Least squares problems
How to state and solve them, then evaluate their solutions

Stéphane Mottelet

Université de Technologie de Compiégne

April 28, 2020

Stéphane Mottelet (UTC) Least squares



Outline

@ Motivation and statistical framework
@ Maths reminder (survival kit)

@ Linear Least Squares (LLS)

© Non Linear Least Squares (NLLS)
@ Statistical evaluation of solutions

@ Model selection

Stéphane Mottelet (UTC) Least squares 2/63



Motivation and statistical framework

@ Motivation and statistical framework
@ Maths reminder (survival kit)

@ Linear Least Squares (LLS)

© Non Linear Least Squares (NLLS)

@ Statistical evaluation of solutions

@ Model selection

Stéphane Mottelet (UTC) Least squares 3/63



Motivation

Regression problem

@ Data: (X;, ¥i)iz1..n,
@ Model : y = fy(x)

» x € R: independent variable
» y € R: dependent variable (value found by observation)
» 0 € RP : parameters

@ Regression problem

Find 6 such that the model best explains the data,

i.e. yjis closeto fy(x;),i=1...n.
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Motivation

Regression problem, example
Simple linear regression : (x;, y;) € R?
y
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— find 64, A2 such that the data fits the model y = 01 + 0-x

How does one measure the fit/misfit ?
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Motivation

Least squares method

The least squares method measures the fit with the Sum of Squared Residuals (SSR)

n

8(6) = > (vi — fox)?,

i=1

and aims to find § such that A
Vo € RP, S(f) < S(0),

or equivalently i
0 = argmin S(6).
ORP

Important issues

@ statistical interpretation
@ existence, uniqueness and practical determination of 4 (algorithms)
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Statistical framework
Hypothesis

(Xj)i=1...n @re given
(¥i)i=1...n are samples of random variables

o
o
yi=fx)+e,i=1...n,
where ¢;, i = 1...nare independent and identically distributed (i.i.d.) and
Ele]] = 0, E[¢?] = 02, density e — g(e)
The probability density of y; is given by
dh:R—R
Y — dp(y) = gy — fa(x)
hence Ely;|6] = fo(X)).
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Statistical framework

Example

If £ is normally distributed, i.e. g(¢) = (0v27)~" exp(—52z¢2), we have

b = (0VEn) " oxp (1~ o))
S(y)

0.3 H
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Statistical framework
Joint probability density and Likelihood function

@ Joint density

When @ is given, as the (y;) are independent, the density of the vectory = (y1, ...

n

do(y) = [ [ 661 = (1) 05(v2) - - - $5(¥n)-

i=1

Interpretation : for D C R”

Prob(y < D|6) = /D So(y) s ... dyn

@ Likelihood function

When a sample of y is given, then Ly(6) = ¢4(y) is called

Likelihood of the parameters 6
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Statistical framework

Maximum Likelihood Estimation

The Maximum Likelihood Estimate of 4 is the vector § defined by
0 =arg 22%3-5 Ly(0).

Under the Gaussian hypothesis, then

1y(0) = Tiov2m) " 010 50z i~ )
1

= (oV21) "exp (—2%22 (vi — fe(Xi))2> ,
i=1

hence, we recover the least squares solution, i.e.

arg reneaé)p( Ly(0) = arg en;gl S(0).
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Statistical framework

Alternatives : Least Absolute Deviation Regression

@ Least Absolute Deviation Regression : the misfit is measured by
n
Si(0) =Y lyi— fa(x)].
i=1

Is 8 = arg mingcre S1(0) is a maximum likelihood estimate ?

Yes, if ¢; has a Laplace distribution

9(e) = (2v2) " exp (fkl)

First issue : Sy is not differentiable

Stéphane Mottelet (UTC) Least squares 11/63



Statistical framework

Alternatives : Least Absolute Deviation Regression

Densities of Gaussian vs. Laplacian random variables (with zero mean and unit variance) :

Gaussian
Laplace

0.6

Second issue : the two statistical hypothesis are very different !
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Statistical framework

Take home message

Take home message #1 :

Doing Least Squares Regression means that you assume that the model error is Gaussian.

However, if you have no idea about the model error :

@ the nice theoretical and computational framework you will get is worth doing this
assumption. ..

@ a posteriori goodness of fit tests can be used to assess the normality of errors.
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Maths reminder
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Maths reminder

Matrix algebra

@ Notation : A€ Mpm(R), x € R,

a1 ... am X1
A=

an1 e anm Xn

@ Product : for B € Mpp(R), C=AB e M;p(R),

m
Cj=Y_ akby
k=1

@ |dentity matrix
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Maths reminder

Matrix algebra

@ Transposition, Inner product and norm :
AT € Mma(R) . [AT]; =
Forx e R" y € R",

n
oy)y=xTy =3 xy, |Ix|?=x"x

i=1
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Maths reminder

Matrix algebra

@ Linear dependance / independence :

aset {xy,...,xn} of vectors in R" is dependent if a vector x; can be written as
m
k=1,ki

» a set of vectors which is not dependent is called independent
» aset of m > nvectors is necessarily dependent
» a set of nindependent vectors in R” is called a basis

@ Therank of a A € M, is the number of its linearly independent columns

rank(A) = m <<= {Ax=0= x =0}
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Maths reminder

Linear system of equations

When A is square

rank(A) = n <= there exists A~' s.t. A~TA=AA"" =1

When the above property holds :
@ For all y € R”, the system of equations
Ax =y,
has a unique solution x = A~ y.

@ Computation : Gauss elimination algorithm (no computation of A1)

in Scilab/Matlab : x = A\y
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Maths reminder
Differentiability

@ Definition : let f : R" — R™,

f is differentiable at a € R" if

fla+h) = f(a) + (@h-+ |[hlle(h), lim =(h) =0

@ Jacobian matrix, partial derivatives :

_ o
=

(@], = 5 (@

@ Gradient : if f : R" — R, is differentiable at a,

f(a+h) = f(a) + Vi(@) h+|hll=(h).  lim =(h) =0
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Maths reminder

Nonlinear system of equations
When f : R” — R", a solution X to the system of equations
f(x)=0

can be found (or not) by the Newton’s method : given xp, for each k

@ consider the affine approximation of f at xx
T(x) = f(Xic) + ' (Xi) (X — xk)
@ take xi.1 such that T(xx.1) =0,

Xia1 = Xk — F/(x) " F(Xk)

Newton’s method can be very fast.. . if xg is not too far from X !
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Maths reminder

Find a local minimum - gradient algorithm

When f : R"” — R is differentiable, a vector X satisfying Vf(X) = 0 and
Vx € R", f(X) < f(x)

can be found by the descent algorithm : given xp, for each k :

@ select a direction dy such that V#(xx) " dk < 0

@ select a step px, such that
Xks1 = Xk + i,

satisfies (among other conditions)
f(Xk+1) < f(Xk)

The choice dx = —Vf(xx) leads to the gradient algorithm
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Maths reminder

Find a local minimum - gradient algorithm

1.5

-0.5 -
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Linear Least Squares (LLS)
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Linear Least Squares
Linear models
@ The model y = fy(x) is linear w.r.t. 9, i.e.

p
y=> 0i¢j(x), ¢ :R—R
j=1

@ Examples

p j—1
> y= Zj=1 9]-)(!

— P 9. U=1x - _
> Y= Z/=1 0jcos *==, where T = X, — X1
> PR
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Linear Least Squares

The residual for simple linear regression

@ Simple linear regression
n

S(0) =) (61 + 02 — yi)* = ||r(0) |2,
i=1

Residual vector r(0)
0
e =t | gt |- n
@ For the whole residual vector
)z 1 X
r(0)=A0—y, y-= Do
Yn 1 x,
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Linear Least Squares
The residual for a general linear model
@ General linear model y(x) = >_7 0¢;(x

n

S(0) = (fa(xi) — yi)? = || r(0)|%,
i=1

- Z (S24 66500) ) = @),

Residual vector r(0)
01

ri(0) = [p1(Xi), -, dp(x)] | = | — Vi
0>

@ For the whole residual vector r(d) = A9 — y where A has size n x p and

ajj = ¢j(Xi).
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Linear Least Squares

Optimality conditions

@ Linear Least Squares problem : find §

n _ H A\ _ _ 2
0 =argmin S(0) = | A0 — |

@ Necessary optimality condition i
VS(H)=0

Compute the gradient by expanding S(6)
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Linear Least Squares

Optimality conditions

S(O+h) = A0+ h) — y|> = [|A0 — y + Ah|]?
= (Ad —y+Ah)T(A0 —y+Ah)
= (Af — y)T(AG —y)+ (A0 — y)TAh+ (Ah)T(Aa —y)+ (Ah)TAh
= || A0 — y|* + 2(A0 — y) T Ah + || Ah|/?
= S(0) + VS(G)Th+ ||Ah||2

VS(9) =2AT (A9 — y),

hence VS(f) = 0 implies )
ATAO=ATy.
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Linear Least Squares

Optimality conditions

Theorem : a solution of the LLS problem is given by 4, solution of the “normal equations”

ATAO=ATy,
moreover, if rank A = p then 4 is unique.
Proof :
S(0) = S(6+06 — 0) = S(0) + VS(@O) (6 - ) + | A@ - 0)]%,
= S(0) + | A6 9)II2
> S(0)
Uniqueness :

Stéphane Mottelet (UTC) Least squares 29/63



Linear Least Squares

Simple linear regression

@ rank A = 2 if there exists / # j such that x; # x;
@ Computations :

n n n n
Sy = inv S,V = Zyia SX,V = ZXIYI7 Six = lez
i=1 1 i=1 i=1

i=

wasls sl Arels)

SX Sxx SXy
0 _ Snyx - S)(S)(y 0 _ nSXy - SxSy
T nSe -8 7 PT nSy-%2
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Linear Least Squares

Practical resolution with Scilab

@ When 2 is square and invertible, the Scilab command
x=A\y
computes x, the unique solution of Axx=y.

@ When 2 is not square and has full (column) rank, then the command
x=A\y
computes x, the unique least squares solution. i.e. such that norm (A+x-vy) is minimal.

» Although mathematically equivalent to

x= (A" *A)\ (A" *y)
the command x=A\y is numerically more stable, precise and efficient
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Linear Least Squares

Practical resolution with Scilab

1.6

1.4 H

1.2

0.8

Fit (X, ¥i)i=1...n with a polynomial of degree 2 with Scilab
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Linear Least Squares

An interesting example
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@ Minimize the algebraic distance
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Linear Least Squares

An interesting example

@ Algebraic distance

n

d(a,b,R) =" ((xi — a2+ (y — b2 — R?)® = ||r|?

i=1

The residual vector is non-linear w.r.t. (a, b, R) but we have

r=R?— & — b +2ax; + 2by; — (x + yP),

a
= [2x;,2y;, 1] b — (x? +y?)
R — 22— p2

hence residual is linear w.r.t. § = (a, b, R? — @ — b?).
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Linear Least Squares

An interesting example

@ Standard form, the unknown is 6 = (a, b, R?> — & — b?)

2x; 2y 1 X2 +yz
A=| Lo, z= ; , d(ab,R)=|A) - z|?
2x, 2y, 1 X2+ y2

@ In Scilab

A=[2%x, 2%y, ones (x) ]

z=x."24+y."2

theta=A\z

a=theta (1)

b=theta (2)

R=sqgrt (theta (3) +a"2+b"2)

t=linspace (0,2%%pi, 100)
plot(x,y,"o",a+Rxcos (t),b+Rxsin(t))

0.5 4

-0.5 4
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Linear Least Squares

Take home message

Take home message #2 :

Solving linear least squares problem is just a matter of linear algebra
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Non Linear Least Squares (NLLS)

@ Motivation and statistical framework
@ Maths reminder

@ Linear Least Squares (LLS)

© Non Linear Least Squares (NLLS)
@ Statistical evaluation of solutions

@ Model selection
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Non Linear Least Squares (NLLS)

Example

@ Consider data (x;, y;) to be fitted by the non linear model
y = fo(x) = exp(01 + 02X),

The “log trick” leads some people to minimize

n

Siog(6) = Y (Iog yi — (61 + 62X))° ,

i=1

i.e. do simple linear regression of (log y;) against (x;), but this violates a fundamental
hypothesis because

if y; — fo(x;) is normally distributed then log y; — log fy(X;) is not !
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Non Linear Least Squares (NLLS)

Possibles angles of attack

Remember that
SO) = r@|,  ri(0) = fy(x) — yi.

A local minimum of S can be found by different methods :

@ Find a solution of the non linear systems of equations
VS(0) =2r'0)"r®) =0,

with the Newton’s method :

» needs to compute the Jacobian of the gradient itself (do you really want to compute second
derivatives ?),
» does not guarantee convergence towards a minimum.
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Non Linear Least Squares (NLLS)

Possibles angles of attack

Use the spirit of Newton’s method as follows : start with 6y and for each k

@ consider the Taylor development of the residual vector at 6,
r(0) = r(0k) + r'(0x)(0 — Ox) + (|0 — Oklle(0 — Ok)
and take 6,1 such that the squared norm of the affine approximation
17 (Ok) + ' (k) (Oks1 — OK) 1P

is minimal.
finding Ox.1 — Ok is a LLS problem !
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Non Linear Least Squares (NLLS)

Gauss-Newton method

@ Original formulation of the Gauss-Newton method

ket = 0k — [/ (00T F' (O] 7'(0) " r(6),

@ Equivalent Scilab implementation using backslash \ operator

Oks1 = Ok — r'(Ok)\r(0k)

Problem: what can you do when r/(6x) has not full column rank ?

Stéphane Mottelet (UTC) Least squares

41/63



Non Linear Least Squares (NLLS)

Levenberg-Marquardt method

@ Modify the Gauss-Newton iteration: pick up a A > 0 and take 6,1 such that
Sx(Oks1 — Ok) = [I1(OK) + ' (0) Oks1 — O)1Z + Al (Ot — Ok)[1?

is minimal.

@ After rewriting Sy (0x+1 — ) using block matrix notation as

1 2
Sa(Oke1 — Ok) = H( f)g/;) > (Oks1 — Ok) + ( r(g") >H

finding 0.1 — 6k is a LLS problem and for any A > 0 a unique solution exists !
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Non Linear Least Squares (NLLS)

Levenberg-Marquardt method

@ Since the residual vector reads

("9 ) -0+ (7))

the normal equations of the LLS are given by

( r;(g;l() )T ( r’)fg;l() )(9k+1 Ch) = < r’)f/;)

= (P ) () G -0 =~ (00T,
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Non Linear Least Squares (NLLS)

Levenberg-Marquardt method

@ Hence, the mathematical formulation of Levenberg-Marquardt method is
Oket = O — [r'(0) T F'(0k) + N1 F'(0k) " r(0k)

but practical Scilab implementation should use the backslash \ operator

Grr = By — ( r’)f{:;l() )\< I’(gk) >
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Non Linear Least Squares (NLLS)

Levenberg-Marquardt method

Where is the insight in Levenberg-Marquardt method ?

@ Remember that VS(0) = 2r'(6) " r(d), hence LM iteration reads

Okst = Ok — 5 (I’ (9k)T (9k) + )\I) 1VS(9k)7
= Ok — o (%1 )+1) "'V S(0k)

» When )X is small, LM methods behaves more like the Gauss-Newton method.
» When X is large, LM methods behaves more like the gradient method.

A allows to balance between speed (A = 0) and robustness (A — o)

45/63
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Non Linear Least Squares (NLLS)

Example 1

Consider data (x;, y;) to be fitted by the non linear model fy(x) = exp(61 + 62x) :

The Jacobian of r(6) is given by

exp(61 + 92X1) X1 exp(91 + 92X1)
r'() = : :
exp(f1 + Oaxn)  Xpexp(f + 2xq)
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Non Linear Least Squares (NLLS)

Example 1

In Scilab, use the Isgrsolve or leastsq function:

function r=resid(theta,n)
: r=exp (theta (1) +theta (2) xx) -y;
endfunction

function j=jac(theta,n)
e=exp (theta (l)+theta (2) *x);
Jj=le x.xe]l;

endfunction

load data_exp.dat
thetaO0=[0;01];
theta=lsgrsolve (thetal, resid, length (x), jac);

é _ (0.981, _2_905) plot(x,y,"ob", x,exp(theta(l)+theta(2)#*x),"r")
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Non Linear Least Squares (NLLS)

Example 2

@ Enzymatic kinetics

) =9, S0
s =%25577

S(O) = 617

L >0,

yi = measurement of s at time {;
s0) = Ir@)E. o) =40
]

Individual weights o; allow to take into account different standard deviations of measurements
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s(t)

Non Linear Least Squares (NLLS)

Example 2

In Scilab, use the Isqgrsolve or leastsq function

1000 - function dsdt=michaelis(t,s,theta)
dsdt=theta (2) *s/ (s+theta (3))
8004 N endfunction

600 function r=resid(theta,n)
s=ode (theta(l),0,t,michaelis)
o r=(s-y)./sigma
endfunction

400 —

200
load michaelis_data.dat
0 T T T T T T T 1

0 2 4 6 8 10 12 14 16 thetal=[y(1);20;80];
theta=lsqgrsolve (thetal, resid, n)

0 = (887.9, 37.6, 97.7)

If not provided, the Jacobian r’(9) is approximated by finite differences (but true Jacobian always
speed up convergence).
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Non Linear Least Squares (NLLS)

Take home message

Take home message #3 :

Solving non linear least squares problems is not that difficult
with adequate software and good starting values
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Statistical evaluation of solutions

@ Motivation and statistical framework
@ Maths reminder

@ Linear Least Squares (LLS)

© Non Linear Least Squares (NLLS)
@ Statistical evaluation of solutions
@ Model selection
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Statistical evaluation of solutions

Motivation

@ Since the data (;),-1...n is a sample of random variables, then  too !

@ Confidence intervals for § can be easily obtained by at least two methods

» Monte-Carlo method : allows to estimate the distribution of # but needs thousands of resamplings

» Linearized statistics : very fast, but can be very approximate for high level of measurement error
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Statistical evaluation of solutions

Monte Carlo method

@ The Monte Carlo method is a resampling method, i.e. works by generating new samples of
synthetic measurement and redoing the estimation of 4. Here model is

y= 91 + 92X + 93X2,

and data is corrupted by noise with o = %

Stéphane Mottelet (UTC) Least squares 53/63



Statistical evaluation of solutions

Monte Carlo method

04 0>
At confidence level=95%,

04 €10.99,1.29],
0> € [-1.20,—0.85],
6, € [-2.57,—1.91].
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Statistical evaluation of solutions

Linearized Statistics
@ Define the weighted residual r(9) by

ri(0) = y,-——fe(x,-)’

aj

where o; is the standard deviation of y;.
@ The covariance matrix of § can be approximated by

V(d) = F(O)™"
where F(f) is the Fisher Information Matrix, given by
F(6)=r'(6)"r'()
@ For example, when o = ¢ for all i, in LLS problems

V(d) =?ATA
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s(t)

Statistical evaluation of solutions

Linearized Statistics

1000 —
d=derivative (resid, theta)
8001 V=1inv (d’ *d)

o sigma_theta=sqrt (diag(V))

600 —

// 0.975 fractile Student dist.

400 —

t_alpha=cdft ("T",m-3,0.975,0.025);

200

thetamin=theta-t_alphaxsigma_theta
10 12 14 16 thetamax=theta+t_alphaxsigma_theta

s
0 = (887.9, 37.6, 97.7)
At 95% confidence level

0, € [856.68,919.24], 0, € [34.13,41.21], f; € [93.37,102.10].
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Statistical evaluation of solutions

@ Motivation and statistical framework
@ Maths reminder

@ Linear Least Squares (LLS)

© Non Linear Least Squares (NLLS)
@ Statistical evaluation of solutions

© Model selection
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Model selection

Motivation : which model is the best ?
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Model selection

Motivation : which model is the best ?
On the previous slide data has been fitted with the model

p
y=)Y 6kx*, p=0...8,
k=0

Consider S(f) as a function of model order p does not help much

|0—O—O0 training

10% 7

residual

=

15
w
I

model order
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3470.32

651.44
608.53
478.23
477.78
469.20
461.00
457.52
448.10
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Model selection

Validation

Validation is the key of model selection :

@ Define two sets of data

» T C {1,...n} for model training
» V={1,...n}\ T for validation

@ For each value of model order p

» Compute the optimal parameters with the training data

fp=argmin > (yi — fo(x)*

ieT

» Compute the validation residual
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Model selection

Training + Validation

30 30 30
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Model selection

Training + Validation

Validation helps a lot: here the best model order is clearly p = 3!

Sv(ép)

|O—O—O0 training

4
10 7 |O—O—0 validation

11567.21
2533.41
2288.52
259.27
326.09
2077.03
6867.74
26595.40
195203.35

residual

oONO T WN = OT

model order
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Statistical evaluation and model selection

Take home message

Take home message #4 :

Always evaluate your models by either computing confidence intervals for the parameters or by
using validation.
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