THIS 15 YOUR MACHINE LEARNING SYSTET?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

WHAT I THE ANSLERS ARE LJRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.
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Objectives

After this lecture students should be able to

e use IDM and related models in Naive credal classifier (NCC) [3]

e use IDM and related models in decision trees [8]
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Outline

e Graphical Interpretation of Probabilistic Models
e Naive Bayesian/Credal classifiers
e Decision Trees

e Bayesian Neural Networks
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How to interpret a decision tree?
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How to interpret a decision tree?

Study Nepr Go to pub
Lazy?
Yes, 0
Watch TV Study
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héudias (]
How to interpret a (feedforward) neural network?
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How to interpret a (feedforward) neural network?

Without dropout With dropout
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Probabilistic Models: Graphical Interpretation [5, 9]

Basic setup
e Asetof features X = {(X',...,.XM}; [M]:=(1,...,M}
e A class variable Y whose outcome y e &

Uncertainty Reasoning and Machine Learning @ " utc
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Probabilistic Models: Graphical Interpretation [5, 9]

Basic setup
e Asetof features X = {(X',...,.XM}; [M]:=(1,...,M}
e A class variable Y whose outcome y e &
e A directed acyclic graph (DAG) connecting Y and X

@ @ This DAG (model structure) tells us:
* 5 pa(Y)=1X2 X3, pa(x1)= o
D@D e

o pa(x4) = {Y,XZ,X3}

Uncertainty Reasoning and Machine Learning @
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Probabilistic Models: Graphical Interpretation [5, 9]

Basic setup
e Asetof features X = {(X',...,.XM}; [M]:=(1,...,M}
e A class variable Y whose outcome y e &
e A directed acyclic graph (DAG) connecting Y and X

@ e This DAG (model structure) tells us:
* 5 pa(Y)=1X2 X3, pa(x1)=¢
DD
u o pa(X4)={Y,X2,X3}

Probabilistic Models:
e Expressing P(Y, X) using the chain ruIe (probability):

P(Y,X)=P(YIpa(Y)) H P(X™pa(X™)).

Uncertainty Reasoning and Machine Learning %
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Probabilistic Models: Model Families [9]

Probabilistic Models:
e Estimate P(Y, X)
o Chain rule (probability):

M
P(Y,X)=P(YIpa(Y)) [T P(X"Ipa(X™)).
m:1
Extreme Cases:

o Discriminative models: Y ¢ pa(X™), me [M]
o Generative models: pa(Y) =@ and Y € pa(XP), me [M].

Uncertainty Reasoning and Machine Learning @
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Probabilistic Models: Model Families [9]

Probabilistic Models:
e Estimate P(Y, X)
o Chain rule (probability):

M
P(Y,X)=P(YIpa(Y)) [T P(X"Ipa(X™)).
m:1
Extreme Cases:

o Discriminative models: Y ¢pa(X™), me [M]
o Generative models: pa(Y) =@ and Y € pa(XP), me [M].

Model Families:
o How to encode/parametrize P(Y|pa(Y)) and P(X™|pa(X™)).
e How to estimate P(Y, X) from training data.

Uncertainty Reasoning and Machine Learning @
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Credal (Imprecise Probability) Models

Basic setup
e Aset of features X = (X',..., XM}
e A class variable Y whose outcome y e &
Credal Models:
o @ :={P(Y,X)|P is compatible with knowledge/data}
e Chain rule (probability): "
P(Y,X)=P(YIpa(Y)) [T P(X"Ipa(X™)).
Extreme Cases: -
e Discriminative models: Y ¢pa(X™), me [M]:={1,..., M}
e Generative models: pa(Y) =@ and Y e pa(X™), me [M].
Model Families:
e How to encode/parametrize P(Y|pa(Y)) and P(X™pa(X™)).
e How to estimate 22( Y, X) from training data.

Uncertainty Reasoning and Machine Learning @
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Assumptions and Questions

Assumption and desirable property:
Al. X™ me[M]:={1,..., M}, are always made available

P1. Best estimates of P(Y|pa(Y)) and P(X™|pa(X™)) can be found
given (training) data.

Uncertainty Reasoning and Machine Learning @
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Assumptions and Questions

Assumption and desirable property:
Al. X™ me[M]:={1,..., M}, are always made available

P1. Best estimates of P(Y|pa(Y)) and P(X™|pa(X™)) can be found
given (training) data.

Questions (Exercise):

e Does the P1 hold for Naive Bayes Classifier?
e Does the P1 hold for Decision trees?

Uncertainty Reasoning and Machine Learning %
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Assumptions and Questions

Assumption and desirable property:
Al. X™ me[M]:={1,..., M}, are always made available
P1. Best estimates of P(Y|pa(Y)) and P(X™|pa(X™)) can be found
given (training) data.
Questions (Exercise):
e Does the P1 hold for Naive Bayes Classifier?
e Does the P1 hold for Decision trees?

Questions (which will not be discussed in this lecture):
o What may happen if X", me [M], can be partially given?

o What may happen if best estimates of P(Y|pa(Y)) and
P(X™pa(X™)) may not be found?

Uncertainty Reasoning and Machine Learning %
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The Next Slides

We shall elaborate on how to solve classification task using
o Naive Bayesian classifier (NBC) (an example of generative model)
o Decision trees (DTs) (examples of discriminative model)

Uncertainty Reasoning and Machine Learning @ " utc
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The Next Slides

We shall elaborate on how to solve classification task using
o Naive Bayesian classifier (NBC) (an example of generative model)
o Decision trees (DTs) (examples of discriminative model)

How IDM (Lecture 3) can be used to generalize NBC and DTs to
e cope with the case of small and partial/missing data
o make set-valued predictions under the presence of uncertainty

Uncertainty Reasoning and Machine Learning @ ’ utc
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The Next Slides

We shall elaborate on how to solve classification task using
o Naive Bayesian classifier (NBC) (an example of generative model)
o Decision trees (DTs) (examples of discriminative model)

How IDM (Lecture 3) can be used to generalize NBC and DTs to
e cope with the case of small and partial/missing data
o make set-valued predictions under the presence of uncertainty

We would also discuss (if we have time) the cases of
e Ensembles (Trees, Neural Nets, etc.)
e Bayesian Neural Nets

Uncertainty Reasoning and Machine Learning %
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Naive Bayesian/Credal classifiers fTrees B8

Outline

e Graphical Interpretation of Probabilistic Models

e Naive Bayesian/Credal classifiers
o Naive Bayesian classifier
o Naive Credal classifiers

e Decision Trees

e Bayesian Neural Networks
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Outline

e Graphical Interpretation of Probabilistic Models

e Naive Bayesian/Credal classifiers
o Naive Bayesian classifier
o Naive Credal classifiers

e Decision Trees

e Bayesian Neural Networks
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Generative Models

Probabilistic Models:
e Estimate P(Y, X)
e Chain rule (probability):

M
P(Y,X)=P(YIpa(Y)) [T P(X"Ipa(X™)).
m=1
Extreme Cases:

e Discriminative models: Y ¢pa(X™), me [M]
o Generative models: pa(Y) = and Y e pa(XP), me [M].

Model Families:
o How to encode/parametrize P(Y|pa(Y)) and P(X™|pa(X™)).
e How to estimate P(Y, X) from training data.

Uncertainty Reasoning and Machine Learning @
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Generative Models Structure (Exercise 1)

Let’s start with an example where one wishes to model
P(Y,X)=P(Y, X", X2 X3 X*).
Chain rule (probability):

M
P(Y,X)=P(Ylpa(Y)) [] P(X"Ipa(X™)).
m=1

pa(Y)=g8,pa(X") =9
pa(Xz) =777

pa(X®)=?
pa(X*) =7




Graphical Interpretation of Probabilisti els Naive Bayesian/Credal classifiers Decisis

Naive Bayesian classifier Naive Ci iers - heudlas (o)

Generative Models Structure (Exercise 1)

Let’s start with an example where one wishes to model
P(Y,X)=P(Y, X", X2 X3 X*).
Chain rule (probability):

M
P(Y,X)=P(Ylpa(Y)) [] P(X"Ipa(X™)).
m=1

e pa(Y)=9,pa(X")=9
o pa(X?)=77?
e pa(X3)=77?
e pa(X*)=77?

Chain rule gives us
P(Y,X)=777.

Uncertainty Reasoning and Machine Learning @
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Generative Models Structure (Solution 1)

Let’s start with an example where one wishes to model
P(Y,X)=P(Y, X", X2 X3 x*).
Chain rule (probability):

M
P(Y,X)=P(YIpa(Y)) [T P(X"Ipa(X™)).
m:1

e pa(Y)=9,pa(X")=¢
e pa(X?)=1Y, X"}

e pa(X3)=1Y, X"}

e pa(X*) =1{Y, X2 X3
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Generative Models Structure (Solution 1)

Let’s start with an example where one wishes to model
P(Y,X)=P(Y, X", X2 X3 x*).
Chain rule (probability):

M
P(Y,X)=P(Ylpa(Y H1PX’"|pa (X™M).
m=

pa(Y)=g8,pa(X") =9
pa(X?)=1Y, X"}
pa(X3)=1Y, X"}
pa(X*) =1Y, X2, X5

Chain rule gives us
P(Y,X)=P(Y)P(X")P(X2 Y, X" )P(X3 Y, X" ) P(X* Y, X2 X3).

Uncertainty Reasoning and Machine Learning @
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Naive Bayesian classmer (NBC)

Comments:
o NBC is a generative model with no arc X' — X
e Chain rule gives us

M
P(Y,X)=P(Y) ][] P(X

m=1

Uncertainty Reasoning and Machine Learning @
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Naive Bayesian classifier (NBC)

Comments:
o NBC is a generative model with no arc X' — X
e Chain rule gives us

M
P(Y,X)=P(Y) [] P(X™IY).
m=1

To solve the classification task,
e joint probability distribution P(Y, X) is learn from training data D
o conditional distribution P(Y|X) is extracted using Bayes’ theorem

Plyix) = — X P(y) I, P(x™)y)
Zye@/P(y X) Zy’e@P(}/')H%Z1 P(X’"ly’)'

Uncertainty Reasoning and Machine Learning @
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Estimate Parameters of NBC

Basic setup:
e Aclass variable Y with K possible values: & = {y',...y}
o M discrete features: X = (X,...,xM)
e Feature X" has Q, possible values: ™ = {x™1,... x™Am}

Uncertainty Reasoning and Machine Learning @
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Estimate Parameters of NBC

heudlas C

Basic setup:
e Aclass variable Y with K possible values: & = {y',...y}
o M discrete features: X = (X,...,xM)
e Feature X" has Q, possible values: ™ = {x™1,... x™Am}

Task: Finding the best estimate of
o 0= P(y¥), ke[K]
° Q,T’q’" = P(x3M|yK), gm € [Qm], k € [K], me [M]

Uncertainty Reasoning and Machine Learning @ ’ utc
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Estimate Parameters of NBC

Basic setup:
e Aclass variable Y with K possible values: & = {y',...y}
e M discrete features: X = (X',..., x")
e Feature X" has Q, possible values: ™ = {x™1,... x™Am}

Task: Finding the best estimate of

o 0= P(y¥), ke[K]

° Q,T’q’" = P(xqm'mlyk), Qm € [Qm], k€ [K], me [M]
Probability axioms:

o YK 0k=1

o ng”'=1 0,"9" =1 when fixing k and m

Uncertainty Reasoning and Machine Learning %
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Maximum Likelihood Estlmate
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Basic setup: Given training data D = {(y1,X1),...,(¥n, Xn)}, count

o nx: Number of training instances with label y*

e "% Number of training instances with label y* and feature X

takes value x™9m

Uncertainty Reasoning and Machine Learning @
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Maximum L|keI|hood Estimate

heudlas C

Basic setup: Given training data D = {(y1,X1),...,(¥n, Xn)}, count
o nx: Number of training instances with label y*

e "% Number of training instances with label y* and feature X

takes value x™9m

MLE gives us the best estimates

Ok = /N 2

O = /o, (3)

Uncertainty Reasoning and Machine Learning @
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MLE (Exercise 2)
[ ] @ = {A) B! C}

e Z'=1{d e

o Z2={f,g,h}
nly X' X2
1A d f
2| A d g
3| A e g
4|1 B d f
5| B e g
6| C d f
71C e f
8| C e g
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MLE (Exermse 2)

% ={A, B, C} na=3 ng=2 nc=3
° %1={d el GA:3/8 9321/4 6023/8
o X2=1{f,g,h}
n|ly X' X
1A d f
2| A d g
3/A e g
4, B d f
5/B e g
6| C d f
7/C e f
8/ C e g

Uncertainty Reasoning and Machine Learning @
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MLE (Exercise 2)

% =1{A B,C} na=3 ng=2 nc=3
o 2 =1de 0a=3/8 Op=1/4 Oc=3/8
o X2=1{f,g,h} nl"d:z nye=1 Hl"d=2/3 0,°=1/3
nly x' x2 ngd:1 119:621 egd:vg 9115;6=1/2
1A d f ngd:1 e_o 91C,d:1/3 egezz/s
21A d g 2T =7 29117 | 02T =177 029 =777
4B d f ndf=17 n29=177 | 63 =27 039=17
2 (E; z g g =11 n29=17 | 03 =7 0%9=17
7/C e f
8/ C e ¢
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MLE (Exercise 2)
.@:{A,B,C} nA=3 nB=2 nC:3
° %1={d e} GA:3/8 9821/4 9623/8
2 1,d 1, 1,d 1,

nly x' x2 nt?=1  nlf=1 |0%=12 0L°=1/2
1,d 1, 1,d 1,

11 A d f ng =1 ncezz Hc =1/3 ecezz/s

21A d g 2= 292171 | 02 =7 659 =177

3| A e 9 gf ég éf g\g

2B d f ng'=177 n29=777 | 037 =177 0;9=177
2,f _ 2,0 _ 2,f _ 2,9 _

2 (E; <e;| ? na' =177 nZ9=177 | 03" =177 039 =177

7/C e f =17 M= n3h=1

8l1C e g 0%h =1 gEh = 2=

Uncertainty Reasoning and Machine Learning %
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MLE (Solution 2)

heudlas C

% =1{A B,C} na=3 ng=2 nc=3
.3{'1={de} GA:3/8 9821/4 9623/8
o Z2={f,g,h nl"d=2 nl"e=1 Gl\'d=2/3 Gl"e=1/3
nly x' X2 nt9=1 nle=1|05%=1/2 03°=1/2
1 A d f ngd: n89=2 68d=1/3 936:2/3
2Ia 40 TR T = 6=
2B d 1 mf=1 n29=1 |63 =12 629=1)
2,f 2, 2,f 2,
2 2 (ej ? na'=2 nf=1|06% =23 029=1/3
7 C e f n/zq’hzo né’hzo n%hzo
8]C e 9 0%"=0 02'=0 0%"=0
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Conditional Probabilities (Exercise 3)

Given x = (x"9,...,xMam) for any y¥ e o

ey 0L
P(y"Ix) = M omam
ZykrE@ ek/ Hm=1 Gkr

M
x P'(y*Ix)=0, TT 0,7, (4)
m=1

Uncertainty Reasoning and Machine Learning @ ’ %
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Conditional Probabllltles (Exercise 3)

heudlas C

Given x = (x"9,...,xMam) for any y¥ e o

0 M Gm ,dm M
Il P'(y*Ix) =0, [T 6,

P(y¥Ix) = o .4
ZykrEW Qk’ Hm=1 6,,(77 oG m=1 K

0y7=2/3 0y°=1/3|0%" =13 Hi’g:2/3
oL =1/2 oL°=1/2 | 6% =1/2 629=1)2
0L9=1/3 0L°=2/3| 6% =2/3 029=1/3
2h _ 2h_q p2h_
02" =0 03"=0 6%"=0

x | P(Alx) P(Blx) P'(Clx)
(d,f) | 22?2 ?2?? 272
(e,h) | 27?2 227 227
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Conditional Probabllltles (Solution 3)

heudlas C

Given x = (x"9,...,xMam) for any y¥ e o
ek HM Gm ,dm

m,q
ZykrEW Qk’ Hm=1 gk’ m

M
P(yIx) = Pykix) =0k [T 079 (5)
m=1

0A=3/8 05=1/4 90=3/8
059 =2/3 0,°=1/3|65"=1/s 059=2/3
oL =1/2 oL°=1/2 | 6% =1/2 629=1)2
0L9=1/3 0L°=2/3| 6% =2/3 029=1/3
2,h _ 2,h _ 2,h _
02"=0 63"=0 6%"=0

X P'(Alx) P'(BIx) P'(Cix)
(d,f) 1/12 1/16 1/12
(e h) 0 0

Uncertainty Reasoning and Machine Learning @ ’ utc
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Optimal Decision Rules (Exercise 4)

If £(y,y*) =1(y* # y¥), then (See Lecture 3+Check!)
y8(x) = argmax P'(y¥|x)
ykewy

Uncertainty Reasoning and Machine Learning @ ’ %
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Optimal DeC|S|on Rules (Exermse 4)

If £(y,y*) =1(y* # y¥), then (See Lecture 3+Check!)

y8(x) = argmax P'(y¥|x)
ykewy

x | P(Ax) P'(BIx) P'(Clx)

(d,f) 1/12 1/16 1/12
(e h) 0
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Optimal DeC|S|on Rules (Exercise 4)

If £(y,y*) =1(y* # y¥), then (See Lecture 3+Check!)

y8(x) = argmax P'(y¥|x)
ykewy

x | P(Ax) P'(BIx) P'(Clx)
(d,f) 1/12 1/16 1/12
(e h) 0

o If x=(d,f), then
y8(x) =277, (6)
e If x=(e h), then

y8(x) =277, 7)

Uncertainty Reasoning and Machine Learning @
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Optimal DeC|S|on Rules (Solution 4)

If £(y,y*) =1(y* # y¥), then (See Lecture 3+Check!)

y8(x) = argmax P'(y¥|x)
ykewy

x | P'(Ax) P'(BIx) P'(Clx)
(d,f) 1/12 1/16 1/12
(e, h) 0

o If x=(d,f), then
y8(x) = either Aor C, (8)
o If x=(e, h), then

¥8(x) = not well-defined , 9)

Uncertainty Reasoning and Machine Learning @
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NBC + MLE: Comments

e May lead to indecision and not well-defined P(y|x)

Uncertainty Reasoning and Machine Learning @
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NBC + MLE: Comments

e May lead to indecision and not well-defined P(y|x)
x | P(Alx) P'(Blx) P'(Clx)
(d,f) 1/12 1/16 1/12
(e,h) 0 0 0

o May suffer from small numbers of observations

o nk: Number of training instances with label y*
o n"™: Number of training instances with label y* and feature X™

takes value x™dm

Uncertainty Reasoning and Machine Learning @
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NBC + MLE: Comments

e May lead to indecision and not well-defined P(y|x)
x | P(Alx) P'(Blx) P'(Clx)

(d,f) 1/12 1/16 1/12
(e h) 0 0 0

o May suffer from small numbers of observations
o nk: Number of training instances with label y*
o n"™: Number of training instances with label y* and feature X™

takes value x™dm

e Does not (naturally) take into account missing/partial data

Uncertainty Reasoning and Machine Learning %
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NBC + Dirichlet Model (DM)

Basic setup: Given training data D = {(y1,X1),...,(¥n, Xn)}, count

e nk: Number of training instances with label y*

m, Q.

e n,"": Number of instances with Y = y¥ and feature X™ = x™9m

Uncertainty Reasoning and Machine Learning @
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Naive Bayesian classifier Naive Cred.

NBC + Dirichlet Model (DM)

Basic setup: Given training data D = {(y1,X1),...,(¥n, Xn)}, count
e nk: Number of training instances with label y*

m,qm.
° nk

heudlas C

: Number of instances with Y = y* and feature X™ = x™9n
DM gives Bayesian estimates

Ok := (M+ak)/(N+s) = (k+8h)/(N+s) (10)

le(n'q'" = (Ml [(nyers) = (MM +SKMNT) [(n+s) (11)
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NBC + Dirichlet Model (DM)

Basic setup: Given training data D = {(y1,X1),...,(¥n, Xn)}, count
e nk: Number of training instances with label y*
o "% Number of instances with Y = y* and feature X™ = x™dm

DM gives Bayesian estimates

Ok := (M+ak)/(N+s) = (k+8h)/(N+s) (10)
0,9 = (7 +al ™) (nys) = (M +K) (g +-s) (11)
Advocators | av (= y*or x™dm) | s
Haldane (1948) 0 0
Perks (1947) 1171 1
Jeffreys (1946, 1961) 1/2 71/2
Bayes-Laplace 1 71
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NBC + DM (Exercise 5)
Ok := (ne+1/3)/(N+1), 009 = (7)1 ™) [ (m+1).
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NBC + DM (Exercise 5)

Ok := (n+1/3)/(N+1), 0,9 = (Y12 ™) [(ny+1) .

k
o % ={AB,C} na=3 ng=2 nc=3
o %1:{0, el 6A=10/27 BB=7/27 HC=10/27
[ ] %2:{f;g)h} njq’dzz n;lq'e:'l HL'dZS/B 9/14'6:3/8
nly x' x2 nfg'd=1 n;;e:1 93":3/6 9113'6:3/6
1A d f ngd:1 ngezz 98":3/8 93925/8
g 2 : g mR'=1 n9=2]03" =177 039=177
2B d f =1 n29=1| 6% =7 29=172

2,f _ 2,9 _ 2f _ 2,9

2 2 : ? nz'=2 nZ9=11]06%" =177 629=77
71C e f "=0 ng"=0 n3'=o0
8| C e g 2,h _ 2,h _ 2,h _

Oy =217 05 =177 0¢ =777
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NBC + DM (Solution 5)

Ok := (me+1/3)[(N+1), O I = (M1 ™) [(pe+1).

k
.@/z{A’B,C} I'IA=3 n3=2 nc=3
o 2 =1(d el 0a=10/27 Op=7/27 O¢c=10/27
[ ] %2:{f;g)h} njq'd:2 n;lq'e:'l 9/14'd25/8 9/14’623/8
nly x' xe ny?=1 ni=1|05%=36 05°=3s
1A d f ngd =1 nz;,e =2 egd =3/g 939 =5/g
g 2 : g =1 n9=2|62" =412 639=7/12
4B d f Mg =1 ng?=1| 05'=4s 05°=4s
2 CB; : Qf) na' =2 ng’g =1 6% =7/12 Hzc'g =4/12
8| C e g

Hi’h =1/12 923”’ =1/9 H%h =1/12
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Conditional Probabilities (Exercise 6)

Given x = (x"9,...,xMam) for any y¥ e o

HM gm \dm ) M
P(y"1x) = < P'(y¥ix)=0, [T 6,7 (12)
Zyk/e@/ Ok Hm 1 027 "G nl)_:[1 K

0a=10/27 Op=7/271 6Oc=10/27
0,9 =58 6y°=3/8 | 65 =4/12 629=7/12
0L9=3/6 05°=3/6 | 63'=4/0 629=4/9
0L9=3/s 0L°=5/8 | 6% =7/12 629 =412

05" =1/12 03" =1/ 0%"=1/12

x | P'(Ax) P'(BIx) P'(Cix) | y8(x)
(d,f) 2?77 ??? 2?77 ?77?
(eh) | 222 297 297 277
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Conditional Probabilities (Solution 6)
Given x = (x"9,...,xMam) for any y¥ e o
gk HM Hm ,dm M
x P'(yKix) =0k T 079.  (13)
Lyoew Ok l_[m:1 9,’(’,’ i m=1 «
=10/27 Og=7/271 Oc=10/27

0,9 =58 0.°=3/8 | 65 =4/12 629=7/12

d , f 2
057 =3/6 0,°=3/6 | 05'=4/0 059=4/s

2,

0:7=3/8 0.°=5/s | 0%'=7/12 079 =4/12

92”’ =1/12 92”’ =1/9 92”’ =1/12

P(yk1x) =

x | P'(Ax) P'(Bix) P'(Clx) | yg ?(x)
(0 | R5& 733 1037

’ %8 ¥§Y  HE'?
(eh) | 27875 2769 27812 C
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NBC + DM: Comments

heudiasyc

o May lead to indecision, but can avoid not well-defined P(y|x)
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NBC + DM: Comments

o May lead to indecision, but can avoid not well-defined P(y|x)

x | P'(Alx) P'(BIx) P'(CIx) | y8(x)
@ BT 7 iE | O
(eh) | 27§12 265 27872 | C

o May suffer from small numbers of observations

o nk: Number of training instances with label y*
o m"9™: Number of training instances with label y* and feature X™

takes value x™dm

Uncertainty Reasoning and Machine Learning @
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NBC + DM: Comments

o May lead to indecision, but can avoid not well-defined P(y|x)

x | P'(Alx) P'(BIx) P'(CIx) | y8(x)
@ BEE 21 Bie | C
(eh) | 27§12 265 27872 | C

o May suffer from small numbers of observations

o nk: Number of training instances with label y*
o m"9™: Number of training instances with label y* and feature X™

takes value x™dm
o Does not (naturally) take into account missing/partial data

Uncertainty Reasoning and Machine Learning @
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Outline

e Graphical Interpretation of Probabilistic Models

e Naive Bayesian/Credal classifiers
o Naive Bayesian classifier
o Naive Credal classifiers

e Decision Trees

e Bayesian Neural Networks
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Naive Credal classifiers (NCC)

Basic setup: Given training data D = {(y1,X1),...,(¥n, Xn)}, count
e nk: Number of training instances with label y*

o "% Number of instances with Y = y* and feature X™ = x™dm
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heudlas C

Naive Credal classifiers (NCC)

Basic setup: Given training data D = {(y1,X1),...,(¥n, Xn)}, count
e nk: Number of training instances with label y*

m, Q.

e n, " Number of instances with Y’ = y¥ and feature X™ = x™9m

Imprecise Dirichlet model (IDM) gives
0, = /(N+s) (14) Ok := (M+8)/(N+s) (16)
Q;(n'q’" = nkm'qm/(nk+s) (15) QIT am . _ (NI +8/(ng+s) (17)
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Naive Credal classifiers (NCC)

Basic setup: Given training data D = {(y1,X1),...,(¥n, Xn)}, count

e nk: Number of training instances with label y*

o "% Number of instances with Y = y* and feature X™ = x™dm

Imprecise Dirichlet model (IDM) gives
0, = /(N+s) (14) Ok 1= (M+8)/(N+s) (16)
07 = fners)  (15) B = (7 4s/(ners)  (17)
IDM + € regularization [2]
0, = (n+se,)/(N+s) (18) O = (Mk+5e0)/(N+s) (20)

O™ = (74 [(nrs)  (19) B o= (P4l (ners)  (21)
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Interval Conditional Probabilities

Given a query instance x = (x%'1,x%2,... x9M) we have

1/POMx)—1= 3

,m m,q;
(nk/+sgk(nk+s)’v’ M n,?f" +s€, m)
K2k

Nk +Sex \N +5s ,ll nl‘z'"'m + szkm'qm

_ m =,

- N + ek (g +s\M M nim™ 4 se

/Pty |X)_1:Z G mam |
k’;’fk nk+s€k nk/+s m=1 nkm' +S€k' m
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Interval Conditional Probabilities

heudlas C

Given a query instance x = (x%'1,x%2,... x9M) we have

1/POMx)—1= 3 I1—=%

, m,
(nk/+sgk(nk+s)"/’ M pIm™ 4 se) q’”)

Kk \ Mk +Sek \m+s] - 2y nim™ 4 5297
— , —m,
; N + ey (n+s\M M nlm™ 4 g M
1Pk —1=3" — G T TG
kzk \ Mk +SE€ \M + 8] oy 0™ + 8¢,

(@ %) := {P(@ %) P(y*1x) € [P(y*1x), P(y¥Ix)], T, P(y¥1x) = 1}.
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Interval Conditional Probabilities (Exercise 7)

1/POMx)—1= 3

(nk,+sgk(nk+3)"/’ M plm™ +S€Z7q’”)

K'#k Nk +SEk ] m=1 nq'"' +S€m m

— , —m,
1/P(ykix)y—1= ) nk'+sek(”k+s)M ul "Z” +sg, "
PyMx)—1= Y Y, S
Kk \ Mk +se \n +s) g2y pdm™ +S€mq'"
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Interval Conditional Probabilities (Exercise 7)

1/POMx)—1= 3

(nk,+sgk(nk+3)"/’ M plm™ +S€Z7q’”)

K'#k Nk +SEk ] m=1 nq'"' +S€m m

— , —m,
1/P(ykix)y—1= ) nk'+sek(”"+s)M ul ”ﬁ’” +sg, "
PyMx)—1= Y Y, S
Kk \ Mk +se \n +s) g2y pdm™ +S€mqm

s=1 ¢,=0.01 €=099 nyg=3 ng=2 nc=3

nl"d = njq’e =1 ni’f =1 ni’g =2

ny’ = n}_f =1 | =1 n29=1

n2d= C ) nch—2 nzcg—1

2h_ 2h_
=0 ng = 0 ng = 0
x | P(Alx) B(le) P(CIx) | P(Alx) P(BIx) P(Clx)

(d,f) 2?7 2?7 2?7 2?7 2?7 2?7
(e h) 2?7 2?7 2?7 2?7 2?7 2?7
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Interval Conditional Probabilities (Solution 7)

1/P(ykix)—1= )

(nkz+sgk(nk+s)"” M plm™ +se;"qm)

K'#k Nk +SEk ] m=1 nq'"' +S€m m

— , —m,
1/P(ykix)y—1= ) nk'+sek(”k+s)M ul "Z” +sg, "
PyMx)—1= Y Y, S
Kk \ Mk +se \n +s) g2y pdm™ +S€mq'"
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Interval Conditional Probabilities (Solution 7)

1/POMx)—1= 3

(nk,+sgk(nk+3)"/’ M plm™ +S€Z7q’”)

K'#k Nk +SEk ] m=1 nq'"' +S€m m

— , —m,
1/P(ykix)y—1= ) nk'+sek(”"+s)M ul ”ﬁ’” +sg, "
PyMx)—1= Y Y, S
Kk \ Mk +se \n +s) g2y pdm™ +S€mqm

s=1 ¢,=0.01 €=099 nyg=3 ng=2 nc=3

nl"d = njq’e =1 ni’f =1 ni’g =2

ny’ = n}_f =1 | =1 n29=1

n2d= C ) nch—2 nzcg—1

2h_ 2h_
=0 ng = 0 ng = 0
x | P(Alx) B(le) P(CIx) | P(Alx) P(BIx) P(Clx)

(d,f) 2?7 2?7 2?7 2?7 2?7 2?7
(e h) 2?7 2?7 2?7 2?7 2?7 2?7
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Making Set-Valued Predictions (Recap)

For each instance x, let

e 0 — P(#|x)and ® — (¥ |x)
E-admissibility Rule:

o An optimal prediction is

Y£@={y€@|30€®s.t. y=yg}.

o Computation: Solving linear programs [10], etc.
Maximality Rule:
o An optimal prediction is

YQ”’@: ye® By sty >r0¥}.

e Computation: Solving linear programs [10], lterating over the
extreme points of ® [10], exploiting the properties of NCC [3].
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Naive Credal classifiers . heudiasyc
IIIustrative Examples — Lines of Code Would be Useful!

When you realise
This code is a joke, it's your own code

who wrote this?

f /techindustan 3 /techindustan /techindustan
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NCC: Comments

NCC inherits properties of IDM [3]:
o May lead to set-valued predictions
e e-regularization can avoid not well-defined P(y|x)

e May provide reliable interval probabilities when seeing small
numbers of observations

o nk: Number of training instances with label y*

o "™ Number of training instances with label y* and feature X

takes value x™dm
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NCC: Comments

NCC inherits properties of IDM [3]:
o May lead to set-valued predictions
e e-regularization can avoid not well-defined P(y|x)

e May provide reliable interval probabilities when seeing small
numbers of observations

o nk: Number of training instances with label y*
o "™ Number of training instances with label y* and feature X
takes value x™dm
e Provide tools to (naturally) take into account missing/partial data

o Naive solutions are computationally expensive (in exponential time)
o More efficient (polynomial-time) procedure exists

Uncertainty Reasoning and Machine Learning %
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NCC: Technical Details + Performance

Journal of Machine Learning Research 9 (2008) 581-621 Submitted 1/07; Revised 2/08; Published 4/08

Learning Reliable Classifiers From Small or Incomplete Data Sets:
The Naive Credal Classifier 2

Giorgio Corani GIORGIO@IDSIA.CH
Marco Zaffalon ZAFFALON(@IDSIA.CH
IDSIA

Istituto Dalle Molle di Studi sull Intelligenza Artificiale
CH-6928 Manno (Lugano), Switzerland

Editor: Charles Elkan
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o Decision Trees
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Discriminative Models

Probabilistic Models:
e Estimate P(Y, X)
e Chain rule (probability):

M
P(Y,X)=P(YIpa(Y)) [T P(X"Ipa(X™)).
m=1
Extreme Cases:

o Discriminative models: Y ¢ pa(X), me [M]
e Generative models: pa(Y) =@ and Y e pa(XP), me [M].

Model Families:
o How to encode/parametrize P(Y|pa(Y)) and P(X™|pa(X™)).
e How to estimate P(Y, X) = P(Y|X)P(X) from training data.
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Discriminative Models: Structure (Exercise 8)

Let’s start with an example where one wishes to model
P(Y,X)=P(Y, X", X2 X3 X*).
Chain rule (probability):

M
P(Y,X)=P(Ylpa(Y)) [] P(X"Ipa(X™)).
m=1

e pa(Y)=777,
. pa(X1)=¢ pa(X2)=???
e pa(Xx3)=?

pa(X*)=?




Graphical Interpretati babilistic Models Naive Bayesian/Credal classifiers Decisi@l

Decision Trees Cred. sion Trees o heudlas c
Discriminative Models: Structure (Exercise 8)

Let’s start with an example where one wishes to model
P(Y,X)=P(Y, X", X2 X3 X*).
Chain rule (probability):

M
P(Y,X)=P(Ylpa(Y)) [] P(X"Ipa(X™)).
m=1

e pa(Y)=1777,
e pa(X') =@, pa(X?)=77?
e pa(X3)=77?
e pa(X*)=77?

Chain rule gives us
P(Y,X)=777.
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Dlscrlmlnatlve Models: Structure (Solution 8)

Let’s start with an example where one wishes to model
P(Y,X)=P(Y, X", X2 X3 x*).
Chain rule (probability):

M
P(Y,X)=P(Ylpa(Y H1PX’"|pa (X™M).
m=

pa(Y) ={X2 X3, X%

[}

e pa(X') =g, pa(X?) = {1X"}
e pa(X3)={x"}

e pa(X*) = (X% X%
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Dlscrlmmatlve Models: Structure (Solution 8)

Let’s start with an example where one wishes to model
P(Y,X)=P(Y, X", X2 X3 x*).
Chain rule (probability):

M
P(Y,X)=P(Ylpa(Y H1PX’"|pa (X™M).
m=

pa(Y) = (X2 X3, x4
pa(X') =@, pa(X?) = (X"}
pa(X®) = (X"}

pa(X*) = (X2, X3}

Chain rule gives us
P(Y,X)=P(YIX% X3 XHP(X")P(X21 X)) P(X3I X P(X*1X2, X3).
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Classification Task (Exercise + Solution 9)

Prove that
P(y1x) = P(ylpa(y)). (22)

Uncertainty Reasoning and Machine Learning @



Graphical Interpretation of Probabilistic Models Naive Bayesian/Credal classifiers Decisi@l

Decision Trees Credal Decision Trees

Classification Task (Exercise + Solution 9)

Prove that
P(y1x) = P(ylpa(y)). (22)
We have
P(ylx) = % (23)
_ P(ylpa(y)) T\, P(x™lpa(x™))
= (24)
Yyea P(y'Ipa(y’)) TIM_, P(x™lpa(x™))
Y, P(x™pa(x™)P(ylpa(y))
= — (25)
Hm:1 P(Xmlpa(xm))z.y’(—:@ P(y/lpa(y,))
_ P(ylpa(y))
"~ Yyew P(y'IPA(Y")) (26)
=P(ylpa(y))-
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Classification Task: Comments

P(Y|X) is extracted using Bayes’ theorem

P(ylx) = P(ylpa(y))- (28)
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Classification Task: Comments

P(Y|X) is extracted using Bayes’ theorem
P(ylx) = P(ylpa(y)). (28)
o Features outside pa(Y) are redundant

o To solve the classification task, we only need P(Y|pa(Y))
e Commonly used assumption: pa(Y) = (X',..., XM)
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Classification Task: Comments

P(Y|X) is extracted using Bayes’ theorem

P(ylx) = P(ylpa(y))- (28)

Features outside pa(Y) are redundant

To solve the classification task, we only need P(Y|pa(Y))
Commonly used assumption: pa(Y) = (X1,..., XM)
P(Y|pa(Y)) can be defined either globally or locally:

o Logistic regression, neural nets, etc., define P(Y|pa(Y)) globally
o Decision tree, model trees, etc., define P(Y|pa(Y)) locally
o Decision tree does not require pa(Y) = (X',..., XM)
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(c) Hellinger Decision Tree on the test set
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Decision Trees: (InformaI+Probab|I|st|c) Definition

A decision trees is
e a collection of non-overlapping leaves Lq,...,Ly
e where Lin...nLy=%X
e and each leaf L, has its own Pp(Yl|pa(Y))
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Decision Trees: (Informal+Probabilistic) Definition

A decision trees is
e a collection of non-overlapping leaves Lq,...,Ly
e where Lin...nLy=%X
e and each leaf L, has its own Pp(Yl|pa(Y))

Learning an optimal decision tree from training data
e can be extremely hard (due to huge numbers of possible trees)

e and is often done approximately (top-down induction, bottom-up
induction, etc.)
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Top-Down Induction (Example) [4]
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(a) Tree visualization (b) Partitioning visualization
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Top-down induction: Steps

Basic Setup:
e Training data D= {(y",x")Ine [N]}
o Local hypothesis space P(YIpa(Y)) e 2(YIpa(Y))

e An uncertainty measure U or a loss function ¢ — assess how
good/bad each local classifier is

Uncertainty Reasoning and Machine Learning @
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Top-down induction: Steps

Basic Setup:
e Training data D= {(y",x")Ine [N]}
e Local hypothesis space P(Y|pa(Y)) € 2(YIpa(Y))
e An uncertainty measure U or a loss function ¢ — assess how
good/bad each local classifier is

Induction protocol:
o Recursively partition the feature space &

e From the current node, choose the best split which improves the
evaluation criterion

e Evaluation criteria: Information gain, entropy, Gini score, etc.,
e Stopping criteria: No more gain on evaluation criterion U or ¢

Uncertainty Reasoning and Machine Learning %




® .
Graphical Interpretation of Probabilistic Models Naive Bayesian/Credal classifiers Decisi@l Esignaural'Networks
Decision Trees Cred s - heudiasyc

Splitting Criteria: Entropy (Frequentist)

o Entropy of a node Dy, < D with P(%|Dy,)

Ue(P(#|Dp)) Z@P(}’IDh)bgz( (vIDp)) .
ye
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Splitting Criteria: Entropy (Frequentist)
o Entropy of a node Dy, < D with P(%|Dy,)

Ue(P(#|Dp)) Z@P(}’IDh)bgz( (vIDp)) .
ye
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Splitting Criteria: Entropy (Frequentist)

o Entropy of a node Dy, < D with P(%|Dy,)

Ue(P(#|Dp)) Z@P(}’IDh)bgz( (vIDp)) .
ye

1.0

1 L /

1/ GER

D'B.D 0.2 0.4 0.6 0.8 1.0
P(+)

o For each possible split D, = D} u D?, its entropy is
Ug(D},uD?) = Ug(P(#|Dp)) + Ug(P(% |Dp)).
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Compute Entropy (Exercise 10)

e Entropy of a node Dy, < D with P(%|Dy,)

Ue(P(yIDp)) = - ZPY|Dh)|°g2(P(Y|Dh))
yew

1.0

T &

g/
£ //

D'B.D 0.2 0.4 0.6 0.8 1.0
pP(+)

e Entropy of the bottom left node is ??7?
e Entropy of the top node is 77?7
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Compute Entropy (Solution 10)

e Entropy of a node Dy, < D with P(%/|Dp)

Ue(P(yIDp)) = - Z@/P y1Dp)log, (P(y1Dp)) .
ye

£ / SN

°-87c 0.2 0.4 0.6 o.8 1.0

p(+)

o Entropy of the bottom left node is 0
e Entropy of the top node is —0.5log,(0.5) + 0.5log,(0.5) =1
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Splitting Criteria: Bayesian

In principle, we can employ Dirichlet models (DM) to
o derive Bayesian estimates of P(?|Dj) and/or U(P(y|Dy))
e and modify the top-down induction steps.
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Splitting Criteria: Bayesian

In principle, we can employ Dirichlet models (DM) to
o derive Bayesian estimates of P(?|Dj) and/or U(P(y|Dy))
e and modify the top-down induction steps.

e | haven’t seen such decision decision trees
e | hope | can find some reference soon ...
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o Decision Trees
o Credal Decision Trees

e Bayesian Neural Networks
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Where and How to be Imprecise?

In principle, we can employ Imprecise Dirichlet models (IDM) to
o derive interval estimates of P(?|Dj) and/or U(P(y|Dp))
o and modify the top-down induction steps.
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Where and How to be Imprecise?

In principle, we can employ Imprecise Dirichlet models (IDM) to
o derive interval estimates of P(?|Dj) and/or U(P(y|Dp))
o and modify the top-down induction steps.

Credal Decision Trees [1, 7]
e Use IDM to derive interval estimates 22(%|Dy,) of P(%|Dp)
e Seek the highest entropy

U(@(@1Dy)) = maxU(P(@ D). (29)

o Each leaf is equipped a 2(#|L}) — Precise predictions.
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Credal Decision Trees: Performance [7]

Splitting criterion 0% noise | 10% noise | 20% noise
Info-Gain (IG) 78.96 77.49 74.76
Info-Gain Ratio (IGR) 78.97 77.66 75.14
Imprecise Info-Gain (lIG) 79.56 78.65 76.72
Complete IIG (CIIG) 79.63 78.66 76.74

Table: 10 x 10-fold cross-validation procedure: Average accuracies (on 60 data
sets) with random noise to the features and the class variable
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e Decision Trees

e Bayesian Neural Networks
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(a) Input layer  Hidden layer Output layer (b) Input layer  Hidden layer Output layer

L ).

Graphical interpretation of (a) ANN and (b) BNN
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Inference Problems [6]

Algorithm 1 Inference procedure for a BNN.

p(D,|Ds,6)p(0)
fgp{DrlD.,G'prB'JdG"

for i=0to N do
Draw &; ~ p(8|D});
¥i= Palx);
end for
return ¥ ={y:[i[0,N)}, @={8ili=[0, N)};

Define p(@|D)=
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Inference Problems [6]

Algorithm 1 Inference procedure for a BNN.

_ plDy|Dx,0)pl8)
|, p(Dy|Dx6)ple)de”

for i=0to N do
Draw &; ~ p(8|D});
¥i= Palx);
end for
return ¥ = {y;|i=[0,N)}, ®={6ii=[0,N)};

Define p(@|D)=

o We need some way to aggregate the set of outputs
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Aggregation procedures

Predict-then-aggregate (You can try it yourself):
e For each Monte Carlo sample, turn ®4(x) into a hard prediction y.
o Aggregate the set of hard predictions into the final hard prediction.

e You might want to try with MLE (Frequentist), DM (Bayesian), IDM
(IP), etc.
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Aggregation procedures

Predict-then-aggregate (You can try it yourself):
e For each Monte Carlo sample, turn ®4(x) into a hard prediction y.
o Aggregate the set of hard predictions into the final hard prediction.

e You might want to try with MLE (Frequentist), DM (Bayesian), IDM
(IP), etc.

Aggregation-then-predict (See Lecture 6):
e For each Monte Carlo sample, compute a soft prediction ©g(x).

o Aggregate the set of soft predictions into either

o the final hard prediction
o or a credal set, from which IP decision rules can be applied.
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Contents lists available at ScienceDirect

Software Impacts

EI SEVIER journal homepage: www.journals.elsevier.com/software-impacts

Original software publication

BNNpriors: Alibrary for Bayesian neural network inference with different
prior distributions (@

Vincent Fortuin *'-*, Adria Garriga-Alonso "', Mark van der Wilk “?, Laurence Aitchison %
* ETH Ziirich, Ziirich, Switserland

Y University of Cambridge, Cambridge, UK

« Imperial College London, London, UK

4 University of Bristol, Bristol, UK

ARTICLE INFO ABSTRACT
Keywords: Bayesian neural networks have shown great promise in many applications where calibrated
Machine learning estimates are crucial and can often also lead to a higher predictive performance. However, it remains

Bayesian neural networks

challenging to choose a good prior distribution over their weights. While isotropic Gaussian priors are often
Prior distributions

chosen in practice due to their simplicity, they do not reflect our true prior beliefs well and can lead to
suboptimal performance. Our new library, BNNpriors, enables state-of-the-art Markov Chain Monte Carlo
inference on Bayesian neural networks with a wide range of predefined priors, including heavy-tailed anes,
hierarchical ones, and mixture priors. Moreover, it follows a modular approach that eases the design and
implementation of new custom priors. It has facilitated foundational discoveries on the nature of the cold
posterior effect in Bayesian neural networks and will hopefully catalyze future research as well as practical
applications in this area.
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What is Bayesian Deep Learning?

> Uncertainty Estimation in Deep
Learning
Creating the Foundation for Robust,
Trustworthy Al
A Framework for Seamless Bayesian
Model Development

> How to Use Bayesian-Torch

> Model Inferencing and Uncertainty
Estimation
Use Case: Medical Application
(Colorectal Histology Diagnosis)
Accounting for Distributional Shifts
Advancing Real-World Benchmarks e o T

> Developing Efficient Computing
Systems for BDL Models

Get Involved
Abhout the Anthor
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