Q: HOW MANY PH.D.'S DOES IT TAKE TO GET A POWERPOINT PRESENTATION TO WORK?

WWW. PHDCOMICS. COM

ANSWER: (n+1)

WHERE n = THE NUMBER OF ACADEMICS IN THE ROOM WHO THINK THEY KNOW HOW TO FIX IT, AND 1 = THE PERSON WHO FINALLY CALLS THE A/V TECHNICIAN.

Uncertainty reasoning and machine learning Uncertainty, Decision and Evaluation Revisited

Vu-Linh Nguyen

Chaire de Professeur Junior, Laboratoire Heudiasyc Université de technologie de Compiègne

AOS4 master courses

Uncertainty Reasoning and Machine Learning

heudiasvc

Outline

• Credal ensembling

- A median classifier: Learning and inference
- A credal classifier: Learning and inference
- Applications in machine learning
- A few practical aspects
- Excercises on prediction-making

heudiasyc

heudiasyc

A formal framework [2, 3]

Basic setup:

- Features (X^1, \dots, X^P) and a class variables Y
- An finite output space $\mathcal{Y} = \{y^1, \dots, y^C\}$

Outline

Credal ensembling

A median classifier: Learning and inference

- o A credal classifier: Learning and inference
- Applications in machine learning
- A few practical aspects
- Excercises on prediction-making

A median classifier and its predictions [2, 3]

Compute a median classifier

Basic setting:

- An ensemble $\mathbf{H} := \{\mathbf{h}^m | m \in [M] := \{1, \dots, M\}\}$ is made available
- A specified statistical distance d between distributions

A median classifier minimizes the average expected distance:

$$\mathbf{h}_{d} \in \operatorname{argmin}_{\mathbf{h} \in \mathscr{H}} \mathbf{E} \left[\sum_{m=1}^{M} d(\mathbf{h}, \mathbf{h}^{m}) \right] = \operatorname{argmin}_{\mathbf{h} \in \mathscr{H}} \int_{\mathbf{x} \in \mathscr{X}} \left[\sum_{m=1}^{M} d(\mathbf{h}(\mathbf{x}), \mathbf{h}^{m}(\mathbf{x})) \right] d\mathbf{x}.$$

heudiasvc

Compute a median classifier

Basic setting:

- An ensemble $\mathbf{H} := {\mathbf{h}^m | m \in [M] := \{1, \dots, M\}}$ is made available
- A specified statistical distance d between distributions

A median classifier minimizes the average expected distance:

$$\mathbf{h}_{d} \in \operatorname{argmin}_{\mathbf{h} \in \mathscr{H}} \mathbf{E} \left[\sum_{m=1}^{M} d(\mathbf{h}, \mathbf{h}^{m}) \right] = \operatorname{argmin}_{\mathbf{h} \in \mathscr{H}} \int_{\mathbf{x} \in \mathscr{X}} \left[\sum_{m=1}^{M} d(\mathbf{h}(\mathbf{x}), \mathbf{h}^{m}(\mathbf{x})) \right] d\mathbf{x}.$$

If no constraint on \mathcal{H} , \mathbf{h}_d can be defined in an instance-wise manner:

$$\mathbf{h}_{d}(\mathbf{x}) \in \underset{\mathbf{h}(\mathbf{x}) \in \Delta^{K}}{\operatorname{argmin}} \sum_{m=1}^{M} d(\mathbf{h}(\mathbf{x}), \mathbf{h}^{m}(\mathbf{x})).$$
(1)

heudiasvc

Compute a median classifier (cont.)

For each \mathbf{x} , dropping \mathbf{x} and denoting $\mathbf{p} = \mathbf{h}$ give

$$\mathbf{p}_{d} \in \operatorname{argmin}_{\mathbf{p} \in \Delta^{K}} \sum_{m=1}^{M} d(\mathbf{p}, \mathbf{p}^{m}).$$
 (2)

Examples of *d* are squared Euclidean distance (sE), L_1 distance, and KL divergence.

For each \mathbf{x} , dropping \mathbf{x} and denoting $\mathbf{p} = \mathbf{h}$ give

Compute a median classifier (cont.)

$$\mathbf{p}_d \in \operatorname{argmin}_{\mathbf{p} \in \Delta^K} \sum_{m=1}^M d(\mathbf{p}, \mathbf{p}^m).$$
 (2)

Examples of d are squared Euclidean distance (sE), L_1 distance, and KL divergence.

For any convex distance d:

- The convex optimization problem (2) can be solved using any solver.
- Close-form solution p_{sE} = averaging the distributions class-wise.

heudiasyc

Bayesian-optimal predictions

Basic set (instance-wise manner):

- The median distribution \mathbf{p}_d is given.
- A the higher the better utility $u: \mathscr{Y} \times \mathscr{Y} \longmapsto \mathbb{R}_+$

A Bayesian-optimal prediction (BOP) of u is

$$y_{d}^{u} \in \operatorname{argmax}_{y' \in \mathscr{Y}} \mathbf{E}[u(y', y)] = \operatorname{argmax}_{y' \in \mathscr{Y}} \sum_{y \in \mathscr{Y}} u(y', y) \mathbf{p}_{d}(y).$$
(3)

Bayesian-optimal predictions

Basic set (instance-wise manner):

- The median distribution \mathbf{p}_d is given.
- A the higher the better utility $u : \mathscr{Y} \times \mathscr{Y} \longmapsto \mathbb{R}_+$

A Bayesian-optimal prediction (BOP) of u is

$$y_{d}^{u} \in \operatorname{argmax}_{y' \in \mathscr{Y}} \mathbf{E}[u(y', y)] = \operatorname{argmax}_{y' \in \mathscr{Y}} \sum_{y \in \mathscr{Y}} u(y', y) \mathbf{p}_{d}(y).$$
(3)

Commonly used utilities, such as 0/1 and cost-sensitive accuracies:

- Find a BOP (10) takes from O(K) to $O(K^2)$
- A BOP $y_d^{0/1}$ (10) of 0/1 accuracy = a most probable class

Bayesian-optimal set-valued predictions

Basic set (instance-wise manner):

- The median distribution \mathbf{p}_d is given.
- A the higher the better utility $U: \mathscr{Y} \times 2^{\mathscr{Y}} \longmapsto \mathbb{R}_+$

A Bayesian-optimal prediction (BOP) of U is

$$Y_{d}^{U} \in \underset{Y' \subset \mathscr{Y}}{\operatorname{argmax}} \mathbf{E}[U(Y', y)] = \underset{Y' \subset \mathscr{Y}}{\operatorname{argmax}} \sum_{y \in \mathscr{Y}} U(Y', y) \mathbf{p}_{d}(y).$$
(4)

Basic set (instance-wise manner):

- The median distribution \mathbf{p}_d is given.
- A the higher the better utility $U: \mathscr{Y} \times 2^{\mathscr{Y}} \longmapsto \mathbb{R}_+$

A Bayesian-optimal prediction (BOP) of U is

$$Y_{d}^{U} \in \underset{Y' \subset \mathscr{Y}}{\operatorname{argmax}} \mathbf{E}[U(Y', y)] = \underset{Y' \subset \mathscr{Y}}{\operatorname{argmax}} \sum_{y \in \mathscr{Y}} U(Y', y) \mathbf{p}_{d}(y).$$
(4)

Commonly used utilities, such as utility-discounted accuracies:

$$U(Y',y) = \frac{1}{g(|Y'|)} [\![y \in Y']\!], \qquad (5)$$

- Find a BOP Y_d^U (11) takes $O(K \log(K))$.
- A BOP Y_d^U (11) consists of the most probable classes on \mathbf{p}_d .

neudiasvo

Credal ensembling Applications in machine learning A few practical aspects Excercises in prediction A median classifier: Learning and inference A credal classifier: Learning and inference

Probabilistic uncertainty scores

Credal ensembling Applications in machine learning A few practical aspects Excercises in prediction A median classifier: Learning and inference A credal classifier: Learning and inference heudiasyc

Probabilistic uncertainty scores

Probabilistic uncertainty scores (Cont.)

Smallest margin (1) is defined as

$$S_{\rm SM}(\mathbf{p}_d) = \mathbf{p}_d(\boldsymbol{y}^{\rm st}) - \mathbf{p}_d(\boldsymbol{y}^{\rm nd}).$$
 (6)

Example: A classification problem with $\mathcal{Y} = \{a, b, c\}$:

	x ₁	x ₂
	50→(0.6, 0.4, 0.0)	100→(0.3, 0.4, 0.3)
	50→(0.0, 0.4, 0.6)	
p _{sE}	(0.3, 0.4, 0.3)	
$S_{ m SM}\left(\uparrow ight)$	0.1	
	Should we consider \mathbf{x}_1 and \mathbf{x}_2 the same?	

Probabilistic uncertainty scores (Cont.)

Smallest margin (1) is defined as

$$S_{\rm SM}(\mathbf{p}_d) = \mathbf{p}_d(\boldsymbol{y}^{\rm st}) - \mathbf{p}_d(\boldsymbol{y}^{\rm nd}).$$
 (6)

Example: A classification problem with $\mathcal{Y} = \{a, b, c\}$:

	X 3	X 4
	80→(1.0, 0.0, 0.0)	100→(0.8, 0.2, 0.0)
	20→ (0.0, 1.0, 0.0)	
p _{sE}	(0.8, 0.2, 0.0)	
$S_{ m SM}\left(ight)$	0.6	
	Should we consider \mathbf{x}_3 and \mathbf{x}_4 the same?	

Outline

Credal ensembling

- $_{\odot}\,$ A median classifier: Learning and inference
- o A credal classifier: Learning and inference
- Applications in machine learning
- A few practical aspects
- Excercises on prediction-making

Credal ensembling Applications in machine learning A few practical aspects Excercises A median classifier: Learning and inference A credal classifier: Learning and inference heudiasyc

A credal classifier and its predictions [2]

For any query instance, once $\mathscr{P}^*(\mathscr{Y}|\mathbf{x})$ is estimated:

- IP decision rules can be called to make set-valued predictions
- uncertainty scores defined for credal sets can be computed.

heudiasyc

Estimate a credal classifier

Each credal classifier \mathbf{CH}_{α}^{d} is defined in a point-wise manner:

$$\mathbf{CH}_{\alpha}^{d} := \left\{ \mathbf{p} := \sum_{m=1}^{M_{\alpha}} \gamma_{m} \mathbf{p}^{(m)} | \gamma_{m} \ge 0, m \in [M_{\alpha}], \sum_{m=1}^{M_{\alpha}} \gamma_{m} = 1 \right\},$$
(7)

where $\mathbf{p}^{(m)}$ is the *m*-th closet point to \mathbf{p}_d according to the distance *d*.

Estimate a credal classifier

Each credal classifier \mathbf{CH}_{α}^{d} is defined in a point-wise manner:

$$\mathbf{CH}_{\alpha}^{d} := \left\{ \mathbf{p} := \sum_{m=1}^{M_{\alpha}} \gamma_{m} \mathbf{p}^{(m)} | \gamma_{m} \ge 0, m \in [M_{\alpha}], \sum_{m=1}^{M_{\alpha}} \gamma_{m} = 1 \right\},$$
(7)

where $\mathbf{p}^{(m)}$ is the *m*-th closet point to \mathbf{p}_d according to the distance *d*.

heudiasyc

heudiasyc

Estimate a credal classifier

Each credal classifier \mathbf{CH}_{α}^{d} is defined in a point-wise manner:

$$\mathbf{CH}_{\alpha}^{d} := \left\{ \mathbf{p} := \sum_{m=1}^{M_{\alpha}} \gamma_{m} \mathbf{p}^{(m)} | \gamma_{m} \ge 0, m \in [M_{\alpha}], \sum_{m=1}^{M_{\alpha}} \gamma_{m} = 1 \right\},$$
(7)

where $\mathbf{p}^{(m)}$ is the *m*-th closet point to \mathbf{p}_d according to the distance *d*.

The hyperparameter $\alpha^* \leftarrow$ nested cross validation or a validation set.

Optimal set-valued predictions under IP decision rules

Basic set (instance-wise manner): The credal set $CH_{\alpha^*}^d$ is given.

Optimal set-valued predictions under IP decision rules

Basic set (instance-wise manner): The credal set $\mathbf{CH}_{\alpha^*}^d$ is given.

- Any IP decision rule $R_{\text{IP}}: 2^{\Delta^{K}} \longrightarrow 2^{\mathscr{Y}}$ can be applied.
- Any related algorithmic solutions can be leveraged.

Optimal set-valued predictions under IP decision rules (Cont.)

Basic set (instance-wise manner):

- The credal set $\mathbf{CH}_{a^*}^d$ is given.
- A the higher the better utility $u : \mathscr{Y} \times \mathscr{Y} \longmapsto \mathbb{R}_+$

E-admissibility under u:

- A class y is E-admissible if there exist $\mathbf{p} \in \mathbf{CH}_{\alpha^*}^d$ so that $y = y^u$.
- This can be checked by solving a linear program.

Optimal set-valued predictions under IP decision rules (Cont.)

Basic set (instance-wise manner):

- The credal set $\mathbf{CH}_{a^*}^d$ is given.
- A the higher the better utility $u : \mathscr{Y} \times \mathscr{Y} \longmapsto \mathbb{R}_+$

E-admissibility under u:

- A class y is E-admissible if there exist $\mathbf{p} \in \mathbf{CH}_{\alpha^*}^d$ so that $y = y^u$.
- This can be checked by solving a linear program.

Maximality under u:

- A class y is maximal if there doesn't exist y' ≠ y such that y' dominates y on all p ∈ CH^d_{α*} (w.r.t. u).
- This can be checked by solving K 1 linear programs.
- We can also enumerate all the distributions \mathbf{p}^m , $m \in [M]$.

Credal set-based uncertainty scores

Basic set (instance-wise manner): The credal set $\mathbf{CH}_{\alpha^*}^d$ is given.

Credal set-based uncertainty scores

Basic set (instance-wise manner): The credal set $\mathbf{CH}_{\alpha^*}^d$ is given.

- Any credal set-based uncertainty score can be used.
- Any related algorithmic solutions can be leveraged.

Credal set-based uncertainty scores (Cont.)

Decision-related uncertainty scores:

- How certain the ensemble **H** is about y_d^u ?
- How consensus of the ensemble members is about y_d^u ?

heudiasyc

Decision-related uncertainty scores

Basic setting (instance-wise manner):

- The median distribution \mathbf{p}_d is given.
- The predictions $\{\mathbf{p}^m | m \in [M]\}$ are given.
- A probabilistic uncertainty score $S : \Delta^K \longrightarrow \mathbb{R}$ is given.

Decision-related uncertainty scores

Basic setting (instance-wise manner):

- The median distribution \mathbf{p}_d is given.
- The predictions $\{\mathbf{p}^m | m \in [M]\}$ are given.
- A probabilistic uncertainty score $S : \Delta^K \longrightarrow \mathbb{R}$ is given.

A **decision-related uncertainty** version of *S* is (defined as its empirical expectation)

$$\mathsf{RS}(\mathbf{p}_d^u) := \frac{1}{M+1} \left(\sum_{m=1}^M \left[\left[\mathbf{p}^m \in \mathbf{CH}_{y_d^u}^d \right] S(\mathbf{p}^m) + S(\mathbf{p}_d) \right],$$
(8)

where $\left[\!\left[\mathbf{p}^{m} \in \mathbf{CH}_{y_{d}^{u}}^{d}\right]\!\right] = 1$ implies y_{d}^{u} is a best solution on \mathbf{p}^{m} under u.

Smallest margin (1) is defined as

$$S_{\rm SM}(\mathbf{p}_d) = \mathbf{p}_d(\boldsymbol{y}^{\rm st}) - \mathbf{p}_d(\boldsymbol{y}^{\rm nd}).$$
(9)

Example: A classification problem with $\mathcal{Y} = \{a, b, c\}$:

	x ₁	x ₂
	50→(0.6, 0.4, 0.0)	100→(0.3, 0.4, 0.3)
	50→(0.0, 0.4, 0.6)	
p _{sE}	(0.3, 0.4, 0.3)	
$S_{ m SM}\left(\uparrow ight)$	0.1	
$RS_SM\left(\uparrow ight)$	0.0	0.1

heudiasyc

Smallest margin (1) is defined as

$$S_{\rm SM}(\mathbf{p}_d) = \mathbf{p}_d(y^{\rm st}) - \mathbf{p}_d(y^{\rm nd}).$$
(9)

Example: A classification problem with $\mathcal{Y} = \{a, b, c\}$:

	x ₃	x ₄
	80→(1.0, 0.0, 0.0)	100→(0.8, 0.2, 0.0)
	20→(0.0, 1.0, 0.0)	
p _{sE}	(0.8, 0.2, 0.0)	
$S_{ m SM}(\uparrow)$	0.6	
$RS_{SM}(\uparrow)$	0.798	0.6

Should we put weights on the impact of ensemble members?

heudiasvc

- Credal ensembling
- Applications in machine learning
 - Prediction making
 - o Classification with rejection
 - o Uncertainty sampling
- A few practical aspects
- Excercises on prediction-making

heudiasyc

Outline

- Credal ensembling
- Applications in machine learning
 - Prediction making
 - o Classification with rejection
 - Uncertainty sampling
- A few practical aspects
- Excercises on prediction-making

Basic setting:

- Use random forests of cardinality 100 as the ensembles
- Follow a 10-cross validation protocal.
- Use hyperparameter $\alpha^* \leftarrow$ nested 10 fold cross validation

Assess the impact of \mathbf{p}_{sE} , \mathbf{p}_{L1} and \mathbf{p}_{KL} on

- the clean version of the data sets
- noisy version (randomly flip the class of 25% of training instances)

heudiasvc

Basic setting:

- Use random forests of cardinality 100 as the ensembles
- Follow a 10-cross validation protocal.
- Use hyperparameter $\alpha^* \leftarrow$ nested 10 fold cross validation

Assess the impact of \mathbf{p}_{sE} , \mathbf{p}_{L1} and \mathbf{p}_{KL} on

- the clean version of the data sets
- noisy version (randomly flip the class of 25% of training instances)

Once credal set CH_{\alpha^*}^d is computed, it is used to

• find the set-valued prediction under the E-admissibility rule.

neudiasvo

Results on clean data sets: U_{65} scores (in %) [3]

Data set: (N,P,K)	NDC	SQE-E	L1-E	KL-E	CRF	CH_0
eco.: (336,7,8)	85.51	86.07	85.81	87.07	84.46	43.60
der.: (358,34,6)	97.18	97.05	97.22	98.59	96.19	51.74
lib.: (360, 90, 15)	76.58	73.35	75.24	79.41	73.45	14.60
vow.: (990, 10, 11)	86.63	86.35	87.65	92.35	82.68	17.75
win.: (1599, 11, 6)	68.66	68.32	68.39	68.63	67.35	36.53
seg.: (2300, 19, 7)	97.17	97.12	96.99	97.64	96.73	71.00

Results on clean data sets: U_{65} scores (in %) [3]

Data set: (N,P,K)	NDC	SQE-E	L1-E	KL-E	CRF	CH_0
eco.: (336,7,8)	85.51	86.07	85.81	87.07	84.46	43.60
der.: (358,34,6)	97.18	97.05	97.22	98.59	96.19	51.74
lib.: (360, 90, 15)	76.58	73.35	75.24	79.41	73.45	14.60
vow.: (990, 10, 11)	86.63	86.35	87.65	92.35	82.68	17.75
win.: (1599, 11, 6)	68.66	68.32	68.39	68.63	67.35	36.53
seg.: (2300, 19, 7)	97.17	97.12	96.99	97.64	96.73	71.00

(a) NDC vs RF (b) CRF vs RF (e) SQE-Ead vs RF (f) KL-Ead vs RF Correctness of cautious predictors (vertical) vs accuracy of RF (horizontal)

- Credal ensembling
- Applications in machine learning
 - Prediction making
 - Classification with rejection
 - Uncertainty sampling
- A few practical aspects
- Excercises on prediction-making

Experimental setting [3]

Basic setting:

- Randomly flip the class of 25% of training instances
- Using random forests of cardinality 100 as the ensembles
- The median \mathbf{p}_{sE} is employed
- Assess smallest margin $\mathcal{S}_{SM}(\uparrow)$ and $\textbf{RS}_{SM}(\uparrow)$

Experimental setting [3]

Basic setting:

- Randomly flip the class of 25% of training instances
- Using random forests of cardinality 100 as the ensembles
- The median \mathbf{p}_{sE} is employed
- Assess smallest margin $\mathcal{S}_{SM}(\uparrow)$ and $\mathbf{RS}_{SM}(\uparrow)$

Budget based rejection protocal requires

- a sufficiently large number of test instances,
- a predefined number (or proportion) of rejections.

Threshold-based rejection protocal

- requires a predefined threshold on uncertainty score (†),
- rejects instances whose scores are lower than the threshold.

neudiasvo

Test accuracy and chosen score as the functions of the number of rejections 20×5 cross-validation with (train, test) = (20%, 80%)

Test accuracy and acceptance rate as the functions of the threshold 20×5 cross-validation with (train, test) = (20%, 80%)

- Credal ensembling
- Applications in machine learning
 - Prediction making
 - o Classification with rejection
 - Uncertainty sampling
- A few practical aspects
- Excercises on prediction-making

Experimental setting

Basic setting:

- Randomly flip the class of 25% of training + pool instances
- Using random forests of cardinality 100 as the ensembles
- The median \mathbf{p}_{sE} is employed
- Assess smallest margin $\mathcal{S}_{SM}(\uparrow)$ and $\mathbf{RS}_{SM}(\uparrow)$

Experimental setting

Basic setting:

- Randomly flip the class of 25% of training + pool instances
- Using random forests of cardinality 100 as the ensembles
- The median **p**_{sE} is employed
- Assess smallest margin $\mathcal{S}_{SM}(\uparrow)$ and $\mathbf{RS}_{SM}(\uparrow)$

Budget based sampling protocal

- requires a predefined number (or proportion) of queries,
- stops when the predefined number is reached.

Threshold-based sampling protocal

- requires a predefined threshold on uncertainty score (†),
- stops when the predefined threshold is reached.

neudiasvo

 10×5 cross-validation with (train, pool, test) = (3%, 77%, 20%)

- Credal ensembling
- Applications in machine learning
- A few practical aspects • Compact deep ensembles
- Excercises on prediction-making

heudiasyc

- Credal ensembling
- Applications in machine learning
- A few practical aspects • Compact deep ensembles
- Excercises on prediction-making

Conventional deep ensembles

Compared to the use of a single network:

- Much longer training time + Much larger storage memory
- Longer inference time

A BNN as an ensemble [5]

Compared to the use of a single network:

- A bit longer training time + A bit larger storage memory
- Longer inference time

A CNN with dropout predictions as an ensemble [4]

Compared to the use of a single network:

- Similar training time + Similar storage memory
- Longer inference time

heudiasyc

Experimental setting

Basic setting:

- Use BNNs with 100 Monte Carlo runs as the ensembles
- Use the clean version of the data sets

Assess the impact of \mathbf{p}_{sE} , \mathbf{p}_{L1} and \mathbf{p}_{KL} on

	Image	train/test	# classes
CIFAR-10	32x32 color	50,000/10,000	10
Fashion-MNIST	grayscale	60,000/10,000	10

Experimental setting

Basic setting:

- Use BNNs with 100 Monte Carlo runs as the ensembles
- Use the clean version of the data sets

Assess the impact of p_{sE} , p_{L1} and p_{KL} on

	Image	train/test	# classes
CIFAR-10	32x32 color	50,000/10,000	10
Fashion-MNIST	grayscale	60,000/10,000	10

Once p_d is computed, it is used to

- find precise prediction optimizing the $u_{0,1}$,
- find set-valued predictions optimizing the u₆₅ and u₈₀ [1].

heudiasvc

Average $u_{0,1}$, u_{65} and u_{80} on the test set

Reculte [5]	CIFAR-10			Fashion MNIST		
	sE	L1	KL	sE	L1	KL
$u_{0/1}(\uparrow)$	90.04	90.10	90.14	93.07	93.11	93.08
opt_u65_eva_u65 (†)	90.47	90.51	90.46	93.38	93.31	93.26
opt_u80_eva_u80 (†)	91.77	91.76	91.76	94.41	94.39	94.27
u65_set_size (↓)	2.03	2.02	2.03	2.02	2.02	2.02
u80_set_size (↓)	2.04	2.02	2.03	2.02	2.02	2.02

A closer look at $u_{0,1}$ and u_{65}

Results [5]	CIFAR-10			Fashion MNIST		
	sE	L1	KL	sE	L1	KL
c_pr_u65_c_si (†)	94.91	95.91	97.53	97.53	97.19	98.43
c_pr_u65_c_se (↓)	5.08	4.08	2.46	2.46	2.80	1.56
w_pr_u65_c_se (†)	32.12	26.86	17.64	24.96	25.39	15.75
w_pr_u65_w_se (↓)	15.26	11.81	7.50	5.05	5.95	4.62
w_pr_u65_w_si (↓)	52.61	61.31	74.84	69.98	68.65	79.62

Credal ensembling Applications in machine learning A few practical aspects Excercises in prediction Compact deep ensembles

A closer look at $u_{0,1}$ and u_{80}

Results [5]	CIFAR-10			Fashion MNIST		
	sE	L1	KL	sE	L1	KL
c_pr_u80_c_si (†)	86.89	93.22	94.28	94.34	94.03	95.47
c_pr_u80_c_se (↓)	13.10	6.77	5.71	5.65	5.96	4.52
w_pr_u80_c_se (†)	53.21	37.07	34.38	43.86	44.26	37.28
w_pr_u80_w_se (↓)	23.89	19.19	16.32	10.82	10.44	8.67
w_pr_u80_w_si (↓)	22.89	43.73	49.29	45.31	45.28	54.04

Results [5]	CIFAR-10			Fashion MNIST		
	sE	L1	KL	sE	L1	KL
$u_{0/1}(\uparrow)$	90.04	90.10	90.14	93.07	93.11	93.08
u65_set_size (↓)	2.03	2.02	2.03	2.02	2.02	2.02
u80_set_size (↓)	2.04	2.02	2.03	2.02	2.02	2.02
c_pr_u65_c_si (↑)	94.91	95.91	97.53	97.53	97.19	98.43
c_pr_u65_c_se (↓)	5.08	4.08	2.46	2.46	2.80	1.56
w_pr_u65_c_se (†)	32.12	26.86	17.64	24.96	25.39	15.75
w_pr_u65_w_se (↓)	15.26	11.81	7.50	5.05	5.95	4.62
w_pr_u65_w_si (↓)	52.61	61.31	74.84	69.98	68.65	79.62
	86.89	93.22	94.28	94.34	94.03	95.47
c_pr_u80_c_se (↓)	13.10	6.77	5.71	5.65	5.96	4.52
w_pr_u80_c_se (†)	53.21	37.07	34.38	43.86	44.26	37.28
w_pr_u80_w_se (↓)	23.89	19.19	16.32	10.82	10.44	8.67
w_pr_u80_w_si (↓)	22.89	43.73	49.29	45.31	45.28	54.04

- Credal ensembling
- Applications in machine learning
- A few practical aspects
- Excercises on prediction-making
 - Probabilistic classifiers
 - Credal classifiers

heudiasyc

- Credal ensembling
- Applications in machine learning
- A few practical aspects
- Excercises on prediction-making
 Probabilistic classifiers
 - Probabilistic classifie
 - Credal classifiers

Bayesian-optimal predictions

A Bayesian-optimal prediction (BOP) of u is

$$y_d^u \in \operatorname{argmax}_{y' \in \mathscr{Y}} \mathbf{E}[u(y', y)] = \operatorname{argmax}_{y' \in \mathscr{Y}} \sum_{y \in \mathscr{Y}} u(y', y) \mathbf{p}_d(y).$$
(10)

Bayesian-optimal predictions

A Bayesian-optimal prediction (BOP) of u is

$$y_{d}^{u} \in \operatorname{argmax}_{y' \in \mathscr{Y}} \mathbf{E}[u(y', y)] = \operatorname{argmax}_{y' \in \mathscr{Y}} \sum_{y \in \mathscr{Y}} u(y', y) \mathbf{p}_{d}(y).$$
(10)

Question: Prove that a BOP (10) takes from O(K) to $O(K^2)$.

Bayesian-optimal set-valued predictions

A Bayesian-optimal prediction (BOP) of U is

$$Y_{d}^{U} \in \underset{Y' \subset \mathscr{Y}}{\operatorname{argmax}} \mathbf{E}[U(Y', y)] = \underset{Y' \subset \mathscr{Y}}{\operatorname{argmax}} \sum_{y \in \mathscr{Y}} U(Y', y) \mathbf{p}_{d}(y).$$
(11)

Bayesian-optimal set-valued predictions

A Bayesian-optimal prediction (BOP) of U is

$$Y_{d}^{U} \in \underset{Y' \subset \mathscr{Y}}{\operatorname{argmax}} \mathbf{E}[U(Y', y)] = \underset{Y' \subset \mathscr{Y}}{\operatorname{argmax}} \sum_{y \in \mathscr{Y}} U(Y', y) \mathbf{p}_{d}(y).$$
(11)

Question: Prove that for any utility-discounted accuracy

$$U(Y', y) = \frac{1}{g(|Y'|)} [[y \in Y']], \qquad (12)$$

finding a BOP Y_d^U (11) takes $O(K \log(K))$.

Bayesian-optimal set-valued predictions

A Bayesian-optimal prediction (BOP) of U is

$$Y_{d}^{U} \in \underset{Y' \subset \mathscr{Y}}{\operatorname{argmax}} \mathbf{E}[U(Y', y)] = \underset{Y' \subset \mathscr{Y}}{\operatorname{argmax}} \sum_{y \in \mathscr{Y}} U(Y', y) \mathbf{p}_{d}(y).$$
(11)

Question: Prove that for any utility-discounted accuracy

$$U(Y',y) = \frac{1}{g(|Y'|)} [\![y \in Y']\!], \qquad (12)$$

finding a BOP Y_d^U (11) takes $O(K \log(K))$.

Hint: First show that a BOP Y_d^U (11) consists of the most probable classes on \mathbf{p}_d .

- Credal ensembling
- Applications in machine learning
- A few practical aspects
- Excercises on prediction-making
 - Probabilistic classifiers
 - Credal classifiers

E-admissible and maximal sets (Recap)

- **E-admissibility** under *u*: A class *y* is E-admissible if there exist $\mathbf{p} \in \mathbf{CH}_{\alpha^*}^d$ so that $y = y^u$.
- **Maximality** under *u*: A class *y* is maximal if there doesn't exist $y' \neq y$ such that y' dominates *y* on all $\mathbf{p} \in \mathbf{CH}_{\alpha^*}^d$ (w.r.t. *u*).

Check if a class is *E*-admissible

Question: Prove that checking whether a given class *y* is E-admissible can be done by solving a linear program.

Check if a class is maximal

Question: Prove that checking whether a given class y is maximal can be done by solving K - 1 linear program.

Properties of E-admissible and maximal sets

- Question 1: Prove that the E-admissible set is a subset of the maximal set.
- **Question 2**: Show that the E-admissible set can be a strict subset of the maximal set.
- **Question 3**: Show that the two sets can be identical.
- **Question 4**: Show that the cardinality of the E-admissible set can be larger than the number of extreme points on the credal set.

Properties of E-admissible and maximal sets: Hints

- Question 1: Prove that the E-admissible set is a subset of the maximal set. → We did it during the last lecture.
- Question 2: Show that the E-admissible set can be a strict subset of the maximal set. → Consider the credal set with two extreme points {(0.35, 0.4, 0.25), (0.3, 0.2, 0.5)}.
- Question 3: Show that the two sets can be identical. → Consider the credal set with two extreme points {(0.3, 0.5, 0.2), (0.2, 0.7, 0.1)}
- Question 4: Show that the cardinality of the E-admissible set can be larger than the number of extreme points on the credal set. → Consider the credal set with two extreme points {(0.6,0.4,0.0), (0.0,0.4,0.6)}

References I

- T. Mortier, M. Wydmuch, K. Dembczyński, E. Hüllermeier, and W. Waegeman. Efficient set-valued prediction in multi-class classification. Data Mining and Knowledge Discovery, 35(4):1435–1469, 2021.
- [2] V.-L. Nguyen, H. Zhang, and S. Destercke. Learning sets of probabilities through ensemble methods.
 In Proceedings of the 17th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU), pages 270–283, 2023.
- [3] V.-L. Nguyen, H. Zhang, and S. Destercke. Credal ensembling in multi-class classification. *Machine Learning*, pages 1–64, 2024.
- [4] K.-D. Tran, X.-T. Hoang, D.-M. Nguyen, V.-L. Nguyen, S. Destercke, and V.-N. Huynh. Compact probabilistic ensemble learning in multi-class classification. Under preparation, pages 1–20, 2024.
- [5] K.-D. Tran, X.-T. Hoang, V.-L. Nguyen, S. Destercke, and V.-N. Huynh. Robust classification in bayesian neural networks.

In Submitted to the Eleventh International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making (IUKM), pages 1–12, 2024.

