MT09 A25 - Feuille de TD n° 5 Méthodes de point fixe, méthode de Newton

Exercice 1 : méthode de point fixe

On considère la suite

$$x_0 \in [-1,1], \quad x_{n+1} = g(x_n)$$

avec $g(x) = \frac{x^2 - 1}{3}$.

- 1. Montrer que $g([-1,1]) \subset [-1,1]$.
- 2. Montrer que $|g'(x)| \le \frac{2}{3} \sup [-1, 1]$.
- 3. Montrer que la suite x_n converge vers un unique $x_* \in [-1, 1]$. Que vaut x_* ?
- 4. Montrez que

$$x_{n+1} - x_{\star} = \xi_n \left(x_n - x_{\star} \right)$$

où l'on précisera l'expression de ξ_n en fonction de x_n et x_{\star} . Vérifiez que $|\xi_n| \leq \frac{2}{3}$ et que l'on a

$$|x_n - x_\star| \le \left(\frac{2}{3}\right)^n (x_0 - x_\star).$$

5. Montrer que

$$|x_n - x_\star| \le \frac{(2/3)^n}{(1 - 2/3)} |x_1 - x_0|.$$

6. Tenant compte de la dernière inégalité, en considérant $x_0 = 0$, combien faut-il au moins d'itérations pour atteindre

$$|x_n - x_{\star}| < 10^{-15}$$
 ?

Exercice 2 : division sans division par méthode de Newton

Cet exercice explique comment une 'division' est effectuée dans un microprocesseur. Soit $a \in]1,2[$. On souhaite calculer (approcher) l'inverse de a sans division. On introduit la fonction

$$f(x) = \frac{1}{x} - a.$$

- 1. Appliquez la méthode de Newton à f et montrez que l'on peut s'arranger pour ne faire que des opérations d'addition et de multiplication.
- 2. Montrer que la méthode de Newton est équivalente à la méthode de point fixe

$$x_{n+1} = g(x_n)$$

1

où l'on précisera g. Montrer que pour $a \in]1,2[$ et $x \in [\frac{1}{2},1],$ on a |g'(x)| < 1.

3. A-t-on toujours $g([\frac{1}{2},1]) \subset [\frac{1}{2},1]$? (indication : que vaut g(1)?). Conclusion?

4. Montrez que

$$a\left(x_{n+1} - \frac{1}{a}\right) = -\left[a\left(x_n - \frac{1}{a}\right)\right]^2.$$

- 5. On note $e_n = a\left(x_n \frac{1}{a}\right)$, on a donc $e_{n+1} = -e_n^2$. Que vaut e_n pour tout n? Sous quelle condition la suite $(e_n)_n$ converge? Que suggérez-vous comme choix de valeur x_0 ?
- 6. Soit $\varepsilon_{tol}=2^{-52}\approx 2.22\,10^{-16}$ (précision numérique pour des flottants DP, c'est-à-dire les float64, voir le chapitre 1). Trouvez le nombre d'itérations n minimal qui garantit que

$$|e_n| < \varepsilon_{tol}$$
.

7. Comptez le nombre total d'opérations arithmétiques pour atteindre la précision attendue. Commentaire : on voit qu'une opération de 'division' en ce sens demande beaucoup d'opérations $(+, \times)$! Une division est donc coûteuse. Dans les programmes scientifiques, on essaie d'éviter un trop grand nombre de divisions (quand cela est possible).

Exercice 3: contraction locale

Soit $g \in \mathcal{C}^1([a,b])$ et soit $x_{\star} \in]a,b[$ tel que

$$x_{\star} = g(x_{\star}), \qquad |g'(x_{\star})| < 1.$$

Montrer qu'il existe $\alpha > 0$ tel que

$$g([x_{\star} - \alpha, x_{\star} + \alpha]) \subset [x_{\star} - \alpha, x_{\star} + \alpha],$$

$$\exists \beta < 1/ |g'(x)| \le \beta \quad \forall x \in [x_{\star} - \alpha, x_{\star} + \alpha].$$

Que peut-on en conclure?

Exercice 4 : vitesse de convergence

Redémontrez que la méthode de Newton converge quadratiquement (quand elle converge).

Exercice 5 (optionnel) : triangle équilatéral

Soit A(0,0) et B(1,0). On cherche un point C(x,y) tel que

$$||CA||^2 = ||CB||^2 = 1.$$

1. Écrire les contraintes à satisfaire sous la forme d'un système algébrique

$$f(x) = 0$$

avec $\boldsymbol{x} = (x, y)^T$ et \boldsymbol{f} différentiable.

- 2. Résoudre à la main le système d'équations algébriques. A-t-on unicité de la solution?
- 3. Écrire la méthode de Newton-Raphson relative à ce système d'équations.
- 4. Soit x^* une solution de f(x) = 0. A-t-on

$$D \boldsymbol{f}(\boldsymbol{x}^{\star})$$

inversible? Que peut-on en conclure?