MT12 - P2024 - Examen médian

Durée 1h30 - Les documents et machines à calculer sont interdits

Justifiez soigneusement toutes vos réponses.

Exercice 1 (barème : 6 points)(Questions de cours)

- 1. Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien. Rappeler l'inégalité de Cauchy-Schwarz vérifiée pour tout x et $y \in E$. Précisez également sous quelle condition sur x et y il y a égalité.
- 2. Soit f une fonction continue par morceaux et a-périodique. On note f_N la somme partielle d'ordre $N \ge 1$ de la série de Fourier de f, i.e., pour tout $t \in \mathbb{R}$

$$f_N(t) = \sum_{n=-N}^{N} c_n(f) e_n(t) = \frac{a_0(f)}{2} + \sum_{n=1}^{N} \left(a_n(f) \cos\left(2\pi n \frac{t}{a}\right) + b_n(f) \sin\left(2\pi n \frac{t}{a}\right) \right),$$

Donner la définition des coefficients $a_0(f)$, $a_n(f)$ et $b_n(f)$ en fonction des $(c_n(f))_{-N \le n \le N}$. Par ailleurs, démontrer les formules suivantes :

$$a_0(f) = \frac{2}{a} \int_0^a f(t) dt, \quad a_n(f) = \frac{2}{a} \int_0^a f(t) \cos\left(2\pi n \frac{t}{a}\right) dt.$$

3. Soit f une fonction continue par morceaux et a-périodique (pour a > 0). Montrer que si f est paire alors $b_n(f) = 0$ pour tout $n \ge 1$.

Exercice 2 (barème : 6 points)(Exercice de synthèse)

Soit f la fonction 2π -périodique avec

$$f(t) = (t - \pi)^2$$
 si $t \in [0, 2\pi]$.

- 1. Dessiner le graphe de f.
- 2. Calculer les coefficients de Fourier $a_n(f)$ et $b_n(f)$.
- 3. Est-ce que la série de Fourier de f converge simplement vers f sur \mathbb{R} ?
- 4. Est-ce que la série de Fourier de f converge normalement vers f sur \mathbb{R} ?
- 5. Justifier les relations

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}, \quad \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}.$$

6. Déterminer la valeur de la série $\sum \frac{1}{n^4}$.

Exercice 3 (barème : 8 points)(Polynômes de Legendre)

Dans cet exercice on considère H l'espace des fonctions continues sur [-1,1] à valeurs dans $\mathbb R$ muni du produit scalaire

$$\langle f, g \rangle_H = \int_{-1}^1 f(t)g(t) dt, \qquad f, g \in H,$$

et on note $\|\cdot\|_H$ la norme associée. On considère également les polynômes de Legendre donnés, pour tout $n \ge 1$, par la formule de récurrence

$$(n+1) P_{n+1}(x) = (2n+1) x P_n(x) - n P_{n-1}(x), \text{ et } P_0(x) = 1, P_1(x) = x.$$

- 1. Montrer que $\langle \cdot, \cdot \rangle_H$ est un produit scalaire sur H et donner la définition de $\| \cdot \|_H$.
- 2. Calculer P_2 et montrer que la famille (P_0, P_1, P_2) est orthogonale pour $\langle \cdot, \cdot \rangle_H$.
- 3. Dans la suite on **admet** que pour tout n et $m \in \mathbb{N}$ on a

$$\langle P_n, P_m \rangle_H = \begin{cases} \frac{2}{2n+1} & \text{si } n = m, \\ 0 & \text{sinon,} \end{cases}$$

et on note H_N le sous-espace vectoriel de H avec $H_N = \operatorname{Vect}\langle P_0, \dots, P_N \rangle$ $(N \ge 1)$. On munit H_N du produit scalaire $\langle \cdot, \cdot \rangle_H$.

(a) Montrer que dim $(H_N) = N + 1$. Démontrer également que pour tout $P = \sum_{k=0}^{N} a_k P_k \in H_N$, où $a_k \in \mathbb{R}$ est le k-ième coefficient de P, on a

$$||P||_H^2 = 2\sum_{k=0}^N \frac{|a_k|^2}{2k+1}.$$

4. Dans la suite, pour $f \in H$, on cherche à construire un polynôme de meilleure approximation de f dans H_N , i.e., on cherche $P \in H_N$ vérifiant

$$||f - P||_H = \min\{||f - Q||_H : Q \in H_N\}.$$

Soit alors $P = \sum_{k=0}^{N} a_k P_k$, avec $a_k \in \mathbb{R}$, un polynôme quelconque de H_N .

(a) Montrer que

$$||f - P||_H^2 = ||f||_H^2 + \sum_{k=0}^N ||P_k||_H^2 |a_k|^2 - 2\sum_{k=0}^N a_k \langle f, P_k \rangle_H.$$

(b) Pour tout $k=0,\ldots,N,$ on introduit les coefficients $\ell_k(f)=\frac{\langle f,P_k\rangle_H}{\|P_k\|_H^2}.$ En déduire que

$$||f - P||_H^2 = ||f||_H^2 + \sum_{k=0}^N ||P_k||_H^2 |a_k - \ell_k(f)|^2 - \sum_{k=0}^N ||P_k||_H^2 |\ell_k(f)|^2.$$

(c) En déduire que le polynôme de meilleure approximation de f dans H_N est donné par

$$f_N = \sum_{k=0}^{N} \ell_k(f) P_k.$$

(d) Ce polynôme est-il unique? Si oui, le justifier.