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Motivation
Regression problem

Data : (xi , yi )i=1..n,

Model : y = fθ(x)

I x ∈ R : independent variable
I y ∈ R : dependent variable (value found by observation)
I θ ∈ Rp : parameters

Regression problem

Find θ such that the model best explains the data,

i.e. yi is close to fθ(xi ), i = 1 . . . n.
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Motivation
Regression problem, example

Simple linear regression : (xi , yi ) ∈ R2

y

−→ find θ1, θ2 such that the data fits the model y = θ1 + θ2x

How does one measure the fit/misfit ?
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Motivation
Least squares method

The least squares method measures the fit with the Sum of Squared Residuals (SSR)

S(θ) =
n∑

i=1

(yi − fθ(xi ))2,

and aims to find θ̂ such that
∀θ ∈ Rp, S(θ̂) ≤ S(θ),

or equivalently
θ̂ = arg min

θRp
S(θ).

Important issues

statistical interpretation
existence, uniqueness and practical determination of θ̂ (algorithms)

Stéphane Mottelet (UTC) Least squares 6 / 63



Statistical framework
Hypothesis

1 (xi )i=1...n are given
2 (yi )i=1...n are samples of random variables

yi = fθ(xi ) + εi , i = 1 . . . n,

where εi , i = 1 . . . n are independent and identically distributed (i.i.d.) and

E [εi ] = 0, E [ε2
i ] = σ2, density ε→ g(ε)

The probability density of yi is given by

φi
θ : R −→ R

y −→ φi
θ(y ) = g(y − fθ(xi ))

hence E [yi |θ] = fθ(xi ).
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Statistical framework
Example

If ε is normally distributed, i.e. g(ε) = (σ
√

2π)−1 exp(− 1
2σ2 ε

2), we have

φi
θ(y ) = (σ

√
2π)−1 exp

(
− 1

2σ2 (y − fθ(xi ))
2
)
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Statistical framework
Joint probability density and Likelihood function

Joint density

When θ is given, as the (yi ) are independent, the density of the vector y = (y1, . . . , yn) is

φθ(y) =
n∏

i=1

φi
θ(yi ) = φ1

θ(y1)φ2
θ(y2) . . . φn

θ(yn).

Interpretation : for D ⊂ Rn

Prob(y ∈ D|θ) =
∫

D
φθ(y) dy1 . . . dyn

Likelihood function

When a sample of y is given, then Ly(θ) def= φθ(y) is called

Likelihood of the parameters θ
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Statistical framework
Maximum Likelihood Estimation

The Maximum Likelihood Estimate of θ is the vector θ̂ defined by

θ̂ = arg max
θ∈Rp

Ly(θ).

Under the Gaussian hypothesis, then

Ly(θ) =
n∏

i=1

(σ
√

2π)−1 exp
(
− 1

2σ2 (yi − fθ(xi ))
2
)
,

= (σ
√

2π)−n exp

(
− 1

2σ2

n∑
i=1

(yi − fθ(xi ))
2

)
,

hence, we recover the least squares solution, i.e.

arg max
θ∈Rp

Ly(θ) = arg min
θ∈Rp

S(θ).
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Statistical framework
Alternatives : Least Absolute Deviation Regression

Least Absolute Deviation Regression : the misfit is measured by

S1(θ) =
n∑

i=1

|yi − fθ(xi )|.

Is θ̂ = arg minθ∈Rp S1(θ) is a maximum likelihood estimate ?

Yes, if εi has a Laplace distribution

g(ε) = (σ
√

2)−1 exp

(
−
√

2
σ
|ε|

)

First issue : S1 is not differentiable
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Statistical framework
Alternatives : Least Absolute Deviation Regression

Densities of Gaussian vs. Laplacian random variables (with zero mean and unit variance) :

Second issue : the two statistical hypothesis are very different !
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Statistical framework
Take home message

Take home message #1 :

Doing Least Squares Regression means that you assume that the model error is Gaussian.

However, if you have no idea about the model error :

1 the nice theoretical and computational framework you will get is worth doing this
assumption. . .

2 a posteriori goodness of fit tests can be used to assess the normality of errors.

Stéphane Mottelet (UTC) Least squares 13 / 63



Maths reminder

1 Motivation and statistical framework
2 Maths reminder
3 Linear Least Squares (LLS)
4 Non Linear Least Squares (NLLS)
5 Statistical evaluation of solutions
6 Model selection

Stéphane Mottelet (UTC) Least squares 14 / 63



Maths reminder
Matrix algebra

Notation : A ∈Mn,m(R), x ∈ Rn,

A =

 a11 . . . a1m
...

. . .
...

an1 . . . anm

 , x =

 x1
...

xn


Product : for B ∈Mm,p(R), C = AB ∈Mn,p(R),

cij =
m∑

k=1

aik bkj

Identity matrix

I =

 1
. . .

1
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Maths reminder
Matrix algebra

Transposition, Inner product and norm :

A> ∈Mm,n(R) ,
[
A>
]

ij = aji

For x ∈ Rn, y ∈ Rn,

〈x , y〉 = x>y =
n∑

i=1

xiyi , ‖x‖2 = x>x
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Maths reminder
Matrix algebra

Linear dependance / independence :

a set {x1, . . . , xm} of vectors in Rn is dependent if a vector xj can be written as

xj =
m∑

k=1,k 6=i

αk xk

I a set of vectors which is not dependent is called independent
I a set of m > n vectors is necessarily dependent
I a set of n independent vectors in Rn is called a basis

The rank of a A ∈Mnm is the number of its linearly independent columns

rank(A) = m⇐⇒ {Ax = 0⇒ x = 0}
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Maths reminder
Linear system of equations

When A is square

rank(A) = n⇐⇒ there exists A−1 s.t. A−1A = AA−1 = I

When the above property holds :

For all y ∈ Rn, the system of equations
Ax = y ,

has a unique solution x = A−1y .

Computation : Gauss elimination algorithm (no computation of A−1)

in Scilab/Matlab : x = A\y
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Maths reminder
Differentiability

Definition : let f : Rn −→ Rm,

f (x) =

 f1(x)
...

fm(x)

 , fi : Rn −→ R,

f is differentiable at a ∈ Rn if

f (a + h) = f (a) + f ′(a)h + ‖h‖ε(h), lim
h→0

ε(h) = 0

Jacobian matrix, partial derivatives :

[
f ′(a)

]
ij =

∂fi
∂xj

(a)

Gradient : if f : Rn −→ R, is differentiable at a,

f (a + h) = f (a) +∇f (a)>h + ‖h‖ε(h), lim
h→0

ε(h) = 0
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Maths reminder
Nonlinear system of equations

When f : Rn −→ Rn, a solution x̂ to the system of equations

f (x̂) = 0

can be found (or not) by the Newton’s method : given x0, for each k

1 consider the affine approximation of f at xk

T (x) = f (xk ) + f ′(xk )(x − xk )

2 take xk+1 such that T (xk+1) = 0,

xk+1 = xk − f ′(xk )−1f (xk )

Newton’s method can be very fast. . . if x0 is not too far from x̂ !
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Maths reminder
Find a local minimum - gradient algorithm

When f : Rn −→ R is differentiable, a vector x̂ satisfying ∇f (x̂) = 0 and

∀x ∈ Rn, f (x̂) ≤ f (x)

can be found by the descent algorithm : given x0, for each k :

1 select a direction dk such that ∇f (xk )>dk < 0
2 select a step ρk , such that

xk+1 = xk + ρk dk ,

satisfies (among other conditions)
f (xk+1) < f (xk )

The choice dk = −∇f (xk ) leads to the gradient algorithm
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Maths reminder
Find a local minimum - gradient algorithm

xk+1 = xk − ρk∇f (xk ),
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Linear Least Squares
Linear models

The model y = fθ(x) is linear w.r.t. θ, i.e.

y =
p∑

j=1

θjφj (x), φk : R→ R

Examples

I y =
∑p

j=1 θjx j−1

I y =
∑p

j=1 θj cos (j−1)x
T , where T = xn − x1

I . . .
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Linear Least Squares
The residual for simple linear regression

Simple linear regression

S(θ) =
n∑

i=1

(θ1 + θ2xi − yi )2 = ‖r (θ)‖2,

Residual vector r (θ)

ri (θ) = [1, xi ]
[
θ1
θ2

]
− yi

For the whole residual vector

r (θ) = Aθ − y , y =

 y1
...

yn

 , A =

 1 x1
...

...
1 xn
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Linear Least Squares
The residual for a general linear model

General linear model fθ(x) =
∑p

j=1 θjφj (x)

S(θ) =
n∑

i=1

(fθ(xi )− yi )2 = ‖r (θ)‖2,

=
n∑

i=1

(∑p
j=1 θjφj (xi )− yi

)2
= ‖r (θ)‖2,

Residual vector r (θ)

ri (θ) = [φ1(xi ), . . . , φp(xi )]

 θ1
...
θ2

− yi

For the whole residual vector r (θ) = Aθ − y where A has size n × p and

aij = φj (xi ).
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Linear Least Squares
Optimality conditions

Linear Least Squares problem : find θ̂

θ̂ = arg min
θRp

S(θ̂) = ‖Aθ − y‖2

Necessary optimality condition
∇S(θ̂) = 0

Compute the gradient by expanding S(θ)
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Linear Least Squares
Optimality conditions

S(θ + h) = ‖A(θ + h)− y‖2 = ‖Aθ − y + Ah‖2

= (Aθ − y + Ah)>(Aθ − y + Ah)

= (Aθ − y )>(Aθ − y ) + (Aθ − y )>Ah + (Ah)>(Aθ − y ) + (Ah)>Ah

= ‖Aθ − y‖2 + 2(Aθ − y )>Ah + ‖Ah‖2

= S(θ) +∇S(θ)>h + ‖Ah‖2

∇S(θ) = 2A>(Aθ − y ),

hence ∇S(θ̂) = 0 implies
A>A θ̂ = A>y .
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Linear Least Squares
Optimality conditions

Theorem : a solution of the LLS problem is given by θ̂, solution of the “normal equations”

A>A θ̂ = A>y ,

moreover, if rank A = p then θ̂ is unique.
Proof :

S(θ) = S(θ̂ + θ − θ̂) = S(θ̂) +∇S(θ̂)>(θ − θ̂) + ‖A(θ − θ̂)‖2,

= S(θ̂) + ‖A(θ − θ̂)‖2,

≥ S(θ̂)

Uniqueness :

S(θ̂) = S(θ)⇐⇒ ‖A(θ − θ̂)‖2 = 0,

⇐⇒ A(θ − θ̂) = 0

⇐⇒ θ = θ̂,
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Linear Least Squares
Simple linear regression

rank A = 2 if there exists i 6= j such that xi 6= xj

Computations :

Sx =
n∑

i=1

xi , Sy =
n∑

i=1

yi , Sxy =
n∑

i=1

xiyi , Sxx =
n∑

i=1

x2
i

A>A =
[

n Sx
Sx Sxx

]
, A>y =

[
Sy
Sxy

]
θ1 =

Sy Sxx − SxSxy

nSxx − S2
x

, θ2 =
nSxy − SxSy

nSxx − S2
x
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Linear Least Squares
Practical resolution with Scilab

When A is square and invertible, the Scilab command
x=A\y

computes x, the unique solution of A*x=y.

When A is not square and has full (column) rank, then the command
x=A\y

computes x, the unique least squares solution. i.e. such that norm(A*x-y) is minimal.

I Although mathematically equivalent to
x=(A’*A)\(A’*y)

the command x=A\y is numerically more stable, precise and efficient

Stéphane Mottelet (UTC) Least squares 31 / 63



Linear Least Squares
Practical resolution with Scilab

Fit (xi , yi )i=1...n with a polynomial of degree 2 with Scilab
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Linear Least Squares
An interesting example

Find a circle wich best fits (xi , yi )i=1...n in the plane

Minimize the algebraic distance

d(a,b,R) =
n∑

i=1

(
(xi − a)2 + (yi − b)2 − R2)2

= ‖r‖2
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Linear Least Squares
An interesting example

Algebraic distance

d(a,b,R) =
n∑

i=1

(
(xi − a)2 + (yi − b)2 − R2)2

= ‖r‖2

The residual vector is non-linear w.r.t. (a,b,R) but we have

ri = R2 − a2 − b2 + 2axi + 2byi − (x2
i + y2

i ),

= [2xi ,2yi , 1]

 a
b

R2 − a2 − b2

− (x2
i + y2

i )

hence residual is linear w.r.t. θ = (a,b,R2 − a2 − b2).
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Linear Least Squares
An interesting example

Standard form, the unknown is θ = (a,b,R2 − a2 − b2)

A =

 2x1 2y1 1
...

...
...

2xn 2yn 1

 , z =

 x2
1 + y2

1
...

x2
n + y2

n

 , d(a,b,R) = ‖Aθ − z‖2

In Scilab

A=[2*x,2*y,ones(x)]
z=x.^2+y.^2
theta=A\z
a=theta(1)
b=theta(2)
R=sqrt(theta(3)+a^2+b^2)
t=linspace(0,2*%pi,100)
plot(x,y,"o",a+R*cos(t),b+R*sin(t))
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Linear Least Squares
Take home message

Take home message #2 :

Solving linear least squares problem is just a matter of linear algebra
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Non Linear Least Squares (NLLS)
Example

Consider data (xi , yi ) to be fitted by the non linear model

y = fθ(x) = exp(θ1 + θ2x),

The “log trick” leads some people to minimize

Slog(θ) =
n∑

i=1

(log yi − (θ1 + θ2xi ))
2 ,

i.e. do simple linear regression of (log yi ) against (xi ), but this violates a fundamental
hypothesis because

if yi − fθ(xi ) is normally distributed then log yi − log fθ(xi ) is not !
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Non Linear Least Squares (NLLS)
Possibles angles of attack

Remember that
S(θ) = ‖r (θ)‖2, ri (θ) = fθ(xi )− yi .

A local minimum of S can be found by different methods :

Find a solution of the non linear systems of equations

∇S(θ) = 2r ′(θ)>r (θ) = 0,

with the Newton’s method :

I needs to compute the Jacobian of the gradient itself (do you really want to compute second
derivatives ?),

I does not guarantee convergence towards a minimum.
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Non Linear Least Squares (NLLS)
Possibles angles of attack

Use the spirit of Newton’s method as follows : start with θ0 and for each k

consider the Taylor development of the residual vector at θk

r (θ) = r (θk ) + r ′(θk )(θ − θk ) + ‖θ − θk‖ε(θ − θk )

and take θk+1 such that the squared norm of the affine approximation

‖r (θk ) + r ′(θk )(θk+1 − θk )‖2

is minimal.
finding θk+1 − θk is a LLS problem !
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Non Linear Least Squares (NLLS)
Gauss-Newton method

Original formulation of the Gauss-Newton method

θk+1 = θk − [r ′(θk )>r ′(θk )]
−1

r ′(θk )>r (θk ),

Equivalent Scilab implementation using backslash \ operator

θk+1 = θk − r ′(θk )\r (θk )

Problem: what can you do when r ′(θk ) has not full column rank ?
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Non Linear Least Squares (NLLS)
Levenberg-Marquardt method

Modify the Gauss-Newton iteration: pick up a λ > 0 and take θk+1 such that

Sλ(θk+1 − θk ) = ‖r (θk ) + r ′(θk )(θk+1 − θk )‖2 + λ‖(θk+1 − θk )‖2

is minimal.

After rewriting Sλ(θk+1 − θk ) using block matrix notation as

Sλ(θk+1 − θk ) =
∥∥∥∥( r ′(θk )

λ
1
2 I

)
(θk+1 − θk ) +

(
r (θk )

0

)∥∥∥∥2

finding θk+1 − θk is a LLS problem and for any λ > 0 a unique solution exists !
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Non Linear Least Squares (NLLS)
Levenberg-Marquardt method

Since the residual vector reads(
r ′(θk )
λ

1
2 I

)
(θk+1 − θk ) +

(
r (θk )

0

)
the normal equations of the LLS are given by(

r ′(θk )
λ

1
2 I

)>( r ′(θk )
λ

1
2 I

)
(θk+1 − θk ) = −

(
r ′(θk )
λ

1
2 I

)>(
r (θk )

0

)
⇐⇒

(
r ′(θk )>, λ

1
2 I
)( r ′(θk )

λ
1
2 I

)
(θk+1 − θk ) = −

(
r ′(θk )>, λ

1
2 I
)( r (θk )

0

)

⇐⇒
(
r ′(θk )>r ′(θk ) + λI

)
(θk+1 − θk ) = −r ′(θk )>r (θk )
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Non Linear Least Squares (NLLS)
Levenberg-Marquardt method

Hence, the mathematical formulation of Levenberg-Marquardt method is

θk+1 = θk − [r ′(θk )>r ′(θk ) + λI]
−1

r ′(θk )>r (θk )

but practical Scilab implementation should use the backslash \ operator

θk+1 = θk −
(

r ′(θk )
λ

1
2 I

)
\
(

r (θk )
0

)
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Non Linear Least Squares (NLLS)
Levenberg-Marquardt method

Where is the insight in Levenberg-Marquardt method ?

Remember that ∇S(θ) = 2r ′(θ)>r (θ), hence LM iteration reads

θk+1 = θk − 1
2

(
r ′(θk )>r ′(θk ) + λI

)−1∇S(θk ),

= θk − 1
2λ

( 1
λ r ′(θk )>r ′(θk ) + I

)−1∇S(θk )

I When λ is small, LM methods behaves more like the Gauss-Newton method.
I When λ is large, LM methods behaves more like the gradient method.

λ allows to balance between speed (λ = 0) and robustness (λ→∞)
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Non Linear Least Squares (NLLS)
Example 1

Consider data (xi , yi ) to be fitted by the non linear model fθ(x) = exp(θ1 + θ2x) :

The Jacobian of r (θ) is given by

r ′(θ) =

 exp(θ1 + θ2x1) x1 exp(θ1 + θ2x1)
...

...
exp(θ1 + θ2xn) xn exp(θ1 + θ2x1)
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Non Linear Least Squares (NLLS)
Example 1

In Scilab, use the lsqrsolve or leastsq function:

θ̂ = (0.981, -2.905)

function r=resid(theta,n)
r=exp(theta(1)+theta(2)*x)-y;

endfunction

function j=jac(theta,n)
e=exp(theta(1)+theta(2)*x);
j=[e x.*e];

endfunction

load data_exp.dat
theta0=[0;0];
theta=lsqrsolve(theta0,resid,length(x),jac);

plot(x,y,"ob", x,exp(theta(1)+theta(2)*x),"r")
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Non Linear Least Squares (NLLS)
Example 2

Enzymatic kinetics

s′(t) = θ2
s(t)

s(t) + θ3
, t > 0,

s(0) = θ1,

yi = measurement of s at time ti

S(θ) = ‖r (θ)‖2, ri (θ) =
yi − s(ti )

σi

Individual weights σi allow to take into account different standard deviations of measurements
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Non Linear Least Squares (NLLS)
Example 2

In Scilab, use the lsqrsolve or leastsq function

θ̂ = (887.9, 37.6, 97.7)

function dsdt=michaelis(t,s,theta)
dsdt=theta(2)*s/(s+theta(3))

endfunction

function r=resid(theta,n)
s=ode(theta(1),0,t,michaelis)
r=(s-y)./sigma

endfunction

load michaelis_data.dat
theta0=[y(1);20;80];
theta=lsqrsolve(theta0,resid,n)

If not provided, the Jacobian r ′(θ) is approximated by finite differences (but true Jacobian always
speed up convergence).
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Non Linear Least Squares (NLLS)
Take home message

Take home message #3 :

Solving non linear least squares problems is not that difficult
with adequate software and good starting values
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Statistical evaluation of solutions
Motivation

Since the data (yi )i=1...n is a sample of random variables, then θ̂ too !

Confidence intervals for θ̂ can be easily obtained by at least two methods

I Monte-Carlo method : allows to estimate the distribution of θ̂ but needs thousands of resamplings

I Linearized statistics : very fast, but can be very approximate for high level of measurement error
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Statistical evaluation of solutions
Monte Carlo method

The Monte Carlo method is a resampling method, i.e. works by generating new samples of
synthetic measurement and redoing the estimation of θ̂. Here model is

y = θ1 + θ2x + θ3x2,

and data is corrupted by noise with σ = 1
2
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Statistical evaluation of solutions
Monte Carlo method

θ1 θ2 θ3

At confidence level=95%,

θ̂1 ∈ [0.99,1.29],

θ̂2 ∈ [−1.20,−0.85],

θ̂1 ∈ [−2.57,−1.91].
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Statistical evaluation of solutions
Linearized Statistics

Define the weighted residual r (θ) by

ri (θ) =
yi − fθ(xi )

σi
,

where σi is the standard deviation of yi .
The covariance matrix of θ̂ can be approximated by

V (θ̂) = F (θ̂)−1

where F (θ̂) is the Fisher Information Matrix, given by

F (θ) = r ′(θ)>r ′(θ)

For example, when σi = σ for all i , in LLS problems

V (θ̂) = σ2A>A
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Statistical evaluation of solutions
Linearized Statistics

θ̂ = (887.9, 37.6, 97.7)

d=derivative(resid,theta)
V=inv(d’*d)
sigma_theta=sqrt(diag(V))

// 0.975 fractile Student dist.

t_alpha=cdft("T",m-3,0.975,0.025);

thetamin=theta-t_alpha*sigma_theta
thetamax=theta+t_alpha*sigma_theta

At 95% confidence level

θ̂1 ∈ [856.68,919.24], θ̂2 ∈ [34.13,41.21], θ̂3 ∈ [93.37,102.10].
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Statistical evaluation of solutions

1 Motivation and statistical framework
2 Maths reminder
3 Linear Least Squares (LLS)
4 Non Linear Least Squares (NLLS)
5 Statistical evaluation of solutions
6 Model selection
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Model selection
Motivation : which model is the best ?
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Model selection
Motivation : which model is the best ?

On the previous slide data has been fitted with the model

y =
p∑

k=0

θk xk , p = 0 . . . 8,

Consider S(θ̂) as a function of model order p does not help much

p S(θ̂)
0 3470.32
1 651.44
2 608.53
3 478.23
4 477.78
5 469.20
6 461.00
7 457.52
8 448.10
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Model selection
Validation

Validation is the key of model selection :

1 Define two sets of data
I T ⊂ {1, . . . n} for model training
I V = {1, . . . n} \ T for validation

2 For each value of model order p
I Compute the optimal parameters with the training data

θ̂p = arg min
θ∈Rp

∑
i∈T

(yi − fθ(xi ))2

I Compute the validation residual
SV (θ̂p) =

∑
i∈V

(yi − fθ̂p
(xi ))2
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Model selection
Training + Validation
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Model selection
Training + Validation

Validation helps a lot: here the best model order is clearly p = 3 !

p SV (θ̂p)
0 11567.21
1 2533.41
2 2288.52
3 259.27
4 326.09
5 2077.03
6 6867.74
7 26595.40
8 195203.35
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Statistical evaluation and model selection
Take home message

Take home message #4 :

Always evaluate your models by either computing confidence intervals for the parameters or by
using validation.
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