TD MT12

1. Chapitre 4

Exercice 1. Dire si les propriétés suivantes sont vraies partout sur $\mathbb R$ ou presque partout sur $\mathbb R$.

- (1) Les fonctions $x \mapsto |x|$ et $x \mapsto \sqrt{x^2}$ sont égales ... sur \mathbb{R} .
- (2) Les fonctions $x \mapsto x^2$ et $x \mapsto -x^2$ ne sont pas égales ... sur \mathbb{R} .
- (3) La fonction $x \mapsto 1/(1+x)^2$ est continue ... sur \mathbb{R} .
- (4) La fonction $x \mapsto 1/x$ est continue ... sur \mathbb{R} .
- (5) La fonction $x \mapsto |x|$ est dérivable ... sur \mathbb{R} .
- (6) Soit f la fonction 2π -périodique et paire avec

$$f(x) = x^2 \quad \text{si } x \in [0, \pi]$$

est continue \dots sur $\mathbb R$ et dérivable \dots sur $\mathbb R$.

(7) Soient $A = \{1, 2, 3, 4\}$ et $f = \mathbf{1}_A$. Le nombre f(x) est inférieur à $1 \dots$ dans \mathbb{R} . Le nombre f(x) est strictement inférieure à $1 \dots$ dans \mathbb{R} .

Exercice 2.

- (1) Soit f une fonction constante sur \mathbb{R} , est-ce que $f \in L^1(\mathbb{R})$, $L^1(0, +\infty)$ ou $L^1(0, 1)$?
- (2) Soit $\alpha > 1$, montrer que la fonction $x \mapsto x^{-\alpha}$ appartient à l'espace $L^1(a, +\infty)$ pour a > 0. Est-ce que cette fonction appartient à $L^1(0, a)$ (a > 0)?
- (3) Soit $0 < \alpha < 1$, montrer que la fonction $x \mapsto x^{-\alpha}$ appartient à l'espace $L^1(0,b)$ pour b > 0. Est-ce que cette fonction appartient à $L^1(b,+\infty)$ (b > 0)?
- (4) Montrer que la fonction $x \mapsto 1/x$ n'appartient ni à $L^1(0,1)$ ni à $L^1(1,+\infty)$.
- (5) Est-ce que la fonction $x \mapsto \frac{x^2}{1+x^2}$ appartient à $L^1(-1,1)$.
- (6) Soit f une fonction continue définie sur un intervalle [a,b] fermé et borné de \mathbb{R} . Montrer que $f \in L^1(a,b)$.
- (7) Soit f une fonction non-nulle a-périodique et continue. Monter que $f \notin L^1(\mathbb{R})$.
- (8) Démonter que la fonction $x \mapsto \sin(x)/x$ n'appartient pas à $L^1(0, +\infty)$.

Exercice 3. Dans cet exercice on veut étudier la convergence ou la non convergence des séries de Riemann.

(1) Montrer que si $\alpha > 1$ la série de Riemann $\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$ converge.

Date: 6 décembre 2024.

2 TD3 MT12

(2) Montrer que si $0 < \alpha \le 1$ la série de Riemann $\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$ ne converge pas.

Exercice 4. Dans cet exercice le but est de manipuler le théorème de convergence dominée de Lebesgue.

(1) Calculer la limite quand $n \to +\infty$ de $\int_0^{\pi/4} \tan^n(x) dx$.

(2) Calculer la limite quand $n \to +\infty$ de $\int_0^{+\infty} \frac{e^{-x/n}}{(1+x^2)} dx$.

(3) Soit $f_n(x) = \frac{1}{1+|x|^{2+1/n}}$ pour tout $x \in \mathbb{R}$ et $n \ge 1$.

(a) Calculer $\lim_{n\to+\infty} \int_{\mathbb{R}} f_n(x) dx$.

(b) Soit $g_n(x) = n f_n(nx)$. Calculer $\lim_{n \to +\infty} \int_{-a}^a g_n(x) dx$, pour a > 0.

(4) Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions avec

$$f_n(x) = \begin{cases} \frac{\sin(x)}{1+x^{2n}} & \text{si } 0 < x < \frac{\pi}{3}, \\ 0 & \text{sinon,} \end{cases}$$

calculer

$$\lim_{n \to +\infty} \int_0^{\pi/3} f_n(x) \, dx.$$

(5) Soit $f_n(x) = \left(1 + \frac{x}{n}\right)^n$ pour tout $x \ge 0$ et $n \ge 1$.

(a) Démontrer que, pour tout $x \geq 0$, $\lim_{n \to +\infty} f_n(x) = e^x$ et que $f_n(x) \leq e^x$ $(n \geq 1)$.

(b) En déduire la limite de $\int_0^{+\infty} \left(1 + \frac{x}{n}\right)^n e^{-3x} dx$.

Exercice 5. On considère l'intégrale à paramètre

$$F(t) = \int_0^{\frac{\pi}{2}} \frac{\cos(x)}{x+t} dx.$$

(1) Justifier que F est bien définie pour tout t > 0.

(2) Justifier que F est continue sur $]0, +\infty[$.

(3) Justifier que F est dérivable sur $]0, +\infty[$ et donner l'expression de F'(t) pour t > 0.

Exercice 6. On considère pour $t \in \mathbb{R}$ l'intégrale à paramètre

$$F(t) = \int_0^{+\infty} \frac{\sin(tx)}{x} e^{-x} dx.$$

(1) Justifier que F est bien définie pour tout $t \in \mathbb{R}$.

(2) Justifier que F est continue sur \mathbb{R} .

(3) Justifier que F est dérivable sur $\mathbb R$ et montrer que

$$F'(t) = \int_0^{+\infty} \cos(tx) e^{-x} dx.$$

TD3 MT12 3

(4) En utilisant la relation

$$F'(t) = \operatorname{Re}\left(\int_0^{+\infty} e^{x(it-1)} dx\right),$$

justifier que

$$F'(t) = \frac{1}{1+t^2} \quad \forall t \in \mathbb{R}.$$

(5) En déduire une expression simplifiée de F(t) pour tout $t \in \mathbb{R}$.

Exercice 7. On considère pour $t \in \mathbb{R}$ l'intégrale à paramètre

$$F(t) = \int_0^{+\infty} e^{-\left(x^2 + \frac{t^2}{x^2}\right)} dx.$$

- (1) Montrer que F existe pour tout $t \in \mathbb{R}$ et est paire.
- (2) Montrer que F continue sur \mathbb{R} .
- (3) Montrer que F est dérivable sur \mathbb{R}^* et que F' est solution de l'équation différentielle F'(t) + 2F(t) = 0, $\forall t > 0$.
- (4) En admettant que $F(0) = \sqrt{\pi}/2$, en déduire une expression simplifiée de F.