not Tomato
X, Banana or Tomato, but not Apple
X; Apple or Tomato, but not Banana
X, Tomato
X Tomato
X Banana
X Banana
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Learning Problem (Cont.)

Given D,(x), we can
e Count n=|D.(x)| and ny for y e ¥
e Determine 2 = {D|ny € ny,} o Ny = N}
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Learning Problem (Cont.)

Given D,(x), we can
e Count n=|D.(x)| and ny for y e ¥
e Determine 2 = {D|ny € ny,} o Ny = N}

Using IDM to estimate interval posterior mean 6|2 of 6,|2:
g(eylx):ming(eylx):?inny/(ms), (11)
(9y|X) max E(Hle) maX(”y+S)/(n+s (12)
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Determine Possible Precise Data Set (Exercise 7)

x" € D.(x) | Y <% ={Apple,Banana, Tomato}
X Apple or Banana, but not Tomato
X, Banana or Tomato, but not Apple
X5 Apple or Tomato, but not Banana
X, Tomato
X Tomato
X Banana
x5 Banana
n=7,ny=777,ng =777, ny =777 (13)
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Determine Possible Precise Data Set (Exercise 7)

x" € D.(x) | Y <% ={Apple,Banana, Tomato}
X Apple or Banana, but not Tomato
X, Banana or Tomato, but not Apple
X5 Apple or Tomato, but not Banana
X, Tomato
X Tomato
X Banana
x5 Banana
n=7,ny=777,ng =777, ny =777 (13)

D, D, Dy D, Ds Dg D; Dy
na | 277 277 272 727 227 2777 27?7 277
ng | 272 272 272 7?7 727 72?272 272
ny | 272 222 272 7?7 222 77?27?2772

Uncertainty Reasoning and Machine Learning @




Inference from Multinomial Data Imprecise Dirichlet Model (IDM) (Parzen) Window Classiili

“Y heudiasyc

Determine Possible Precise Data Set (Solution 7)

x" € D.(x) | Y <% ={Apple,Banana, Tomato}

X Apple or Banana, but not Tomato

X, Banana or Tomato, but not Apple

X5 Apple or Tomato, but not Banana

X, Tomato

X Tomato

X Banana

x5 Banana
n=7,na=1{0,1,2},ng={2,3,4},n1 = {2,3,4} (14)
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Determine Possible Precise Data Set (Solution 7)

x" € D.(x) | Y <% ={Apple,Banana, Tomato}

X Apple or Banana, but not Tomato

X, Banana or Tomato, but not Apple

X5 Apple or Tomato, but not Banana

X, Tomato

X Tomato

X Banana

x5 Banana
n=7,n4=1{0,1,2},ng=12,8,4},n7 ={2,3,4} (14)

|Dy D, D3y D, Ds Dg D; Dg
nal 0 0 1 1 1 2 2 2
ng| 3 4 2 3 4 2 3 4
nf|4 3 4 3 2 4 3 3
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Compute Lower and Upper Expectations (Exercise 8)

/D, D, D D, Ds D; D; Dy
|0 0 1 1 1 2 2 2
ng| 3 4 2 3 4 2 3 4
nf|l 4 3 4 3 2 4 3 3

Using IDM to estimate interval posterior mean 6|2 of 6, |2:
E(Bylx)zming(eylx)=r£1;|in”y/(n+s), (15)
E(0yIx) = max E(0,ID) = max(”y+s)/(n+s (16)
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Compute Lower and Upper Expectations (Exercise 8)

/D, D, D D, Ds D; D; Dy
|0 0 1 1 1 2 2 2
ng| 3 4 2 3 4 2 3 4
nf|l 4 3 4 3 2 4 3 3

Using IDM to estimate interval posterior mean 6|2 of 6, |2:
E(Bylx)zming(eylx)=r£1;|in”y/(n+s), (15)
E(0yIx) = max E(0,ID) = max(”y+s)/(n+s (16)

| E(8y1x) E(8y1x)

Al 777 277
B| 272 227
297 227
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Compute Lower and Upper Expectations (Solution 8)

/D, D, D D, Ds D; D; Dy
|0 0 1 1 1 2 2 2
ng| 3 4 2 3 4 2 3 4
nf|l 4 3 4 3 2 4 3 3

Using IDM to estimate interval posterior mean 6|2 of 6, |2:
E(Bylx)zming(eylx)=r£1;|in”y/(n+s), (17)
E(0yIx) = max E(0,ID) = max(”y+s)/(n+s (18)
| E(8y1x)  E(81x)
A | 0f7+s) (2+9)/(7+s)

B | 2/(7+s) (4+9)/(7+s)
T | 2/(7+s) (4+5)/(7+s)
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Compute Lower and Upper Expectations

e Forany ye %, let

n,= ZDﬂ(y= Y, (19)
ny = ZDﬂ(ye Y'). (20)

o Compute interval posterior mean 6|2 of 6,|2:

E(0y1x) =n,/(n+s), (21)
E(Bylx) = (ny+9)/(n+s). (22)
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Compute Lower and Upper Bound Expectation (Again)

x' € D.(x) | Y <% ={Apple, Banana, Tomato}
X Apple or Banana, but not Tomato
> Banana or Tomato, but not Apple
X5 Apple or Tomato, but not Banana
X, Tomato
X Tomato
X Banana
x5 Banana
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Compute Lower and Upper Bound Expectation (Again)

x' € D.(x) | Y <% ={Apple,Banana, Tomato}
X Apple or Banana, but not Tomato
> Banana or Tomato, but not Apple
X5 Apple or Tomato, but not Banana
X, Tomato
X Tomato
X Banana
x5 Banana

n, Ty | E(6,1x) E(6ylx)

Al 0 2| 0/7+s) (2+5)/(7+s)
B| 2 4 2/(7+s)  (4+98)/(7+s)
T| 2 4

2/(7+4s)  (4+9)/(7+s)

=
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Set-Valued Predictions [6, 7] (Recap)

E-admissibility Rule:
o An optimal prediction is

Yf®|x ={ye®|30|xc0|x s.t. yzygu}.

o Computation: Solving linear programs, etc.
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Set-Valued Predictions [6, 7] (Recap)

E-admissibility Rule:
o An optimal prediction is

Yf®|x {ye®|30|xe@|x s.t. y = yglx}.

o Computation: Solving linear programs, etc.

Maximality Rule:
o An optimal prediction is

[@lx ={ye¥| Ay’ sty >r0x Y-

o Computation: Solving linear programs, lterating over the extreme
points of O|x.
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Set-Valued Predictions [6, 7] (Recap)
E-admissibility Rule:
o An optimal prediction is

Yf®|x {ye®|30|xe@|x s.t. y = yglx}.

o Computation: Solving linear programs, etc.

Maximality Rule:
o An optimal prediction is
[G)Ix ={ye¥| :Zly s.t. y >r0ix Y}

o Computation: Solving linear programs, lterating over the extreme
points of O|x.

Package: github.com/Haifei-ZHANG/Probability-Sets-Model
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Outline

e Inference from Multinomial Data
e Imprecise Dirichlet Model (IDM)
e (Parzen) Window Classifiers

Evaluate Classifiers
o The cases of Singleton Prediction
o The cases of Set-Valued Predictions
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Outline

e Inference from Multinomial Data
e Imprecise Dirichlet Model (IDM)
e (Parzen) Window Classifiers

e Evaluate Classifiers
o The cases of Singleton Prediction
o The cases of Set-Valued Predictions
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(Few) Commonly Used Criteria

Predictive ability (on a test set):
o Let ¢:% x% — R, be any loss function.
e Compute (average) loss on the test set
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Inference from Multinomial Data Imprecise Dirichlet Model (IDM) (Parzen) Window Classi e Cla' Sifiers
The cases of Singleton Prediction The cases of Set-Valued Predictions o heudiasyc

(Few) Commonly Used Criteria

Predictive ability (on a test set):
o Let ¢:% x% — R, be any loss function.
e Compute (average) loss on the test set

(Few) Other criteria:
o Model complexity (Storage memory)
e Training and/or Inference time
e Robustness: Under the presence of noise
e Trustworthiness: Explainability, interpretability, etc.
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Calibration Error (See Lecture 4)

Confidence calibration [2]:

P(y = h th =p)=8,v 1] 23
(y arggwesgeylxsuc that %%;(Hylx B)=p,Vpe[0,1] (23)
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Calibration Error (See Lecture 4)

Confidence calibration [2]:

P(y = h th =p)=8,v 1] 23
(y arggwe%;(()ylxsuc that %%;(Hylx B)=p,Vpe[0,1] (23)

Classwise calibration [9]:
P(y suchthat6,|x=B,)=p,,ye¥,pe[0,1]. (24)

o May be harder to ensure, compared to confidence calibration
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Calibration Error (See Lecture 4)

Confidence calibration [2]:
P(y =arg Tg;@ﬂx such that %%;(Hylx =p)=p,Vpe[0,1]. (23)
Classwise calibration [9]:
P(y suchthat 6y|x=B,)=py,ye¥,p€[0,1]. (24)
o May be harder to ensure, compared to confidence calibration
Distribution calibration [3]:
P(y such that8|x=q)=q,vge A, (25)

where A%l is the |#|-dimensional simplex
o May be harder to ensure, compared to the above notions.
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Outline

e Inference from Multinomial Data
e Imprecise Dirichlet Model (IDM)
e (Parzen) Window Classifiers

e Evaluate Classifiers
o The cases of Singleton Prediction
o The cases of Set-Valued Predictions
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The cases of Singleton Prediction The cases of Set-Valued Predictions

(Few) Commonly Used Criteria

Predictive ability (on a test set):
o We can use any loss function ¢: 2Y x Y — R,.
o If we use utility metric u=1-¢, replacing min by max.
e Set-based utility functions [10]: u(Y,y)=1(y € Y)g(IY!)
e Few commonly used utility function [4]:

a a-1
YD) =+ o
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(Few) Commonly Used Criteria

Predictive ability (on a test set):
o We can use any loss function ¢: 2Y x Y — R,.
o If we use utility metric u=1-¢, replacing min by max.
e Set-based utility functions [10]: u(Y,y)=1(y € Y)g(IY!)
e Few commonly used utility function [4]:

a a-1
Ga(IY1) = vt ve
(Few) Other criteria:
o Model complexity (Storage memory)
e Training and/or Inference time
e Robustness: Under the presence of noise
e Trustworthiness: Explainability, interpretability, etc.
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Set-Based Utility Functions

Few commonly used utility functions:

a a-—1
) L
%Y= 1y~ vz
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Set Based Utility Functions

Few commonly used utility functionS'

ga(| |) = |Y|

a—1
|Y|2'

Reward to cautiousness:
e Usy: @« =1 — no reward.
e Ugs: a = 1.6, moderate reward.
e Ugp: a=2.2, big reward.
e higher a, higher reward
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Set Based Utility Functions

Few commonly used utility functionS'

a—1
9:(1Y)= 77~ Ty
1 Ugo =
Reward to cautiousness: | 1 e

e Usp: a =1 «— no reward. L
e Ugs: a = 1.6, moderate reward. g5 s, _l_,_f__'_? #
o Ugy: a =2.2, big reward. . )
e higher a, higher reward ,‘!

|

|
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Set-Based Utility Functions (Exercise 9)

Recap: Few commonly used utility functions:

a a-1
Y=o -2
%Y=y~ Tve

Exercise: The maximum value of a such that g,(1Y) <1, VY <%\ g?.
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Coverage Error (See Lecture 4)

Uncertainty Reasoning and Machine Learning @ , Utc,




The cases of Set-Valued Predictions

heudiasyc

References |

[11 J.-M.Bernard.
An introduction to the imprecise dirichlet model for multinomial data.
International Journal of Approximate Reasoning, 39(2-3):123—150, 2005.

[2] C.Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger.
On calibration of modern neural networks.
In Proceedings of the 34th International Conference on Machine Learning (ICML), pages 1321-1330, 2017.

[8] M. Kull and P. Flach.
Novel decompositions of proper scoring rules for classification: score adjustment as precursor to calibration.
In Proceedings of the 2015th European Conference on Machine Learning and Knowledge Discovery in Databases
(ECML-PKDD), pages 68-85, 2015.

[4] T. Mortier, M. Wydmuch, K. Dembczynski, E. Hiillermeier, and W. Waegeman.
Efficient set-valued prediction in multi-class classification.
Data Mining and Knowledge Discovery, 35(4):1435-1469, 2021.

[5] V.-L.Nguyen, M. H. Shaker, and E. Hullermeier.
How to measure uncertainty in uncertainty sampling for active learning.
Machine Learning, 111(1):89-122, 2022.

[6] V.-L.Nguyen, H. Zhang, and S. Destercke.
Learning sets of probabilities through ensemble methods.
In Proceedings of the 17th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty
(ECSQARU), 2023.

[7]1 M. C. Troffaes.
Decision making under uncertainty using imprecise probabilities.
International journal of approximate reasoning, 45(1):17-29, 2007.

Uncertainty Reasoning and Machine Learning @




The cases of Set-Valued Predictions i heudiasyc

References Il

[8] L. V.Utkin and T. Augustin.
Decision making under incomplete data using the imprecise dirichlet model.
International Journal of Approximate Reasoning, 44(3):322-338, 2007.

[9] B.Zadrozny and C. Elkan.
Transforming classifier scores into accurate multiclass probability estimates.
In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining (SIGKDD),
pages 694-699, 2002.

[10] M. Zaffalon, G. Corani, and D. Maua.

Evaluating credal classifiers by utility-discounted predictive accuracy.
International Journal of Approximate Reasoning, 53(8):1282-1301, 2012.

Uncertainty Reasoning and Machine Learning @




	Inference from Multinomial Data
	Imprecise Dirichlet Model (IDM)
	Frequentist and Bayesian Approaches
	Imprecise Dirichlet Model

	(Parzen) Window Classifiers
	Evaluate Classifiers
	The cases of Singleton Prediction
	The cases of Set-Valued Predictions


