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Objectives

After this lecture students should be able to

l use IDM and related models in Naïve credal classifier (NCC) [3]

l use IDM and related models in decision trees [8]
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Outline

l Graphical Interpretation of Probabilistic Models

l Naïve Bayesian/Credal classifiers

l Decision Trees

l Bayesian Neural Networks
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How to interpret a decision tree?
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How to interpret a (feedforward) neural network?

Uncertainty Reasoning and Machine Learning 5



Graphical Interpretation of Probabilistic Models Naïve Bayesian/Credal classifiers Decision Trees Bayesian Neural Networks

How to interpret a (feedforward) neural network?

Uncertainty Reasoning and Machine Learning 5



Graphical Interpretation of Probabilistic Models Naïve Bayesian/Credal classifiers Decision Trees Bayesian Neural Networks

Probabilistic Models: Graphical Interpretation [5, 9]

Basic setup

l A set of features X = {X 1, . . . ,X M }; [M] := {1, . . . ,M}

l A class variable Y whose outcome y ∈Y

l A directed acyclic graph (DAG) connecting Y and X m

X 1 X 2

X 3 X 4 Y

This DAG (model structure) tells us:
m pa(Y )= {X 2,X 3}, pa(X 1)=;
m pa(X 2)= {X 1}, pa(X 3)= {X 1}

m pa(X 4)= {Y ,X 2,X 3}

Probabilistic Models:

l Expressing P(Y ,X ) using the chain rule (probability):

P(Y ,X )=P(Y |pa(Y ))
M∏

m=1
P(X m|pa(X m)) .
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Probabilistic Models: Model Families [9]

Probabilistic Models:

l Estimate P(Y ,X )

l Chain rule (probability):

P(Y ,X )=P(Y |pa(Y ))
M∏

m=1
P(X m|pa(X m)) .

Extreme Cases:

l Discriminative models: Y 6∈ pa(X m), m ∈ [M]

l Generative models: pa(Y )=; and Y ∈ pa(X p), m ∈ [M].

Model Families:

l How to encode/parametrize P(Y |pa(Y )) and P(X m|pa(X m)).

l How to estimate P(Y ,X ) from training data.
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Credal (Imprecise Probability) Models

Basic setup
l A set of features X = {X 1, . . . ,X M }

l A class variable Y whose outcome y ∈Y

Credal Models:
l P := {P(Y ,X )|P is compatible with knowledge/data}

l Chain rule (probability):

P(Y ,X )=P(Y |pa(Y ))
M∏

m=1
P(X m|pa(X m)) .

Extreme Cases:
l Discriminative models: Y 6∈ pa(X m), m ∈ [M] := {1, . . . ,M}

l Generative models: pa(Y )=; and Y ∈ pa(X m), m ∈ [M].
Model Families:

l How to encode/parametrize P(Y |pa(Y )) and P(X m|pa(X m)).
l How to estimate P (Y ,X ) from training data.
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Assumptions and Questions

Assumption and desirable property:

A1. X m, m ∈ [M] := {1, . . . ,M}, are always made available

P1. Best estimates of P(Y |pa(Y )) and P(X m|pa(X m)) can be found
given (training) data.

Questions (Exercise):

l Does the P1 hold for Naïve Bayes Classifier?

l Does the P1 hold for Decision trees?

Questions (which will not be discussed in this lecture):

l What may happen if X m, m ∈ [M], can be partially given?

l What may happen if best estimates of P(Y |pa(Y )) and
P(X m|pa(X m)) may not be found?
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The Next Slides

We shall elaborate on how to solve classification task using

l Naïve Bayesian classifier (NBC) (an example of generative model)

l Decision trees (DTs) (examples of discriminative model)

How IDM (Lecture 3) can be used to generalize NBC and DTs to

l cope with the case of small and partial/missing data

l make set-valued predictions under the presence of uncertainty

We would also discuss (if we have time) the cases of

l Ensembles (Trees, Neural Nets, etc.)

l Bayesian Neural Nets
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Generative Models

Probabilistic Models:

l Estimate P(Y ,X )

l Chain rule (probability):

P(Y ,X )=P(Y |pa(Y ))
M∏

m=1
P(X m|pa(X m)) .

Extreme Cases:

l Discriminative models: Y 6∈ pa(X m), m ∈ [M]

l Generative models: pa(Y )=; and Y ∈ pa(X p), m ∈ [M].

Model Families:

l How to encode/parametrize P(Y |pa(Y )) and P(X m|pa(X m)).

l How to estimate P(Y ,X ) from training data.
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Generative Models: Structure (Exercise 1)

Let’s start with an example where one wishes to model

P(Y ,X )=P(Y ,X 1,X 2,X 3,X 4) .

Chain rule (probability):

P(Y ,X )=P(Y |pa(Y ))
M∏

m=1
P(X m|pa(X m)) .

X 1 X 2

X 3 X 4 Y

l pa(Y )=;, pa(X 1)=;
l pa(X 2)=???
l pa(X 3)=???
l pa(X 4)=???

Chain rule gives us
P(Y ,X )=??? .

Uncertainty Reasoning and Machine Learning 14
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Generative Models: Structure (Solution 1)

Let’s start with an example where one wishes to model

P(Y ,X )=P(Y ,X 1,X 2,X 3,X 4) .

Chain rule (probability):

P(Y ,X )=P(Y |pa(Y ))
M∏

m=1
P(X m|pa(X m)) .

X 1 X 2

X 3 X 4 Y

l pa(Y )=;, pa(X 1)=;
l pa(X 2)= {Y ,X 1}

l pa(X 3)= {Y ,X 1}

l pa(X 4)= {Y ,X 2,X 3}

Chain rule gives us

P(Y ,X )=P(Y )P(X 1)P(X 2|Y ,X 1)P(X 3|Y ,X 1)P(X 4|Y ,X 2,X 3) .

Uncertainty Reasoning and Machine Learning 15
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Naïve Bayesian classifier (NBC)

Comments:

l NBC is a generative model with no arc X ′ −→X

l Chain rule gives us

P(Y ,X )=P(Y )
M∏

m=1
P(X m|Y ) .

To solve the classification task,

l joint probability distribution P(Y ,X ) is learn from training data D
l conditional distribution P(Y |X ) is extracted using Bayes’ theorem

P(y |x)= P(y ,x)∑
y ′∈Y P(y ′,x)

= P(y)
∏M

m=1 P(xm|y)∑
y ′∈Y P(y ′)

∏M
m=1 P(xm|y ′)

. (1)

Uncertainty Reasoning and Machine Learning 16
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Estimate Parameters of NBC

Basic setup:

l A class variable Y with K possible values: Y = {y1, . . .yK }

l M discrete features: X = (X 1, . . . ,X M)

l Feature X m has Qm possible values: X m = {xm,1, . . .xm,Qm }

Task: Finding the best estimate of

l θk :=P(yk ), k ∈ [K ]

l θ
m,qm
k :=P(xqm ,m|yk ), qm ∈ [Qm], k ∈ [K ], m ∈ [M]

Probability axioms:

l

∑K
k=1θk = 1

l

∑Qm
qm=1θ

m,qm
k = 1 when fixing k and m

Uncertainty Reasoning and Machine Learning 17
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Maximum Likelihood Estimate

Basic setup: Given training data D = {(y1,x1), . . . ,(yN ,xN)}, count

l nk : Number of training instances with label yk

l nm,qm
k : Number of training instances with label yk and feature X m

takes value xm,qm

MLE gives us the best estimates

θk := nk/N (2)

θ
m,qm
k := nm,qm/nk (3)

Uncertainty Reasoning and Machine Learning 18
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MLE (Exercise 2)

l Y = {A,B,C}

l X 1 = {d ,e}

l X 2 = {f ,g,h}

n Y X 1 X 2

1 A d f
2 A d g
3 A e g
4 B d f
5 B e g
6 C d f
7 C e f
8 C e g

nA = 3 nB = 2 nC = 3
θA = 3/8 θB = 1/4 θC = 3/8

n1,d
A = 2 n1,e

A = 1 θ1,d
A = 2/3 θ1,e

A = 1/3

n1,d
B = 1 n1,e

B = 1 θ1,d
B = 1/2 θ1,e

B = 1/2

n1,d
C = 1 n1,e

C = 2 θ1,d
C = 1/3 θ1,e

C = 2/3

n2,f
A =??? n2,g

A =??? θ2,f
A =??? θ

2,g
A =???

n2,f
B =??? n2,g

B =??? θ2,f
B =??? θ

2,g
B =???

n2,f
C =??? n2,g

C =??? θ2,f
C =??? θ

2,g
C =???

n2,h
A =??? n2,h

B =??? n2,h
C =???

θ2,h
A =??? θ2,h

B =??? θ2,h
C =???
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MLE (Solution 2)
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θA = 3/8 θB = 1/4 θC = 3/8

n1,d
A = 2 n1,e

A = 1 θ1,d
A = 2/3 θ1,e

A = 1/3

n1,d
B = 1 n1,e

B = 1 θ1,d
B = 1/2 θ1,e

B = 1/2

n1,d
C = 1 n1,e

C = 2 θ1,d
C = 1/3 θ1,e

C = 2/3

n2,f
A = 1 n2,g

A = 2 θ2,f
A = 1/3 θ

2,g
A = 2/3

n2,f
B = 1 n2,g

B = 1 θ2,f
B = 1/2 θ

2,g
B = 1/2

n2,f
C = 2 n2,g

C = 1 θ2,f
C = 2/3 θ

2,g
C = 1/3

n2,h
A = 0 n2,h

B = 0 n2,h
C = 0

θ2,h
A = 0 θ2,h

B = 0 θ2,h
C = 0
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Conditional Probabilities (Exercise 3)

Given x = (x1,q1 , . . . ,xM ,qM ), for any yk ∈Y :

P(yk |x)= θk
∏M

m=1θ
m,qm
k∑

yk ′∈Y θk ′
∏M

m=1θ
m,qm
k ′

∝P ′(yk |x)= θk

M∏
m=1

θ
m,qm
k . (4)

θA = 3/8 θB = 1/4 θC = 3/8

θ1,d
A = 2/3 θ1,e

A = 1/3 θ2,f
A = 1/3 θ

2,g
A = 2/3

θ1,d
B = 1/2 θ1,e

B = 1/2 θ2,f
B = 1/2 θ

2,g
B = 1/2

θ1,d
C = 1/3 θ1,e

C = 2/3 θ2,f
C = 2/3 θ

2,g
C = 1/3

θ2,h
A = 0 θ2,h

B = 0 θ2,h
C = 0

x P ′(A|x) P ′(B|x) P ′(C|x)
(d , f ) ??? ??? ???
(e,h) ??? ??? ???
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Conditional Probabilities (Solution 3)

Given x = (x1,q1 , . . . ,xM ,qM ), for any yk ∈Y :

P(yk |x)= θk
∏M

m=1θ
m,qm
k∑

yk ′∈Y θk ′
∏M

m=1θ
m,qm
k ′

∝P ′(yk |x)= θk

M∏
m=1

θ
m,qm
k . (5)

θA = 3/8 θB = 1/4 θC = 3/8

θ1,d
A = 2/3 θ1,e

A = 1/3 θ2,f
A = 1/3 θ

2,g
A = 2/3

θ1,d
B = 1/2 θ1,e

B = 1/2 θ2,f
B = 1/2 θ

2,g
B = 1/2

θ1,d
C = 1/3 θ1,e

C = 2/3 θ2,f
C = 2/3 θ

2,g
C = 1/3

θ2,h
A = 0 θ2,h

B = 0 θ2,h
C = 0

x P ′(A|x) P ′(B|x) P ′(C|x)
(d , f ) 1/12 1/18 1/12

(e,h) 0 0 0
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Optimal Decision Rules (Exercise 4)

If ℓ(yk ′
,yk )= 1(yk ′ 6= yk ), then (See Lecture 3+Check!)

yθ
ℓ (x)= argmax

yk∈Y

P ′(yk |x)

x P ′(A|x) P ′(B|x) P ′(C|x)
(d , f ) 1/12 1/18 1/12

(e,h) 0 0 0

l If x = (d , f ), then

yθ
ℓ (x)=??? , (6)

l If x = (e,h), then

yθ
ℓ (x)=??? , (7)
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Optimal Decision Rules (Solution 4)

If ℓ(yk ′
,yk )= 1(yk ′ 6= yk ), then (See Lecture 3+Check!)

yθ
ℓ (x)= argmax

yk∈Y

P ′(yk |x)

x P ′(A|x) P ′(B|x) P ′(C|x)
(d , f ) 1/12 1/18 1/12

(e,h) 0 0 0

l If x = (d , f ), then

yθ
ℓ (x)= either A or B , (8)

l If x = (e,h), then

yθ
ℓ (x)= not well-defined , (9)
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NBC + MLE: Comments

l May lead to indecision and not well-defined P(y |x)

x P ′(A|x) P ′(B|x) P ′(C|x)
(d , f ) 1/12 1/18 1/12

(e,h) 0 0 0

l May suffer from small numbers of observations
m nk : Number of training instances with label yk

m nm,qm
k : Number of training instances with label yk and feature X m

takes value xm,qm

l Does not (naturally) take into account missing/partial data
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NBC + Dirichlet Model (DM)

Basic setup: Given training data D = {(y1,x1), . . . ,(yN ,xN)}, count

l nk : Number of training instances with label yk

l nm,qm
k : Number of instances with Y = yk and feature X m = xm,qm

DM gives Bayesian estimates

θk := (nk+αk )/(N+s)= (nk+sfk )/(N+s) (10)

θ
m,qm
k := (nm,qm

k +αm,qm
k )/(nk+s)= (nm,qm

k +sf m,qm
k )/(nk+s) (11)

Advocators αv (= yk or xm,qm ) s
Haldane (1948) 0 0

Perks (1947) 1/|V | 1
Jeffreys (1946, 1961) 1/2 |V |/2

Bayes-Laplace 1 |V |
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NBC + DM (Exercise 5)
θk := (nk+1/3)/(N+1) , θ

m,qm
k := (nm,qm

k +1/|X m |)/(nk+1) .

l Y = {A,B,C}

l X 1 = {d ,e}

l X 2 = {f ,g,h}

n Y X 1 X 2

1 A d f
2 A d g
3 A e g
4 B d f
5 B e g
6 C d f
7 C e f
8 C e g

nA = 3 nB = 2 nC = 3
θA = 10/27 θB = 7/27 θC = 10/27

n1,d
A = 2 n1,e

A = 1 θ1,d
A = 5/8 θ1,e

A = 3/8

n1,d
B = 1 n1,e

B = 1 θ1,d
B = 3/6 θ1,e

B = 3/6

n1,d
C = 1 n1,e

C = 2 θ1,d
C = 3/8 θ1,e

C = 5/8

n2,f
A = 1 n2,g

A = 2 θ2,f
A =??? θ

2,g
A =???

n2,f
B = 1 n2,g

B = 1 θ2,f
B =??? θ

2,g
B =???

n2,f
C = 2 n2,g

C = 1 θ2,f
C =??? θ

2,g
C =???

n2,h
A = 0 n2,h

B = 0 n2,h
C = 0

θ2,h
A =??? θ2,h

B =??? θ2,h
C =???
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NBC + DM (Exercise 5)
θk := (nk+1/3)/(N+1) , θ

m,qm
k := (nm,qm

k +1/|X m |)/(nk+1) .

l Y = {A,B,C}

l X 1 = {d ,e}

l X 2 = {f ,g,h}

n Y X 1 X 2

1 A d f
2 A d g
3 A e g
4 B d f
5 B e g
6 C d f
7 C e f
8 C e g

nA = 3 nB = 2 nC = 3
θA = 10/27 θB = 7/27 θC = 10/27

n1,d
A = 2 n1,e

A = 1 θ1,d
A = 5/8 θ1,e

A = 3/8

n1,d
B = 1 n1,e

B = 1 θ1,d
B = 3/6 θ1,e

B = 3/6

n1,d
C = 1 n1,e

C = 2 θ1,d
C = 3/8 θ1,e

C = 5/8

n2,f
A = 1 n2,g

A = 2 θ2,f
A =??? θ

2,g
A =???

n2,f
B = 1 n2,g

B = 1 θ2,f
B =??? θ

2,g
B =???

n2,f
C = 2 n2,g

C = 1 θ2,f
C =??? θ

2,g
C =???

n2,h
A = 0 n2,h

B = 0 n2,h
C = 0

θ2,h
A =??? θ2,h

B =??? θ2,h
C =???
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NBC + DM (Solution 5)
θk := (nk+1/3)/(N+1) , θ

m,qm
k := (nm,qm

k +1/|X m |)/(nk+1) .

l Y = {A,B,C}

l X 1 = {d ,e}

l X 2 = {f ,g,h}

n Y X 1 X 2

1 A d f
2 A d g
3 A e g
4 B d f
5 B e g
6 C d f
7 C e f
8 C e g

nA = 3 nB = 2 nC = 3
θA = 10/27 θB = 7/27 θC = 10/27

n1,d
A = 2 n1,e

A = 1 θ1,d
A = 5/8 θ1,e

A = 3/8

n1,d
B = 1 n1,e

B = 1 θ1,d
B = 3/6 θ1,e

B = 3/6

n1,d
C = 1 n1,e

C = 2 θ1,d
C = 3/8 θ1,e

C = 5/8

n2,f
A = 1 n2,g

A = 2 θ2,f
A = 4/12 θ

2,g
A = 7/12

n2,f
B = 1 n2,g

B = 1 θ2,f
B = 4/9 θ

2,g
B = 4/9

n2,f
C = 2 n2,g

C = 1 θ2,f
C = 7/12 θ

2,g
C = 4/12

n2,h
A = 0 n2,h

B = 0 n2,h
C = 0

θ2,h
A = 1/12 θ2,h

B = 1/9 θ2,h
C = 1/12
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Conditional Probabilities (Exercise 6)

Given x = (x1,q1 , . . . ,xM ,qM ), for any yk ∈Y :

P(yk |x)= θk
∏M

m=1θ
m,qm
k∑

yk ′∈Y θk ′
∏M

m=1θ
m,qm
k ′

∝P ′(yk |x)= θk

M∏
m=1

θ
m,qm
k . (12)

θA = 10/27 θB = 7/27 θC = 10/27

θ1,d
A = 5/8 θ1,e

A = 3/8 θ2,f
A = 4/12 θ

2,g
A = 7/12

θ1,d
B = 3/6 θ1,e

B = 3/6 θ2,f
B = 4/9 θ

2,g
B = 4/9

θ1,d
C = 3/8 θ1,e

C = 5/8 θ2,f
C = 7/12 θ

2,g
C = 4/12

θ2,h
A = 1/12 θ2,h

B = 1/9 θ2,h
C = 1/12

x P ′(A|x) P ′(B|x) P ′(C|x) yθ
ℓ
(x)

(d , f ) ??? ??? ??? ???
(e,h) ??? ??? ??? ???
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Conditional Probabilities (Solution 6)

Given x = (x1,q1 , . . . ,xM ,qM ), for any yk ∈Y :

P(yk |x)= θk
∏M

m=1θ
m,qm
k∑

yk ′∈Y θk ′
∏M

m=1θ
m,qm
k ′

∝P ′(yk |x)= θk

M∏
m=1

θ
m,qm
k . (13)

θA = 10/27 θB = 7/27 θC = 10/27

θ1,d
A = 5/8 θ1,e

A = 3/8 θ2,f
A = 4/12 θ

2,g
A = 7/12

θ1,d
B = 3/6 θ1,e

B = 3/6 θ2,f
B = 4/9 θ

2,g
B = 4/9

θ1,d
C = 3/8 θ1,e

C = 5/8 θ2,f
C = 7/12 θ

2,g
C = 4/12

θ2,h
A = 1/12 θ2,h

B = 1/9 θ2,h
C = 1/12

x P ′(A|x) P ′(B|x) P ′(C|x) yθ
ℓ
(x)

(d , f ) 10
27

5
8

4
12

7
27

3
6

4
9

10
27

3
8

7
12 C

(e,h) 10
27

3
8

1
12

7
27

3
6

1
9

10
27

5
8

1
12 C
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NBC + DM: Comments

l May lead to indecision, but can avoid not well-defined P(y |x)

x P ′(A|x) P ′(B|x) P ′(C|x) yθ
ℓ
(x)

(d , f ) 10
27

5
8

4
12

7
27

3
6

4
9

10
27

3
8

4
12 A

(e,h) 10
27

3
8

1
12

7
27

3
6

1
9

10
27

5
8

1
12 C

l May suffer from small numbers of observations
m nk : Number of training instances with label yk

m nm,qm
k : Number of training instances with label yk and feature X m

takes value xm,qm

l Does not (naturally) take into account missing/partial data
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12
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27

3
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4
9

10
27

3
8
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27

3
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1
12

7
27
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6

1
9

10
27

5
8

1
12 C
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ℓ
(x)

(d , f ) 10
27

5
8

4
12

7
27

3
6

4
9

10
27

3
8

4
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(e,h) 10
27

3
8

1
12

7
27

3
6

1
9

10
27

5
8

1
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Outline

l Graphical Interpretation of Probabilistic Models

l Naïve Bayesian/Credal classifiers
m Naïve Bayesian classifier
m Naïve Credal classifiers

l Decision Trees

l Bayesian Neural Networks
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Naïve Credal classifiers (NCC)

Basic setup: Given training data D = {(y1,x1), . . . ,(yN ,xN)}, count

l nk : Number of training instances with label yk

l nm,qm
k : Number of instances with Y = yk and feature X m = xm,qm

Imprecise Dirichlet model (IDM) gives

θk := nk/(N+s) (14)

θ
m,qm
k := nm,qm

k /(nk+s) (15)

θk := (nk+s)/(N+s) (16)

θ
m,qm
k := (nm,qm

k +s/(nk+s) (17)

IDM + ϵ regularization [2]

θk := (nk+sϵk )/(N+s) (18)

θ
m,qm
k := (nm,qm

k +sϵm,qm
k )/(nk+s) (19)

θk := (nk+sϵk )/(N+s) (20)

θ
m,qm
k := (nm,qm

k +sϵm,qm
k )/(nk+s) (21)

Uncertainty Reasoning and Machine Learning 33



Graphical Interpretation of Probabilistic Models Naïve Bayesian/Credal classifiers Decision Trees Bayesian Neural Networks
Naïve Bayesian classifier Naïve Credal classifiers

Naïve Credal classifiers (NCC)

Basic setup: Given training data D = {(y1,x1), . . . ,(yN ,xN)}, count

l nk : Number of training instances with label yk

l nm,qm
k : Number of instances with Y = yk and feature X m = xm,qm

Imprecise Dirichlet model (IDM) gives

θk := nk/(N+s) (14)

θ
m,qm
k := nm,qm

k /(nk+s) (15)

θk := (nk+s)/(N+s) (16)

θ
m,qm
k := (nm,qm

k +s/(nk+s) (17)

IDM + ϵ regularization [2]

θk := (nk+sϵk )/(N+s) (18)

θ
m,qm
k := (nm,qm

k +sϵm,qm
k )/(nk+s) (19)

θk := (nk+sϵk )/(N+s) (20)

θ
m,qm
k := (nm,qm

k +sϵm,qm
k )/(nk+s) (21)
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Interval Conditional Probabilities

Given a query instance x = (xq1,1,xq2,2, . . . ,xqM ,M), we have

1/P(yk |x)−1= ∑
k ′ 6=k

(
nk ′ +sϵk

nk +sϵk

(
nk +s
nk ′ +s

)M M∏
m=1

nqm ,m
k ′ +sϵm,qm

k

nqm ,m
k +sϵm,qm

k

)
,

1/P(yk |x)−1= ∑
k ′ 6=k

(
nk ′ +sϵk

nk +sϵk

(
nk +s
nk ′ +s

)M M∏
m=1

nqm ,m
k ′ +sϵm,qm

k

nqm ,m
k +sϵm,qm

k

)
.

P (Y |x) :=
{
P(Y |x)|P(yk |x) ∈ [P(yk |x),P(yk |x)],∑K

k=1 P(yk |x)= 1
}
.
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Interval Conditional Probabilities (Exercise 7)

1/P(yk |x)−1= ∑
k ′ 6=k

(
nk ′ +sϵk

nk +sϵk

(
nk +s
nk ′ +s

)M M∏
m=1

nqm ,m
k ′ +sϵm,qm

k

nqm ,m
k +sϵm,qm

k

)
,

1/P(yk |x)−1= ∑
k ′ 6=k

(
nk ′ +sϵk

nk +sϵk

(
nk +s
nk ′ +s

)M M∏
m=1

nqm ,m
k ′ +sϵm,qm

k

nqm ,m
k +sϵm,qm

k

)
.

s = 1 ϵk = 0.01 ϵk = 0.99 nA = 3 nB = 2 nC = 3

n1,d
A = 2 n1,e

A = 1 n2,f
A = 1 n2,g

A = 2

n1,d
B = 1 n1,e

B = 1 n2,f
B = 1 n2,g

B = 1

n1,d
C = 1 n1,e

C = 2 n2,f
C = 2 n2,g

C = 1

n2,h
A = 0 n2,h

B = 0 n2,h
C = 0

x P(A|x) P(B|x) P(C|x) P(A|x) P(B|x) P(C|x)
(d , f ) ??? ??? ??? ??? ??? ???
(e,h) ??? ??? ??? ??? ??? ???
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Interval Conditional Probabilities (Solution 7)
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Interval Conditional Probabilities (Solution 7)
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Making Set-Valued Predictions (Recap)

For each instance x , let

l θ←−P(Y |x) and Θ←−P (Y |x)
E-admissibility Rule:

l An optimal prediction is

YE
ℓ,Θ = {y ∈Y |∃θ ∈Θ s.t. y = yθ

ℓ } .

l Computation: Solving linear programs [10] , etc.

Maximality Rule:

l An optimal prediction is

YM
ℓ,Θ = {y ∈Y | 6 ∃y ′ s.t. y ′ Âℓ,Θ y } .

l Computation: Solving linear programs [10], Iterating over the
extreme points of Θ [10], exploiting the properties of NCC [3].
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Illustrative Examples → Lines of Code Would be Useful!
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NCC: Comments

NCC inherits properties of IDM [3]:

l May lead to set-valued predictions

l ϵ-regularization can avoid not well-defined P(y |x)

l May provide reliable interval probabilities when seeing small
numbers of observations

m nk : Number of training instances with label yk

m nm,qm
k : Number of training instances with label yk and feature X m

takes value xm,qm

l Provide tools to (naturally) take into account missing/partial data
m Naive solutions are computationally expensive (in exponential time)
m More efficient (polynomial-time) procedure exists
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NCC: Technical Details + Performance
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l Naïve Bayesian/Credal classifiers

l Decision Trees
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m Credal Decision Trees

l Bayesian Neural Networks
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Discriminative Models

Probabilistic Models:

l Estimate P(Y ,X )

l Chain rule (probability):

P(Y ,X )=P(Y |pa(Y ))
M∏

m=1
P(X m|pa(X m)) .

Extreme Cases:

l Discriminative models: Y 6∈ pa(X m), m ∈ [M]

l Generative models: pa(Y )=; and Y ∈ pa(X p), m ∈ [M].

Model Families:

l How to encode/parametrize P(Y |pa(Y )) and P(X m|pa(X m)).

l How to estimate P(Y ,X )=P(Y |X )P(X ) from training data.
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Discriminative Models: Structure (Exercise 8)

Let’s start with an example where one wishes to model

P(Y ,X )=P(Y ,X 1,X 2,X 3,X 4) .

Chain rule (probability):

P(Y ,X )=P(Y |pa(Y ))
M∏

m=1
P(X m|pa(X m)) .

X 1 X 2

X 3 X 4 Y

l pa(Y )=???,

l pa(X 1)=;, pa(X 2)=???
l pa(X 3)=???
l pa(X 4)=???

Chain rule gives us
P(Y ,X )=??? .
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Discriminative Models: Structure (Solution 8)

Let’s start with an example where one wishes to model

P(Y ,X )=P(Y ,X 1,X 2,X 3,X 4) .

Chain rule (probability):

P(Y ,X )=P(Y |pa(Y ))
M∏

m=1
P(X m|pa(X m)) .

X 1 X 2

X 3 X 4 Y

l pa(Y )= {X 2,X 3,X 4}

l pa(X 1)=;, pa(X 2)= {X 1}

l pa(X 3)= {X 1}

l pa(X 4)= {X 2,X 3}

Chain rule gives us

P(Y ,X )=P(Y |X 2,X 3,X 4)P(X 1)P(X 2|X 1)P(X 3|X 1)P(X 4|X 2,X 3) .
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Classification Task (Exercise + Solution 9)

Prove that

P(y |x)=P(y |pa(y)) . (22)

We have

P(y |x)= P(y ,x)∑
y ′∈Y P(y ′,x)

(23)

= P(y |pa(y))
∏M

m=1 P(xm|pa(xm))∑
y ′∈Y P(y ′|pa(y ′))

∏M
m=1 P(xm|pa(xm))

(24)

=
∏M

m=1 P(xm|pa(xm))P(y |pa(y))∏M
m=1 P(xm|pa(xm))

∑
y ′∈Y P(y ′|pa(y ′))

(25)

= P(y |pa(y))∑
y ′∈Y P(y ′|pa(y ′))

(26)

=P(y |pa(y)) . (27)
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Classification Task: Comments

P(Y |X ) is extracted using Bayes’ theorem

P(y |x)=P(y |pa(y)) . (28)

l Features outside pa(Y ) are redundant

l To solve the classification task, we only need P(Y |pa(Y ))

l Commonly used assumption: pa(Y )= (X 1, . . . ,X M)

l P(Y |pa(Y )) can be defined either globally or locally:
m Logistic regression, neural nets, etc., define P(Y |pa(Y )) globally
m Decision tree, model trees, etc., define P(Y |pa(Y )) locally
m Decision tree does not require pa(Y )= (X 1, . . . ,X M)
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Decision Trees: Example [11]
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Decision Trees: (Informal+Probabilistic) Definition

A decision trees is

l a collection of non-overlapping leaves L1, . . . ,LH

l where L1 ∩ . . .∩LH =X

l and each leaf Lh has its own Ph(Y |pa(Y ))

Learning an optimal decision tree from training data

l can be extremely hard (due to huge numbers of possible trees)

l and is often done approximately (top-down induction, bottom-up
induction, etc.)
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Top-Down Induction (Example) [4]
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Top-down induction: Steps

Basic Setup:

l Training data D = {(yn,xn)|n ∈ [N]}

l Local hypothesis space P(Y |pa(Y )) ∈P (Y |pa(Y ))

l An uncertainty measure U or a loss function ℓ ←− assess how
good/bad each local classifier is

Induction protocol:

l Recursively partition the feature space X

l From the current node, choose the best split which improves the
evaluation criterion

l Evaluation criteria: Information gain, entropy, Gini score, etc.,

l Stopping criteria: No more gain on evaluation criterion U or ℓ
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Splitting Criteria: Entropy (Frequentist)

l Entropy of a node Dh ⊂D with P(Y |Dh)

UE(P(Y |Dh))=− ∑
y∈Y

P(y |Dh) log2 (P(y |Dh)) .

l For each possible split Dh =D1
h ∪D2

h, its entropy is

UE(D1
h ∪D2

h)=UE(P(Y |Dh))+UE(P(Y |Dh)) .
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UE(D1
h ∪D2

h)=UE(P(Y |Dh))+UE(P(Y |Dh)) .
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Compute Entropy (Exercise 10)

l Entropy of a node Dh ⊂D with P(Y |Dh)

UE(P(y |Dh))=− ∑
y∈Y

P(y |Dh) log2 (P(y |Dh)) .

l Entropy of the bottom left node is ???
l Entropy of the top node is ???
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Compute Entropy (Solution 10)

l Entropy of a node Dh ⊂D with P(Y |Dh)

UE(P(y |Dh))=− ∑
y∈Y

P(y |Dh) log2 (P(y |Dh)) .

l Entropy of the bottom left node is 0
l Entropy of the top node is −0.5 log2(0.5)+0.5 log2(0.5)= 1
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Splitting Criteria: Bayesian

In principle, we can employ Dirichlet models (DM) to

l derive Bayesian estimates of P(Y |Dh) and/or U(P(y |Dh))

l and modify the top-down induction steps.

l I haven’t seen such decision decision trees

l I hope I can find some reference soon ...
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Outline

l Graphical Interpretation of Probabilistic Models

l Naïve Bayesian/Credal classifiers

l Decision Trees
m Decision Trees
m Credal Decision Trees

l Bayesian Neural Networks
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Where and How to be Imprecise?

In principle, we can employ Imprecise Dirichlet models (IDM) to

l derive interval estimates of P(Y |Dh) and/or U(P(y |Dh))

l and modify the top-down induction steps.

Credal Decision Trees [1, 7]

l Use IDM to derive interval estimates P (Y |Dh) of P(Y |Dh)

l Seek the highest entropy

U(P (Y |Dh))=max
P∈P

U(P(Y |Dh)) . (29)

l Each leaf is equipped a P (Y |Lh) → Precise predictions.
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Credal Decision Trees: Performance [7]
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Artificial neural networks vs Bayesian Neural Networks

Graphical interpretation of (a) ANN and (b) BNN
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Inference Problems [6]

l We need some way to aggregate the set of outputs

l You might want to try with MLE (Frequentist), DM (Bayesian), IDM
(IP), etc.
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