

Uncertainty reasoning and machine learning Uncertainty, Decision and Evaluation in Machine Learning

Vu-Linh Nguyen

Chaire de Professeur Junior, Laboratoire Heudiasyc Université de technologie de Compiègne

AOS4 master courses

Outline

- Imprecise Dirichlet Model (IDM)
 - Frequentist and Bayesian Approaches
 - Imprecise Dirichlet Model
- Applications in classification tasks
- Evaluate Classifiers

Outline

- Imprecise Dirichlet Model (IDM)
 - Frequentist and Bayesian Approaches
 - Imprecise Dirichlet Model
- Applications in classification tasks
- Evaluate Classifiers

The Importance of Sample Size (Exercise 1)

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	50%	50%
Tails	50%	50%

For both coins, a frequentist says

$$p_{\text{Heads}} = p_{\text{Tails}} = 1/2$$

The Importance of Sample Size (Exercise 1)

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	50%	50%
Tails	50%	50%
Coin	Small	Large
Flips	4	4·10 ⁶
Heads	25%	25%
Tails	75%	75%

For both coins, a frequentist says

$$p_{\text{Heads}} = p_{\text{Tails}} = 1/2$$

Do Bayesians say the same thing?

For both coins, a frequentist says

$$p_{\text{Heads}} = 0.25, p_{\text{Tails}} = 0.75$$

The Importance of Sample Size (Exercise 1)

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	50%	50%
Tails	50%	50%

For both coins, a frequentist says

$$p_{\text{Heads}} = p_{\text{Tails}} = 1/2$$

Do Bayesians say the same thing?

For both coins, a frequentist says

$$p_{\text{Heads}} = 0.25, p_{\text{Tails}} = 0.75$$

Advocators	α_X	s	$p_{H}^{\mathcal{S}}$	$p_{T}^{\mathcal{S}}$	p_{H}^{L}	p_{T}^{L}
Haldane (1948)	0	0	???	???	???	???
Perks (1947)	1/ 1/	1	???	???	???	???
Jeffreys (1946, 1961)	1/2	V /2	???	???	???	???
Bayes-Laplace	1	$ \mathcal{V} $???	???	???	???

The Importance of Sample Size (Solution 1)

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	50%	50%
Tails	50%	50%
Coin Flips Heads Tails	Small 4 25% 75%	Large 4·10 ⁶ 25% 75%

For both coins, a frequentist says

$$p_{\text{Heads}} = p_{\text{Tails}} = 1/2$$

Do Bayesians say the same thing? ←Yes!

• For both coins, a frequentist says

$$p_{\text{Heads}} = 0.25, p_{\text{Tails}} = 0.75$$

The Importance of Sample Size (Solution 1)

Small	Large
2	2·10 ⁶
50%	50%
50%	50%
	2 50%

For both coins, a frequentist says

$$p_{\text{Heads}} = p_{\text{Tails}} = 1/2$$

Do Bayesians say the same thing? ←Yes!

• For both coins, a frequentist says

$$p_{\text{Heads}} = 0.25, p_{\text{Tails}} = 0.75$$

Advocators	α_{V}	s	p_{H}^{S}	$p_{T}^{\mathcal{S}}$	p_{H}^{L}	p_{T}^{L}
Haldane (1948)	0	0	0.25	0.75	0.25	0.75
Perks (1947)	1/ 1/	1	0.3	0.7	0.25	0.75
Jeffreys (1946, 1961)	1/2	7/ /2	0.3	0.7	0.25	0.75
Bayes-Laplace	1	17/	0.33	0.67	0.25	0.75

The Importance of Sample Size (Exercise 2)

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	0%	0%
Tails	100%	100%

For both coins, a frequentist says

$$p_{\text{Heads}} = 0$$
, $p_{\text{Tails}} = 1$

The Importance of Sample Size (Exercise 2)

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	0%	0%
Tails	100%	100%

For both coins, a frequentist says

$$p_{\text{Heads}} = 0$$
, $p_{\text{Tails}} = 1$

Advocators	α_{x}	s	$p_{H}^{\mathcal{S}}$	$p_{T}^{\mathcal{S}}$	$p_{\rm H}^L$	p_{T}^{L}
Haldane (1948)	0	0	???	???	???	???
Perks (1947)	1/ 1/	1	???	???	???	???
Jeffreys (1946, 1961)	1/2	7/ /2	???	???	???	???
Bayes-Laplace	1	$ \mathcal{V} $???	???	???	???

The Importance of Sample Size (Solution 2)

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	0%	0%
Tails	100%	100%

• For both coins, a frequentist says

$$p_{\text{Heads}} = 0$$
, $p_{\text{Tails}} = 1$

Advocators	α_{x}	s	$p_{H}^{\mathcal{S}}$	$p_{T}^{\mathcal{S}}$	p_{H}^{L}	$ ho_{ m T}^L$
Haldane (1948)	0	0	0	1	0	1
Perks (1947)	1/ 1/	1	0.17	0.83	$3 \cdot 10^{-7}$	$1 - 3 \cdot 10^{-7}$
Jeffreys	1/ 1/	1	0.17	0.83	$3 \cdot 10^{-7}$	$1 - 3 \cdot 10^{-7}$
Bayes-Laplace	1	$\mid \mathcal{V} \mid$	0.25	0.75	$5 \cdot 10^{-7}$	$1 - 5 \cdot 10^{-7}$

Outline

- Imprecise Dirichlet Model (IDM)
 - Frequentist and Bayesian Approaches
 - Imprecise Dirichlet Model
- Applications in classification tasks
- Evaluate Classifiers

The Importance of Sample Size (Exercise 3)

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	50%	50%
Tails	50%	50%

$$\theta_{\text{Heads}} = \theta_{\text{Tails}} = 1/2$$

- Bayesians would say the same thing
- Would IDM say the same thing?

The Importance of Sample Size (Exercise 3)

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	50%	50%
Tails	50%	50%

$$\theta_{\mathsf{Heads}} = \theta_{\mathsf{Tails}} = 1/2$$

- Bayesians would say the same thing
- Would IDM say the same thing?

	<u> </u>	$\mid \overline{\mathit{P}}_{H}^{\mathcal{S}} \mid$	P_{H}^{L}	\overline{P}_{H}^{L}
s = 1	???	???	???	???
s=2	???	???	???	???

The Importance of Sample Size (Solution 3)

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	50%	50%
Tails	50%	50%

$$\theta_{\text{Heads}} = \theta_{\text{Tails}} = 1/2$$

- Bayesians would say the same thing
- Would IDM say the same thing?

	<u>P</u> H	\overline{P}_{H}^{S}	\underline{P}_{H}^{L}	\overline{P}_{H}^{L}
s=1	0.33	0.67	$0.5 - 3 \cdot 10^{-7} \\ 0.5 - 5 \cdot 10^{-7}$	$0.5 + 3 \cdot 10^{-7}$
s=2	0.25	0.75	$0.5 - 5 \cdot 10^{-7}$	$0.5 + 5 \cdot 10^{-7}$

The Importance of Sample Size (Exercise 4)

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	0%	0%
Tails	100%	100%

$$\theta_{\text{Heads}} = 0$$
, $\theta_{\text{Tails}} = 1$

- Bayesians would say different things
- What would IDM say?

The Importance of Sample Size (Exercise 4)

Coin	Small	Large
Flips	2	$2 \cdot 10^{6}$
Heads	0%	0%
Tails	100%	100%

$$\theta_{\text{Heads}} = 0$$
, $\theta_{\text{Tails}} = 1$

- Bayesians would say different things
- What would IDM say?

Advocators	α_{x}	s	$p_{H}^{\mathcal{S}}$	$p_{T}^{\mathcal{S}}$	ρ_{H}^{L}	$ ho_{T}^L$
Haldane (1948)	0	0	0	1	0	1
Perks (1947)	1/ 1/	1	0.17	0.83	3·10 ⁻⁷	$1 - 3 \cdot 10^{-7}$
Jeffreys	1/ 1/	1	0.17	0.83	3·10 ⁻⁷	$1 - 3 \cdot 10^{-7}$
Bayes-Laplace	1	$\mid \mathcal{V} \mid$	0.25	0.75	5·10 ⁻⁷	$1 - 5 \cdot 10^{-7}$

The Importance of Sample Size (Exercise 4)

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	0%	0%
Tails	100%	100%

$$\theta_{\text{Heads}} = 0$$
, $\theta_{\text{Tails}} = 1$

- Bayesians would say different things
- What would IDM say?

Advocators	α_{x}	s	$p_{\rm H}^S$	p_{T}^{S}	p_{H}^{L}	p_{T}^{L}
Haldane (1948)	0	0	0	1	0	1
Perks (1947)	1/ 1/	1	0.17	0.83	3·10 ⁻⁷	$1 - 3 \cdot 10^{-7}$
Jeffreys	1/ 1/	1	0.17	0.83	$3 \cdot 10^{-7}$	$1 - 3 \cdot 10^{-7}$
Bayes-Laplace	1	V	0.25	0.75	5·10 ⁻⁷	$1 - 5 \cdot 10^{-7}$

IDM	<u> </u>	$\overline{P}_{H}^{\mathcal{S}}$	P_{H}^{L}	\overline{P}_{H}^{L}
s = 1	???	???	???	???
s=2	???	???	???	???

The Importance of Sample Size (Solution 4)

Small	Large
2	2·10 ⁶
0%	0%
100%	100%
	2 0%

$$\theta_{\text{Heads}} = 0, \theta_{\text{Tails}} = 1$$

- Bayesians would say different things
- What would IDM say?

Advocators	α_{x}	s	p_{H}^{S}	$p_{T}^{\mathcal{S}}$	p_{H}^{L}	$ ho_{T}^{L}$
Haldane (1948)	0	0	0	1	0	1
Perks (1947)	1/ 1/	1	0.17	0.83	3·10 ⁻⁷	$1 - 3 \cdot 10^{-7}$
Jeffreys	1/ 1/	1	0.17	0.83	3·10 ⁻⁷	$1 - 3 \cdot 10^{-7}$
Bayes-Laplace	1	$\mid \mathcal{V} \mid$	0.25	0.75	5·10 ⁻⁷	$1 - 5 \cdot 10^{-7}$

IDM	$P_{H}^{\mathcal{S}}$	\overline{P}_{H}^{S}	$P_{\rm H}^L$	\overline{P}_{H}^{L}
s = 1	0	0.33	0	$5 \cdot 10^{-7}$
s=2	0	0.50	0	10^{-6}

Determine \mathcal{D} (Exercise 5)

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	[0,1]	[5, 10]
Tails	[1,2]	[5,2·10 ⁶]

• Recap:
$$\mathcal{D} = \{ \boldsymbol{D} | n_v \in \boldsymbol{n}_v, \sum_{v \in \mathcal{V}} n_v = n \}$$

- What is D^S for the first coin?
- What is \mathcal{D}^L for the second coin?

Determine \mathcal{D} (Exercise 5)

Coin
 Small
 Large

 Flips
 2

$$2 \cdot 10^6$$

 Heads
 [0,1]
 [5,10]

 Tails
 [1,2]
 [5,2 \cdot 10^6]

- Recap: $\mathcal{D} = \{ \boldsymbol{D} | n_v \in \boldsymbol{n}_v, \sum_{v \in \mathcal{V}} n_v = n \}$
- What is \mathcal{D}^{S} for the first coin?
- What is \mathcal{D}^L for the second coin?

Coin	Small	D_1	D_2
Flips	2	2	2
Heads	[0,1]	0	1
Tails	[1,2]	2	1

Determine \mathcal{D} (Exercise 5)

Coin
 Small
 Large

 Flips
 2

$$2 \cdot 10^6$$

 Heads
 [0,1]
 [5,10]

 Tails
 [1,2]
 [5,2 \cdot 10^6]

- Recap: $\mathcal{D} = \{ \boldsymbol{D} | n_v \in \boldsymbol{n}_v, \sum_{v \in \mathcal{V}} n_v = n \}$
- What is 𝒯^S for the first coin?
- What is \mathcal{D}^L for the second coin?

Coin	Small	D_1	D_2
Flips	2	2	2
Heads	[0,1]	0	1
Tails	[1,2]	2	1

Coin	Large	D_1	D_2	D_3	D_4	D_5	D_6
Flips	$n = 2 \cdot 10^6$	n	n	n	n	n	n
Heads	[5,10]	???	???	???	???	???	???
Tails	[5, <i>n</i>]	???	???	???	???	???	???

Determine \mathcal{D} (Solution 5)

- Recap: $\mathcal{D} = \{ \boldsymbol{D} | n_v \in \boldsymbol{n}_v, \sum_{v \in \mathcal{V}} n_v = n \}$
- What is 𝒯^S for the first coin?
- What is \mathcal{D}^L for the second coin?

Coin	Small	D_1	D_2
Flips	2	2	2
Heads	[0, 1]	0	1
Tails	[1,2]	2	1

Coin	Large	D_1	D_2	D_3	D_4	D_5	D_6
Flips	$n = 2 \cdot 10^6$	n	n	n	n	n	n
Heads	[5, 10]	5	6	7	8	9	10
Tails	[5, <i>n</i>]	n-5	n-6	n-7	n-8	n-9	n-10

Compute Lower and Upper Expectations (Exercise 6)

$$\underline{\underline{E}}(\theta_{V}|\mathcal{D}) = \min_{\mathbf{D} \in \mathcal{D}} \underline{\underline{E}}(\theta_{V}|\mathbf{D}) = \min_{\mathbf{D} \in \mathcal{D}} \frac{n_{V}}{(n+s)}, \tag{1}$$

$$\overline{E}(\theta_{V}|\mathcal{D}) = \max_{\mathbf{D}\in\mathcal{D}} \overline{E}(\theta_{V}|\mathbf{D}) = \max_{\mathbf{D}\in\mathcal{D}} (n_{V}+s)/(n+s).$$
 (2)

Compute Lower and Upper Expectations (Exercise 6)

$$\underline{\underline{E}}(\theta_{V}|\mathcal{D}) = \min_{\mathbf{D} \in \mathcal{D}} \underline{\underline{E}}(\theta_{V}|\mathbf{D}) = \min_{\mathbf{D} \in \mathcal{D}} \frac{n_{V}}{(n+s)}, \tag{1}$$

$$\overline{E}(\theta_{V}|\mathcal{D}) = \max_{\mathbf{D} \in \mathcal{D}} \overline{E}(\theta_{V}|\mathbf{D}) = \max_{\mathbf{D} \in \mathcal{D}} (n_{V}+s)/(n+s).$$
 (2)

Coin	Small	D_1	D_2	$\underline{E}(\theta_V \mathscr{D})$	$\overline{E}(\theta_{V} \mathbf{D})$
Flips	2	2	2		
Heads	[0,1]	0	1	???	???
Tails	[1,2]	2	1	???	???

Compute Lower and Upper Expectations (Exercise 6)

$$\underline{\underline{E}}(\theta_{V}|\mathcal{D}) = \min_{\mathbf{D} \in \mathcal{D}} \underline{\underline{E}}(\theta_{V}|\mathbf{D}) = \min_{\mathbf{D} \in \mathcal{D}} \frac{n_{V}}{(n+s)}, \tag{1}$$

$$\overline{E}(\theta_{V}|\mathcal{D}) = \max_{\mathbf{D} \in \mathcal{D}} \overline{E}(\theta_{V}|\mathbf{D}) = \max_{\mathbf{D} \in \mathcal{D}} (n_{V}+s)/(n+s).$$
 (2)

Coin	Small	D_1	D_2	$\underline{E}(\theta_V \mathscr{D})$	$E(\theta_{V} \mathbf{D})$
Flips	2	2	2		
Heads	[0, 1]	0	1	???	???
Tails	[1,2]	2	1	???	???

Coin	Large	D_1	 D_6	$\underline{E}(\theta_{V} \mathscr{D})$	$\overline{E}(\theta_{V} \mathbf{D})$
Flips	$n = 2 \cdot 10^6$	n	 n		
Heads	[5, 10]	5	 10	???	???
Tails	[5, <i>n</i>]	n-5	 n-10	???	???

Compute Lower and Upper Expectations (Solution 6)

$$\underline{\underline{E}}(\theta_{V}|\mathcal{D}) = \min_{\mathbf{D}\in\mathcal{D}} \underline{\underline{E}}(\theta_{V}|\mathbf{D}) = \min_{\mathbf{D}\in\mathcal{D}} \frac{n_{V}}{(n+s)}, \tag{3}$$

$$\overline{E}(\theta_{V}|\mathscr{D}) = \max_{\mathbf{D}\in\mathscr{D}} \overline{E}(\theta_{V}|\mathbf{D}) = \max_{\mathbf{D}\in\mathscr{D}} \frac{(n_{V}+s)}{(n+s)}.$$
 (4)

Coin	Small	D_1	D_2	$\underline{E}(\theta_{V} \mathscr{D})$	$E(\theta_{V} \mathbf{D})$
Flips	2	2	2		
Heads	[0,1]	0	1	0/(2+s)	(1+s)/(2+s)
Tails	[1,2]	2	1	1/(2+s)	(2+s)/(2+s)

Compute Lower and Upper Expectations (Solution 6)

$$\underline{\underline{E}}(\theta_{V}|\mathcal{D}) = \min_{\mathbf{D}\in\mathcal{D}} \underline{\underline{E}}(\theta_{V}|\mathbf{D}) = \min_{\mathbf{D}\in\mathcal{D}} \frac{n_{V}}{(n+s)}, \tag{3}$$

$$\overline{E}(\theta_{V}|\mathscr{D}) = \max_{\mathbf{D}\in\mathscr{D}} \overline{E}(\theta_{V}|\mathbf{D}) = \max_{\mathbf{D}\in\mathscr{D}} (n_{V}+s)/(n+s). \tag{4}$$

Coin	Small	D_1	D_2	$\underline{E}(\theta_{V} \mathscr{D})$	$E(\theta_{V} \mathbf{D})$
Flips	2	2	2		
Heads	[0,1]	0	1	0/(2+s)	(1+s)/(2+s)
Tails	[1,2]	2	1	1/(2+s)	(2+s)/(2+s)

Coin	Large	D_1	 D_6	$\underline{E}(\theta_V \mathscr{D})$	$E(\theta_V \boldsymbol{D})$
Flips	$n = 2 \cdot 10^6$	n	 n		
Heads	[5, 10]	5	 10	5/(n+s)	(10+s)/(n+s)
Tails	[5, <i>n</i>]	n-5	 n – 10	(n-10)/(n+s)	(n-5+s)/(n+s)

Outline

- Imprecise Dirichlet Model (IDM)
- Applications in classification tasks
 - Pazen Window Classifiers
- Evaluate Classifiers

Outline

- Imprecise Dirichlet Model (IDM)
- Applications in classification tasks
 - Pazen Window Classifiers
- Evaluate Classifiers

Determine Possible Precise Data Set (Exercise 7)

$oldsymbol{x}' \in oldsymbol{D}_{arepsilon}(oldsymbol{x})$	$Y \subset \mathcal{Y} = \{Apple, Banana, Tomato\}$
X ' ₁	Apple or Banana, but not Tomato
x_2^i	Banana or Tomato, but not Apple
\mathbf{x}_{3}^{7}	Apple or Tomato, but not Banana
$oldsymbol{x}_3^{\prime} \ oldsymbol{x}_4^{\prime}$	Tomato
$\mathbf{x}_{5}^{'}$	Tomato
$\mathbf{x}_{6}^{'}$	Banana
x ₇	Banana

7

$$n = 7, \mathbf{n}_A = ????, \mathbf{n}_B = ????, \mathbf{n}_T = ???$$
 (5)

Determine Possible Precise Data Set (Exercise 7)

$Y \subset \mathcal{Y} = \{Apple, Banana, Tomato\}$
Apple or Banana, but not Tomato
Banana or Tomato, but not Apple
Apple or Tomato, but not Banana
Tomato
Tomato
Banana
Banana

7

Determine Possible Precise Data Set (Solution 7)

$oldsymbol{x}' \in oldsymbol{\mathcal{D}}_{arepsilon}(oldsymbol{x})$	$Y \subset \mathcal{Y} = \{Apple, Banana, Tomato\}$
X_1'	Apple or Banana, but not Tomato
\mathbf{x}_{2}^{i}	Banana or Tomato, but not Apple
$\boldsymbol{x_3^7}$	Apple or Tomato, but not Banana
$\mathbf{x}_{\mathtt{\Delta}}^{\prime}$	Tomato
$\mathbf{X}_{5}^{'}$	Tomato
\mathbf{x}_{6}^{\prime}	Banana
$\boldsymbol{x}_7^{\prime}$	Banana
x' ₂ x' ₃ x' ₄ x' ₅ x' ₆ x' ₇	Apple or Tomato, but not Banana Tomato Tomato Banana

$$n = 7, \mathbf{n}_A = \{0, 1, 2\}, \mathbf{n}_B = \{2, 3, 4\}, \mathbf{n}_T = \{2, 3, 4\}$$
 (6)

Determine Possible Precise Data Set (Solution 7)

$Y \subset \mathcal{Y} = \{Apple, Banana, Tomato\}$
Apple or Banana, but not Tomato
Banana or Tomato, but not Apple
Apple or Tomato, but not Banana
Tomato
Tomato
Banana
Banana

(6)

Compute Lower and Upper Expectations (Exercise 8)

	D ₁	D_2	D_3	D_4	D ₅	D_6	D_7	D 8
n_A	0	0	1	1	1	2	2	2
n_B	3	0 4 3	2	3	4	2	3	4
n_T	4	3	4	3	2	4	3	3

Using IDM to estimate interval posterior mean $\theta_y^* | \mathscr{D}$ of $\theta_y | \mathscr{D}$:

$$\underline{\underline{E}}(\theta_y|\mathbf{x}) = \min_{\mathbf{D}\in\mathcal{D}} \underline{\underline{E}}(\theta_y|\mathbf{x}) = \min_{\mathbf{D}\in\mathcal{D}} \frac{n_y/(n+s)}{n_y}, \tag{7}$$

$$\overline{E}(\theta_{y}|\mathbf{x}) = \max_{\mathbf{D} \in \mathcal{D}} \overline{E}(\theta_{y}|\mathbf{D}) = \max_{\mathbf{D} \in \mathcal{D}} (n_{y}+s)/(n+s).$$
 (8)

Compute Lower and Upper Expectations (Exercise 8)

	D ₁	D_2	D_3	D_4	D_5	D_6	D_7	D 8
n_A	0	0	1	1	1	2	2	2
n_B	3	0 4 3	2	3	4	2	3	4
n_T	4	3	4	3	2	4	3	3

Using IDM to estimate interval posterior mean $\theta_v^* | \mathscr{D}$ of $\theta_v | \mathscr{D}$:

$$\underline{\underline{E}}(\theta_y|\mathbf{x}) = \min_{\mathbf{D}\in\mathcal{D}} \underline{\underline{E}}(\theta_y|\mathbf{x}) = \min_{\mathbf{D}\in\mathcal{D}} \frac{n_y/(n+s)}{n_y}, \tag{7}$$

$$\overline{E}(\theta_{y}|\mathbf{x}) = \max_{\mathbf{D} \in \mathscr{D}} \overline{E}(\theta_{y}|\mathbf{D}) = \max_{\mathbf{D} \in \mathscr{D}} (n_{y}+s)/(n+s).$$
 (8)

$$\begin{array}{c|cc}
 & \underline{E}(\theta_y|\mathbf{x}) & \overline{E}(\theta_y|\mathbf{x}) \\
\hline
A & ??? & ??? \\
B & ??? & ??? \\
T & ??? & ??? \\
\end{array}$$

Compute Lower and Upper Expectations (Solution 8)

	D ₁	D_2	D_3	D_4	D ₅	D_6	D_7	D 8
n_A	0	0	1	1	1	2	2	2
n_B	3	0 4 3	2	3	4	2	3	4
n_T	4	3	4	3	2	4	3	3

Using IDM to estimate interval posterior mean $\theta_y^* | \mathscr{D}$ of $\theta_y | \mathscr{D}$:

$$\underline{\underline{E}}(\theta_y|\mathbf{x}) = \min_{\mathbf{D}\in\mathcal{D}} \underline{\underline{E}}(\theta_y|\mathbf{x}) = \min_{\mathbf{D}\in\mathcal{D}} \frac{n_y/(n+s)}{n_y}, \tag{9}$$

$$\overline{E}(\theta_y|\mathbf{x}) = \max_{\mathbf{D} \in \mathcal{D}} \overline{E}(\theta_y|\mathbf{D}) = \max_{\mathbf{D} \in \mathcal{D}} \frac{(n_y + s)}{(n_y + s)}.$$
 (10)

$$\begin{array}{c|cccc} & \underline{E}(\theta_{y}|\mathbf{x}) & \overline{E}(\theta_{y}|\mathbf{x}) \\ \hline A & 0/(7+s) & (2+s)/(7+s) \\ B & 2/(7+s) & (4+s)/(7+s) \\ T & 2/(7+s) & (4+s)/(7+s) \\ \end{array}$$

Outline

- Imprecise Dirichlet Model (IDM)
- Applications in classification tasks
- Evaluate Classifiers

Set-Based Utility Functions (Exercise 9)

Recap: Few commonly used **utility functions**:

$$g_{\alpha}(|Y|) = \frac{\alpha}{|Y|} - \frac{\alpha-1}{|Y|^2}.$$

Exercise: The maximum value of α such that $g_{\alpha}(|Y|) \le 1$, $\forall Y \subset \mathcal{Y} \setminus \emptyset$?

References I

