
Introduction to Scilab version 5

Stéphane Mottelet

Équipe de Mathématiques Appliquées
Département de Génie Informatique

Université de Technologie de Compiègne

Contents

1 Starting with Scilab 5
1.1 Enter a matrix . 6
1.2 The elements of a matrix . 7
1.3 Scilab commands and variables . 7
1.4 Obtaining information on the workspace 8
1.5 Save the workspace and quit . 9
1.6 Numbers, arihtmetical expressions and usual functions 9

2 Operations on matrices 12
2.1 Transposition . 12
2.2 Addition and substraction . 13
2.3 Multiplication . 13
2.4 Inverse of a matrix and left division 14
2.5 Element-wise operations . 16
2.6 Relational operators . 17
2.7 Logical operators . 18
2.8 Usual functions applied to a matrix 18

3 Manipulating matrices and vectors 20
3.1 How to generate matrices and vectors 20
3.2 How to manipulate the elements of a matrix 22

4 Scripts and functions 25
4.1 Scripts . 25
4.2 Functions . 27
4.3 Controling execution . 29
4.4 Interaction with the user . 30

5 Graphics 32
5.1 Two dimensions graphics . 32

5.1.1 The plot command . 32
5.1.2 Titles and legends . 34

5.2 Handling several graphics . 34

3

Contents 4

5.3 Three dimensions graphics . 35
5.3.1 Curves . 35
5.3.2 Surfaces . 36

Chapter 1

Starting with Scilab
This first chapter explains the bare necessity to be able to start using Scilab. It ex-
plains

• How to enter a matrix, the syntax of Scilab commands and the type of variables

• How to obtain information on the workspace, how to save variables or the whole
workspace, how to quit.

• Numbers, mathematical expressions and usual functions

• The way Scilab displays results.

You can already lauch Scilab on your machine in order to be ready to type the exam-
ples that will be proposed. You should see something similar to this :

scilab-5.2.1

Consortium Scilab (DIGITEO)

Copyright (c) 1989-2010 (INRIA)

Copyright (c) 1989-2007 (ENPC)

Startup execution:

loading initial environment

-->

The sign --> means that Scilab is waiting for a command. In the following, each ex-
emple is easily recognized by the font (typewriter characters), and each command
you have to enter will be preceded by the same sign -->.

Chapter 1. Starting with Scilab 6

1.1 Enter a matrix
Scilab essentially works with one main type of object, rectangular matrices contrain-
ing real or complex numbers (eventually characters). In some situations, a particular
signification is given to 1× 1 matrices, which are scalars and to matrices with only
on line or columns, which are vectors. The operators and command of Scilab mainly
act on this type of object.

There are several ways to entre a matrix in the workspace:

• Enter after the prompt (the −−> characters) an explicit list of elements

• Generate this matrix by a sequence of commands

• Load this matrix from a data file

The Scilab language does not include a dimension or type declaration instruction,
unlike some low-level languages. The necessary memory space for a matrix is auto-
matically allocated at its creation time.

The simplest way is to type a list of elements, with the following conventions :

• Elements of a same row are separated by spaces of commas

• The list of elements has to be enclosed by brackets []

• Each row (excepted the last one) is ended by a ; (semi-colon)

For example, the following command (you have to type it yourself)

--> A = [1 2 3; 4 5 6; 7 8 9]

produces the folllowing output

A =

1. 2. 3.

4. 5. 6.

7. 8. 9.

The matrix A is kept in memory for a future use.

A big matrix can be entered by separating each row by a carriage-return (by pressing
the Return key) instead of a semi-colon. For example the above matrix can be entered
like this:

--> A = [1 2 3

4 5 6

7 8 9]

Chapter 1. Starting with Scilab 7

1.2 The elements of a matrix
The element of a matrix can be any Scilab expression, e.g.

--> x = [-1.3 sqrt(3) (1+2+3)*4/5]

produces the output

x =

- 1.3 1.7320508 4.8

The individual elements of a matrix can be referenced with their row and column
indices, given within two parenthesis (). If we carry on our example

--> x(5) = abs(x(1))

gives the output

x =

- 1.3 1.7320508 4.8 0. 1.3

Note that the size of x has been automatically increased to add the new element, and
that undefined elements have been initialized to zero.

1.3 Scilab commands and variables
Scilab has a simple and well-defined syntax. A command will always have the form

variable = expression

or sometimes, more simply

expression

An expression can be composed of matrices separated with operators and names of
variables. The evaluation of an expression produces a matrix which is displayed and
stored in variable. If the name of the variable and the equal sign are ommited,
Scilab creates a variable named ans (for answer). For example, the following ex-
pression

--> 1900/81

gives the following output

Chapter 1. Starting with Scilab 8

ans =

23.4568

A command is ended by a strike on the Return (or Enter) key. However, if the last
character of a command is a semi-colon ; (semi-colon), the result is not displayed
even if the command has been interpreted. This is useful for intermediary computa-
tions whose result does not need to be displayed. For example

--> y = sqrt(3)/2;

assigns to y the value of
√

3/2 but does not display the result.

The nam eof a variable must start with a letter, followed by an unspecified number
of letters and numbers. Warning : Scilab does only take into account the 19 first
characters 1. Scilab makes also the difference between uppercase and lowercase
letters : for example the following commands

--> z = log(2);

--> Z

give the following output

!--error 4

undefined variable : Z

1.4 Obtaining information on the workspace
The preceding examples have created some variables in the Scilab’s workspace. To
obtain the list of these variables, you can enter the command

--> who_user

Your variables are :

z ans y x A home

Uses 38 element on 4965628

You find on the beginning of this list the 4 variables created in the preceding exam-
ples. To see the size of these variables, you can use the command

1this is enough in most cases

Chapter 1. Starting with Scilab 9

--> whos

Name Type Size Bytes

help function 5176

whos function 9000

z constant 1 by 1 24

y constant 1 by 1 24

x constant 1 by 5 56

A constant 3 by 3 88

who_user function 6720

.

.

.

(we only give the beginning of the list of all variables which actually appear). Each
element of a matrix represents 8 bytes in the memory, and for each matrix 16 com-
plimentary bytes are used to store various informations (size, ...). It explains why the
matrix A, which is of size 3×3, takes up 9×8+16 = 88 bytes.

1.5 Save the workspace and quit
To quit Scilab, just type quit or exit or close the main command window. One
a Scilab session is terminated, all the workspace variables are lost. It is possible to
save the workspace before quitting by using the quit command

--> save work.dat

This command saves all the variables in the current working directory in the file
work.dat. It is possible to load the content of this file in a subsequent session by
typing the command load work.dat.

You can use the commands save and load with other file names and you can also
save only some variables. The command

--> save(’work.dat’,A,x)

saves in the same file only A and x. The commande load work.dat will load all the
variables stored in this file (here A and x).

1.6 Numbers, arihtmetical expressions and usual func-
tions

Scilab uses the classical decimal notation, preceded with the minus sign for negative
numbers. It is also possible to add a power of ten factor as in the clasiscal scientific

Chapter 1. Starting with Scilab 10

notation. Some examples of legal Scilab numbers are

3 -99 0.0001

9.37821312 1.6023E-20 6.02252e23

The relative precision of numbers is given by the permanent variable %eps (perma-
nent means that you cannot clear this variable)

--> %eps

eps =

2.220e-16

This value means that the precision is of roughly 16 significative figures. The fol-
lowing examples illustrates this:

--> (1 + 1e-16) - 1

ans =

0.

Hence, you mave to keep in mind that computer arithmetics is never exact. The
interval of representable numbers goes from 10−308 to 10308.

You can build expressions with usual operators, which respect the classical priority
order:

^ power
/ right division
\ left division
* multiplication
+ addition
- substraction

We will se in a forthcoming section how these operators can be used on matrices.
Scilab has also all the classical usual functions:

Chapter 1. Starting with Scilab 11

sqrt square root
log neperian logartihm
log10 decimal logarithm
sin sine
cos cosine
tan tangent
atan reciprocial tangent
exp exponential
cosh hyperbolic cosine
floor lower integer part
round round to closest integer
abs absolute value or modulus/magnitude of a complex number
real real part of a complex number
imag imaginary part of a complex number
modulo rest of an Euclidian division

Of course these functions accept complex numbers as arguments. For example

--> sqrt(-1)

ans =

i

--> exp(%i*%pi/3)

ans =

0.5 + 0.8660254i

Some functions simply return special values. For example, the permanent variable
%pi

--> %pi

ans =

3.1416

returns the value of π , precomputed as the value of 4*atan(1).

Chapter 2

Operations on matrices

2.1 Transposition
The special character ’ (prime or apostrophe) denotes the operation of transposition.
The following commands

--> A = [1 2 3; 4 5 6; 7 8 0]

--> B = A’

give the results

A =

1 2 3

4 5 6

7 8 0

B =

1 4 7

2 5 8

3 6 0

abs the command

--> x = [-1 0 2]’

x =

-1.

0.

2.

The operation of transposition denotes the Hermitian transposition. If Z is a complex
matrix, then Z’ désigne the conjugate transpose of Z.

Chapter 2. Operations on matrices 13

2.2 Addition and substraction
The operators + and - operate on matrices. These operations are valid if the dimen-
sions of matrices are thesame. For example with the matrices of preceding example
the addition

--> A + x

!--error 8

inconsistent addition

is not valid since A is 3×3 and x is 3×1. On the contrary the following operation is
valid:

--> C = A + B

C =

2. 6. 10.

6. 10. 14.

10. 14. 0.

Addition and substraction are also defined if one of the operands is a scalar, i.e. a
1×1 matrix. In this case the scalar is added or substracted from all the elements of
the other matrix:

--> z = x - 1

z =

-2.

-1.

1.

2.3 Multiplication
The symbol * denotes the operator of matrix multiplication. This opération is valid
if the dimensions of opérandes are compatible, i.e. the number of columns of left
operand must be equal to the number of rows of the right operand. For example the
following operation is not valid

--> x*z

!--error 10

inconsistent multiplication

Chapter 2. Operations on matrices 14

but the following one

--> x’ * z

ans =

4.

gives the scalar product of x and z. Another valid command is the following:

--> b = A*x

b =

5.

8.

-7.

The multiplication of a matrix and a scalar is always valid:

--> A*2

ans =

2. 4. 6.

8. 10. 12.

14. 16. 0.

2.4 Inverse of a matrix and left division
The inverse of a square inversible matrix can be obtained with the function inv :

--> B = inv(A)

B =

- 1.7777778 0.8888889 - 0.1111111

1.5555556 - 0.7777778 0.2222222

- 0.1111111 0.2222222 - 0.1111111

--> C=B*A

C =

Chapter 2. Operations on matrices 15

1. 0. 0.

0. 1. 0.

0. 0. 1.

--> C(2,1)

ans =

- 1.110E-16

You will note that the off-diagonal terms are not exactly equal to zero but are of the
same order as the machine precision.

The matrix division has a sense in Scilab and has the following signification : if B
is invertible, the expression A/B gives the result of the operation AB−1. Hence it is
mathematically equivalent to the expression A*inv(B). For the left division, the ex-
pression A\Bgives the result of the operation A−1B. The compatibility of dimensions
of both matrices must be respected otherwise this operation does not make sense.

The left division is classically used to compute the solution of a system of linear
equations. For example if you want to solve the linear system Ay = x, where A is
invertible, just type

--> y = A\x

y =

1.5555556

- 1.1111111

- 0.1111111

When Scilab interprets this expression, the matrix A is not inverted and then right
multiplied by x; it actually solves the system of equations. The solution can be
checked by typing the following commands:

--> A*y - x

ans =

1.0E-15 *

0.2220446

0.2775558

0.

Chapter 2. Operations on matrices 16

Once again, note the presence of errors of the order of machine precision.

2.5 Element-wise operations
Usual operations on matrices can be done element-wise; this amounts to considering
matrices as and not mathematical objects representing linear applciations. For ad-
dition and substraction both point of views are the same since these two operations
already work element-wise.

The operator .* denotes element-wise multiplication. If A and B have the same di-
mensions, then A.*B denotes the array whose elements are the product of individual
elements of A and B. For example if x and y are defined by:

--> x = [1 2 3]; y = [4 5 6];

then the command

--> z = x .* y

gives the result

z =

4. 10. 18.

The division works in the same manner:

--> z = x ./ y

z =

0.25 0.4 0.5

The operator .^ denotes element-wise power function:

--> x .^ y

ans =

1. 32. 729.

--> x .^ 2

ans =

Chapter 2. Operations on matrices 17

1. 4. 9.

--> 2 .^ x

ans =

2. 4. 8.

Note that for .^ one of the two operands can be a scalar.

2.6 Relational operators
Six relational operators are available for compare two matrices of equal dimensions:

< lower than
<= lower than or equal
> greater than
>= greater tha or equal
== equal
<> different

Scilab compares corresponding elements; the result is a matrix of boolean constants
, the F representing the value “false” and the T the value “true”. For example

--> 2 + 2 <> 4

ans =

F

Relational operators allows to see, in a matrix, which elements verify a given condi-
tions. For example let us take the matrix

--> A = [1 -1 2; -2 -4 1; 8 1 -1]

A =

1. -1. 2.

-2. -4. 1.

8. 1. -1.

The command

Chapter 2. Operations on matrices 18

--> P = (A < 0)

P =

F T F

T T F

F F T

returns a matrix P showing by a T negative elements of A.

2.7 Logical operators
The operators &, | and ~ denote respectively the operators “and”, “or” and “not”.
They are used to build some logical expressions. For example if we take the matrix
of preceding example, the command

--> P = (A < 0) & (modulo(A,2) == 0)

P =

F F F

T T F

F F F

allows to find in A the negative and even elements.

2.8 Usual functions applied to a matrix
Usual functions acting on reals and complex numbers also apply element-wise on
matrices. For example :

--> A = [0 1/4; 1/2 3/4]

A =

0. 0.25

0.5 0.75

--> cos(%pi*A)

ans =

Chapter 2. Operations on matrices 19

1. 0.7071068

0. - 0.7071068

Chapter 3

Manipulating matrices and
vectors

3.1 How to generate matrices and vectors
One can easily generate a null matrix of given size with the command zeros:

--> A = zeros(3,2)

A =

0. 0.

0. 0.

0. 0.

This command can be used to create and initialize a matrix.

One can generate the identity matrix with the command eye in the following way:

--> I = eye(3,3)

I =

1. 0. 0.

0. 1. 0.

0. 0. 1.

Particular vectors can be generated with the operator : as it is shown in the following
example:

--> x = 1:5

Chapter 3. Manipulating matrices and vectors 21

x =

! 1. 2. 3. 4. 5. !

This command has created the vector x contraining the integer numbers 1 to 5. A
particular increment, other than 1, can be specified in the following way:

--> y = 0:%pi/4:%pi

y =

0. 0.7853982 1.5707963 2.3561945 3.1415927

Note that this command always produce a row vector. Of course a negative increment
can be used:

--> y = 6:-1:1

y =

6. 5. 4. 3. 2. 1.

One can easily create tables by using this command (we will also see in the following
chapter that it also allows to prepare data for graphical representation). For example:

--> x = (0:0.2:3)’;

--> y=exp(-x).*sin(x);

--> [x y]

ans =

0. 0.

0.2 0.1626567

0.4 0.2610349

0.6 0.3098824

0.8 0.3223289

1. 0.3095599

1.2 0.2807248

1.4 0.2430089

1.6 0.2018104

1.8 0.1609759

2. 0.1230600

Chapter 3. Manipulating matrices and vectors 22

2.2 0.0895840

2.4 0.0612766

2.6 0.0382881

2.8 0.0203707

3. 0.0070260

There is also a command allowing to specify only the minimum and maximum value
and the number of desired values:

--> k = linspace(-%pi,%pi,5)

k =

- 3.1415927 - 1.5707963 0. 1.5707963 3.1415927

3.2 How to manipulate the elements of a matrix
You can reference individual elements of a matrix by specifying the row and column
numbers separated by a comma and betwen parenthesis following the name of the
matrix. Take the matrix

--> A = [1 2 3; 4 5 6; 7 8 9]

The following command allows to replace a33 by a13 +a31 :

--> A(3,3) = A(1,3) + A(3,1)

A =

1. 2. 3.

4. 5. 6.

7. 8. 10.

One can also easily extract a row or a column of a matrix; for example the command

--> v = A(:,1)

v =

1.

4.

7.

assigns to vector v the first column of matrix A. In the same way, the command

Chapter 3. Manipulating matrices and vectors 23

--> v = A(1,:)

extracts the first row of A.

A row or column index can be a vector of indices. For example if we take the vector

--> x = 0:2:8

then the following command allows to apply a permutation permutation of elements
of x:

--> v = [3 5 1 2 4];

--> x(v)

ans =

4. 8. 0. 2. 6.

You can also constuct a matrix by assembling smaller matrices. For example, to add
a row to matrix A :

--> l = [10 11 12];

--> A = [A; l]

gives

A =

1. 2. 3.

4. 5. 6.

7. 8. 10.

10. 11. 12.

You can also manipulate sub-matrices of a matrix, we already considered this above
for the case of a single row or column:

--> A(1:2,1:2) = eye(2,2)

A =

1. 0. 3.

0. 1. 6.

7. 8. 10.

10. 11. 12.

Here we have replaced the principal matrix of order 2 by par the identity matrix.
You can extract a sub-matrix of arbitrary size. For example

Chapter 3. Manipulating matrices and vectors 24

--> B = A(1:2, :)

Selects the first two rows of A and assigns them to B.
To finish with matrices, you can obtain the size of a matrix (number of rows and
columns) with the function size:

--> size(A)

ans =

4. 3.

--> [n,m]=size(v)

m =

5.

n =

1.

The first of the above commands returns a vecteur with two components : the first
one is the number of rows and the second one is the number of columns. The second
command assigns these two values to differents variables, n for the rows and m for
the columns.

Chapter 4

Scripts and functions
The way Scilab has been used in preceding chapters can give the feeling that Scilab
is just a “big calculator” devoted to execute commands entered on the keyboard. In
fact , Scilab is able to execute a sequence of commands stored in a file, and this
way of using it will be interesting as soon as the number of commands will increase
? This also allows to change only a parameter and see the modified result, without
having to retype everything.
Scripts and functions are usual textfiles created with Scilab text editor.

• A script allows to execute a long sequence of commands.

• A function allows to extend the standard library of Scilab function or simply to
structurate a program where the same computation is done many times but for
different data. The power of Scilab particularly relies on this last feature.

4.1 Scripts
When a script is executed (we will see below how to do it), Scilab interprets the
commands as if they were type on the keyboard. It means that the variables created
duting execution are variables of the workspace.

Here is an example : we are going to create a script to compute some terms of the
well-known Fibonacci sequence whose definition is the following: u0 = 1,

u1 = 1,
uk+2 = uk+1 +uk, k ≥ 0

In the first place, you have to create the file which will contain the commands. To
this purpose, select Editor in the Applications menu of Scilab. The window of
the editor should be similar to the one depicted in figure 4.1. The created file has the
default name Untitled.sce. To change it, select the item ”Save as” in the ”File”

Chapter 4. Scripts and functions 26

Figure 4.1: Window of the text editor

menu of the editor and choose the name, fibo.sce. Now, you can type the following
lines in the window of the editor:

// A script to compute the n first terms of Fibonacci sequence

n = 10;

u = zeros(n,1);

u(1:2) = [1;1];

for i = 1:n-2

u(i+2) = u(i+1) + u(i);

end

u

The characters // allows to precise that the following characters, up to the end of the
line, should not be interpreted. This allows to insert comments in the script.

We will se how to use mode precisely the instruction for a bit later. Once you have
typed the text in the window, save the file (use the ”Save” item of the File menu of
the editor).

To execute the script fibo.sce, just type at Scilab’s promt:

--> exec fibo.sce

u =

1

1

2

Chapter 4. Scripts and functions 27

3

5

8

13

21

34

55

You can also execute the script from the editor’s window by typing Ctrl-L.

4.2 Functions
The best way to define a function is to do it within a script. The declaration of a func-
tion starts with the keyword function and ends with the keyword endfunction. A
function differs from the script we have create just before in the sense that we will
be able to give it some input parameter and will be able to return output parameters.
The variable which will be defined in the function are local variables and won’t exist
after the function has been called. The only link with the workspace variables is done
by passing input parameters to the function.

As an example, we will create a function which does not exist in Scilab, the factorial
of an integer. In the editor, create a file named fact.sci and type the following text
in the window.

function [f] = fact(n)

// This function computes the factorial of a integer number

// syntax : variable = fact(n)

if (n - floor(n) ~= 0) | n < 0

error(’error in fact : argument must be a positive integer’);

end

if n == 0

f = 1;

else

f = prod(1:n);

end

endfunction

We give now some explanations:

Chapter 4. Scripts and functions 28

• The line if (n - floor(n) ~= 0... allows to test if the number passed in
argument is a positive integer. The construct if ... end is rather classical
and works like with low level languages like C.

• The command error allows to stop the execution of the function while display-
ing an error message for the user.

• The remaining lines show an example of if ... else ... end construc-
tion.

• The function prod computes the product of the elements of the vector argument.

Once you have type the text in the window, save the file. In order that Scilab can be
aware of this new function, you just have to execute the script by typing

--> exec fact.sci

or by typing Ctrl-L. An important remark : you can define several functions in the
same file. In this case, l’instruction exec considers all the function definitions.
You can now use the new function:

--> fact(5)

ans =

120.

--> p = fact(7);

You can also define a new function ”inline”, i.e. directly on the command line of
Scilab. This is convenient when the function code is very short:

--> deff(’c=plus(a,b)’,’c=a+b’);

-->plus(1,2)

ans =

3.

Chapter 4. Scripts and functions 29

4.3 Controling execution
The construct if ... else ... end is a classical structure to control the ex-
ecution in a script or a function. We have already given an example just before.

The construct for ... end allows to make loops loops. Once again, its use is
similar as its use in the C language. Its general syntax is the following:

for v = expression

instructions

end

or in a more compact form:

for v = expression, instructions, end

In general expression will be something like m:n or m:p:n, as in the example of the
script fibo.sce considered before, but if expression is a matrix, thenthe variable
v will be successively assigned each column of this matrix; the following example
illustrates this principle:

--> A = [1 2 3;4 5 6];

--> for v = A, x = v.^2, end

x =

1

16

x =

4

25

x =

9

36

Inlike for ... end the construct while ... end allows to make loops when the
number of iterations is not known a priori. For example, here is a function making
the euclidian division of two integers:

Chapter 4. Scripts and functions 30

function [quotient,rest] = divEucl(p,q)

rest = p;

quotient = 0;

while rest >= q

rest = rest - q;

quotient = quotient + 1;

end

endfunction

Type this function within the editor, execute the script, and experiment it, e.g. with
the following example :

-->[q,r] = divEucl(7,2)

r =

1.

q =

3.

Note that when you call a function, you can choose output parameters names as you
want, i.e. they can be different from the names which you have used in the definition
of the function.

4.4 Interaction with the user
It is possible, in a script, to ask the user to interactively enter some data. For example,
in the script fibo.sce it could be interesting to ask to the user the value of n. This can
be done with the function input. Modify your script fibo.sce: you just have to
replace the line

n = 10;

by the line

n = input(’What is the value of n ? ’);

You can experiment your modified script by typing Ctrl-L or

--> exec fibo.sce

You can also generate a menu when the user has to make a choice between several
options, with the command x_choose, which has to be used in the following way:

Chapter 4. Scripts and functions 31

--> choice = x_choose([’French fries’;...

’Spaghetti Bolognese’;’kaoya’],’Todays menu’)

Note that when you find that a line of the script is too long and need more readability
of the code, you can end you line by three dots ... and continue in the following
line. The menu should have more or less the following aspect:

Figure 4.2: Menu with the x choose command

The first argument of x_choose is a matrix of character strings containing the text
for each option.The second argument is the title of the menu. When you click on
one of the options with the mouse cursors, the function returns the number of the
corresponding option, or 0 if the user has closed the window ot clicked on the cancel
button.

Chapter 5

Graphics
This chapter gives a brief aspect of Scilab graphic. It is possible to generate graphics
in two and three dimensions, to act on colors, linetypes, and so on.

5.1 Two dimensions graphics

5.1.1 The plot command
This command is used to generate graphs in two dimensions. Here is a first example:

--> t = 0:%pi/4:2*%pi;

--> plot(t,sin(t))

The syntax is rather simple: plot(x,y) allows to plot a curve joining the points
whose coordinates are given in vectors x for the abcsissa and y for the ordinates.
An important remark : the points are joined by segments, so the more intermediate
points the more the graph will be faithfull to the mathematical object, as it is shown
in the following example:

--> t = 0:%pi/16:2*%pi;

--> plot(t,sin(t))

Here we have drawn the graph of a function, but we can also draw a parametric curve
of the type

x = f (t),
y = g(t),

for t ∈ [a,b].

For example, here is a circle:

Chapter 5. Graphics 33

--> t = 0:%pi/32:2*%pi;

--> plot(cos(t),sin(t))

--> set(gca(),"isoview","on")

Note the command set(gca(),"isoview","on") which gives the same scale on
both axis.

It is possible to superimpose several curves on the same graph with one single call
to plot.

--> plot(t,cos(t),t,sin(t))

You can change change the colors and the line type used: for example if you want a
green cosine curve and a red sine curve, just type

--> plot(t,cos(t),’g’,t,sin(t),’r’)

You can also draw only disconnected points. In this case each point is represented
by a marker (e.g. point, circle, star, cross). For example

--> plot(t,cos(t),’g^-’,t,sin(t),’ro-’)

You can modify the color and the type of drawing (line, maker or both) by adding
after each x,y couple a string composed of at most three characters specifying color,
marker and linetype. The table below gives the possible markers and colors.

Symbol Color Marker Linetype
y yellow . dot - plain line
m magenta o circle – dashed line
c cyan x cross -. dashdot line
r red + plus : dotted line
g green * star
b blue d diamond
w white ^ triangle
k black v triangle

When you will have time after the lab, type

--> help plot

to see all the other possibilities of plot.

Chapter 5. Graphics 34

Cosine
Sine

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7

Example graphics

Abscissa

O
rd

in
at

e

Figure 5.1: Graphics obtained with plot

5.1.2 Titles and legends
You can add axis labels and a title to a graph:

--> xlabel(’Abscissa’)

--> ylabel(’Ordinate’)

--> title(’Example graphics)

You can add a legend allowing to give the signification of each curve:

--> legend(’Cosine’,’Sine’)

The two strings are given in the same order as the abcissa-ordinate couples in the
plot which had been used.

5.2 Handling several graphics
The window which as been created when you have called plot is window number 0.
If you need a second window, e.g. if you want to compare two graphs, you jus have
to type

--> figure(1)

This command creates a second window with number 1. You can create as many
windows as you need. When you have several windows, you have to activate the
window where you want to draw something:

Chapter 5. Graphics 35

--> t = linspace(-%pi,%pi,32);

--> figure(0); plot(t,sin(t))

--> figure(1); plot(t,cos(t))

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7

Figure 5.2: Graph using the subplot function

A single window can also include several non superimposed graphs by using the
subplot command, which can be used in the following way:

--> subplot(2,1,1)

--> plot(t,cos(t))

--> subplot(2,1,2)

--> plot(t,sin(t))

The subplot(n,m,k) command allows to divide the window in n*m panels, with n

rows and m columns. These panels are numbered form left to right and from top to
bottom. The value of k allows to specify in which panel the plot is to be done.

5.3 Three dimensions graphics

5.3.1 Curves
You can draw parametric curves with the plot3 command, for example an helix :

--> clf

--> t = 0:%pi/32:8*pi;

--> param3d(cos(t),sin(t),t)

Chapter 5. Graphics 36

The command clf allows to clear the current graphic window.

5.3.2 Surfaces
Scilab allows to represent graphs of functions of two variables

z = f (x,y)

as well as parametric surfaces

x = f (t,s),
y = g(t,s),
z = h(t,s),

for (t,s) ∈ [a,b]× [c,d].

- 1.0
1.0

- 0.8

0.8

- 0.6

0.6

- 0.4

0.4

Z

1.0

- 0.2

0.80.2

0.0

0.60.0 0.4

0.2

Y 0.2- 0.2

0.4

0.0- 0.4

0.6

- 0.2
X- 0.6 - 0.4

0.8

- 0.6- 0.8

1.0

- 0.8
- 1.0 - 1.0

Figure 5.3: Result of the mesh command

Here is a first example where we daw the graph of function

f (x,y) = cos
(

π

√
x2 + y2

)
,

on the domain (x,y) ∈ [−1,1]× [−2,2]. As for the two dimensionnal plots we have
to choose a sampling step, since the domaine [−1,1]× [−2,2] has two dimensions.
Here we take 20 values in the x direction and 40 values in the y direction.

Chapter 5. Graphics 37

--> x = linspace(-1,1,20);

--> y = linspace(-2,2,40);

These two commands allowed us to obtain two vectors (xi)i=1..20 and (y j) j=1..40, but
this is not enough because we need the points (xi,y j) for (i, j) ∈ {1..20}×{1..40}.
In other words we need a ”matrix of couples” (xi,y j) of size 20× 40. Scilab is not
able to handle such an object but it can give us two matrices, one for the x value and
another one for the y values. The command allowing to generate these two matrices
is meshgrid. For our example, we will use it in the following way :

--> [X,Y] = meshgrid(x,y);

We can then compute in only one scilab expression all the values of f at points (xi,y j)
and draw the surface with the command mesh :

--> Z = cos(%pi*sqrt(X.^2 + Y.^2));

--> mesh(X,Y,Z)

This command draws a kind of wireframe representation of the surface.

It is possible to have a nicer rendering with the following commands:

--> set(gcf(),’color_map’,jetcolormap(128))

--> surf(X,Y,Z)

--> set(gce(),’color_flag’,3)

The command surf draws the surface and gives to each point a value (by default
equal the z coordinate of the point) which is proportional to the height. The com-
mand set(gcf(),’color_map’,jetcolormap(128)) allows to define the table of
colors which allows to associate a color to each point of the surface. The surface is
discretized in triangles. The command set(gce(),’color_flag’,3) interpolates
the color in each triangle. This allows to have a better “smooth” aspect without
having to take many (x,y) points.

Chapter 5. Graphics 38

Figure 5.4: Result of the surf command

Index
π , 11
%eps, 10

add a row to a matrix, 23
ans, 7
arrays, 16

brackets [], 6

clear the graphic window, 36
clf, 36
colormap, 37
colors, 33
comments, 26
compare two matrices, 17
curve, 32

else, 27
error, 28
execute a script, 26
eye, 20

figure, 34
floor, 28
for, 29

identity matrix, 20
if, 28
initialize a matrix, 20
input, 30
inv, 14

legend, 34
line type, 33
linear system, 15
linspace, 22
list of variables, 8
load, 9

logical expressions, 18
loops, 29

memory, 9
mesh, 37
meshgrid, 37

null matrix, 20

parametric curve, 32
permutation, 23
plot, 32
plot3, 35
precision, 10
prod, 28

save, 9
scalar product, 14
scalars, 6
semi-colon, 8
shading, 37
significative figures, 10
size, 24
size of a matrix, 24
sous-matrices, 23
subplot, 35
superimpose two graphs, 33
surf, 37

test editor, 25
title, 34

usual operators, 10

vectors, 6

while, 29
who, 8

39

Index 40

x choose, 30
xlabel, 34

ylabel, 34

zeros, 20

