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A formal framework [2, 3]

Basic setup:

l Features (X 1, . . . ,X P) and a class variables Y

l An finite output space Y = {y1, . . . ,yC}
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A median classifier and its predictions [2, 3]
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Compute a median classifier

Basic setting:

l An ensemble H := {hm|m ∈ [M] := {1, . . . ,M}} is made available

l A specified statistical distance d between distributions

A median classifier minimizes the average expected distance:

hd ∈ argmin
h∈H

E

[
M∑

m=1
d(h,hm)

]
= argmin

h∈H

∫
x∈X

[
M∑

m=1
d(h(x),hm(x))

]
dx .

If no constraint on H , hd can be defined in an instance-wise manner:

hd(x) ∈ argmin
h(x)∈∆K

M∑
m=1

d(h(x),hm(x)) . (1)
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Compute a median classifier (cont.)

For each x, dropping x and denoting p=h give

pd ∈ argmin
p∈∆K

M∑
m=1

d(p,pm) . (2)

Examples of d are squared Euclidean distance
(sE), L1 distance, and KL divergence. p(b)= 1 p(c)= 1

p(a)= 1

p∗
p1

p2

p3

p4
p5 p6

Ensemble H and psE

For any convex distance d :

l The convex optimization problem (2) can be solved using any solver.

l Close-form solution psE = averaging the distributions class-wise.
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Bayesian-optimal predictions

Basic set (instance-wise manner):

l The median distribution pd is given.

l A the higher the better utility u :Y ×Y 7−→R+

A Bayesian-optimal prediction (BOP) of u is

yu
d ∈ argmax

y ′∈Y
E [u(y ′,y)]= argmax

y ′∈Y

∑
y∈Y

u(y ′,y)pd(y) . (3)

Commonly used utilities, such as 0/1 and cost-sensitive accuracies:

l Find a BOP (10) takes from O(K ) to O(K 2)

l A BOP y0/1
d (10) of 0/1 accuracy = a most probable class
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Bayesian-optimal set-valued predictions

Basic set (instance-wise manner):

l The median distribution pd is given.

l A the higher the better utility U :Y ×2Y 7−→R+
A Bayesian-optimal prediction (BOP) of U is

Y U
d ∈ argmax

Y ′⊂Y
E [U(Y ′,y)]= argmax

Y ′⊂Y

∑
y∈Y

U(Y ′,y)pd(y) . (4)

Commonly used utilities, such as utility-discounted accuracies:

U(Y ′,y)= 1
g(|Y ′|)

�
y ∈Y ′� , (5)

l Find a BOP Y U
d (11) takes O(K log(K )).

l A BOP Y U
d (11) consists of the most probable classes on pd .
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Probabilistic uncertainty scores

p(b)= 1 p(c)= 1

p(a)= 1

Regions ∆st
x for different y0/1

d

y
0/1
d = c

y
0/1
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y
0/1
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p(b)= 1 p(c)= 1

p(a)= 1
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p5 p6

Ensemble H and psE

(a) Smallest margin (↑) (b) Least confidence (↓) (c) Entropy (↓)
Heatmaps illustrating the behavior of probabilistic uncertainty scores
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Probabilistic uncertainty scores (Cont.)

Smallest margin (↑) is defined as

SSM (pd)=pd
(
yst)−pd

(
ynd

)
. (6)

Example: A classification problem with Y = {a,b,c}:

x1 x2
50→(0.6, 0.4, 0.0) 100→(0.3, 0.4, 0.3)
50→(0.0, 0.4, 0.6)

psE (0.3, 0.4, 0.3)
SSM (↑) 0.1

Should we consider x1 and x2 the same?
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Probabilistic uncertainty scores (Cont.)

Smallest margin (↑) is defined as

SSM (pd)=pd
(
yst)−pd

(
ynd

)
. (6)

Example: A classification problem with Y = {a,b,c}:

x3 x4
80→(1.0, 0.0, 0.0) 100→(0.8, 0.2, 0.0)
20→ (0.0, 1.0, 0.0)

psE (0.8, 0.2, 0.0)
SSM (↑) 0.6

Should we consider x3 and x4 the same?
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A credal classifier and its predictions [2]

D= {
(yn ,xn)

}N
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For any query instance, once P ∗(Y |x) is estimated:
l IP decision rules can be called to make set-valued predictions
l uncertainty scores defined for credal sets can be computed.
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Estimate a credal classifier

Each credal classifier CHd
α is defined in a point-wise manner:

CHd
α :=

{
p :=

Mα∑
m=1

γm p(m)|γm ≥ 0,m ∈ [Mα],
Mα∑

m=1
γm = 1

}
, (7)

where p(m) is the m-th closet point to pd according to the distance d .

p(b)= 1 p(c)= 1

p(a)= 1

p∗
p1

p2

p3

p4
p5 p6

Ensemble H and p∗
sE

p(b)= 1 p(c)= 1

p(a)= 1

p∗
p1

p2

p3

p4
p5 p6

Credal set CHsE
0.5

p(b)= 1 p(c)= 1

p(a)= 1

p∗
p1

p2

p3

p4
p5 p6

Credal set CHsE
0

The hyperparameter α∗ ← nested cross validation or a validation set.
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Optimal set-valued predictions under IP decision rules

Basic set (instance-wise manner): The credal set CHd
α∗ is given.

p(b)= 1 p(c)= 1

p(a)= 1

p∗
p1

p2

p3

p4
p5 p6

Ensemble H and psE

p(b)= 1 p(c)= 1

p(a)= 1

p∗
p1

p2

p3

p4
p5 p6

Credal set CHsE
0.5

p(b)= 1 p(c)= 1

p(a)= 1

p∗
p1

p2

p3

p4
p5 p6

Credal set CHsE
0

l Any IP decision rule RIP : 2∆
K 7−→ 2Y can be applied.

l Any related algorithmic solutions can be leveraged.
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Optimal set-valued predictions under IP decision rules (Cont.)

Basic set (instance-wise manner):

l The credal set CHd
α∗ is given.

l A the higher the better utility u :Y ×Y 7−→R+
E-admissibility under u:

l A class y is E-admissible if there exist p ∈CHd
α∗ so that y = yu.

l This can be checked by solving a linear program.

Maximality under u:

l A class y is maximal if there doesn’t exist y ′ 6= y such that y ′

dominates y on all p ∈CHd
α∗ (w.r.t. u).

l This can be checked by solving K −1 linear programs.

l We can also enumerate all the distributions pm, m ∈ [M].
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Credal set-based uncertainty scores

Basic set (instance-wise manner): The credal set CHd
α∗ is given.

p(b)= 1 p(c)= 1

p(a)= 1

p∗
p1

p2

p3

p4
p5 p6

Ensemble H and psE

p(b)= 1 p(c)= 1

p(a)= 1

p∗
p1

p2

p3

p4
p5 p6

Credal set CHsE
0.5

p(b)= 1 p(c)= 1

p(a)= 1

p∗
p1

p2

p3

p4
p5 p6

Credal set CHsE
0

l Any credal set-based uncertainty score can be used.

l Any related algorithmic solutions can be leveraged.
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Credal set-based uncertainty scores (Cont.)

Decision-related uncertainty scores:

l How certain the ensemble H is about yu
d ?

l How consensus of the ensemble members is about yu
d ?

p(b)= 1 p(c)= 1

p(a)= 1

Regions ∆st
x for different y0/1

d

y
0/1
d = c

y
0/1
d = a

y
0/1
d = b

p(b)= 1 p(c)= 1

p(a)= 1

p∗

p1

p2

p3

p4

p5 p6

Credal set CHsE
0 (x) with psE
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Decision-related uncertainty scores

Basic setting (instance-wise manner):

l The median distribution pd is given.

l The predictions {pm|m ∈ [M]} are given.

l A probabilistic uncertainty score S :∆K 7−→R is given.

A decision-related uncertainty version of S is (defined as its empirical
expectation )

RS(pu
d) :=

1
M +1

(
M∑

m=1

�
pm ∈CHd

yu
d

�
S(pm)+S(pd)

)
, (8)

where
�

pm ∈CHd
yu

d

�
= 1 implies yu

d is a best solution on pm under u.
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Decision-related uncertainty scores (Cont.)

Smallest margin (↑) is defined as

SSM (pd)=pd
(
yst)−pd

(
ynd

)
. (9)

Example: A classification problem with Y = {a,b,c}:

x1 x2
50→(0.6, 0.4, 0.0) 100→(0.3, 0.4, 0.3)
50→(0.0, 0.4, 0.6)

psE (0.3, 0.4, 0.3)
SSM (↑) 0.1

RSSM (↑) 0.0 0.1
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Decision-related uncertainty scores (Cont.)

Smallest margin (↑) is defined as

SSM (pd)=pd
(
yst)−pd

(
ynd

)
. (9)

Example: A classification problem with Y = {a,b,c}:

x3 x4
80→(1.0, 0.0, 0.0) 100→(0.8, 0.2, 0.0)
20→(0.0, 1.0, 0.0)

psE (0.8, 0.2, 0.0)
SSM (↑) 0.6

RSSM (↑) 0.798 0.6

Should we put weights on the impact of ensemble members?
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Experimental setting

Basic setting:

l Use random forests of cardinality 100 as the ensembles

l Follow a 10-cross validation protocal.

l Use hyperparameter α∗ ← nested 10 fold cross validation

Assess the impact of psE, pL1 and pKL on

l the clean version of the data sets

l noisy version (randomly flip the class of 25% of training instances)

Once credal set CHd
α∗ is computed, it is used to

l find the set-valued prediction under the E-admissibility rule.
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Results on clean data sets: U65 scores (in %) [3]

Data set: (N,P,K) NDC SQE-E L1-E KL-E CRF CH0
eco.: (336,7,8) 85.51 86.07 85.81 87.07 84.46 43.60
der.: (358,34,6) 97.18 97.05 97.22 98.59 96.19 51.74
lib.: (360, 90, 15) 76.58 73.35 75.24 79.41 73.45 14.60
vow.: (990, 10, 11) 86.63 86.35 87.65 92.35 82.68 17.75
win.: (1599, 11, 6) 68.66 68.32 68.39 68.63 67.35 36.53
seg.: (2300, 19, 7) 97.17 97.12 96.99 97.64 96.73 71.00

(a) NDC vs RF (b) CRF vs RF (e) SQE-Ead vs RF (f) KL-Ead vs RF
Correctness of cautious predictors (vertical) vs accuracy of RF (horizontal)
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Experimental setting [3]

Basic setting:

l Randomly flip the class of 25% of training instances

l Using random forests of cardinality 100 as the ensembles

l The median psE is employed

l Assess smallest margin SSM (↑) and RSSM (↑)

Budget based rejection protocal requires

l a sufficiently large number of test instances,

l a predefined number (or proportion) of rejections.

Threshold-based rejection protocal

l requires a predefined threshold on uncertainty score (↑),

l rejects instances whose scores are lower than the threshold.
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Results on noisy data sets [3]

(a) derma. + SM (b) derma. + SM (c) forest + SM (d) forest + SM
Test accuracy and chosen score as the functions of the number of rejections

20×5 cross-validation with (train, test) = (20%, 80%)

(a) derma. + SM (b) derma. + SM (c) forest + SM (d) forest + SM
Test accuracy and acceptance rate as the functions of the threshold

20×5 cross-validation with (train, test) = (20%, 80%)
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Experimental setting

Basic setting:

l Randomly flip the class of 25% of training + pool instances

l Using random forests of cardinality 100 as the ensembles

l The median psE is employed

l Assess smallest margin SSM (↑) and RSSM (↑)

Budget based sampling protocal

l requires a predefined number (or proportion) of queries,

l stops when the predefined number is reached.

Threshold-based sampling protocal

l requires a predefined threshold on uncertainty score (↑),

l stops when the predefined threshold is reached.
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Results on noisy data sets [3]

(a) derma. + SM (b) derma. + SM (c) forest + SM (d) forest + SM
Test accuracy and chosen score as the functions of the number of queries

10×5 cross-validation with (train, pool, test) = (3%, 77%, 20%)

(a) derma. + SM (b) derma. + SM (e) forest + SM (f) forest + SM
Test accuracy and used budget as the functions of the threshold
10×5 cross-validation with (train, pool, test) = (3%, 77%, 20%)
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Conventional deep ensembles

D= {
(yn ,xn)

}N
n=1
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Uncertainty U(Y |X)

BOP y∗m

P ∗(Y |X)

BOP y∗M

Compared to the use of a single network:
l Much longer training time + Much larger storage memory
l Longer inference time
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A BNN as an ensemble [5]
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Compared to the use of a single network:
l A bit longer training time + A bit larger storage memory
l Longer inference time
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A CNN with dropout predictions as an ensemble [4]
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Compared to the use of a single network:
l Similar training time + Similar storage memory
l Longer inference time
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Experimental setting

Basic setting:

l Use BNNs with 100 Monte Carlo runs as the ensembles

l Use the clean version of the data sets

Assess the impact of psE, pL1 and pKL on

Image train/test # classes
CIFAR-10 32x32 color 50,000/10,000 10

Fashion-MNIST grayscale 60,000/10,000 10

Once pd is computed, it is used to

l find precise prediction optimizing the u0,1,

l find set-valued predictions optimizing the u65 and u80 [1].
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Average u0,1, u65 and u80 on the test set

Results [5]
CIFAR-10 Fashion MNIST

sE L1 KL sE L1 KL

u0/1 (↑) 90.04 90.10 90.14 93.07 93.11 93.08

opt_u65_eva_u65 (↑) 90.47 90.51 90.46 93.38 93.31 93.26
opt_u80_eva_u80 (↑) 91.77 91.76 91.76 94.41 94.39 94.27
u65_set_size (↓) 2.03 2.02 2.03 2.02 2.02 2.02
u80_set_size (↓) 2.04 2.02 2.03 2.02 2.02 2.02
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A closer look at u0,1 and u65

Results [5]
CIFAR-10 Fashion MNIST

sE L1 KL sE L1 KL

c_pr_u65_c_si (↑) 94.91 95.91 97.53 97.53 97.19 98.43
c_pr_u65_c_se (↓) 5.08 4.08 2.46 2.46 2.80 1.56
w_pr_u65_c_se (↑) 32.12 26.86 17.64 24.96 25.39 15.75
w_pr_u65_w_se (↓) 15.26 11.81 7.50 5.05 5.95 4.62
w_pr_u65_w_si (↓) 52.61 61.31 74.84 69.98 68.65 79.62
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A closer look at u0,1 and u80

Results [5]
CIFAR-10 Fashion MNIST

sE L1 KL sE L1 KL

c_pr_u80_c_si (↑) 86.89 93.22 94.28 94.34 94.03 95.47
c_pr_u80_c_se (↓) 13.10 6.77 5.71 5.65 5.96 4.52
w_pr_u80_c_se (↑) 53.21 37.07 34.38 43.86 44.26 37.28
w_pr_u80_w_se (↓) 23.89 19.19 16.32 10.82 10.44 8.67
w_pr_u80_w_si (↓) 22.89 43.73 49.29 45.31 45.28 54.04
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Bayesian-optimal predictions

A Bayesian-optimal prediction (BOP) of u is

yu
d ∈ argmax

y ′∈Y
E [u(y ′,y)]= argmax

y ′∈Y

∑
y∈Y

u(y ′,y)pd(y) . (10)

Question: Prove that a BOP (10) takes from O(K ) to O(K 2).
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Bayesian-optimal set-valued predictions

A Bayesian-optimal prediction (BOP) of U is

Y U
d ∈ argmax

Y ′⊂Y
E [U(Y ′,y)]= argmax

Y ′⊂Y

∑
y∈Y

U(Y ′,y)pd(y) . (11)

Question: Prove that for any utility-discounted accuracy

U(Y ′,y)= 1
g(|Y ′|)

�
y ∈Y ′� , (12)

finding a BOP Y U
d (11) takes O(K log(K )).

Hint: First show that a BOP Y U
d (11) consists of the most probable

classes on pd .

Uncertainty Reasoning and Machine Learning 44



Credal ensembling Applications in machine learning A few practical aspects Excercises on prediction-making
Probabilistic classifiers Credal classifiers

Bayesian-optimal set-valued predictions

A Bayesian-optimal prediction (BOP) of U is

Y U
d ∈ argmax

Y ′⊂Y
E [U(Y ′,y)]= argmax

Y ′⊂Y

∑
y∈Y

U(Y ′,y)pd(y) . (11)

Question: Prove that for any utility-discounted accuracy

U(Y ′,y)= 1
g(|Y ′|)

�
y ∈Y ′� , (12)

finding a BOP Y U
d (11) takes O(K log(K )).

Hint: First show that a BOP Y U
d (11) consists of the most probable

classes on pd .

Uncertainty Reasoning and Machine Learning 44



Credal ensembling Applications in machine learning A few practical aspects Excercises on prediction-making
Probabilistic classifiers Credal classifiers

Bayesian-optimal set-valued predictions

A Bayesian-optimal prediction (BOP) of U is

Y U
d ∈ argmax

Y ′⊂Y
E [U(Y ′,y)]= argmax

Y ′⊂Y

∑
y∈Y

U(Y ′,y)pd(y) . (11)

Question: Prove that for any utility-discounted accuracy

U(Y ′,y)= 1
g(|Y ′|)

�
y ∈Y ′� , (12)

finding a BOP Y U
d (11) takes O(K log(K )).

Hint: First show that a BOP Y U
d (11) consists of the most probable

classes on pd .

Uncertainty Reasoning and Machine Learning 44



Credal ensembling Applications in machine learning A few practical aspects Excercises on prediction-making
Probabilistic classifiers Credal classifiers

Outline

l Credal ensembling

l Applications in machine learning

l A few practical aspects

l Excercises on prediction-making
m Probabilistic classifiers
m Credal classifiers

Uncertainty Reasoning and Machine Learning 45



Credal ensembling Applications in machine learning A few practical aspects Excercises on prediction-making
Probabilistic classifiers Credal classifiers

E-admissible and maximal sets (Recap)

l E-admissibility under u: A class y is E-admissible if there exist
p ∈CHd

α∗ so that y = yu.

l Maximality under u: A class y is maximal if there doesn’t exist
y ′ 6= y such that y ′ dominates y on all p ∈CHd

α∗ (w.r.t. u).
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Check if a class is E-admissible

Question: Prove that checking whether a given class y is E-admissible
can be done by solving a linear program.
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Check if a class is maximal

Question: Prove that checking whether a given class y is maximal can
be done by solving K −1 linear program.
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Properties of E-admissible and maximal sets

l Question 1: Prove that the E-admissible set is a subset of the
maximal set.

l Question 2: Show that the E-admissible set can be a strict subset
of the maximal set.

l Question 3: Show that the two sets can be identical.

l Question 4: Show that the cardinality of the E-admissible set can
be larger than the number of extreme points on the credal set.
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Properties of E-admissible and maximal sets: Hints

l Question 1: Prove that the E-admissible set is a subset of the
maximal set. → We did it during the last lecture.

l Question 2: Show that the E-admissible set can be a strict subset
of the maximal set. → Consider the credal set with two extreme
points {(0.35,0.4,0.25),(0.3,0.2,0.5)}.

l Question 3: Show that the two sets can be identical. → Consider
the credal set with two extreme points {(0.3,0.5,0.2),(0.2,0.7,0.1)}

l Question 4: Show that the cardinality of the E-admissible set can
be larger than the number of extreme points on the credal set. →
Consider the credal set with two extreme points
{(0.6,0.4,0.0),(0.0,0.4,0.6)}
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