Condensateurs et Bobines : analyse transitoire

Alejandro Ospina Vargas– Enseignant-Chercheur UTC

Université de Technologie de Compiègne

Sommaire

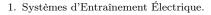
- Objectifs
- 2 Introduction/Rappel
- Condensateurs
- 4 Bobines
- 6 Condensateurs et bobines dans les SEE

Objectifs

- Comprendre :
 - Le fonctionnement des condensateurs et des bobines

1. Systèmes d'Entraînement Électrique.

Objectifs


- Comprendre:
 - Le fonctionnement des condensateurs et des bobines
 - Pouvoir déterminer le comportement d'un circuit électrique avec condensateurs et/ou bobines en régime transitoire (variation des grandeurs physiques en fonction du temps).

^{1.} Systèmes d'Entraînement Électrique.

Objectifs

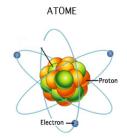
- Comprendre:
 - Le fonctionnement des condensateurs et des bobines
 - Pouvoir déterminer le comportement d'un circuit électrique avec condensateurs et/ou bobines en régime transitoire (variation des grandeurs physiques en fonction du temps).
- Leur utilisation dans les SEE ¹

Sommaire

- 1 Objectifs
- 2 Introduction/Rappel
 - Les charges électriques
 - Charges électriques statiques
 - Le champ électrique
 - Charges électriques en mouvement : courant électrique
 - Courant électrique
 - Le champ magnétique
- 3 Condensateurs
- 4 Bobines
- 6 Condensateurs et bobines dans les SEE

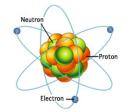
Les charges electriques Charges électriques statiques
Le champ électrique
Charges électriques en mouvement : courant électrique
Courant électrique

Les charges électriques

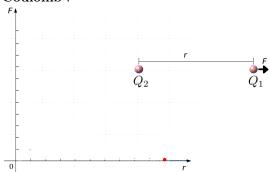

• Les électrons ont une charge négative -e;

Les charges électriques

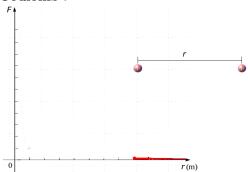
- Les électrons ont une charge négative -e;
- Les protons ont une charge positive e;



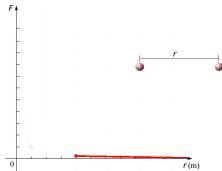
Les charges électriques


- Les électrons ont une charge négative -e;
- Les protons ont une charge positive e;
- Les neutrons n'ont pas de charge électrique.

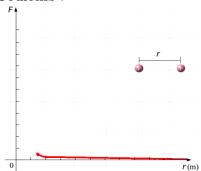
ATOME



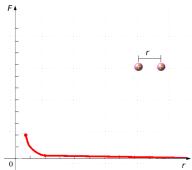
Loi de Coulomb:



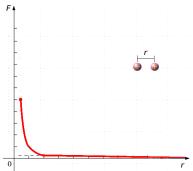
Loi de Coulomb :



Loi de Coulomb :



Loi de Coulomb:



Loi de Coulomb:

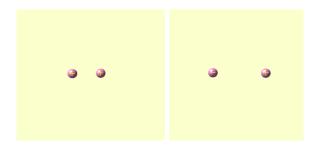
Loi de Coulomb :

$$F = k \frac{Q_1 Q_2}{r^2}$$

avec $k \approx 9 \times 10^9$ N m²/C², c'est la constante de Coulomb.

Les charges électriques

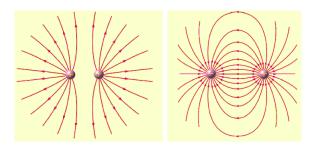
Charges électriques statiques


Le champ électrique

Charges électriques en mouvement : courant électrique

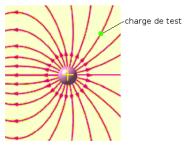
Courant électrique

Forces entre les charges électriques


• Champ électrique

Forces entre les charges électriques

• Champ électrique



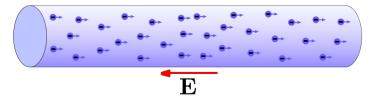
Le champ électrique

• La force exercée sur la charge de test q est définie comme :

$$F = k \frac{qQ}{r^2} = q \frac{kQ}{r^2} = qE \tag{1}$$

• **E** est le **champ électrique** : la force appliquée par unité de charge électrique $\mathbf{E} = \mathbf{F}/q$.

Les charges électriques en mouvement


• Le mouvement des charges libres ² reste chaotique tant que des forces externes ne sont pas appliquées.

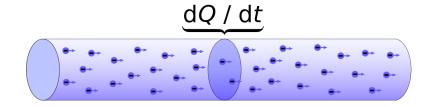
^{2.} en particulier des électrons libres qui sont présents dans le matériaux métalliques, pour mieux comprendre les différences entre les matériaux métalliques et isolants voir la vidéo ici.

Les charges électriques en mouvement

• Le mouvement des charges libres ² reste chaotique tant que des forces externes ne sont pas appliquées.

• Si des forces externes (**Champ Électrique**) sont appliquées une circulation de charge est établie, c'est le **courant électrique**.

^{2.} en particulier des électrons libres qui sont présents dans le matériaux métalliques, pour mieux comprendre les différences entre les matériaux métalliques et isolants voir la vidéo ici.


harges électriques statiques e champ électrique

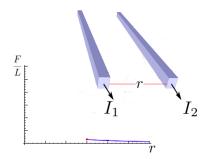
Courant électrique

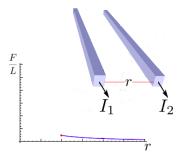
Les charges électriques en mouvement

• Courant électrique : la quantité de charge Q qui traverse une section par unité de temps :

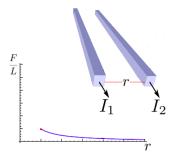

$$I(\text{Ampère}) = \frac{dQ \text{ (Coulomb)}}{dt \text{ (Seconde)}}$$
 (2)

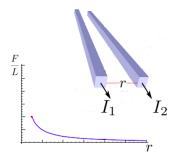
Le champ magnétique


Force entre conducteurs transportant des courants


Les charges électriques
Charges électriques statiques
Le champ électrique
Charges électriques en mouvement : courant électrique
Courant électrique
Le champ magnétique

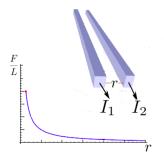
Force entre conducteurs transportant des courants


Force entre conducteurs transportant des courants


Les charges électriques
Charges électriques statiques
Le champ électrique
Charges électriques en mouvement : courant électrique
Courant électrique
Le champ magnétique

Force entre conducteurs transportant des courants

Force entre conducteurs transportant des courants



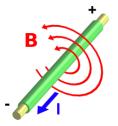
Les charges électriques Charges électriques Le champ électrique Charges électriques en mouvement : courant électrique Courant électrique

Le champ magnétique

Force entre conducteurs transportant des courants

Force d'Ampère:

$$\frac{F}{L} = k_A \frac{I_1 I_2}{r}$$


avec $k_A \approx 2 \times 10^{-7}$ N/m, la constante d'Ampère.

Les charges électriques Charges électriques statiques Le champ électrique Charges électriques en mouvement : courant électrique Courant électrique Le champ magnétique

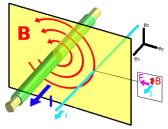
Champ magnétique - courant

Création d'un champ magnétique autour du fil grâce à la circulation du courant

Le champ magnétique, caractérisé par son intensité ${\bf H}$ et sa densité de flux ${\bf B}$, décroît au fur et à mesure que l'on s'éloigne du conducteur.

Voir la vidéo: Champ magnétique créé par un fil rectiligne

Champ magnétique - courant

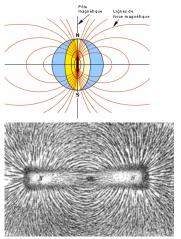

• Intuitivement, la force exercée sur un courant i peut être définie comme :

$$\frac{F}{L} \approx k_A \frac{iI}{r} = i \frac{k_A I}{r} = iB$$
, d'où $F = iLB$

Plus rigoureusement (notation vectorielle - Force de Laplace),

$$\mathrm{d}\mathbf{F} = i\mathrm{d}\mathbf{l} \wedge \mathbf{B}$$

• B est la densité de flux du champ magnétique.

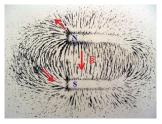

Les charges electriques
Charges électriques statiques
Le champ électrique
Charges électriques en mouvement : courant électrique
Couvant électrique

Le champ magnétique

Champ magnétique - magnétisme naturel

La terre possède une magnétisation naturelle.

Un barreau aimanté dans de la limaille de fer : les particules de limaille se collent sur le barreau, mais surtout aux extrémités. Ces extrémités sont appelées les **pôles**.



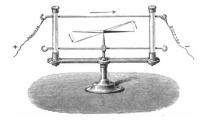
Les charges électriques
Charges électriques statiques
Le champ électrique
Charges électriques en mouvement : courant électrique
Couvant électriques

Le champ magnétique

Champ magnétique - magnétisme naturel

Les lignes dessinées par la limaille sont des **lignes de force ou lignes de champ**.

Voir vidéo: Des spectres magnétiques instantanés



harges électriques statiques e champ électrique

Courant électrique Le champ magnétique

L'expérience d'Oersted

Interaction courants - aimants, matériaux magnétiques

- Si on déplace une boussole le long d'un fil parcouru par un courant, l'aiguille s'oriente perpendiculairement au fil.
- Si on change le sens de parcours du courant, l'aiguille change de sens.
- Si le courant est annulé, la boussole reprend son orientation normale dans la direction du champ terrestre.

Voir la vidéo : expérience d'Oersted

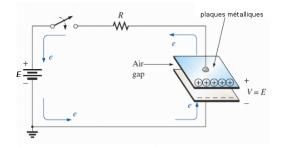
Sommaire

- Objectifs
- 2 Introduction/Rappe
- 3 Condensateurs
 - Principe de fonctionnement
 - Capacité
 - Régime transitoire : charge
 - Régime transitoire : décharge
 - Régime transitoire : valeurs initiales
- 4 Bobines
- Condensateurs et bobines dans les SEE

Principe de fonctionnement Capacité

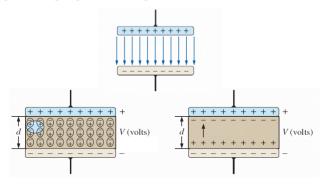
égime transitoire : charge

Les condensateurs



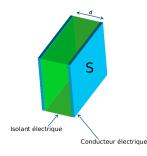
Principe de fonctionnement

 ${\bf Condensateur}: {\bf composant} \ {\it \'electrique} \ {\bf capable} \ {\it de stocker} \ {\it de l'\'energie} \\ {\it dans} \ {\it un milieu} \ {\it isolant} \ {\it \'e sensible} \ {\it \'e} \ {\it un milieu} \ {\it \'electrique}.$


• Un exemple : le condensateur à plaques parallèles

Principe de fonctionnement

• En présence d'un matériau non conducteur (diélectrique), le champ électrique polarise les particules de celui-ci.


Principe de fonctionnement Capacité Régime transitoire : charge Régime transitoire : décharge Régime transitoire : valeurs initiales

La capacité

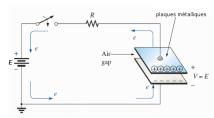
 Capacité : quantité de charge stockée par unité de tension appliqué

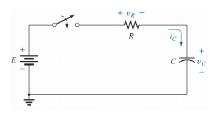
$$C = \frac{Q}{V} \Rightarrow \frac{[\text{Coulomb}]}{[\text{Volt}]} = [\text{Farad}]$$

- La capacité dépend :
 - ullet de la géométrie (surface de plaques S, distance de séparation d)
 - \bullet du type de diélectrique (isolant électrique) : permittivité ϵ

$$C = \epsilon \frac{S}{d}$$

Principe de fonctionnement **Zapacité** Régime transitoire : charge Régime transitoire : décharge Régime transitoire : valeurs initiales


Le condensateur

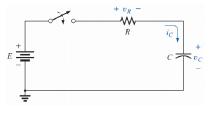

• Symboles associés :

• Le circuit précédent :

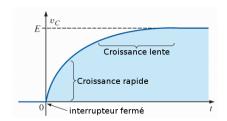
incipe de fonctionnement

tegime transitoire : charge tégime transitoire : décharge

Le condensateur


• Quelques exemples

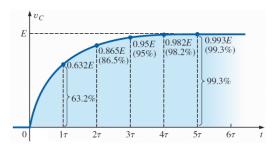
- Le charges ne vont pas remplir instantanément le condensateur.
- Le temps nécessaire à la charge dépend des composants présents dans le circuit.
- Le courant dans le condensateur est défini par :


$$i_C = C \frac{\mathrm{d}v_C}{\mathrm{d}t}$$

Principe de fonctionnement Capacité Régime transitoire : charge Régime transitoire : décharge Régime transitoire : valeurs initiales

Régime transitoire : charge

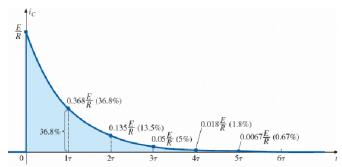
• La charge se traduit par une augmentation de la tension v_c \Rightarrow comportement exponentiel



• L'équation qui décrit le comportement de v_c :

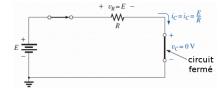
$$v_c = E(1 - \exp^{-\frac{t}{\tau}})$$

• $\tau = RC$ est la constante de temps

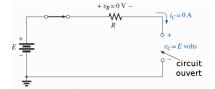


• Le courant électrique i à partir de la loi de mailles :

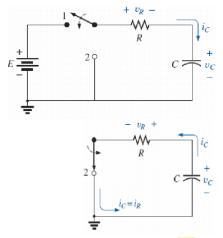
$$E = R i + v_c$$


ďoù,

$$i = \frac{E - v_c}{R} = \frac{E}{R} \exp^{-\frac{t}{\tau}}$$

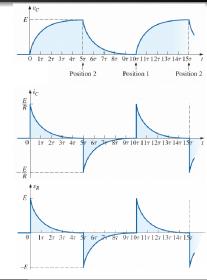


 Pour t ≤ 0, le condensateur peut être considéré comme un circuit fermé

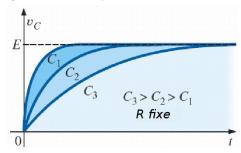

 Pour t ≫ 6τ, le condensateur peut être considéré comme un circuit ouvert

• Circuit de charge

• Circuit de décharge

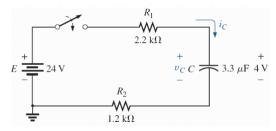


• Tension dans le condensateur v_C


• Courant dans le condensateur i_C

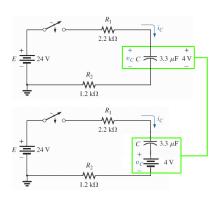
• Tension dans la resistance i_R

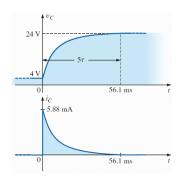
• Effet du changement de la capacité



ullet Même comportement pour C fixe et R variable

Régime transitoire : valeurs initiales


• Un exemple : condensateur chargé



Régime transitoire : valeurs initiales

• Un exemple : condensateur chargé

• À t = 0 le condensateur peut être assimilé à une source en série avec le condensateur.

Sommaire

- Objectifs
- 2 Introduction/Rappe
- Condensateurs
- 4 Bobines
 - Principe de fonctionnement
 - L'inductance
 - Régime transitoire : introduction
 - Régime transitoire
 - Régime transitoire : valeurs initiales
- 6 Condensateurs et bobines dans les SEE

Principe de fonctionnement

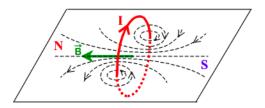
L'inductance

gime transitoire : introduction

égime transitoire

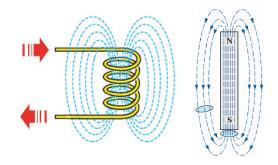
valeure initialee

Les bobines



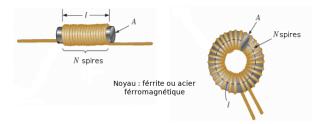
Principe de fonctionnement

Spire : boucle de fil enroulé autour d'un noyau. Lorqu'un courant électrique circule, un champ magnétique est produit.



Courant électrique et champ magnétique

 $\label{eq:bobine:ensemble de spires parcouru par un courant I. Composant électrique capable de stocker de l'énergie dans un milieu « sensible »au champ magnétique.$


Une bobine va créer l'équivalent d'un aimant :

Inductance

Inductance : rapport entre le champ magnétique créé et le courant injecté dans une bobine. Cette quantité mesure le champ magnétique qui peut être emmagasiné par une bobine.

$$L = \frac{NB \ A}{i} = \frac{N\phi}{i} \Rightarrow \frac{\text{[Webers]}}{\text{[Ampères]}} = \text{[Henrys]}$$

Inductance

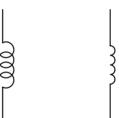
L'inductance dépend de caractéristiques géométriques (nombre de spires N, longueur l et section A du circuit magnétique), et du type de matériau qui constitue le noyau de la bobine (perméabilité magnétique μ).

Pour le noyau toroïdal,

$$L = \frac{N\phi}{i} = \frac{N^2}{\frac{l}{\mu S}}$$

Principe de fonctionnement

L'inductance


Régime transitoire : introduction

Régime transitoire

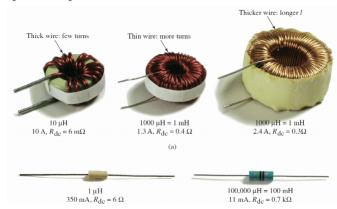
Págime transitoire : valeurs initiales

Inductance

• Symboles associés :

incipe de fonctionnement

L'inductance


égime transitoire : introduction

Regime transitoire

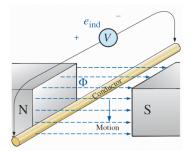
gime transitoire : valeurs ini

Inductance

• Quelques exemples

Avant de commencer l'analyse transitoire, il faut définir quelques notions :

- Tension induite (Loi de Faraday)
- Polarité de la tension induite (Loi de Lenz)



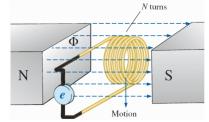
Loi de Faraday : tension induite

Un conducteur qui se déplace dans un champ magnétique (en coupant les lignes de champ à angle droit) génère une tension induite e_{ind} aux extrémités.

Cette tension dépend de :

- le champ magnétique B
- la longueur "utile" l du conducteur,
- ullet la vitesse de déplacement v.

$$e_{\rm ind} = Blv$$

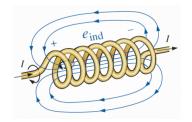


Loi de Faraday : tension induite

Une bobine plong'ee dans un champ magnétique variable génère une tension induite e_{ind} .

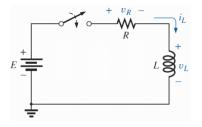
Cette tension dépend de :

- le flux magnétique $\Phi = B A$,
- la géométrie de la bobine (nombre de spires, section)

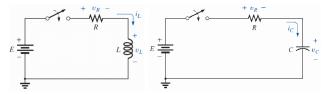


$$e_{\rm ind} = N \frac{\mathrm{d}\Phi}{\mathrm{d}t}$$

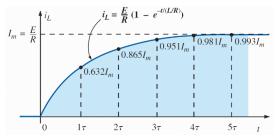
Loi de Lenz : polarité de e_{ind}


La tension induite e_{ind} aura tendance a produire un courant opposée au courant initial.

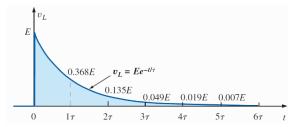
- Le champ magnétique ne va pas se créer instantanément dans le noyau.
- Le temps nécessaire à la création dépend du type de matériaux (perméabilité μ).
- La tension dans la bobine est défini par :

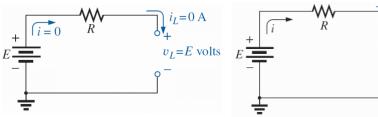

$$v_L = L \frac{\mathrm{d}i_L}{\mathrm{d}t}$$

Le régime transitoire et complémentaire à celui des condensateurs :

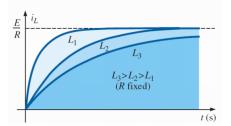

- Le courant dans l'inductance i_L est équivalent (comportement) à la tension dans le condensateur v_C .
- La tension dans l'inductance v_L est équivalent (comportement) au courant dans le condensateur i_C .

Le régime transitoire et complémentaire à celui des condensateurs :

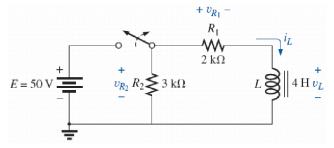

• Le courant dans l'inductance i_L a le même comportement exponentiel de la tension dans le condensateur v_C .


Le régime transitoire et complémentaire à celui des condensateurs :

• Pendant la phase de charge la tension dans l'inductance v_L a le même comportement exponentiel du courant dans le condensateur i_C .

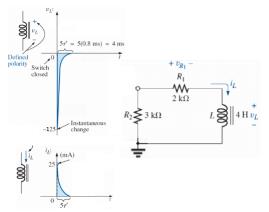

 Pour t ≤ 0, l'inductance peut être considéré comme un circuit ouvert Pour t ≫ 6τ, l'inductance peut être considéré comme un circuit fermé

Le courant dans une inductance ne peut pas changer instantanément.


• Effet du changement de l'inductance

Régime transitoire : valeurs initiales

• Un exemple : inductance chargée



L'interrupteur est fermé un temps suffisamment long pour charger l'inductance, il s'ouvre à t=0

Régime transitoire : valeurs initiales

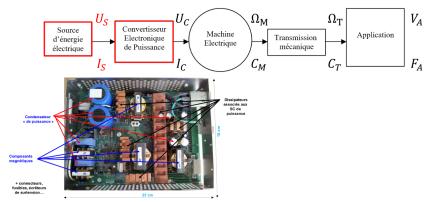
• Un exemple : inductance chargée

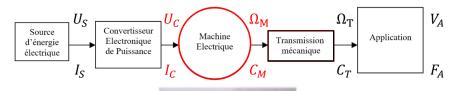
 À t=0 l'inductance peut être assimilé à une source de courant en série avec l'inductance.

Sommaire

- Objectifs
- 2 Introduction/Rappel
- Condensateurs
- Bobines
- 5 Condensateurs et bobines dans les SEE
 - Types de condensateurs
 - Types des bobines

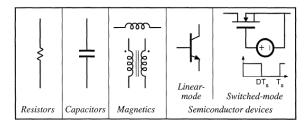
Condensateurs et bobines dans les SEE



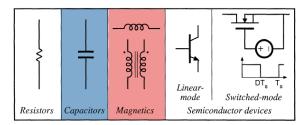


Condensateurs et bobines dans les SEE

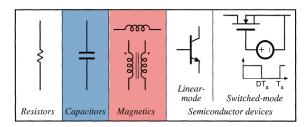
On les trouver?


Ou les trouver?

Condensateurs et bobines dans les SEE


Types de composants - convertisseurs :

Condensateurs et bobines dans les SEE


Types de composants - convertisseurs :

Condensateurs et bobines dans les SEE

Types de composants dans le CEP :

Types de condensateurs :

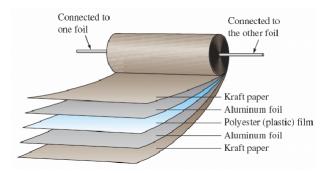
1. Film plastiques, papier ou mixtes

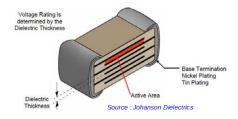
Technologies film plastique (polypropylène)

- 1. Film plastiques, papier ou mixtes
- 2. Céramiques

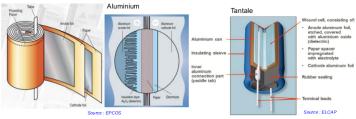
- 1. Film plastiques, papier ou mixtes
- 2. Céramiques
- 3. Électrolytiques

Technologies film plastique (polypropylène)

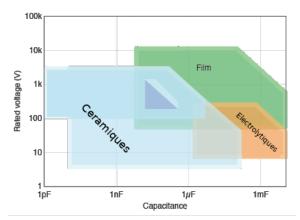

0,1 à 10 nF – 10 à 40 (φ 2 à 6 cm)


Technologies céramiques Technologies électrochimiques

- 1. Film plastiques, papier ou mixtes
 - Film métallisée avec une fine couche d'aluminium (armatures : foils).



- 2. Céramiques
 - Des possibilités de température élevée
 - Si Ferroélectriques (BaTiO3) \Rightarrow permittivité très élevée (1000 à 20000)
 - Énergie volumique élevée
 - Longue durée de vie
 - Prix élevé



- 3. Électrolytiques
 - Nécessitent d'être polarisés pour créer un oxyde isolant ⇒ condensateurs polarisés.
 - Electrolytes : liquides, gélifiés ou polymères
 - Tensions : jusqu'à 600 V (aluminium) ou 100 V (tantale)
 - Aux basses températures : forte dégradation des performances
 - Aux hautes températures : accroissement du courant de fuites...
 - Forte énergie volumique, surtout en « haute tension »

Domaines d'utilisation:

Bobines dans les SEE

Composant essentiel des convertisseurs statiques :

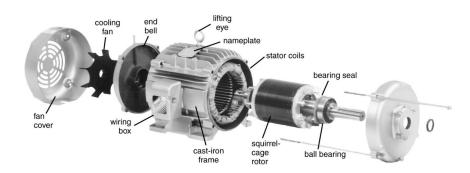
Transformateur torique. circuit feuilleté enroulé

Transformateur sur pot ferrite

matériau faible u

Inductance torique Inductance, circuit ferrite avec entrefer

Transformateur de courant



Transformateurs d'impulsions

Bobines dans les SEE

Composant essentiel des machines électriques :

