MT09 A25 - Feuille de TD n° 3

Matrice à diagonale strictement dominante, factorisation de Choleski BB^T , factorisation LDL^T

Exercice 1 : Matrice à diagonale strictement dominante

Dans de nombreux problèmes de physique, mécanique, chimie ou mathématiques, on a à minimiser une fonction de potentiel d'énergie. On considère un système de n 'particules' en interaction, soumises à une force f. Pour la recherche de l'équilibre stable, on a à minimiser une énergie quadratique $V(x_1, ..., x_n)$ définie par

$$V(x_1, ..., x_n) = \alpha \sum_{i=1}^{n} \frac{x_i^2}{2} + \sum_{i=1}^{n-1} \frac{(x_{i+1} - x_i)^2}{2} - \sum_{i=1}^{n} x_i fi$$

où $\alpha > 0$. Le premier terme représente une énergie, le deuxième une énergie d'interaction entre particules voisines et le troisième le travail de la force f.

1. La recherche du minimum revient à résoudre les conditions dites de point critique

$$\nabla V(x_1,...,x_n) = \mathbf{0}.$$

Montrer que ce système d'équations s'écrit aussi sous la forme

$$Ax = b$$

où l'on déterminera A et \boldsymbol{b} .

2. Une matrice A est dite à diagonale strictement dominante (DSD) si elle possède la propriété

$$\sum_{j \neq i} |a_{ij}| < |a_{ii}| \quad \forall i, \ 1 \le i \le n.$$

Vérifiez que la matrice de la question 1 est à DSD (NB : merci α !).

3. Soit $A \in \mathcal{M}_n(\mathbb{R})$ à DSD et $\boldsymbol{x} \in \mathbb{R}^n$ une solution de $A\boldsymbol{x} = \boldsymbol{0}$. Soit $i_0 \in \{1,...,n\}$ tel que

$$|x_{i_0}| \ge |x_i| \quad \forall i, \ 1 \le i \le n.$$

En écrivant la ligne i_0 de Ax = 0, montrer que $x_{i_0} = 0$. En déduire que A est inversible. Qu'en est-il des sous-matrices principales de A?

4. En déduire de A admet une factorisation LU sans permutation de lignes ou de colonnes.

Exercice 2. Factorisations de Choleski et LDL^T

Soit A la matrice symétrique

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 3 \end{pmatrix}.$$

- 1. Au moyen de la trace et du déterminant de A, calculer les valeurs propres de A. La matrice A est-elle s.d.p.?
- 2. Calculer à la main la factorisation de Choleski de $A:A=BB^T$. Pour cela, on identifiera A avec BB^T où

$$B = \begin{pmatrix} b_{11} & 0 \\ b_{21} & b_{22} \end{pmatrix}.$$

3. En déduire la factorisation LDL^T de A où L est triangulaire inférieure avec une diagonale constituée de 1, et D est une matrice diagonale. Les éléments diagonaux de D sont-ils les valeurs propres de A?

Exercice 3. Choleski en dimension n

Soit A une matrice s.d.p. de taille n. Elle admet donc une factorisation de Choleski

$$A = BB^T$$

où B est triangulaire inférieure constituée d'éléments diagonaux b_{ii} strictement positifs.

- 1. Par identification, calculez b_{11} , puis B_1 .
- 2. Toujours par identification, donner l'expression de b_{22} , puis calculer B_2 .

Exercice 4. Application: projection orthogonale sur un s.e.v.

Soit w_1 et w_2 deux vecteurs linéairement indépendants de \mathbb{R}^n et $W = \text{Vect}(w_1, w_2)$. Pour $x \in \mathbb{R}^n$ quelconque, on souhaite caractériser la projection orthogonale πx de x sur W. Puisque $\pi x \in W$, πx s'écrit

$$\pi \boldsymbol{x} = \alpha_1 \boldsymbol{w}_1 + \alpha_2 \boldsymbol{w}_2$$

avec $\alpha_1, \alpha_2 \in \mathbb{R}$. Par projection orthogonale, on a aussi

$$\langle \pi \boldsymbol{x} - \boldsymbol{x}, \boldsymbol{w}_i \rangle = 0, \quad i = 1, 2.$$

1. Écrire le système linéaire satisfait par $\alpha = (\alpha_1, \alpha_2)^T$:

$$S\alpha = b$$

où l'on précisera la matrice S et le second membre \boldsymbol{b} . Que se passe-t-il si \boldsymbol{w}_1 et \boldsymbol{w}_2 sont orthogonaux?

- 2. Montrez que $S = C^T C$ avec $C = [\boldsymbol{w}_1, \boldsymbol{w}_2] \in \mathcal{M}_{n,2}(\mathbb{R})$.
- 3. En déduire que S est s.d.p. et peut s'écrire

$$S = BB^T$$

avec $B \in \mathcal{M}_2(\mathbb{R})$ triangulaire inférieure à coefficients diagonaux strictement positifs.

4. Proposez un algorithme de calcul de la projection orthogonale πx de x sur W.