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Classifier Calibration Conformal Prediction

A predictive system

l perceives a training data set (consisting of input-output pairs which
specify individuals of a population) and a hypothesis space
(consisting of the possible classifiers),

l and seeks a classifier that optimizes its chance of making accurate
predictions with respect to some given evaluation criterion (which
is typically a loss function or an accuracy metric) which reflects how
good/bad the predictive system is.
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Classifier Calibration Conformal Prediction

Optimization problem should be described after declaring

l a training (+ validation) data set,

l a hypothesis space,

l an evaluation criterion,

l and a notion of an optimal classifier.
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Classifier Calibration Conformal Prediction

Optimization Problem: “Spam in Emails" Example

What optimization problem do you want to solve?

l Using a decision tree to predict “Spam in Emails"
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Classifier Calibration Conformal Prediction

Optimization Problem: “Cat Dog classification" Example

What optimization problem do you want to solve?

l Using a convolutional neural network (CNN) to predict images as
either a cat or a dog
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Classifier Calibration Conformal Prediction

Objectives

After this lecture students should be able to

l describe commonly used notions of classifier calibration [10]

l describe a few calibration errors and calibration methods [10]

l describe commonly used notions of coverage [1]

l describe a few coverage metrics and conformal procedures [1]
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Outline

l Classifier Calibration
m Introduction
m Notions
m Calibration Errors
m Post-hoc Calibration
m Other methods

l Conformal Prediction
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A Weather Forecasting Example

l Forecaster: “the probability of rain
tomorrow in Compiègne is 80%"

l How could we interpret this forecast?
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A Weather Forecasting Example (cont.)

l On about 80% of the days when the whether conditions are like
tomorrow’s, you would experience rain in Compiègne?

l It will rain in 80% of the land area of Compiègne?

l It will rain in 80% of the time?

Determining the degree to which a forecaster is well-calibrated

l cannot be done on a per-forecast basis,

l but requires looking at a sufficiently large and diverse set of
forecasts.
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Why Calibration Matters?

A well-calibrated classifier is expected to

l generate estimated class probabilities, which are consistent with
what would naturally occur.

If (heterogeneous) classifiers can be well-calibrated,

l their estimated class probabilities may be of the same “scale" and
may be combined

l they can be further compared given the same/similar levels of
predictive performance.
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Notions of Calibration (Mentioned in Lecture 3)

Confidence calibration [3]:

P(y = argmax
y∈Y

θy |x such that max
y∈Y

θy |x =β)=β ,∀β ∈ [0,1] . (1)

Classwise calibration [12]:

P(y such that θy |x =βy )=βy ,y ∈Y ,βy ∈ [0,1] . (2)

l May be harder to ensure, compared to confidence calibration

Distribution calibration [4]:

P(y such that θ|x =q)=q ,∀q ∈4|Y | , (3)

where 4|Y | is the |Y |-dimensional simplex

l May be harder to ensure, compared to the above notions.
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Notions of Calibration with Examples

Confidence calibration: Examples [2]
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Notions of Calibration with Examples (Exercise 1)

Basic setup (rephrased from an example in [10]):

l A dataset contains 40 instances

l A model h which partitions the input space into 4 regions:
# instances Predicted probabilities Class distributions

10 (0.3,0.3,0.4) (4,2,4)
10 (0.4,0.3,0.3) (3,4,3)
10 (0.4,0.6,0.0) (5,5,0)
10 (0.3,0.6,0.1) (2,7,1)

Question: Check if the following statements are correct

l h is not confidence-calibrated

l h is classwise-calibrated

l h is not distribution-calibrated
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Notions of Calibration with Examples (Solution 1.1)

Basic setup (rephrased from an example in [10]):

# instances Predicted probabilities Class distributions
10 (0.3,0.3,0.4) (4,2,4)
10 (0.4,0.3,0.3) (3,4,3)
10 (0.4,0.6,0.0) (5,5,0)
10 (0.3,0.6,0.1) (2,7,1)

Statement: h is not confidence-calibrated

P(y = argmax
y∈Y

θy |x such that max
y∈Y

θy |x =β)=β ,∀β ∈ [0,1] . (4)

l β= 0.4: P = (4+3)/20 = 7/20 6= 0.4

l β= 0.6: P = (5+7)/20 = 12/20 = 0.6
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Notions of Calibration with Examples (Solution 1.2)

Basic setup (rephrased from an example in [10]):

# Instances Predicted probabilities Class distributions
10 (0.3,0.3,0.4) (4,2,4)
10 (0.4,0.3,0.3) (3,4,3)
10 (0.4,0.6,0.0) (5,5,0)
10 (0.3,0.6,0.1) (2,7,1)

Statement: h is classwise-calibrated

P(y such that θy |x =βy )=βy ,y ∈Y ,βy ∈ [0,1] . (5)

l y1 ∧β1 = 0.3: P = (2+4)/20 = 0.3, y1 ∧β1 = 0.4: P = (3+5)/20 = 0.4
l y2 ∧β2 = 0.3: P = (2+4)/20 = 0.3, y2 ∧β2 = 0.6: P = (5+7)/20 = 0.6
l y3 ∧β3 = 0.4: P = 4/10 = 0.4, y3 ∧β3 = 0.3: P = 3/10 = 0.3
l y3 ∧β3 = 0.0: P = 0/10 = 0.0, y3 ∧β3 = 0.1: P = 1/10 = 0.1
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Notions of Calibration with Examples (Solution 1.3)

Basic setup (rephrased from an example in [10]):

# Instances Predicted probabilities Class distributions
10 (0.3,0.3,0.4) (4,2,4)
10 (0.4,0.3,0.3) (3,4,3)
10 (0.4,0.6,0.0) (5,5,0)
10 (0.3,0.6,0.1) (2,7,1)

Statement: h is not distribution-calibrated

P(y such that θ|x =q)=q ,∀q ∈4|Y | , (6)

l q = (0.3,0.3,0.4): P = (4/10,2/10,4/10)= (0.4,0.2,0.4) 6= (0.3,0.3,0.4)
l q = (0.4,0.3,0.3): P = (3/10,4/10,3/10)= (0.3,0.4,0.3) 6= (0.4,0.3,0.3)
l q = (0.4,0.6,0.0): P = (5/10,5/10,0/10)= (0.5,0.5,0.0) 6= (0.4,0.6,0.0)
l q = (0.3,0.6,0.1): P = (2/10,7/10,1/10)= (0.2,0.7,0.1) 6= (0.3,0.6,0.1)
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A Note on Classifier Calibration (Exercise 2)

Consider three notions of classifier calibration:

l Confidence calibration [3]:

P(y = argmax
y∈Y

θy |x such that max
y∈Y

θy |x =β)=β ,∀β ∈ [0,1] . (7)

l Classwise calibration [12]:

P(y such that θy |x =βy )=βy ,y ∈Y ,βy ∈ [0,1] . (8)

l Distribution calibration [4]:

P(y such that θ|x =q)=q ,∀q ∈4|Y | , (9)

where 4|Y | is the |Y |-dimensional simplex.

Prove that these notions are equivalent for binary classification?
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A Note on Classifier Calibration (Exercise 3)

Consider three notions of classifier calibration:

l Confidence calibration [3]:

P(y = argmax
y∈Y

θy |x such that max
y∈Y

θy |x =β)=β ,∀β ∈ [0,1] . (10)

l Classwise calibration [12]:

P(y such that θy |x =βy )=βy ,y ∈Y ,βy ∈ [0,1] . (11)

l Distribution calibration [4]:

P(y such that θ|x =q)=q ,∀q ∈4|Y | , (12)

where 4|Y | is the |Y |-dimensional simplex.

Prove that h(x)=P(Y ), ∀ x , is perfectly calibrated?
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Notes on Classifier Calibration (Cont.)

Comments on confidence/classwise/distribution calibration:

l Well-calibrated classifiers may perform poorly.

l Using calibration error as the only criterion to assess classifiers
might not be a good idea ...

l Well-calibrated and accurate classifiers would be useful in
practice!

l They would be seen as notions of marginal calibration ←−
population level
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Calibration Error: The Binary Case

Binary estimated calibration error (Binary-ECE):
l Specify a number M of bins
l Apply equal-width binning to θ1|x on D
l For each bin Bm, compute average probability s(Bm) and the

proportion of positives y(Bm)

s(Bm)= 1
|Bm|

∑
x∈Bm

θ1|x

y(Bm)= 1
|Bm|

∑
x∈Bm

y

l Compute Binary-ECE

Binary-ECE(D)=
M∑

m=1

|Bm|
|D|

∣∣y(Bm)−s(Bm)
∣∣
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Calibration Error: The Binary Case (Exercise 4)

Basic setup:
l A given data set D= {

(xn,yn)|n = 1, . . . ,N
}

with y ∈ {0,1}

l The proportion of instances with y = 1 is 0.5+ε
l The decision rule is 0/1 loss ` and the number of bins is 10

Questions:
l Show that there is at least one classifier with

Binary-ECE(D)= 0.0 and
1
N

N∑
n=1

`(y∗
n ,yn)= 0.0

l Show that there is at least one classifier with

Binary-ECE(D)= 0.0 and
1
N

N∑
n=1

`(y∗
n ,yn)= 0.5−ε

l Can we find worse perfectly calibrated classifiers?
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Calibration Error: The Binary Case (Exercise 5)

Basic setup:
l A given data set D= {

(xn,yn)|n = 1, . . . ,N
}

with y ∈ {0,1}

l The proportion of instances with y = 1 is α 6= 0.5
l The decision rule is 0/1 loss ` and the number of bins is M

Questions:
l Show that there is at least one classifier with

Binary-ECE(D)= 0.0 and
1
N

N∑
n=1

`(y∗
n ,yn)= 0.0

l Show that there is at least one classifier with

Binary-ECE(D)= 0.0 and
1
N

N∑
n=1

`(y∗
n ,yn)=min(α,1−α)

l Can we find worse perfectly calibrated classifiers?
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Classwise Calibration Error

Estimated classwise calibration error (classwise-ECE):

l For each class y ∈Y , consider y as class 1 and the others as 0

l Compute Binary-ECE for class y ∈Y −→ Binary-ECEy (D)

l Compute classwise-ECE

classwise-ECE(D)= 1
|Y |

∑
y∈Y

Binary-ECEy (D)
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Classwise Calibration Error (Exercise 6)

Basic setup:
l A given data set D= {

(xn,yn)|n = 1, . . . ,N
}

with y ∈ {0,1,2}

l The proportions of instances with (y = 0,y = 1,y = 2) are (α0,α1,α2)

l The decision rule is 0/1 loss ` and the number of bins is M
Questions:

l Can we find at least one classifier with

classwise-ECE(D)= 0.0 and
1
N

N∑
n=1

`(y∗
n ,yn)= 0.0

l Show that there is at least one classifier with

classwise-ECE(D)= 0.0 and
1
N

N∑
n=1

`(y∗
n ,yn)= 1−max(α0,α1,α2)

l Can we find worse perfectly calibrated classifiers?
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Confidence Calibration Error

Confidence-ECE is the weighted average difference between accuracy
and average confidence across all bins:

Confidence-ECE(D)=
M∑

m=1

|Bm|
|D|

∣∣accuracy(Bm)−confidence(Bm)
∣∣ (13)

l accuracy(Bm): Average accuracy in bin Bm

l confidence(Bm): Average confidence in bin Bm
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Confidence Calibration Error (Exercise 7)

Basic setup:
l A given data set D= {

(xn,yn)|n = 1, . . . ,N
}

with y ∈ {0,1,2}

l The proportions of instances with (y = 0,y = 1,y = 2) are (α0,α1,α2)

l The decision rule is 0/1 loss ` and the number of bins is M
Questions:

l Show that there is at least one classifier with

Confidence-ECE(D)= 0.0 and
1
N

N∑
n=1

`(y∗
n ,yn)= 0.0

l Show that there is at least one classifier with

Confidence-ECE(D)= 0.0 and
1
N

N∑
n=1

`(y∗
n ,yn)= 1−max(α0,α1,α2)

l Can we find worse perfectly calibrated classifiers?
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Confidence-ECE(D)= 0.0 and
1
N

N∑
n=1

`(y∗
n ,yn)= 0.0

l Show that there is at least one classifier with

Confidence-ECE(D)= 0.0 and
1
N

N∑
n=1

`(y∗
n ,yn)= 1−max(α0,α1,α2)

l Can we find worse perfectly calibrated classifiers?
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Notes on Classifier Errors (Homework)

Basic setup:

l Choose some calibration error

l Choose your favorite classifier

l Choose one data set you want to work with

Compute & compare:

l Train your favorite classifier

l Do post-hoc calibration (see next slides)

l Compute the calibration error

l Estimate the prior distribution P(Y ) using MLE and/or DM

l Use h(x)=P(Y ), ∀ x

l Compute the calibration error
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How to learn well-calibrated and accurate classifiers1?

Learn a well-calibrated classifier (a good strategy?)
l Basic setup: A hypothesis space (classifiers) and a calibration error

l Problem: Find a classifier which optimizes the calibration error

Learn a well-calibrated and accurate classifier (better?)
l Basic setup: A hypothesis space (classifiers) and an evaluation

criterion

l Basic setup (cont.): A hypothesis space (calibrators) and a
calibration error

l Problem: Find an accurate classifier which optimizes the calibration
error

1I would be rich if I knew a very good answer :)
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Post-hoc calibration methods

l assume a reasonably accurate pre-trained model is given,

l calibrate the soft/probabilistic output of the pre-trained model.

Seek a (reasonably) accurate pre-trained model:

l a training (+ validation) data set,

l a hypothesis space (classifiers),

l an evaluation criterion,

l and a notion of an optimal classifier.

Seek a(n reasonably) good calibrator:

l a training (+ validation) data set,

l a hypothesis space (calibrators),

l an evaluation criterion,

l and a notion of an optimal calibrator.
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Empirical Binning

Basic Setup:

l Binary classification: Y := {0,1}

l Loss function: `(y ′,y)= 1(y ′ 6= y)

l Prediction: yθ
`
= 1(θy |x > 0.5)

Steps:

l Apply equal-width binning to θ1|x on D

l For each bin Bm −→ use y(Bm)
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Empirical Binning (Exercise 7)

Basic Setup:

l Binary classification: Y := {0,1}

l Loss function: `(y ′,y)= 1(y ′ 6= y)

l Prediction: yθ
`
= 1(θy |x > 0.5)

Steps:

l Apply equal-width binning to θ1|x on D

l For each bin Bm −→ use y(Bm)

Question: Empirical Binning optimizes binary-ECE(D)?
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Platt Scaling

Basic Setup:

l Binary classification: Y := {0,1}

l Loss function: `(y ′,y)= 1(y ′ 6= y)

l Prediction: yθ
`
= 1(θy |x > 0.5)

Learn a logistic transformation of the classifier

P(y = 1|x)≈ 1
1+exp(A(θ|x)+B)

(14)

l Estimate A and B: fit the regressor via maximum likelihood

l Multi-class classification: Platt Scaling ←− Platt Scaling + z

l z ∈ {One-vs-All,One-vs-One}
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Isotonic Regression (The Same Basic Setup)

Fits a non-parametric isotonic regressor,
l which outputs a step-wise non-decreasing function f |x

minimize
∑

(y ,x)∈D
(y − f |x)2 s.t. f |x ≥ f |x if θ|x ≥ θ|x ′ (15)

An example of isotonic regression (solid red line)
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Beta Calibration (The Same Basic Setup)

Learn a beta calibration map

P(y = 1|x)≈ 1

1+ 1/
(
exp(c) (θ|x)a

(1−θ|x)b
) (16)

There are some requirements [5]:

l each calibration is monotonically non-decreasing −→ a,b ≥ 0

l c is some real number
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Practical Examples [6]
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Notes on Post-hoc Calibration (Homework)

Basic setup:

l Choose some calibration error

l Choose your favorite classifier

l Choose one data set you want to work with

Compute & compare:

l Train your favorite classifier

l Do post-hoc calibration (see previous slides)

l Compute the average 0/1 loss + calibration error

l Estimate the prior distribution P(Y ) using MLE and/or DM

l Use h(x)=P(Y ), ∀ x

l Compute the average 0/1 loss + calibration error
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Potential Impact [8]

Basic Setup:

l run 10×10-fold stratified cross-validation −→ average the results

l UC = The uncalibrated model (trained using the entire training set)

l PS = UC + Platt scaling (training set = 2/3 train + 1/3 calibration)

l VA = UC + Venn-Abers (training set = 2/3 train + 1/3 calibration)

l Compare Accuracy (1 - 0/1 loss) and Binary-ECE

l 25 data sets for binary classification

Classifiers:

l UC = RF: Random forest

l UC = xGBoost: Extreme Gradient Boosting
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Data set characteristics [8]
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Accuracy [8]
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Binary-ECE [8]
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(Hopefully) Calibration During Training [10]

l Calibration error −→ a regularization term

l Mixup: regularization ≈ augmentation + label smoothing effect

l Few others (see [10][section 5.6] and elsewhere)

Uncertainty Reasoning and Machine Learning 47



Classifier Calibration Conformal Prediction
Introduction Notions Calibration Errors Post-hoc Calibration Other methods

(Hopefully) Calibration During Training [10]

l Calibration error −→ a regularization term

l Mixup: regularization ≈ augmentation + label smoothing effect

l Few others (see [10][section 5.6] and elsewhere)

Uncertainty Reasoning and Machine Learning 47



Classifier Calibration Conformal Prediction
Introduction Notions Calibration Errors Post-hoc Calibration Other methods

A Regularization Approach [7]

Optimization problem should be described after declaring

l a training (+ validation) data set,

l a hypothesis space,

l an evaluation criterion,

l and a notion of an optimal classifier.

l (criterion) = (negative log-likelihood) + λ * (calibration error)

l (calibration error) should be trainable (differentiable, ...)
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A Regularization Approach (cont.) [7]

Remark: ECE = Confidence-ECE
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Coverage as Another Notion of Calibration [1]

General setting:

l We wish to produce a (possibly empty) set-valued prediction for
each query instance.

l We wish to guarantee that the probability of covering the true
class is bounded by the chosen significance level σ ∈ [0,1].
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Marginal and Conditional Coverage
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Population Level: Marginal Coverage

l Data set = Dtrain + Dcalibration + Dtest

l They are expected to come from the same distribution

l Learn a predictor (classifier/regressor) h using Dtrain

l Use Dcalibration and h to construct for each x test ∈Dtest a Ytest ⊂Y s.t.

1−α≤P(ytest ∈Ytest)

where α ∈ [0,1] is a user-chosen error rate.
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Marginal Coverage (Exercise 8)

l Prove that if we always predict Ytest :=Y we can always produce
perfect conformal predictions w.r.t. the notion of marginal coverage
with any chosen significance level σ ∈ [0,1].

l Prove that if we know the prior distribution P(Y ), we can always
produce perfect conformal predictions w.r.t. the notion of marginal
coverage with any chosen significance level σ ∈ [0,1].
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Marginal Coverage (Homework)

Basic setup:

l Choose your favorite classifier + data set

Compute & compare:

l Train your favorite classifier

l Apply the chosen conformal procedure (see next slides)

l Compute the coverage metrics with different α

l Estimate the prior distribution P(Y ) using MLE and/or DM

l For each given α, always returns the set of classes whose prior
probabilities are at least α

l Compute the coverage metrics with different α

l Always return Ytest :=Y

l Compute the coverage metrics with different α
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Group Level: Group-Balanced Conformal Prediction
l Prior information −→ partition D into G groups Dg

l We then ask for group-balanced coverage

1−α≤P (ytest ∈Ytest|x test ∈Dg) ,g = 1, . . . ,G . (17)

Class-Conditional Conformal Prediction:

l Partition D into |Y | groups, one per class y ∈Y

1−α≤P (ytest ∈Ytest|ytest = y) ,y ∈Y . (18)

Other examples:

l Group patients into demographic groups

l Group set-valued predictions into groups of equal cardinality

Comment (AOS4): Shouldn’t we always predict Ytest :=Y ?
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1−α≤P (ytest ∈Ytest|ytest = y) ,y ∈Y . (18)

Other examples:

l Group patients into demographic groups

l Group set-valued predictions into groups of equal cardinality

Comment (AOS4): Shouldn’t we always predict Ytest :=Y ?
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Individual Level: Conditional Coverage

Problem: construct for each x test ∈Dtest a Ytest ⊂Y s.t.

1−α≤P(ytest ∈Ytest|x test)

where α ∈ [0,1] is a user-chosen error rate.

Comments [1]:

l A stronger property than the marginal/group coverage

l In the most general case, conditional coverage is impossible to
achieve [11]

l −→ check how close our procedure comes to approximating it

Comment (AOS4): Shouldn’t we always predict Ytest :=Y ?
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Conformal Risk Control

l We have constructed prediction sets that bound the miscoverage

P(ytest ∈Ytest)≥ 1−α≡1−P(ytest ∈Ytest)≤α (19)

≡P(ytest 6∈Ytest)≤α (20)

l We haven’t taken into account the cardinality2 |Ytest|

l We can consider both the miscoverage and cardinality using

`(ytest,Ytest) (21)

−→ any bounded loss function that shrinks as |Ytest| grows.
l We may construct prediction sets that bound the expected loss

E [`(ytest,Ytest)|x ]=
∑

ytest∈Y

`(ytest,Ytest)∗P(ytest|x)≤α (22)

2Still remember Ytest :=Y ?
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Population Level: Empirical Coverage3

l Empirical coverage (EC) metric is defined as

EC-metric(Dtest)= 1
|Dtest|

∑
x test∈Dtest

1(ytest ∈Y;test) (23)

l If we consider

P(ytest ∈Ytest)←− 1
|Dtest|

∑
x test∈Dtest

1(ytest ∈Ytest) (24)

l then we might claim the relation

EC-metric(Dtest)≤P(ytest ∈Ytest) (25)

3Should we always predict Ytest :=Y ?
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Group Level: Feature-Stratified Coverage Metric4

l Feature information −→ partition D into G groups Dg

l Feature-stratified coverage (FSC) metric is defined as

FSC-metric(Dtest)= min
g∈{1,...,G}

1∣∣Dg
test

∣∣ ∑
x test∈Dg

test

1(ytest ∈Ytest) (26)

l If we consider (the instances within each Dg
test equally and)

P(ytest ∈Ytest|x test)←− 1∣∣Dg
test

∣∣ ∑
x test∈Dg

test

1(ytest ∈Ytest) (27)

l then we might claim the relation

FSC-metric(Dtest)≤P(ytest ∈Ytest|x test) ,∀x test ∈Dtest (28)

4Should we always predict Ytest :=Y ?
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Group Level: Size-Stratified Coverage Metric5

l Cardinality |Y | −→ partition D into G groups Dg

l Size-Stratified Coverage (SSC) metric is defined as

SSC-metric(Dtest)= min
g∈{1,...,G}

1∣∣Dg
test

∣∣ ∑
x test∈Dg

test

1(ytest ∈Ytest) (29)

l If we consider the instances within each Dg
test equally and

P(ytest ∈Ytest|x test)≈ 1∣∣Dg
test

∣∣ ∑
x test∈Dg

test

1(ytest ∈Ytest) (30)

l then we might claim the relation

SSC-metric(Dtest)≤P(ytest ∈Ytest|x test) ,∀x test ∈Dtest (31)

5Should we always predict Ytest :=Y ?
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Cover. Metrics Have often Been Coupled with Prediction Size

This can (hopefully) be done by using, for example,

l a loss considering both the miscoverage and cardinality,

l a suitable conformal procedure (see next slides),

l and so on.
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Split Conformal Prediction: Steps

l Learn a classifier h using Dtrain

l Define the score function s(x ,y) ∈R, which should depend on h.

l Larger s −→ worse agreement between x and y .

l Let M = |Dvalidation|, compute

s1 = s(x1,y1) , . . . ,sM = s(xM ,yM) ,(xm,ym) ∈Dvalidation

l Sort the calibration scores s1, . . . ,sM in the decreasing order

l Find (n+1)(1−α)
n quantile qα of the calibration scores

l For any x test, predict

Ytest =
{
y ∈Y s.t. s(x test,y)≤ qα

}
(32)
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Split Conformal Prediction: A Marginal Coverage Seeker

Conformal coverage guarantee [1, 9]:

l Suppose (xm,ym) ∈Dvalidation and (x test,ytest) are independent and
identically distributed (i.i.d.). Then the following holds:

1−α≤P(ytest ∈Ytest) (33)

Assumptions:

l Larger s −→ worse agreement between x and y .

l (xm,ym) ∈Dvalidation and (x test,ytest) are independent i.i.d.
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Assumptions of I.I.D.

Independence:

l The occurrence or value of one data point does not provide any
information about the occurrence or value of another data point.

l The data points are not influenced by each other and that there is no
hidden structure or correlation among them.

Identical distribution:

l The data points are drawn from the same underlying distribution.
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Split Conformal Prediction: A Smallest Average Size Seeker

Average size [9][Remark 4] is defined as

E(Y )= ∑
y∈Y

P(y ∈Y ) (34)
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Other procedures [1]

Conformal prediction can also be adapted to handle

l unsupervised outlier detection

l covariate/distribution shift

l multilabel classification
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Remember to Check the Underlying Assumptions
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