
UNIVERSITÉ DE TECHNOLOGIE COMPIÈGNE

SY03

Introduction aux systèmes d'entraînements électriques (SEE)

Plan du cours

Plan du cours

- Définitions, représentations mathématiques, exemples
- Notion de charge ramenée sur un axe
- Composants pour la conversion rotation-rotation
- Composants pour la conversion rotation-translation
- Synthèse

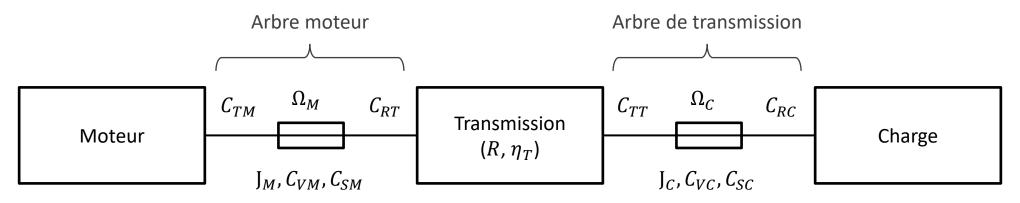
Généralités

Généralités

Nicolas DAMAY Maître de conférences Département IM

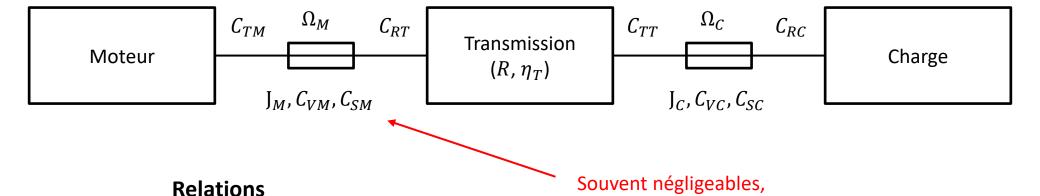
www.utc.fr nicolas.damay@utc.fr

Définition


- Système mécanique permettant de réaliser la transformation d'un mouvement et de transmettre une puissance mécanique
- Souvent : augmenter ou réduire une vitesse de rotation
- Parfois: transformer une rotation en translation
- Cas particulier : changement d'axe de rotation sans modification de la vitesse

Représentation générale en rotation

- C_{TM} : couple transmis par le moteur
- Ω_M : vitesse de rotation de l'arbre moteur
- C_{RT} : couple reçu par la transmission


- J_M : inertie sur l'arbre moteur
- C_{VM} : frottements visqueux sur l'arbre moteur (huile, graisse...)
- C_{SM} : frottements secs sur l'arbre moteur

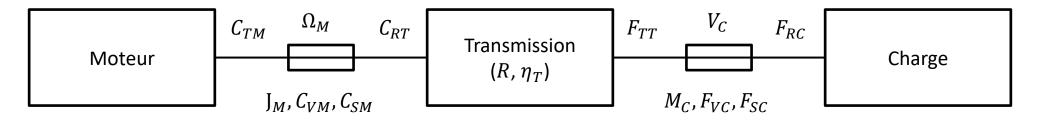
$$R = \frac{\Omega_M}{\Omega_C}$$
 (pas de glissement) $\eta_T = \frac{P_{TT}}{P_{RT}} = \frac{C_{TT} \times \Omega_C}{C_{RT} \times \Omega_M}$ (mode moteur)

Représentation générale en rotation

mais pas toujours!

- $\Omega_C = \Omega_M/R$
- $C_{RT} = C_{TM} J_M \dot{\Omega}_M C_{VM} C_{SM} \approx C_{TM} J_M \dot{\Omega}_M$

•
$$C_{TT} = \frac{C_{RT} \times \Omega_M}{\Omega_C} \times \eta_T = C_{RT} \times R \times \eta_T$$

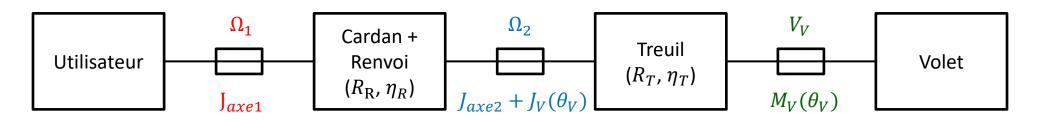

•
$$C_{RC} = C_{TT} - J_C \dot{\Omega_C} - C_{VC} - C_{SC} \approx C_{TT} - J_C \dot{\Omega_C}$$

• D'où :
$$C_{RC} \approx C_{TT} - J_C \dot{\Omega_C} \approx (C_{TM} - J_M \dot{\Omega_M}) \times R \times \eta_T - J_C \dot{\Omega_C}$$

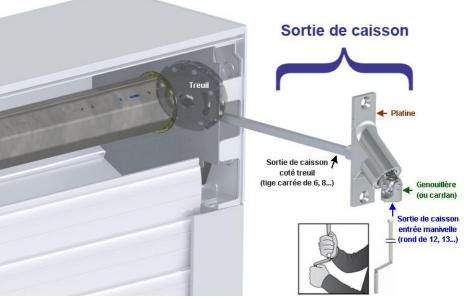
Représentation générale en translation

- F_{TR} : force transmise par la transmission
- V_T : vitesse de translation
- F_{RC} : force reçue par la charge

$$R = \frac{\Omega_M}{V_C} \ [rad/m] \ ou \ [m^{-1}]$$

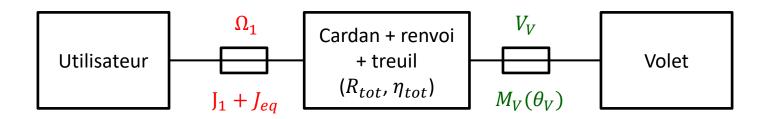

- M_C: masse en mouvement côté charge
- F_{VC} : frottements visqueux côté charge
- F_{SM} : frottements secs côté charge

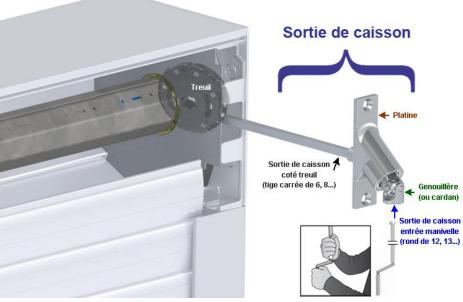
$$\eta_T = \frac{F_{TT} \times V_C}{C_{RT} \times \Omega_M} \ (moteur)$$



Exemple: mécanisme de volet roulant (rotation-translation)

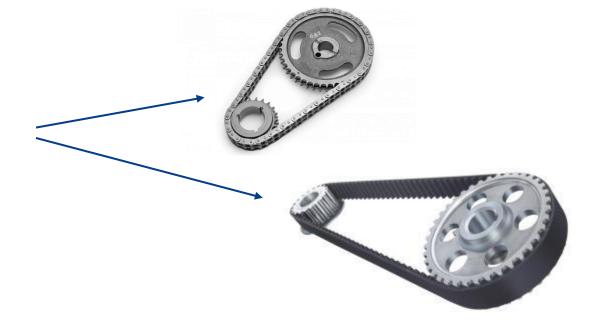
VOLET ROULANT MANUEL (A MANIVELLE)





Exemple: mécanisme de volet roulant (rotation-translation)

VOLET ROULANT MANUEL (A MANIVELLE)



Caractéristiques essentielles d'une transmission

- Rapport de réduction *R*
- Encombrement $L \times H \times P$
- Vitesse maximale admissible Ω_{max} ou V_{max}
- Couple/force maximale admissible C_{max} ou F_{max} (/!\ déformation ou casse)
- Puissance transmissible P_{max}
- Masse *M* ou inertie *J*
- Rendement η
- Réversibilité
- Raideur de transmission

Raideur d'une transmission

• Ratio entre le couple transmis et le décalage d'angle

$$K_R = \frac{C}{\Delta \theta} \quad \left[\frac{Nm}{rad} \right]$$

- Raideur faible ► perte de précision
- Raideur faible ▶ protection du moteur contre les chocs
- Raideur forte ightharpoonup souvent un C_{max} plus élevé

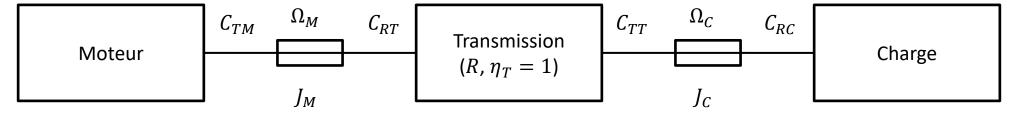
Nicolas DAMAY Maître de conférences Département IM

Exemple: pignon et vis sans fin

- Cas irréversible : rendement de 0,3 à 0,4
- Cas **réversible** : rendement de 0,5 à 0,95 si bien lubrifié
- Rapport de réduction élevé
- Possibilité de réglage fin
- Changement d'axe de rotation

Dispositif d'accord d'une contrebasse (irréversible)

Notion de charge ramenée sur un axe

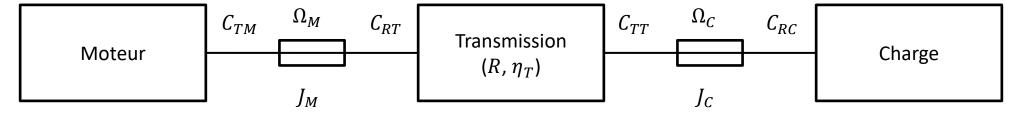

Nicolas DAMAY Maître de conférences Département IM

www.utc.fr nicolas.damay@utc.fr

Conversion rotation-rotation idéale

- Conversion idéale : $\eta_T = 1$
- Ω_{C} $C_{TT}=\Omega_{M}$ C_{RT} et R $\Omega_{C}=\Omega_{M}$ donc $C_{TT}=R$ C_{RT}

Charge équivalente sur l'arbre moteur


- $C_{TM} \approx C_{RT} + J_M \, \dot{\Omega}_M \approx C_{RC}' + J_{eq} \, \dot{\Omega}_M$
- Inertie équivalente $J_{eq} = J_M + \frac{1}{R^2} J_C$
- Couple utile équivalent $C_{RC}' = \frac{1}{R}C_{RC}$

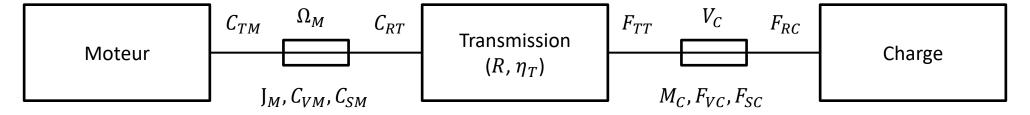
 $\text{d\'emo} \quad \begin{cases} C_{RT} = C_{TT}/R \\ C_{TT} = C_{RC} + J_C \ \dot{\Omega}_C \\ C_{RT} = \left(C_{RC} + J_C \ \dot{\Omega}_C\right)/R \\ C_{RT} = \left(C_{RC} + J_C \frac{\dot{\Omega}_M}{R}\right)/R \\ C_{TM} \approx C_{RC}/R + \left(J_M + \frac{1}{R^2}J_C\right) \ \dot{\Omega}_M \\ C_{TM} \approx C_{RC}' + J_{eq} \ \dot{\Omega}_M \end{cases}$

Conversion rotation-rotation réelle

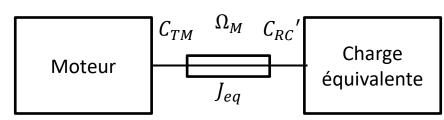
- Conversion idéale : $\eta_T < 1$
- $\Omega_C \ C_{TT} = \eta_T \ \Omega_M \ C_{RT}$ et $R \ \Omega_C = \Omega_M$ donc $C_{TT} = \eta_T \ R \ C_{RT}$

Charge équivalente sur l'arbre moteur

- $C_{TM} \approx C_{RT} + J_M \, \dot{\Omega}_M \approx C_{RC}' + J_{eq} \, \dot{\Omega}_M$
- Inertie équivalente $J_{eq} = J_M + \frac{1}{\eta_T R^2} J_C$
- Couple utile équivalent $C_{RC}' = \frac{1}{n_T R} C_{RC}$

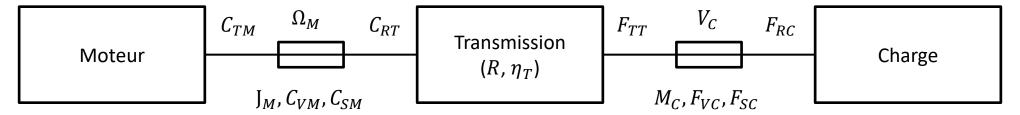

Expressions définies en mode moteur

/!\ rendements en mode générateur


Conversion rotation-translation idéale

- Conversion idéale : $\eta_T = 1$
- $V_C F_{TT} = \Omega_M C_{RT}$ et $R V_C = \Omega_M$ donc $F_{TT} = R C_{RT}$

Charge équivalente sur l'arbre moteur


- $C_{TM} \approx C_{RT} + J_M \, \dot{\Omega}_M \approx C_{RC}' + J_{eq} \, \dot{\Omega}_M$
- Inertie équivalente $J_{eq} = J_M + \frac{1}{R^2} M_C$
- Couple utile équivalent $C_{RC}' = \frac{1}{R} F_{RC}$

Conversion rotation-translation réelle

- Conversion idéale : $\eta_T < 1$
- $V_C F_{TT} = \eta_T \Omega_M C_{RT}$ et $R V_C = \Omega_M$ donc $F_{TT} = \eta_T R C_{RT}$

Charge équivalente sur l'arbre moteur

- $C_{TM} \approx C_{RT} + J_M \, \dot{\Omega}_M \approx C_{RC}' + J_{eq} \, \dot{\Omega}_M$
- Inertie équivalente $J_{eq} = J_M + \frac{1}{\eta_T R^2} M_C$
- Couple utile équivalent $C_{RC}' = \frac{1}{n_T R} F_{RC}$

Expressions définies en mode moteur

/!\ rendements en mode générateur

Moteur $egin{pmatrix} C_{TM} & \Omega_M & C_{RC}' \\ \hline J_{eq} & & \text{charge} \\ \hline \end{array}$

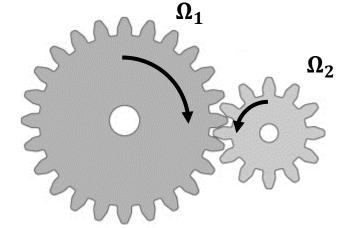
Composants pour la conversion rotation-rotation

Nicolas DAMAY Maître de conférences Département IM

www.utc.fr nicolas.damay@utc.fr

Réducteur à engrenages

$$R = \frac{\Omega_1}{\Omega_2} = (-1)^{C_{ext}} \frac{Nb \ de \ dents \ roue \ 2}{Nb \ de \ dents \ roue \ 1}$$

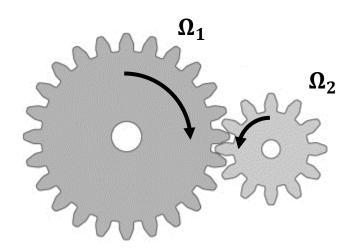

- C_{ext} : nombre de contacts <u>extérieurs</u>
- Liaison rigide et réversible (/!\ jeu)
- Possible inversion du sens de rotation
- Axes parallèles ou perpendiculaires

Avantages

- Très bon rendement
- Simple et fiable

Inconvénients

- · Encombrement et poids importants
- Inertie importante
- Jeux moyens (/!\ usure)
- R faible (sauf si plusieurs étages)



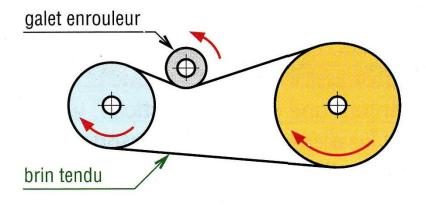
Réducteur à engrenages

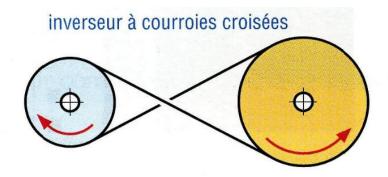
$$R = \frac{\Omega_1}{\Omega_2} = (-1)^{C_{ext}} \frac{Nb \ de \ dents \ roue \ 2}{Nb \ de \ dents \ roue \ 1}$$

- Usure : augmente le jeu
- Usure : peut entraîner des vibrations
- Nombres de dents : premiers entre eux
 - Répartition de l'usure

Poulies et courroies lisses

$$R = \frac{\Omega_1}{\Omega_2} = \frac{Diamètre\ roue\ 2}{Diamètre\ roue\ 1}$$


- Liaison peu rigide
- Axes parallèles


Avantages

• Simple et fiable. Distance variable entre les axes.

Inconvénients

ullet Encombrement. Elasticité et **glissement**. R faible

Poulies et courroies crantées

$$R = \frac{\Omega_1}{\Omega_2} = \frac{Diamètre\ roue\ 2}{Diamètre\ roue\ 1}$$

- Liaison peu rigide (sauf courroie armée)
- Axes parallèles

Avantages

• Simple et fiable. Distance variable entre les axes. Pas de glissement.

Inconvénients

• Encombrement, Elasticité, R faible

Chaîne et pignons

$$R = \frac{\Omega_1}{\Omega_2} = \frac{Nb \ de \ dents \ roue \ 2}{Nb \ de \ dents \ roue \ 1}$$

- Liaison rigide
- Axes parallèles

Avantages

- Simple et fiable
- Distance variable entre les axes

Inconvénients

- Encombrement
- Inertie importante (chaîne longue)
- R faible

Pignon et vis sans fin

$$R = rac{\Omega_{vis}}{\Omega_{roue}} = rac{Nb~de~dents~roue}{Nb~de~filets~de~la~vis}$$

- Vis à filet simple ou double
- Liaison rigide. Axes perpendiculaires. Généralement irréversible.

Avantages

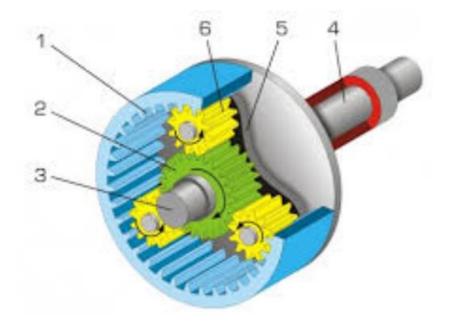
- Précision
- Très compact
- R élevé

Inconvénients

- Risque de jeu
- Mauvais rendement (frottements)
- Durée de vie limitée

<u>Dispositif d'accord d'une contrebasse (irréversible)</u>

Train épicycloïdal


- Liaison rigide
- Réversible (sauf *R* trop élevé)
- Axes parallèles

Avantages

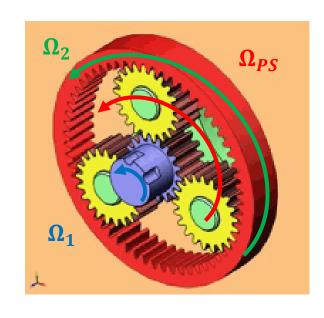
Très compact

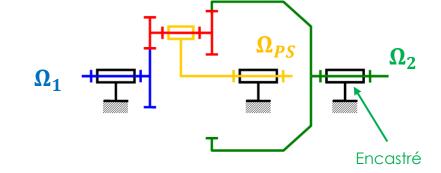
Inconvénients

- Jeux moyens
- Complexe
- Poids
- Inertie du porte-satellites

- 1. Couronne
- 2. Planétaire menant
- 3. Axe du planétaire menant
- 4. Axe du porte-satellites
- 5. Porte-satellites
- 6. Satellite

Train épicycloïdal

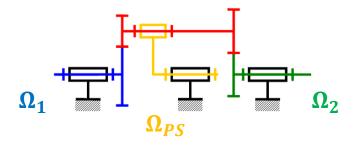

Relation de Willis

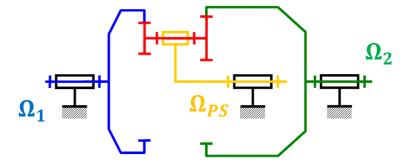

$$\frac{\Omega_2 - \Omega_{PS}}{\Omega_1 - \Omega_{PS}} = (-1)^{C_{ext}} \frac{\prod Nb \ dents \ roues \ menantes}{\prod Nb \ dents \ roues \ menées}$$

- $\Omega_1 = \Omega_M$: vitesse de l'arbre d'entrée (menant)
- $\Omega_2 = 0$: vitesse de la couronne (considérée menée)
- $\Omega_{PS} = \Omega_C$: vitesse du porte-satellites (menant + mené)
- $C_{ext} = 1$ (satellite-planétaire)
- · Cas particulier: 1 seule roue par satellite

$$\frac{\Omega_2 - \Omega_{PS}}{\Omega_1 - \Omega_{PS}} = \frac{-\Omega_C}{\Omega_M - \Omega_C} = -\frac{N_1 \times N_{PS}}{N_{PS} \times N_2}$$

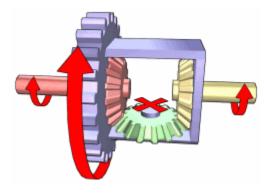
$$\frac{\Omega_C}{\Omega_M} = \frac{N_1}{N_1 + N_2} = \frac{R_1}{2(R_1 + R_{PS})}$$





Train épicycloïdal

Autres possibilités géométriques



Cas du différentiel

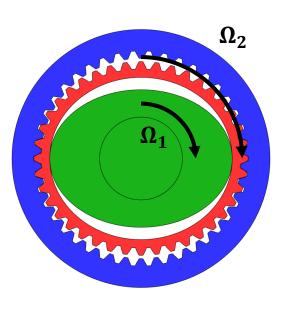
- Porte-satellite entraîné par le moteur
- Roues accrochées aux planétaires
- Possibilité pour les roues de tourner à des vitesses différentes, mais la moyenne de leur vitesse est constante

$$2\Omega_M = \Omega_1 + \Omega_2$$

<u>Différentiel d'automobile</u>

Engrenage à onde de déformation (harmonic drive)

$$R = \frac{\Omega_1}{\Omega_2} = \frac{\textit{Nb de dents roue 1}}{\textit{Nb de dents roue 1} - \textit{Nb de dents roue 2}}$$


- Liaison rigide, irréversible
- Axes colinéaires

Avantages

• Encombrement réduit, jeu faible, fort couple transmissible

Inconvénients

• Coût élevé, sensible à la poussière et à l'humidité

Composants pour la conversion rotation-translation

Nicolas DAMAY Maître de conférences Département IM

www.utc.fr nicolas.damay@utc.fr

Système vis-écrou

$$R = \frac{\Omega_M}{V_C} = \frac{2\pi}{Pas \ de \ la \ vis} \quad [rad/m]$$

- Liaison rigide
- Rarement réversible

Avantages

- Précision
- R élevé

Inconvénients

- Rendement faible
- Course limitée
- Inertie
- Flambage de la vis
- Vitesse max faible

<u>Etau</u>

Clé à molette

Vis à billes

$$R = \frac{\Omega_M}{V_C} = \frac{2\pi}{Pas \ de \ la \ vis} \quad [rad/m]$$

- Liaison rigide
- Réversible

Avantages

- Précision
- *R* élevé
- Rendement élevé

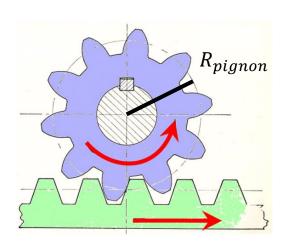
Inconvénients

- Course limitée
- Inertie plus élevée
- Flambage de la vis
- Vitesse max faible

Vis à billes

Pignon et crémaillère

$$R = \frac{\Omega_M}{V_C} = \frac{1}{Rayon \ moyen \ du \ pignon} \quad [rad/m]$$


- Liaison rigide
- Réversible

Avantages

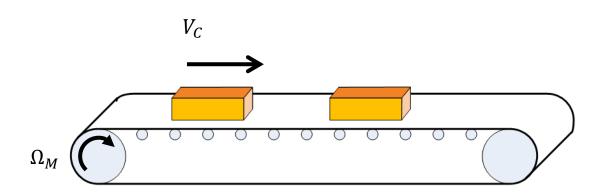
Rendement correct

Inconvénients

- Course limitée
- Masse de la crémaillère
- Précision moyenne
- R faible

Cabestan ou tapis roulant

$$R = \frac{\Omega_M}{V_C} = \frac{1}{Rayon \ du \ cabestan/rouleau} \quad [rad/m]$$


- Peu rigide
- Réversible
- Glissement possible

Avantages

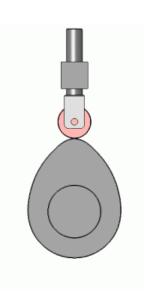
- Bon rendement
- Course importante

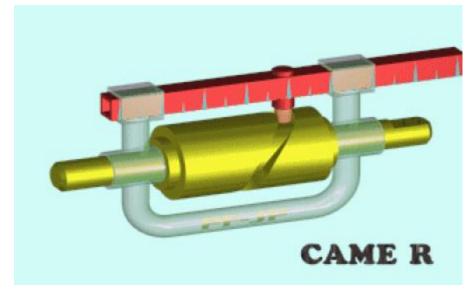
Inconvénients

- Précision moyenne
- R faible

Came

R = variable

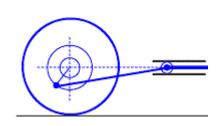

- Mouvement non régulier
- Pas toujours précis


Avantages

- Faible rendement
- Simple

Inconvénients

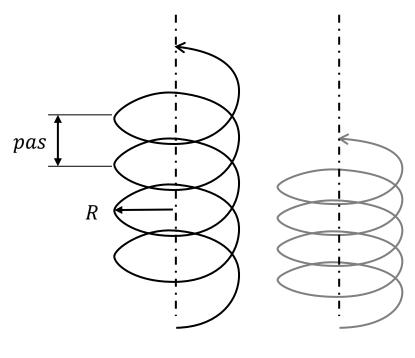
- Précision moyenne
- Généralement non réversible





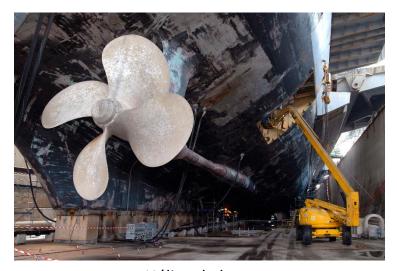
Excentrique et bielle

- Caractéristiques proches d'une came
- Translation sinusoïdale
- Liaison rigide
- Pas de glissement
- Bon rendement
- Réversible

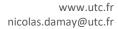

Système d'entraînement de roue de locomotive

Hélice

- Comme vis-écrou, mais avec glissement
- Formules spécifiques



Trajet théorique


Trajet réel

Avion à hélice

Hélice de bateau

Synthèse

Synthèse

Nicolas DAMAY Maître de conférences Département IM

www.utc.fr nicolas.damay@utc.fr

Réducteur	Standard		A faible ou très faible jeu		Sans jeu	
Réalisations	à engrenages (axes // ou ^)	roue et vis (axes ^)	épicycloïdaux ou dérivés	à engrenages	à roue et vis précontrainte	à engrenage à rattrapage de jeu
Gamme de rapports	1 à 3 par étage	5 à 20	10 à 400 (voir plus)	1 à 3 par étage	jusqu'à 150	10 à 50
Jeu mesuré en sortie	> 15' 30' standard	> 15'	stand: 3 à 10' précis: 1 à 3'	3' à 5'	nul	nul (< 0.5')
Rendement	très bon > 0.9	faible (< 0.6) et variable	moyen 0.5 à 0.85	très bon > 0.9	faible (< 0.5) et variable	bon à très bon
Motoréducteur standard	oui	possible	oui, souvent	oui	non	oui
Coût	limité	moyen	moyen	assez élevé	très élevé	moyen à élevé
Durée de vie	très élevée	moyenne	fonction de la qualité	élevée	moyenne	moyenne
Mise en œuvre	très aisée	aisée	aisée	aisée	délicate	aisée
Maintenance	Faible	périodique	faible	faible	nécessaire	faible
Dimensions standard	oui	oui	non	non en général	non	non
Exemples	toutes	toutes	machines		plateaux	robotique de
d'applications	applications	applications	spéciales		diviseurs	précision

Extrait du *Technoguide E de l'ADEPA*

