Q: HOW MANY PH.D.'S DOES IT TAKE TO GET A POWERPOINT PRESENTATION TO WORK?

WWW.PHDCOMICS.COM

ANSWER: (n+1)

WHERE n = THE NUMBER OF ACADEMICS IN THE ROOM WHO THINK THEY KNOW HOW TO FIX IT, AND 1 = THE PERSON WHO FINALLY CALLS THE A/V TECHNICIAN.

Uncertainty reasoning and machine learning A Few Applications

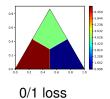
Vu-Linh Nguyen

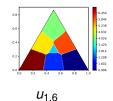
Chaire de Professeur Junior, Laboratoire Heudiasyc Université de technologie de Compiègne

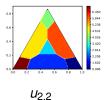
AOS4 master courses

Optimal Decision Rules

Frequentist approaches

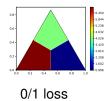


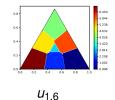


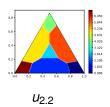


Optimal Decision Rules

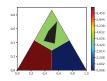
Frequentist approaches

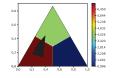


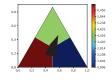




Credal approaches







Objectives

After this lecture, students should be able to describe (a few)

- probabilistic and credal classifiers
- and how to use them to make singleton and set-valued predictions,
- and their (potential) applications.

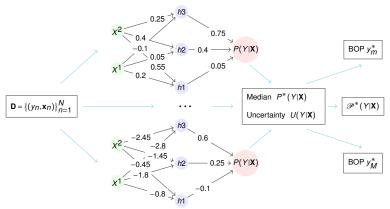
Outline

- Credal ensembling in multi-class classification
 - o A median classifier: Learning and inference
 - A credal classifier: Learning and inference
 - Applications in machine learning
 - Compact deep ensembles
- Other applications

A formal framework [5]

Basic setup:

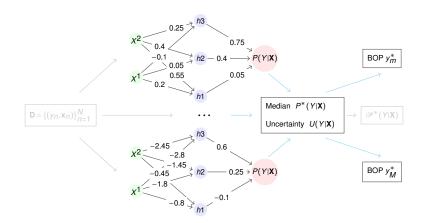
- Features $(X^1,...,X^P)$ and a class variables Y
- An finite output space $\mathscr{Y} = \{y^1, ..., y^C\}$



Outline

- Credal ensembling in multi-class classification
 - o A median classifier: Learning and inference
 - A credal classifier: Learning and inference
 - Applications in machine learning
 - Compact deep ensembles
- Other applications

A median classifier and its predictions [5]



Compute a median classifier

Basic setting:

- An ensemble $\mathbf{H} := \{\mathbf{h}^m | m \in [M] := \{1, ..., M\}\}$ is made available
- A specified statistical distance d between distributions

A median classifier minimizes the average expected distance:

$$\mathbf{h}_{d} \in \operatorname{argmin} \mathbf{E} \left[\sum_{m=1}^{M} d(\mathbf{h}, \mathbf{h}^{m}) \right] = \operatorname{argmin} \int_{\mathbf{x} \in \mathcal{X}} \left[\sum_{m=1}^{M} d(\mathbf{h}(\mathbf{x}), \mathbf{h}^{m}(\mathbf{x})) \right] d\mathbf{x}.$$

Basic setting:

- An ensemble $\mathbf{H} := \{\mathbf{h}^m | m \in [M] := \{1, ..., M\}\}$ is made available
- A specified statistical distance d between distributions

A median classifier minimizes the average expected distance:

$$\mathbf{h}_{d} \in \operatorname{argmin} \mathbf{E} \left[\sum_{m=1}^{M} d(\mathbf{h}, \mathbf{h}^{m}) \right] = \operatorname{argmin} \int_{\mathbf{x} \in \mathcal{X}} \left[\sum_{m=1}^{M} d(\mathbf{h}(\mathbf{x}), \mathbf{h}^{m}(\mathbf{x})) \right] d\mathbf{x}.$$

If no constraint on \mathcal{H} , \mathbf{h}_d can be defined in an instance-wise manner:

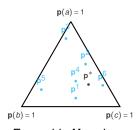
$$\mathbf{h}_{d}(\mathbf{x}) \in \underset{\mathbf{h}(\mathbf{x}) \in \Delta^{K}}{\operatorname{argmin}} \sum_{m=1}^{M} d(\mathbf{h}(\mathbf{x}), \mathbf{h}^{m}(\mathbf{x})). \tag{1}$$

Compute a median classifier (cont.)

For each \mathbf{x} , dropping \mathbf{x} and denoting $\mathbf{p} = \mathbf{h}$ give

$$\mathbf{p}_d \in \underset{\mathbf{p} \in \Delta^K}{\operatorname{argmin}} \sum_{m=1}^M d(\mathbf{p}, \mathbf{p}^m).$$
 (2)

Examples of d are squared Euclidean distance (sE), L_1 distance, and KL divergence.



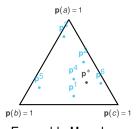
Ensemble H and psF

Compute a median classifier (cont.)

For each \mathbf{x} , dropping \mathbf{x} and denoting $\mathbf{p} = \mathbf{h}$ give

$$\mathbf{p}_d \in \underset{\mathbf{p} \in \Delta^K}{\operatorname{argmin}} \sum_{m=1}^M d(\mathbf{p}, \mathbf{p}^m).$$
 (2)

Examples of d are squared Euclidean distance (sE), L_1 distance, and KL divergence.



Ensemble **H** and **p**_{sF}

For any convex distance d:

- The convex optimization problem (2) can be solved using any solver.
- Close-form solution \mathbf{p}_{sE} = averaging the distributions class-wise.

Bayesian-optimal predictions

Basic set (instance-wise manner):

- The median distribution \mathbf{p}_d is given.
- A the higher the better utility *u*: 𝒯 × 𝒯 → ℝ₊

A Bayesian-optimal prediction (BOP) of u is

$$y_d^u \in \operatorname{argmax} \mathbf{E}[u(y', y)] = \operatorname{argmax} \sum_{y \in \mathscr{Y}} u(y', y) \mathbf{p}_d(y).$$
 (3)

Bayesian-optimal predictions

Basic set (instance-wise manner):

- The median distribution p_d is given.
- A the higher the better utility $u: \mathcal{Y} \times \mathcal{Y} \longmapsto \mathbb{R}_+$

A Bayesian-optimal prediction (BOP) of u is

$$y_d^u \in \operatorname{argmax} \mathbf{E}[u(y', y)] = \operatorname{argmax} \sum_{y \in \mathscr{Y}} u(y', y) \mathbf{p}_d(y). \tag{3}$$

Commonly used utilities, such as 0/1 and cost-sensitive accuracies:

- Find a BOP (3) takes from O(K) to $O(K^2)$
- A BOP $y_d^{0/1}$ (3) of 0/1 accuracy = a most probable class

Bayesian-optimal set-valued predictions

Basic set (instance-wise manner):

- The median distribution p_d is given.
- A the higher the better utility $U: \mathcal{Y} \times 2^{\mathcal{Y}} \longrightarrow \mathbb{R}_+$

A Bayesian-optimal prediction (BOP) of U is

$$Y_d^U \in \operatorname{argmax}_{Y' \subset \mathscr{Y}} \mathbf{E}[U(Y', y)] = \operatorname{argmax}_{Y' \subset \mathscr{Y}} \sum_{y \in \mathscr{Y}} U(Y', y) \mathbf{p}_d(y).$$
 (4)

Bayesian-optimal set-valued predictions

Basic set (instance-wise manner):

- The median distribution \mathbf{p}_d is given.
- A the higher the better utility $U: \mathscr{Y} \times 2^{\mathscr{Y}} \longmapsto \mathbb{R}_+$

A Bayesian-optimal prediction (BOP) of U is

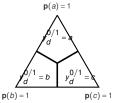
$$Y_d^U \in \operatorname{argmax}_{Y' \subset \mathscr{Y}} \mathbf{E}[U(Y', y)] = \operatorname{argmax}_{Y' \subset \mathscr{Y}} \sum_{y \in \mathscr{Y}} U(Y', y) \mathbf{p}_d(y). \tag{4}$$

Commonly used utilities, such as utility-discounted accuracies:

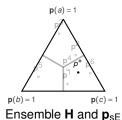
$$U(Y',y) = \frac{1}{g(|Y'|)} [[y \in Y']], \qquad (5)$$

- Find a BOP Y_d^U (4) takes $O(K \log(K))$.
- A BOP Y_d^U (4) consists of the most probable classes on \mathbf{p}_d .

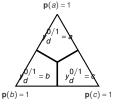
Probabilistic uncertainty scores



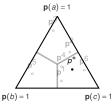
Regions $\Delta_{\mathbf{x}}^{\text{st}}$ for different $y_d^{0/1}$



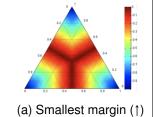
Probabilistic uncertainty scores

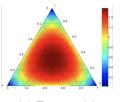


Regions $\Delta_{\mathbf{x}}^{\mathrm{st}}$ for different $y_d^{0/1}$



Ensemble H and psE





(b) Least confidence (↓)

(c) Entropy (↓)

Heatmaps illustrating the behavior of probabilistic uncertainty scores

Probabilistic uncertainty scores (Cont.)

Smallest margin (↑) is defined as

$$S_{SM}(\mathbf{p}_d) = \mathbf{p}_d(y^{st}) - \mathbf{p}_d(y^{nd}).$$
 (6)

Example: A classification problem with $\mathcal{Y} = \{a, b, c\}$:

	x ₁	x ₂
	50→(0.6, 0.4, 0.0)	100→(0.3, 0.4, 0.3)
	50→(0.0, 0.4, 0.6)	
p sE	(0.3, 0.4, 0.3)	
S _{SM} (†)	0.1	
	Should we consider \mathbf{x}_1 and \mathbf{x}_2 the same?	

Probabilistic uncertainty scores (Cont.)

Smallest margin (↑) is defined as

$$S_{SM}(\mathbf{p}_d) = \mathbf{p}_d(y^{st}) - \mathbf{p}_d(y^{nd}).$$
 (6)

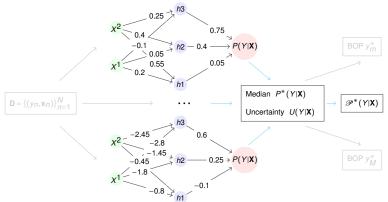
Example: A classification problem with $\mathcal{Y} = \{a, b, c\}$:

	x ₃	X 4
	80→(1.0, 0.0, 0.0)	100→(0.8, 0.2, 0.0)
	$80 \rightarrow (1.0, 0.0, 0.0)$ $20 \rightarrow (0.0, 1.0, 0.0)$	
p sE	(0.8, 0.2, 0.0)	
$S_{\mathrm{SM}}\left(\uparrow ight)$	0.6	
	Should we consider \mathbf{x}_3 and \mathbf{x}_4 the same?	

Outline

- Credal ensembling in multi-class classification
 - o A median classifier: Learning and inference
 - A credal classifier: Learning and inference
 - Applications in machine learning
 - Compact deep ensembles
- Other applications

A credal classifier and its predictions [5]



For any query instance, once $\mathscr{P}^*(\mathscr{Y}|\mathbf{x})$ is estimated:

- IP decision rules can be called to make set-valued predictions
- uncertainty scores defined for credal sets can be computed.

Estimate a credal classifier

Each credal classifier \mathbf{CH}_{α}^{d} is defined in a point-wise manner:

$$\mathbf{CH}_{\alpha}^{d} := \left\{ \mathbf{p} := \sum_{m=1}^{M_{\alpha}} \gamma_{m} \mathbf{p}^{(m)} | \gamma_{m} \ge 0, m \in [M_{\alpha}], \sum_{m=1}^{M_{\alpha}} \gamma_{m} = 1 \right\}, \tag{7}$$

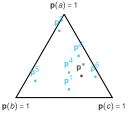
where $\mathbf{p}^{(m)}$ is the *m*-th closet point to \mathbf{p}_d according to the distance *d*.

Estimate a credal classifier

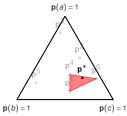
Each credal classifier \mathbf{CH}_{α}^{d} is defined in a point-wise manner:

$$\mathbf{CH}_{\alpha}^{d} := \left\{ \mathbf{p} := \sum_{m=1}^{M_{\alpha}} \gamma_{m} \mathbf{p}^{(m)} | \gamma_{m} \ge 0, m \in [M_{\alpha}], \sum_{m=1}^{M_{\alpha}} \gamma_{m} = 1 \right\}, \tag{7}$$

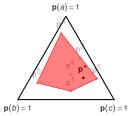
where $\mathbf{p}^{(m)}$ is the *m*-th closet point to \mathbf{p}_d according to the distance d.



Ensemble ${\bf H}$ and ${\bf p}_{\rm sE}^*$



Credal set **CH**_{0.5}^{SE}



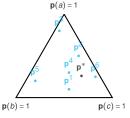
Credal set **CH**₀^{SE}

Estimate a credal classifier

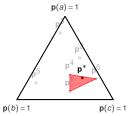
Each credal classifier \mathbf{CH}_{α}^{d} is defined in a point-wise manner:

$$\mathbf{CH}_{\alpha}^{d} := \left\{ \mathbf{p} := \sum_{m=1}^{M_{\alpha}} \gamma_{m} \mathbf{p}^{(m)} | \gamma_{m} \ge 0, m \in [M_{\alpha}], \sum_{m=1}^{M_{\alpha}} \gamma_{m} = 1 \right\}, \tag{7}$$

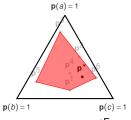
where $\mathbf{p}^{(m)}$ is the *m*-th closet point to \mathbf{p}_d according to the distance d.



Ensemble **H** and $\mathbf{p}_{\mathsf{sE}}^*$



Credal set **CH**_{0.5}^{SE}

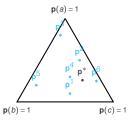


Credal set CH₀^{sE}

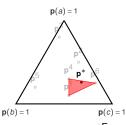
The hyperparameter α^* — nested cross validation or a validation set.

Optimal set-valued predictions under IP decision rules

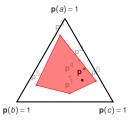
Basic set (instance-wise manner): The credal set $CH_{\alpha^*}^d$ is given.



Ensemble ${\bf H}$ and ${\bf p}_{sE}$



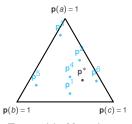
Credal set **CH**_{0.5}



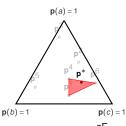
Credal set **CH**₀^{sE}

Optimal set-valued predictions under IP decision rules

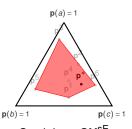
Basic set (instance-wise manner): The credal set $\mathbf{CH}_{\alpha^*}^d$ is given.



Ensemble \mathbf{H} and \mathbf{p}_{sE}



Credal set **CH**_{0.5}^{sE}



Credal set **CH**₀^{sE}

- Any IP decision rule $R_{\mathsf{IP}}: 2^{\Delta^{\mathcal{K}}} \longmapsto 2^{\mathscr{Y}}$ can be applied.
- Any related algorithmic solutions can be leveraged.

Optimal set-valued predictions under IP decision rules (Cont.)

Basic set (instance-wise manner):

- The credal set $\mathbf{CH}_{\alpha^*}^d$ is given.
- A the higher the better utility $u: \mathcal{Y} \times \mathcal{Y} \longmapsto \mathbb{R}_+$

E-admissibility under *u*:

- A class y is E-admissible if there exist $\mathbf{p} \in \mathbf{CH}_{\alpha^*}^d$ so that $y = y^u$.
- This can be checked by solving a linear program.

Optimal set-valued predictions under IP decision rules (Cont.)

Basic set (instance-wise manner):

- The credal set $\mathbf{CH}_{\alpha^*}^d$ is given.
- A the higher the better utility $u: \mathcal{Y} \times \mathcal{Y} \longmapsto \mathbb{R}_+$

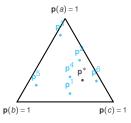
E-admissibility under *u*:

- A class y is E-admissible if there exist $\mathbf{p} \in \mathbf{CH}_{\alpha^*}^d$ so that $y = y^u$.
- This can be checked by solving a linear program.

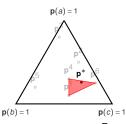
Maximality under *u*:

- A class y is maximal if there doesn't exist $y' \neq y$ such that y'dominates y on all $\mathbf{p} \in \mathbf{CH}_{\alpha^*}^d$ (w.r.t. u).
- This can be checked by solving K − 1 linear programs.
- We can also enumerate all the distributions \mathbf{p}^m , $m \in [M]$.

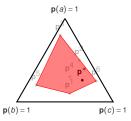
Basic set (instance-wise manner): The credal set $\mathbf{CH}_{\alpha^*}^d$ is given.



Ensemble ${\bf H}$ and ${\bf p}_{sE}$



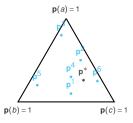
Credal set **CH**_{0.5}



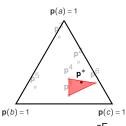
Credal set **CH**₀^{sE}

Credal set-based uncertainty scores

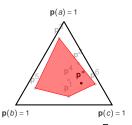
Basic set (instance-wise manner): The credal set $\mathbf{CH}_{\alpha^*}^d$ is given.



Ensemble **H** and **p**_{sF}



Credal set CH_{0.5}



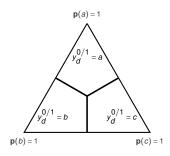
Credal set CH₀SE

- Any credal set-based uncertainty score can be used.
- Any related algorithmic solutions can be leveraged.

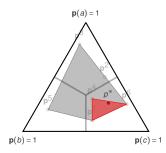
Credal set-based uncertainty scores (Cont.)

Decision-related uncertainty scores:

- How certain the ensemble **H** is about y_d^u ?
- How consensus of the ensemble members is about y_d^u ?



Regions $\Delta_{\mathbf{x}}^{\text{st}}$ for different $y_d^{0/1}$



Credal set $CH_0^{SE}(x)$ with p_{SE}

Decision-related uncertainty scores

Basic setting (instance-wise manner):

- The median distribution \mathbf{p}_d is given.
- The predictions $\{\mathbf{p}^m | m \in [M]\}$ are given.
- A probabilistic uncertainty score $S: \Delta^K \longrightarrow \mathbb{R}$ is given.

Decision-related uncertainty scores

Basic setting (instance-wise manner):

- The median distribution \mathbf{p}_d is given.
- The predictions $\{\mathbf{p}^m | m \in [M]\}$ are given.
- A probabilistic uncertainty score $S: \Delta^K \longrightarrow \mathbb{R}$ is given.

A **decision-related uncertainty** version of S is (defined as its empirical expectation)

$$\mathsf{RS}(\mathbf{p}_d^u) := \frac{1}{M+1} \left(\sum_{m=1}^M \left[\mathbf{p}^m \in \mathbf{CH}_{y_d^u}^d \right] S(\mathbf{p}^m) + S(\mathbf{p}_d) \right), \tag{8}$$

where $\left\|\mathbf{p}^m \in \mathbf{CH}_{y_d^u}^d\right\| = 1$ implies y_d^u is a best solution on \mathbf{p}^m under u.

Decision-related uncertainty scores (Cont.)

Smallest margin (↑) is defined as

$$S_{SM}(\mathbf{p}_d) = \mathbf{p}_d(y^{st}) - \mathbf{p}_d(y^{nd}).$$
 (9)

Example: A classification problem with $\mathscr{Y} = \{a, b, c\}$:

	x ₁	x ₂
	50→(0.6, 0.4, 0.0)	100→(0.3, 0.4, 0.3)
	50→(0.0, 0.4, 0.6)	
p sE	(0.3, 0.4, 0.3)	
S _{SM} (↑)	0.1	
RS _{SM} (↑)	0.0	0.1

Decision-related uncertainty scores (Cont.)

Smallest margin (↑) is defined as

$$S_{SM}(\mathbf{p}_d) = \mathbf{p}_d(y^{st}) - \mathbf{p}_d(y^{nd}). \tag{9}$$

Example: A classification problem with $\mathcal{Y} = \{a, b, c\}$:

	x ₃	\mathbf{x}_4
	80 -> (1.0, 0.0, 0.0)	100→(0.8, 0.2, 0.0)
	80→(1.0, 0.0, 0.0) 20→(0.0, 1.0, 0.0)	
p sE	(0.8,	0.2, 0.0)
S _{SM} (↑)		0.6
RS _{SM} (↑)	0.798	0.6

Should we put weights on the impact of ensemble members?

Outline

- Credal ensembling in multi-class classification
 - A median classifier: Learning and inference
 - A credal classifier: Learning and inference
 - Applications in machine learning
 - Compact deep ensembles
- Other applications

Experimental setting

Basic setting:

- Use random forests of cardinality 100 as the ensembles
- Follow a 10-cross validation protocol.
- Use hyperparameter α* ← nested 10 fold cross validation

Assess the impact of p_{SE} , p_{L1} and p_{KL} on

- the clean version of the data sets
- noisy version (randomly flip the class of 25% of training instances)

Experimental setting

Basic setting:

- Use random forests of cardinality 100 as the ensembles
- Follow a 10-cross validation protocol.
- Use hyperparameter α* ← nested 10 fold cross validation

Assess the impact of p_{SE} , p_{L1} and p_{KL} on

- the clean version of the data sets
- noisy version (randomly flip the class of 25% of training instances)

Once credal set $CH_{\alpha^*}^d$ is computed, it is used to

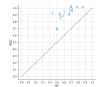
find the set-valued prediction under the E-admissibility rule.

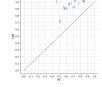
Results on clean data sets: U_{65} scores (in %) [5]

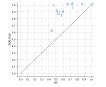
Data set: (N,P,K)	NDC	SQE-E	L1-E	KL-E	CRF	CH ₀
eco.: (336,7,8)	85.51	86.07	85.81	87.07	84.46	43.60
der.: (358,34,6)	97.18	97.05	97.22	98.59	96.19	51.74
lib.: (360, 90, 15)	76.58	73.35	75.24	79.41	73.45	14.60
vow.: (990, 10, 11)	86.63	86.35	87.65	92.35	82.68	17.75
win.: (1599, 11, 6)	68.66	68.32	68.39	68.63	67.35	36.53
seg.: (2300, 19, 7)	97.17	97.12	96.99	97.64	96.73	71.00

Results on clean data sets: U_{65} scores (in %) [5]

Data set: (N,P,K)	NDC	SQE-E	L1-E	KL-E	CRF	CH ₀
eco.: (336,7,8)	85.51	86.07	85.81	87.07	84.46	43.60
der.: (358,34,6)	97.18	97.05	97.22	98.59	96.19	51.74
lib.: (360, 90, 15)	76.58	73.35	75.24	79.41	73.45	14.60
vow.: (990, 10, 11)	86.63	86.35	87.65	92.35	82.68	17.75
win.: (1599, 11, 6)	68.66	68.32	68.39	68.63	67.35	36.53
seg.: (2300, 19, 7)	97.17	97.12	96.99	97.64	96.73	71.00







- (a) NDC vs RF
- (b) CRF vs RF
- (e) SQE-Ead vs RF
- (f) KL-Ead vs RF

Correctness of cautious predictors (vertical) vs accuracy of RF (horizontal)

Experimental setting [5]

Basic setting:

- Randomly flip the class of 25% of training instances
- Using random forests of cardinality 100 as the ensembles
- The median p_{sE} is employed
- Assess smallest margin S_{SM} (†) and RS_{SM} (†)

Experimental setting [5]

Basic setting:

- Randomly flip the class of 25% of training instances
- Using random forests of cardinality 100 as the ensembles
- The median p_{sE} is employed
- Assess smallest margin S_{SM} (†) and RS_{SM} (†)

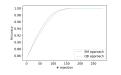
Budget based rejection protocol requires

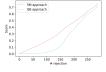
- a sufficiently large number of test instances,
- a predefined number (or proportion) of rejections.

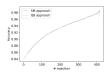
Threshold-based rejection protocol

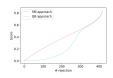
- requires a predefined threshold on uncertainty score (1),
- rejects instances whose scores are lower than the threshold.

Results on noisy data sets [5]



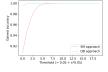


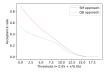


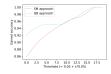


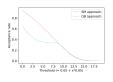
- (a) derma. + SM
- (b) derma. + SM (c) forest + SM
- (d) forest + SM

Test accuracy and chosen score as the functions of the number of rejections 20×5 cross-validation with (train, test) = (20%, 80%)









- (a) derma. + SM
- (b) derma. + SM
- (c) forest + SM
- (d) forest + SM

Test accuracy and acceptance rate as the functions of the threshold 20×5 cross-validation with (train, test) = (20%, 80%)

Experimental setting

Basic setting:

- Randomly flip the class of 25% of training + pool instances
- Using random forests of cardinality 100 as the ensembles
- The median p_{sF} is employed
- Assess smallest margin S_{SM} (†) and RS_{SM} (†)

Experimental setting

Basic setting:

- Randomly flip the class of 25% of training + pool instances
- Using random forests of cardinality 100 as the ensembles
- The median p_{sF} is employed
- Assess smallest margin S_{SM} (†) and RS_{SM} (†)

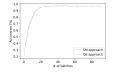
Budget based sampling protocol

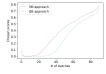
- requires a predefined number (or proportion) of queries,
- stops when the predefined number is reached.

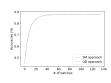
Threshold-based sampling protocol

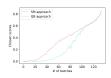
- requires a predefined threshold on uncertainty score (1),
- stops when the predefined threshold is reached.

Results on noisy data sets [5]



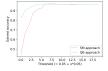


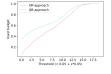




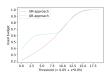
- (a) derma. + SM
- (b) derma. + SM
- (c) forest + SM
- (d) forest + SM

Test accuracy and chosen score as the functions of the number of queries 10×5 cross-validation with (train, pool, test) = (3%, 77%, 20%)









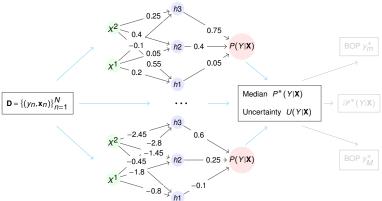
- (a) derma. + SM
- (b) derma. + SM
- (e) forest + SM
- (f) forest + SM

Test accuracy and used budget as the functions of the threshold 10×5 cross-validation with (train, pool, test) = (3%, 77%, 20%)

Outline

- Credal ensembling in multi-class classification
 - A median classifier: Learning and inference
 - A credal classifier: Learning and inference
 - Applications in machine learning
 - Compact deep ensembles
- Other applications

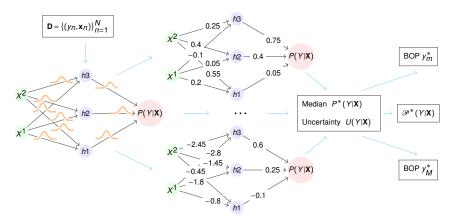
Conventional deep ensembles



Compared to the use of a single network:

- Much longer training time + Much larger storage memory
- Longer inference time

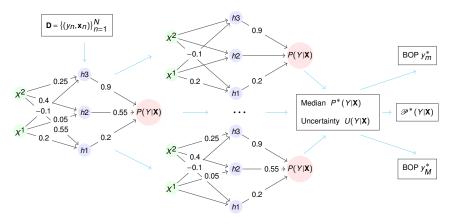
A BNN as an ensemble [8]



Compared to the use of a single network:

- A bit longer training time + A bit larger storage memory
- Longer inference time

A CNN with dropout predictions as an ensemble [9]



Compared to the use of a single network:

- Similar training time + Similar storage memory
- Longer inference time

Experimental setting

Basic setting:

- Use BNNs with 100 Monte Carlo runs as the ensembles
- Use the clean version of the data sets

Assess the impact of p_{sE} , p_{L1} and p_{KL} on

	Image	train/test	# classes
CIFAR-10	32x32 color	50,000/10,000	10
Fashion-MNIST	grayscale	60,000/10,000	10

Experimental setting

Basic setting:

- Use BNNs with 100 Monte Carlo runs as the ensembles
- Use the clean version of the data sets

Assess the impact of p_{sE} , p_{L1} and p_{KL} on

	Image	train/test	# classes
CIFAR-10	32x32 color	50,000/10,000	10
Fashion-MNIST	grayscale	60,000/10,000	10

Once p_d is computed, it is used to

- find precise prediction optimizing the $u_{0,1}$,
- find set-valued predictions optimizing the u_{65} and u_{80} [3].

Average $u_{0,1}$, u_{65} and u_{80} on the test set

Results [8]	CIFAR-10			Fashion MNIST		
riesuits [0]	sE	L1	KL	sE	L1	KL
$u_{0/1} \uparrow$	90.04	90.10	90.14	93.07	93.11	93.08
opt_u65_eva_u65 (†)	90.47	90.51	90.46	93.38	93.31	93.26
opt_u80_eva_u80 (†)	91.77	91.76	91.76	94.41	94.39	94.27
u65_set_size (↓)	2.03	2.02	2.03	2.02	2.02	2.02
u80_set_size (↓)	2.04	2.02	2.03	2.02	2.02	2.02

A closer look at $u_{0,1}$ and u_{65}

Results [8]	CIFAR-10			Fashion MNIST		
	sE	L1	KL	sE	L1	KL
c_pr_u65_c_si (†)	94.91	95.91	97.53	97.53	97.19	98.43
c_pr_u65_c_se (↓)	5.08	4.08	2.46	2.46	2.80	1.56
w_pr_u65_c_se (†)	32.12	26.86	17.64	24.96	25.39	15.75
w_pr_u65_w_se (↓)	15.26	11.81	7.50	5.05	5.95	4.62
w_pr_u65_w_si (↓)	52.61	61.31	74.84	69.98	68.65	79.62

A closer look at $u_{0,1}$ and u_{80}

Results [8]	CIFAR-10			Fashion MNIST		
	sE	L1	KL	sE	L1	KL
c_pr_u80_c_si (†)	86.89	93.22	94.28	94.34	94.03	95.47
c_pr_u80_c_se (↓)	13.10	6.77	5.71	5.65	5.96	4.52
w_pr_u80_c_se (†)	53.21	37.07	34.38	43.86	44.26	37.28
w_pr_u80_w_se (↓)	23.89	19.19	16.32	10.82	10.44	8.67
w_pr_u80_w_si (↓)	22.89	43.73	49.29	45.31	45.28	54.04

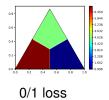
Results [8]	CIFAR-10			Fashion MNIST		
nesults [0]	sE	L1	KL	sE	L1	KL
$u_{0/1}$ (†)	90.04	90.10	90.14	93.07	93.11	93.08
u65_set_size (↓) u80_set_size (↓)	2.03 2.04	2.02 2.02	2.03 2.03	2.02 2.02	2.02 2.02	2.02 2.02
c_pr_u65_c_si (↑) c_pr_u65_c_se (↓) w_pr_u65_c_se (↑) w_pr_u65_w_se (↓) w_pr_u65_w_si (↓)	94.91 5.08 32.12 15.26 52.61	95.91 4.08 26.86 11.81 61.31	97.53 2.46 17.64 7.50 74.84	97.53 2.46 24.96 5.05 69.98	97.19 2.80 25.39 5.95 68.65	98.43 1.56 15.75 4.62 79.62
c_pr_u80_c_si (↑) c_pr_u80_c_se (↓) w_pr_u80_c_se (↑) w_pr_u80_w_se (↓) w_pr_u80_w_si (↓)	86.89 13.10 53.21 23.89 22.89	93.22 6.77 37.07 19.19 43.73	94.28 5.71 34.38 16.32 49.29	94.34 5.65 43.86 10.82 45.31	94.03 5.96 44.26 10.44 45.28	95.47 4.52 37.28 8.67 54.04

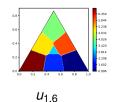
Outline

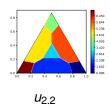
- Credal ensembling in multi-class classification
- Other applications
 - Large language models with safety requirements
 - Credal Predictions for Out-of-distribution detection

Optimal Decision Rules

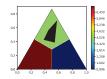
Frequentist approaches

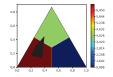


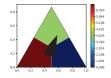




Credal approaches







Outline

- Credal ensembling in multi-class classification
- Other applications
 - Large language models with safety requirements
 - Credal Predictions for Out-of-distribution detection

Basic setup [4]

Multiple-choice question answering:

- Each prompt x is associated with a response $r_k \in \mathcal{Y} = \mathcal{R} = \{r_1, \dots, r_K\}.$
- Predict the probability masses $\mathbf{p}(r_k|\mathbf{x})$ k=1,...,K.
- Return a Bayesian-optimal prediction (BOP) of u

$$r^u \in \underset{r' \in \mathcal{Y}}{\operatorname{argmax}} \mathbf{E} \left[u(r', r) \right] = \underset{y' \in \mathcal{Y}}{\operatorname{argmax}} \sum_{r \in \mathcal{Y}} u(r', r) \mathbf{p}(r | \mathbf{x}).$$

Basic setup [4]

Multiple-choice question answering:

- Each prompt x is associated with a response $r_k \in \mathcal{Y} = \mathcal{R} = \{r_1, \dots, r_K\}.$
- Predict the probability masses $\mathbf{p}(r_k|\mathbf{x})$ k = 1,...,K.
- Return a Bayesian-optimal prediction (BOP) of u

$$r^u \in \underset{r' \in \mathscr{Y}}{\operatorname{argmax}} \mathbf{E}[u(r',r)] = \underset{y' \in \mathscr{Y}}{\operatorname{argmax}} \sum_{r \in \mathscr{Y}} u(r',r) \mathbf{p}(r|\mathbf{x}).$$

Helpfulness and safety scores are given for each prompt:

- A helpfulness score $h_k(\uparrow)$, measuring how well r_k answers the query
- A safetyrisk score $s_k(\downarrow)$, measuring the likelihood that r_k violates safety policies

Basic setup [4]

Multiple-choice question answering:

- Each prompt x is associated with a response $r_k \in \mathcal{Y} = \mathcal{R} = \{r_1, \dots, r_K\}.$
- Predict the probability masses $\mathbf{p}(r_k|\mathbf{x})$ k=1,...,K.
- Return a Bayesian-optimal prediction (BOP) of u

$$r^u \in \underset{r' \in \mathscr{Y}}{\operatorname{argmax}} \mathbf{E}[u(r',r)] = \underset{y' \in \mathscr{Y}}{\operatorname{argmax}} \sum_{r \in \mathscr{Y}} u(r',r) \mathbf{p}(r|\mathbf{x}).$$

Helpfulness and safety scores are given for each prompt:

- A helpfulness score $h_k(\uparrow)$, measuring how well r_k answers the query
- A safetyrisk score $s_k(\downarrow)$, measuring the likelihood that r_k violates safety policies
- Expose the helpfulness-safety trade-off when predicting $\mathbf{p}(r_k|\mathbf{x})$ k = 1, ..., K.

Helpfulness and safety scores

Let $r_1 \in \mathcal{Y} = \mathcal{R} = \{r_1, \dots, r_K\}$ be a special safe fallback answer:

- r₁ is anodyne and policycompliant (for example, a refusal or a generic safe statement).
- r_1 contains 0 useful information $(h_k(\uparrow))$ but also incurs 0 risk $s_k(\downarrow)$.

Helpfulness and safety scores

Let $r_1 \in \mathcal{Y} = \mathcal{R} = \{r_1, \dots, r_K\}$ be a special safe fallback answer:

- r_1 is anodyne and policycompliant (for example, a refusal or a generic safe statement).
- r_1 contains 0 useful information $(h_k(\uparrow))$ but also incurs 0 risk $s_k(\downarrow)$.

For each $r_k \in \mathcal{Y} = \mathcal{R}$, we can define

- The helpfulness lift (†): $H_k = h_k h_1$
- The extra risk (\downarrow): $S_k = s_k s_1$

Helpfulness and safety scores

Let $r_1 \in \mathcal{Y} = \mathcal{R} = \{r_1, \dots, r_K\}$ be a special safe fallback answer:

- r₁ is anodyne and policycompliant (for example, a refusal or a generic safe statement).
- r_1 contains 0 useful information $(h_k(\uparrow))$ but also incurs 0 risk $s_k(\downarrow)$.

For each $r_k \in \mathcal{Y} = \mathcal{R}$, we can define

- The helpfulness lift (↑): H_k = h_k h₁
- The extra risk (\downarrow): $S_k = s_k s_1$

For each probability distribution $\mathbf{p}(\cdot|\mathbf{x})$, we define

expected helpfulness lift
$$\sum_{r_k \in \mathscr{Y}} H_k \mathbf{p}(r_k | \mathbf{x})$$
 (10)

expected extra risk
$$\sum_{r_k \in \mathcal{Y}} S_k \mathbf{p}(r_k | \mathbf{x})$$
 (11)

Constrained optimization problem

Predict $\mathbf{p}(\cdot|\mathbf{x})$ to maximize expected helpfulness lift with acceptable expected risk

$$\mathbf{p} \in \operatorname{argmax} \sum_{\mathbf{p} \in \mathcal{H}^K} H_k \mathbf{p}(r_k | \mathbf{x})$$
 (12)

$$s.t \sum_{r_k \in \mathcal{Y}} S_k \mathbf{p}(r_k | \mathbf{x}) \le T.$$
 (13)

A more elaborate version + computational aspects can be found in [4].

Constrained optimization problem

Predict $\mathbf{p}(\cdot|\mathbf{x})$ to maximize expected helpfulness lift with acceptable expected risk

$$\mathbf{p} \in \operatorname{argmax} \sum_{\mathbf{p} \in \mathcal{H}^K} H_k \mathbf{p}(r_k | \mathbf{x})$$
 (12)

$$s.t \sum_{r_k \in \mathcal{Y}} S_k \mathbf{p}(r_k | \mathbf{x}) \le T.$$
 (13)

A more elaborate version + computational aspects can be found in [4].

Probe classifiers

For each prompt **x** and each response $r_k \neq r_1$,

 Query helpfulness probe with question "Is this answer helpful? (Yes/No)" on (\mathbf{x}, r_k) to obtain

$$h_k = \log\left(\frac{p_h^{\text{yes}}}{p_h^{\text{yes}} + p_h^{\text{no}}}\right). \tag{14}$$

Probe classifiers

For each prompt **x** and each response $r_k \neq r_1$,

 Query helpfulness probe with question "Is this answer helpful? (Yes/No)" on (\mathbf{x}, r_k) to obtain

$$h_k = \log\left(\frac{p_h^{\text{yes}}}{p_h^{\text{yes}} + p_h^{\text{no}}}\right). \tag{14}$$

Query safety probe with question "Is this answer risky? (Yes/No)" (\mathbf{x}, r_k) to obtain

$$s_k = \log\left(\frac{p_s^{\text{yes}}}{p_s^{\text{yes}} + p_s^{\text{no}}}\right). \tag{15}$$

Probe classifiers

For each prompt **x** and each response $r_k \neq r_1$,

 Query helpfulness probe with question "Is this answer helpful? (Yes/No)" on (\mathbf{x}, r_k) to obtain

$$h_k = \log\left(\frac{p_h^{\text{yes}}}{p_h^{\text{yes}} + p_h^{\text{no}}}\right). \tag{14}$$

Query safety probe with question "Is this answer risky? (Yes/No)" (\mathbf{x}, r_k) to obtain

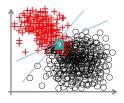
$$s_k = \log\left(\frac{p_s^{\text{yes}}}{p_s^{\text{yes}} + p_s^{\text{no}}}\right). \tag{15}$$

Probe classifiers can be LLM models [4].

Outline

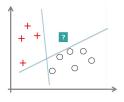
- Credal ensembling in multi-class classification
- Other applications
 - Large language models with safety requirements
 - Credal Predictions for Out-of-distribution detection

Epistemic and aleatoric uncertainties [1, 7]



Aleatoric uncertainty: Classes are really mixed,

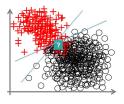
→ irreducible by collecting more information



Epistemic uncertainty: Lack of information,

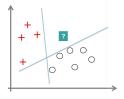
→ reducible by collecting more information

Epistemic and aleatoric uncertainties [1, 7]



Aleatoric uncertainty: Classes are really mixed,

→ irreducible by collecting more information



Epistemic uncertainty: Lack of information,

→ reducible by collecting more information

- Which kind of uncertainty is more interesting in OoD?
- How to quantify these degrees of uncertainty?

Basic setup

The given training data $\mathbf{D} \subset \mathcal{X} \times \mathcal{Y}$

- is used to estimate a classifier.
- which predicts, for each instance \mathbf{x} , $\mathcal{P}(Y|\mathbf{X})$.

Basic setup

The given training data $\mathbf{D} \subset \mathcal{X} \times \mathcal{Y}$

- is used to estimate a classifier.
- which predicts, for each instance \mathbf{x} , $\mathcal{P}(Y|\mathbf{X})$.

 $\mathscr{P}(Y|X)$ is used to quantify the degree of epistemic uncertainty EU(x):

- using its volume (not recommended!) [6].
- using the disconsensus of its members [2].

Basic setup

The given training data $\mathbf{D} \subset \mathcal{X} \times \mathcal{Y}$

- is used to estimate a classifier.
- which predicts, for each instance \mathbf{x} , $\mathcal{P}(Y|\mathbf{X})$.

 $\mathscr{P}(Y|X)$ is used to quantify the degree of epistemic uncertainty EU(x):

- using its volume (not recommended!) [6].
- using the disconsensus of its members [2].

Prediction: Instances with high EU(x) are predicted as OoD instances.

An (approximate) detail framework [2]

The degree of epistemic uncertainty on $\mathcal{P}(Y|X)$

$$EU(\mathbf{x}) = \overline{U}_E(\mathbf{x}) - \underline{U}_E(\mathbf{x}), \tag{16}$$

where U_E is the entropy (see Lecture 2) and

$$\overline{U}_{E}(\mathbf{x}) = \max_{\mathbf{p} \in \mathscr{P}(Y|\mathbf{X})} U_{E}(\mathbf{p}(Y|\mathbf{x})), \tag{17}$$

$$\underline{U}_{E}(\mathbf{x}) = \min_{\mathbf{p} \in \mathscr{P}(Y|\mathbf{X})} U_{E}(\mathbf{p}(Y|\mathbf{X}))$$
(18)

An (approximate) detail framework [2]

The degree of epistemic uncertainty on $\mathcal{P}(Y|X)$

$$EU(\mathbf{x}) = \overline{U}_E(\mathbf{x}) - \underline{U}_E(\mathbf{x}), \tag{16}$$

where U_F is the entropy (see Lecture 2) and

$$\overline{U}_{E}(\mathbf{x}) = \max_{\mathbf{p} \in \mathscr{P}(Y|\mathbf{X})} U_{E}(\mathbf{p}(Y|\mathbf{x})), \tag{17}$$

$$\underline{U}_{E}(\mathbf{x}) = \min_{\mathbf{p} \in \mathscr{P}(Y|\mathbf{X})} U_{E}(\mathbf{p}(Y|\mathbf{x}))$$
(18)

 $\mathscr{P}(Y|X)$ is estimated using interval probabilities (See lecture 2)

$$\left[\underline{\mathbf{p}}(y|\mathbf{x}), \overline{\mathbf{p}}(y|\mathbf{x})\right], \forall y \in \mathscr{Y}. \tag{19}$$

References I

- E. Hüllermeier and W. Waegeman.
 - Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods. Machine learning, 110(3):457-506, 2021.
- [2] T. Löhr, P. Hofman, F. Mohr, and E. Hüllermeier.
 - Credal prediction based on relative likelihood. arXiv preprint arXiv:2505.22332, 2025.
- [3] T. Mortier, M. Wydmuch, K. Dembczyński, E. Hüllermeier, and W. Waegeman. Efficient set-valued prediction in multi-class classification.
 - Data Mining and Knowledge Discovery, 35(4):1435-1469, 2021.
- [4] T. Nguyen and L. Tran-Thanh.
 - Safety game: Balancing safe and informative conversations with blackbox agentic ai using lo solvers. arXiv preprint arXiv:2510.09330, 2025.
- [5] V.-L. Nguyen, H. Zhang, and S. Destercke. Credal ensembling in multi-class classification.
 - Machine Learning, pages 1-64, 2024.
- [6] Y. Sale, M. Caprio, and E. Hüllermeier.
 - Is the volume of a credal set a good measure for epistemic uncertainty?
 - In Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI), pages 1795–1804, 2023,
- [7] R. Senge, S. Bösner, K. Dembczyński, J. Haasenritter, O. Hirsch, N. Donner-Banzhoff, and E. Hüllermeier. Reliable classification: Learning classifiers that distinguish aleatoric and epistemic uncertainty. Information Sciences, 255:16-29, 2014.

References II

- [8] K.-D. Tran, X.-T. Hoang, V.-L. Nguyen, S. Destercke, and V.-N. Huynh. Robust classification in bayesian neural networks. In Proceedings of the Eleventh International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making (IUKM), pages 29-41. Springer, 2025.
- [9] K.-D. Tran, D.-M. Nguyen, V.-L. Nguyen, X.-T. Hoang, S. Destercke, and V.-N. Huynh. Compact cautious deep ensembling in multi-class classification. Under preparation, pages 1-50, 2025.

