Exercices du chapitre 2 avec corrigé succinct

Exercice II.1 Ch2-Exercice1

Les applications suivantes sont-elles linéaires?:

- 1. L'application $u: \mathbb{R} \to \mathbb{R}$, donnée par $u(x) = \cos x$.
- 2. L'application $u : \mathbb{R} \to \mathbb{R}$, donnée par $u(x) = \alpha x + \beta$, $(\alpha, \beta \text{ donnés dans } \mathbb{R})$; discuter suivant les valeurs de α et β .
- 3. L'application $u: \mathbb{R}^n \to \mathbb{R}$, donnée par

$$u(\vec{x}) = a_1 x_1 + a_2 x_2 + ... + a_n x_n$$
, $(a_1, a_2, ..., a_n \text{ donnés dans } \mathbb{R})$.

- 4. La projection d'un vecteur de l'espace sur un plan Π parallèlement à une droite Δ donnée.
- 5. Soit \mathscr{P}_k l'espace vectoriel des polynômes de degré au plus k, dont on note les éléments P. On définit $u: \mathscr{P}_k \to \mathscr{P}_{k-1}$ par u(P) = P', (P') est la dérivée de P.
- 6. L'application $u: \mathcal{P}_k \to \mathcal{P}_{2k}$ définie par $u(P) = P^2$.
- 7. Soit $\mathcal{C}(0,1)$ l'espace vectoriel des fonctions numériques continues sur l'intervalle fermé [0,1], dont on note ϕ les éléments. On définit alors $u:\mathcal{C}(0,1)\to\mathbb{R}$ par $u(\phi)=\int_0^1\phi(t)dt$.

Solution: 1) non, 2) non si $\beta \neq 0$, oui si $\beta = 0$ 3) 4) 5) oui, 6) non, 7) oui.

Exercice II.2 Ch2-Exercice2

Montrer que Ker u est un sous-espace vectoriel de E

Exercice II.3 Ch2-Exercice3

On reprend les applications de l'exercice II.1, lorsque ces applications sont linéaires déterminer leur noyau et leur image

Solution: 2) - si $\alpha = \beta = 0$, Ker $u = \mathbb{R}$, Im $u = \{\vec{0}\}$, - si $\alpha \neq 0$, $\beta = 0$ Ker $u = \{\vec{0}\}$, Im $u = \mathbb{R}$.

- 3) Ker $u = {\vec{x} \in \mathbb{R}^n | a_1 x_1 + a_2 x_2 + ... + a_n x_n = 0}$, Im $u = \mathbb{R}$.
- 4) Ker $u = \Delta$, Im $u = \Pi$.
- 5) Ker $u = \mathcal{P}_0$ (polynômes constants), Im $u = \mathcal{P}_{n-1}$.
- 7) Ker $u = \{ \phi \in \mathcal{C}(0,1) | \int_0^1 \phi(t) dt = 0 \}$, Im $u = \mathbb{R}$.

Exercice II.4 Ch2-Exercice4

Démontrer le théorème suivant : Soit $u \in \mathcal{L}(E; F)$, alors on a les propriétés suivantes :

- l'image par *u* de toute famille liée de *E* est une famille liée de *F*,
- l'image par u de toute famille génératrice de E est une famille génératrice de Im u.

Solution:

- On suppose que $\{\vec{x}_1,\ldots,\vec{x}_p\}$ est une famille liée de E, donc il existe $\lambda_1,\ldots,\lambda_p$ non tous nuls tels que : $\lambda_1\vec{x}_1+\ldots+\lambda_p\vec{x}_p=\vec{O}$ on a donc $u(\lambda_1\vec{x}_1+\ldots+\lambda_p\vec{x}_p)=\vec{O}$ et donc $\lambda_1u(\vec{x}_1)+\ldots+\lambda_pu(\vec{x}_p)=\vec{O}$, ce qui montre que $\{u(\vec{x}_1),\ldots,u(\vec{x}_p)\}$ est une famille liée.
- On commence par remarquer que les vecteurs $u(\vec{x}_1), ..., u(\vec{x}_p)$ appartiennent à Im u. De plus soit \vec{y} ∈ Im u alors il existe \vec{x} ∈ E tel que $\vec{y} = u(\vec{x})$. Si $\{\vec{x}_1, ..., \vec{x}_p\}$ est une famille génératrice de E, \vec{x}

peut s'écrire
$$\vec{x} = \sum_{i=1}^{p} \alpha_i \vec{x}_i$$
, on a donc
$$\begin{cases} \vec{y} = u(\vec{x}) = \sum_{i=1}^{p} \alpha_i u(\vec{x}_i) \\ u(\vec{x}_i) \in \text{Im } u \end{cases} \text{ donc } \{u(\vec{x}_1), \dots, u(\vec{x}_p)\} \text{ est une famille }$$
génératrice de Im u

Exercice II.5 Ch2-Exercice5

Soit un espace vectoriel E, F_1 et F_2 deux sous-espaces vectoriels de E tels que $E = F_1 \oplus F_2$, on appelle **projection** ou encore **projecteur** sur F_1 parallèlement à F_2 l'application u de E dans E définie par :

$$u(\vec{x}) = \vec{x}_1 \text{ si } \vec{x} = \vec{x}_1 + \vec{x}_2 \text{ où } \vec{x}_1 \in F_1, \vec{x}_2 \in F_2.$$

Montrer que la projection ainsi définie est une application linéaire. Déterminer son noyau et son image.

Solution: On vérifie facilement que $u(\vec{x} + \vec{y}) = u(\vec{x}) + u(\vec{y}), u(\lambda \vec{x}) = \lambda u(\vec{x})$ Im $u = F_1$, Ker $u = F_2$

Exercice II.6 Ch2-Exercice6

Montrer que si u est une projection alors $u=u\circ u$. On démontrera la réciproque de cette propriété en TD.

Solution: On a bien sûr $u(\vec{x}_1) = \vec{x}_1$, donc $u \circ u(\vec{x}) = u(\vec{x}) \forall \vec{x} \in E$ on a donc $u \circ u = u$. Vous pouvez illustrer ce résultat en pensant aux projections géométriques classiques sur un plan ou une droite.

Exercice II.7 Ch2-Exercice7

Vérifier que $w = u \circ v$ est bien un élément de $\mathcal{L}(E; G)$.

Solution : $\left\{ \begin{array}{l} (u \circ v)(\vec{x} + \vec{y}) = (u \circ v)(\vec{x}) + (u \circ v)(\vec{y}) \\ (u \circ v)(\lambda \vec{x}) = \lambda (u \circ v)(\vec{x}) \end{array} \right\} \text{ces 2 propriétés se vérifient très facilement.}$

Exercice II.8 Ch2-Exercice8

Soit E un espace vectoriel de dimension 3, $\mathcal{E} = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ une base de E, soit F un espace vectoriel de dimension 2, $\mathscr{F} = \{\vec{f}_1, \vec{f}_2\}$ une base de F et $u \in \mathcal{L}(E; F)$. On sait que $u(\vec{e}_1) = \vec{f}_1 + \vec{f}_2$, $u(\vec{e}_2) = \vec{f}_1 - \vec{f}_2$, $u(\vec{e}_3) = \vec{f}_1 - 2\vec{f}_2$.

Calculer l'expression de $u(\vec{x})$ pour \vec{x} quelconque de E

Solution: $u(\vec{x}) = u(x_1\vec{e}_1 + x_2\vec{e}_2 + x_3\vec{e}_3) = x_1u(\vec{e}_1) + x_2u(\vec{e}_2) + x_3u(\vec{e}_3) = (x_1 + x_2 + x_3)\vec{f}_1 + (x_1 - x_2 - 2x_3)\vec{f}_2$. On voit donc que la donnée de $u(\vec{e}_1), u(\vec{e}_2), u(\vec{e}_3)$ définit $u(\vec{x})$ pour tout \vec{x} . (A condition bien sûr de connaître les composantes de \vec{x} dans la base \mathscr{E})

Exercice II.9 Ch2-Exercice9

- 1. On suppose que l'application $u \in \mathcal{L}(E; F)$ est injective.
 - (a) Montrer que si la famille $\{u(\vec{x}_1),...,u(\vec{x}_p)\}$ est liée alors la famille $\{\vec{x}_1,...,\vec{x}_p)\}$ est liée.
 - (b) Montrer que l'image d'une base de E est une base de Im u.
- 2. Soit $u \in \mathcal{L}(E; F)$, E de type fini, montrer que les deux propositions suivantes sont équivalentes :
 - (i) u est injective,
 - (ii) il existe une base $\mathscr{B} = \{\vec{e}_1, \dots, \vec{e}_n\}$ de E telle que $\{u(\vec{e}_1), \dots, u(\vec{e}_n)\}$ soit libre.

Solution:

- 1. (a) On sait que si u est injective, on a $\{\vec{x}_1, \dots, \vec{x}_p\}$ libre $\Longrightarrow \{u(\vec{x}_1), \dots, u(\vec{x}_p)\}$ libre, donc en utilisant la contraposée : $\{u(\vec{x}_1), \dots, u(\vec{x}_p)\}$ liée $\Longrightarrow \{\vec{x}_1, \dots, \vec{x}_p\}$ liée
 - (b) Une base de E est une famille libre, donc son image par u est une famille libre puisque u est injective.

Une base de E est une famille génératrice de E, donc son image par u est une famille génératrice de Im u.

L'image d'une base de E est donc une base de Im u.

2. (ii) \Rightarrow (i) - Soit \vec{x} un vecteur tel que $u(\vec{x}) = \vec{0}_F$, on peut alors décomposer ce vecteur sur la base $\mathscr E$: $\vec{x} = \sum_{j=1}^n x_j \vec{e}_j$ et $\vec{0}_F = u(\vec{x}) = u(\sum_{j=1}^n x_j \vec{e}_j) = \sum_{j=1}^n x_j u(\vec{e}_j)$ et comme la famille $u(\mathscr E)$ est libre par hypothèse cela implique que

 $x_1 = x_2 = ... = x_n = 0$, soit $\vec{x} = \vec{0}_E$ et donc Ker $u = {\vec{0}_E}$.

(i) \Rightarrow (ii) - Puisque E est de type fini, il existe une base \mathcal{B} de E, cette base est une famille libre, donc d'après la proposition 2.1.6 son image par u est une famille libre.

Exercice II.10 Ch2-Exercice 10

Soit $u \in \mathcal{L}(E; F)$, on définit les propositions suivantes :

- (i) u est bijective,
- (ii) l'image par *u* d'une base de *E* est une base de *F*.

Montrer que $(i) \iff (ii)$.

Solution: (i) $\Longrightarrow u$ est injective \Longrightarrow l'image d'une famille libre est libre (i) $\Longrightarrow u$ est surjective \Longrightarrow l'image d'une famille génératrice de E est génératrice de F

 \implies l'image d'une base de E est une base de F

Réciproquement : Soit $\{\vec{x}_1, ..., \vec{x}_n\}$ une base de E. On suppose que l'image par u de cette base de E est une base de E

- Montrons que Ker $u = \vec{0}_E$:

$$\vec{x} \in \text{Ker } u \iff u(\vec{x}) = \vec{0}_F \\ \vec{x} = \sum_{i=1}^n \alpha_i \vec{x}_i$$

$$\} \Longrightarrow \sum_{i=1}^n \alpha_i u(\vec{x}_i) = \vec{0}_F \Longrightarrow \alpha_1 = \alpha_2 = \dots = \alpha_n = 0 \iff \vec{x} = \vec{0}_E.$$

(On a utilisé l'hypothèse que $\{u(\vec{x}_1), \dots, u(\vec{x}_n)\}$ est une base donc libre).

On vient donc de montrer que Ker $u = \vec{0}_E$ donc u est injective.

- Montrons que Im u = F

$$\{u(\vec{x}_1), \dots, u(\vec{x}_n)\}\$$
 est une base de F donc $\forall \vec{y} \in F, \vec{y} = \sum_{i=1}^n \alpha_i u(\vec{x}_i) = u\left(\sum_{i=1}^n \alpha_i \vec{x}_i\right)$ donc $\vec{y} \in \text{Im } u$.

On vient de montrer que Im u = F, donc que u est surjective.

Ce qui termine de démontrer l'équivalence.

Exercice II.11 Ch2-Exercice11

Soient E et F deux espaces de même dimension n, soient $\{\vec{e}_1, \vec{e}_2, ..., \vec{e}_n\}$ et $\{\vec{f}_1, \vec{f}_2, ..., \vec{f}_n\}$ des bases de E et F, on définit une application linéaire u de la manière suivante

$$u(\vec{e}_i) = \vec{f}_i$$
.

Montrer qu'alors u est bijective de E sur F.

Solution: On démontre facilement que : $\begin{cases} u(\vec{x}) = \vec{0}_F \Rightarrow \vec{x} = \vec{0}_E \text{ donc Ker } u = \{\vec{0}_E\} \\ \forall \vec{y} \in F, \exists \vec{x}, \vec{y} = u(\vec{x}) \text{ donc Im } u = F \end{cases}$ donc u est bijective.

Exercice II.12 Ch2-Exercice12

Soit E un espace vectoriel de dimension n, muni d'une base $\mathscr{E} = \{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$, alors pour tout $\vec{x} \in E$ on peut écrire

$$\vec{x} = \sum_{j=1}^{n} \alpha_j \vec{e}_j$$

et on peut associer à $\vec{x} \in E$ le vecteur $(\alpha_1, \alpha_2, ..., \alpha_n)$ de K^n correspondant aux composantes de \vec{x} sur \mathscr{E} . Montrer que l'application $\vec{x} \mapsto (\alpha_1, \alpha_2, ..., \alpha_n) : E \to K^n$ ainsi définie est un isomorphisme de E sur E.

Solution: Comme tout $\vec{x} \in E$ admet une décomposition unique sur la base \mathscr{E} l'application $\vec{x} \mapsto (\alpha_1, \alpha_2, \dots, \alpha_n)$ est bien définie. On montre facilement qu'elle est linéaire et injective et surjective.

Exercice II.13 Ch2-Exercice 13

Montrer que la matrice de l'application $i_E: E \mapsto E$ est la matrice identité I lorsque l'on munit l'espace E de la base $\mathscr{E} = \{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$.

Solution: $i_E(\vec{e}_i) = \vec{e}_i \text{ donc } A = I$.

Exercice II.14 Ch2-Exercice14

On suppose $E=F=\mathcal{P}_2$, on munit \mathcal{P}_2 de la base canonique $\{1,X,X^2\}$, on définit u telle que u(p)=p'. Déterminer alors la matrice de u.

Solution: $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$

Exercice II.15 Ch2-Exercice 15

Soit la matrice A définie par : $A = \begin{pmatrix} 3 & 4 & 5 \\ 1 & 2 & 6 \end{pmatrix}$, u est l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^2 dont la matrice est A lorsque l'on munit \mathbb{R}^3 et \mathbb{R}^2 de leurs bases canoniques. Que vaut $u(\vec{e}_1), u(\vec{e}_2), \dots, u(\vec{e}_n)$? En déduire $u(\vec{x})$ pour $\vec{x} = (1, -1, 2)$

Solution: $\vec{x} = \vec{e}_1 - \vec{e}_2 + 2\vec{e}_3$ donc $u(\vec{x}) = u(\vec{e}_1) - u(\vec{e}_2) + 2u(\vec{e}_3)$ Or d'après la définition de \vec{A} on a : $\begin{cases} u(\vec{e}_1) &= 3\vec{f}_1 + \vec{f}_2 \\ u(\vec{e}_2) &= 4\vec{f}_1 + 2\vec{f}_2 \\ u(\vec{e}_3) &= 5\vec{f}_1 + 6\vec{f}_2 \end{cases}$

On déduit donc de tout ce qui précède : $u(\vec{x}) = 9\vec{f}_1 + 11\vec{f}_2$

Exercice II.16 Ch2-Exercice 16

Soit u l'application linéaire de \mathbb{R}^4 dans \mathbb{R}^3 définie par

$$u(\vec{x}) = (x_1 - x_2 + x_3 + x_4, x_1 + 2x_2 - x_4, x_1 + x_2 + 3x_3 - 3x_4),$$

déterminer la matrice A associée à u lorsque l'on munit \mathbb{R}^3 et \mathbb{R}^4 des bases canoniques.

Solution: Pour obtenir *A* il suffit de déterminer $u(\vec{e}_1), u(\vec{e}_2), u(\vec{e}_3), u(\vec{e}_4)$.

$$\begin{cases} u(\vec{e}_1) &= (1,1,1) &= \vec{f}_1 + \vec{f}_2 + \vec{f}_3 \\ u(\vec{e}_2) &= (-1,2,1) &= -\vec{f}_1 + 2\vec{f}_2 + \vec{f}_3 \\ u(\vec{e}_3) &= (1,0,3) &= \vec{f}_1 + 3\vec{f}_3 \\ u(\vec{e}_4) &= (1,-1,-3) &= \vec{f}_1 - \vec{f}_2 - 3\vec{f}_3 \end{cases} .D'où A = \begin{pmatrix} 1 & -1 & 1 & 1 \\ 1 & 2 & 0 & -1 \\ 1 & 1 & 3 & -3 \end{pmatrix}.$$

Bien sûr pour obtenir $u(\vec{e}_1)$, on écrit $\vec{e}_1 = (1,0,0,0)$ donc $x_1 = 1, x_2 = x_3 = x_4 = 0$.

Vous pourrez revenir à cet exrcice après avoir étudié le calcul explicite de l'image d'un vecteur.

Exercice II.17 Ch2-Exercice17

- 1. Démontrer que \mathcal{M}_{mn} est un espace vectoriel, en particulier quel est l'élément neutre pour l'addition? Quel est l'opposé de A?
- 2. Déterminer une base de \mathcal{M}_{mn} . Quelle est la dimension de \mathcal{M}_{mn} ?

Solution:

- 1. On démontre facilement que la somme est une loi de composition interne, associative, la matrice E dont tous les termes sont nuls (on la note E=0) est l'élément neutre, la matrice B dont les termes sont les opposés de ceux de A (B=-A) est le symétrique de A. On a de plus $(\lambda \mu) A = \lambda (\mu A), (\lambda + \mu) A = \lambda A + \mu A, \lambda (A + B) = \lambda A + \lambda B, 1 A = A$
- 2. Si l'on note E_{ij} la matrice dont tous les termes sont nuls sauf le terme situé en ligne i et colonne j qui vaut 1, alors $A = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} E_{ij}$. La famille $\{E_{ij}, 1 \le i \le m, 1 \le j \le n\}$ est donc génératrice, on montre facilement qu'elle est libre : c'est donc une base , la dimension de \mathcal{M}_{mn} est donc mn.

Exercice II.18 Ch2-Exercice18

Calculer le produit AB (et BA lorsque cela est possible) dans les cas suivants :

$$-A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},$$

$$-A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix} B = \begin{pmatrix} 1 & 0 \\ -1 & 1 \\ 1 & -1 \end{pmatrix}.$$

Solution:

$$-AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, BA = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
$$-AB = \begin{pmatrix} -2 & 3 \\ 0 & 0 \\ 2 & -1 \end{pmatrix}$$

Une disposition pratique pour ce dernier produit est la suivante :

$$\begin{pmatrix} 1 & 0 \\ -1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix} \quad \begin{pmatrix} \times & \times \\ \otimes & \times \\ \times & \times \end{pmatrix}$$

Le terme \otimes est obtenu par produit terme à terme de la ligne de A et de la colonne de B situées dans son prolongement. C'est-à-dire $\otimes = 0 \times 1 + 1 \times (-1) + 1 \times 1$. Bien sûr cette disposition qui est pratique quand on débute se revèle rapidement encombrante!

On ne peut pas effectuer le produit BA.

Exercice II.19 Ch2-Exercice19

On définit les matrices
$$D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$
 $D' = \begin{pmatrix} 5 & 0 \\ 0 & 6 \end{pmatrix}$ $B = \begin{pmatrix} 1 & 2 \\ -1 & 1 \\ 3 & -1 \end{pmatrix}$

- 1. Calculer BD', DB. Que se passe-t-il quand on multiplie une matrice à droite par une matrice diagonale? quand on multiplie une matrice à gauche par une matrice diagonale? Enoncer des résultats généraux.
- 2. Par quelle matrice L doit-on multiplier B à gauche pour que $LB = \underline{B}_2$? Par quelle matrice C doit-on multiplier B à droite pour que $BC = B_1$?

Solution:

- 1. $BD' = (5B_1 6B_2)$: le produit à droite d'une matrice B par une matrice diagonale D' revient à multiplier chacune des colonnes B_i par le scalaire d'_{ij} .
 - $DB = \begin{pmatrix} 2\underline{B}_1 \\ 3\underline{B}_2 \\ 4\underline{B}_3 \end{pmatrix}$: le produit à gauche d'une matrice B par une matrice diagonale D, revient à multiplier chacune des lignes \underline{B}_i par le scalaire d_{ii} .
- 2. $L = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, ce résultat se généralise bien sûr à une matrice B quelconque.

Exercice II.20 Ch2-Exercice20

Reprendre l'exercice II.15. Que vaut X? Calculer AX et comparer avec ce qui a été trouvé alors.

Solution: On a $X = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$, $AX = Y \begin{pmatrix} 9 \\ 11 \end{pmatrix}$ donc $u(\vec{x}) = (9,11) = 9\vec{f}_1 + 11\vec{f}_2$. On retrouve bien sûr le même résultat.

Exercice II.21 Ch2-Exercice21

Démontrer que le produit de deux matrices carrées inversibles de même dimension est inversible et on a $(AB)^{-1} = B^{-1}A^{-1}$.

Solution: On pose M = AB, $N = B^{-1}A^{-1}$, on montre en utilisant l'associativité que MN = NM = I, donc $N = (M)^{-1}$: $B^{-1}A^{-1} = (AB)^{-1}$

Exercice II.22 Ch2-Exercice22

Soit la matrice $B = \begin{pmatrix} 1 & 2 \\ -1 & 1 \\ 3 & -1 \end{pmatrix}$. Expliciter \underline{B}_1 , \underline{B}_2 , \underline{B}_3 , B_1 , B_2 , \underline{B}^T_1 , \underline{B}^T_2 , $(B^T)_1$, $(B^T)_2$, $(B^T)_3$, $(\underline{B}_1)^T$, $(\underline{B}_2)^T$,

 $(\underline{B}_3)^T$, $(B_1)^T$, $(B_2)^T$. Vérifier sur cet exemple que : $(B_i)^T = \underline{B}^T_i$. Bien sûr ces résultats se généralisent à une matrice B quelconque.

Solution:

$$B = \begin{pmatrix} 1 & 2 \\ -1 & 1 \\ 3 & -1 \end{pmatrix}, B^{T} = \begin{pmatrix} 1 & -1 & 3 \\ 2 & 1 & -1 \end{pmatrix},$$

$$\underline{B}_{1} = \begin{pmatrix} 1 & 2 \end{pmatrix}, \underline{B}_{2} = \begin{pmatrix} -1 & 1 \end{pmatrix}, \underline{B}_{3} = \begin{pmatrix} 3 & -1 \end{pmatrix}, \underline{B}_{1}^{T} = \begin{pmatrix} 1 & -1 & 3 \end{pmatrix}, \underline{B}_{2}^{T} = \begin{pmatrix} 2 & 1 & -1 \end{pmatrix},$$

$$B_{1} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}, B_{2} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix},$$

$$(B^{T})_{1} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, (B^{T})_{2} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}, (B^{T})_{3} = \begin{pmatrix} 3 \\ -1 \end{pmatrix},$$

$$(\underline{B}_{1})^{T} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, (\underline{B}_{2})^{T} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}, (\underline{B}_{3})^{T} = \begin{pmatrix} 3 \\ -1 \end{pmatrix},$$

$$(B_{1})^{T} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, (B_{2})^{T} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, (B_{2})^{T} = \begin{pmatrix} 3 \\ -1 \end{pmatrix},$$

Exercice II.23 Ch2-Exercice23

Soit E un espace vectoriel muni d'une base $\mathcal{E} = \{\vec{e}_1, \vec{e}_2\}$. On définit les vecteurs $\vec{e'}_1 = \vec{e}_1 + \vec{e}_2$, $\vec{e'}_2 = 2\vec{e}_1 - \vec{e}_2$.

- Montrer que $\mathcal{E}' = \{\vec{e'}_1, \vec{e'}_2\}$ forme une base de E.
- Que vaut P matrice de passage de \mathscr{E} dans \mathscr{E}' ?

Solution:

- 1. On montre que $\{\vec{e'}_1,\vec{e'}_2\}$ est une famille libre, en effet $\lambda_1\vec{e'}_1+\lambda_2\vec{e'}_2=\vec{O}\Leftrightarrow\lambda_1=\lambda_2=0$. (Il suffit en effet d'exprimer $\vec{e'}_1,\vec{e'}_2$ en fonction de \vec{e}_1,\vec{e}_2). Or une famille libre à 2 éléments est une base.
- 2. $P = \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix}$

Exercice II.24 Ch2-Exercice24

Reprendre l'exercice II.23

- Exprimer \vec{e}_1 et \vec{e}_2 en fonction de $\vec{e'}_1$ et $\vec{e'}_2$.
- Si x_1 et x_2 sont les composantes du vecteur \vec{x} dans la base \mathcal{E} , en déduire x_1' et x_2' ses composantes dans la base \mathcal{E}' .
- Vérifier que X = PX'.
- Que vaut P^{-1} matrice de passage de \mathcal{E}' dans \mathcal{E} ? Effectuer le produit PP^{-1} .

Solution:

1.
$$\begin{cases} \vec{e'}_1 = \vec{e}_1 + \vec{e}_2 \\ \vec{e'}_2 = 2\vec{e}_1 - \vec{e}_2 \end{cases} \Rightarrow \begin{cases} \vec{e}_1 = \frac{1}{3}\vec{e'}_1 + \frac{1}{3}\vec{e'}_2 \\ \vec{e}_2 = \frac{2}{3}\vec{e'}_1 - \frac{1}{3}\vec{e'}_2 \end{cases}$$

2.
$$\vec{x} = x_1 \vec{e}_1 + x_2 \vec{e}_2 = x_1 \left(\frac{1}{3} \vec{e'}_1 + \frac{1}{3} \vec{e'}_2 \right) + x_2 \left(\frac{2}{3} \vec{e'}_1 - \frac{1}{3} \vec{e'}_2 \right) = \left(\frac{1}{3} x_1 + \frac{2}{3} x_2 \right) \vec{e'}_1 + \left(\frac{1}{3} \vec{x}_1 - \frac{1}{3} x_2 \right) \vec{e'}_2$$
 donc $x'_1 = \frac{1}{3} x_1 + \frac{2}{3} x_2$, $x'_2 = \frac{1}{3} x_1 - \frac{1}{3} x_2$

3.
$$PX' = \begin{pmatrix} x_1' + 2x_2' \\ x_1' - x_2' \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = X$$

4.
$$P^{-1} = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix}$$
, on a obtenu P^{-1} à partir de 1. On vérifie bien sûr que $PP^{-1} = P^{-1}P = I$

Exercice II.25 Ch2-Exercice25

On reprend les données de l'exercice II.23. On définit $u \in \mathcal{L}(E; E)$ par

$$u(\vec{e}_1) = \vec{e}_1 + 3\vec{e}_2, u(\vec{e}_2) = 2\vec{e}_1 - \vec{e}_2$$

- Quelle est la matrice A de u dans la base \mathscr{E} ?
- Exprimer $u(\vec{e'}_1)$, $u(\vec{e'}_2)$ en fonction de \vec{e}_1 et \vec{e}_2 .
- En déduire $u(\vec{e'}_1), u(\vec{e'}_2)$ en fonction de $\vec{e'}_1$ et $\vec{e'}_2$.
- En déduire A'.
- Calculer $P^{-1}AP$.

Solution:

$$-A = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}$$

$$-u(\vec{e'}_1) = u(\vec{e}_1) + u(\vec{e}_2) = 3\vec{e}_1 + 2\vec{e}_2$$
, $u(\vec{e'}_2) = 2u(\vec{e}_1) - u(\vec{e}_2) = 7\vec{e}_2$

$$- u(\vec{e'}_1) = u(\vec{e}_1) + u(\vec{e}_2) = 3\vec{e}_1 + 2\vec{e}_2 , u(\vec{e'}_2) = 2u(\vec{e}_1) - u(\vec{e}_2) = 7\vec{e}_2$$

$$- u(\vec{e'}_1) = \vec{e'}_1 + \vec{e'}_2 + \frac{4}{3}\vec{e'}_1 - \frac{2}{3}\vec{e'}_2 = \frac{7}{3}\vec{e'}_1 + \frac{1}{3}\vec{e'}_2 , u(\vec{e'}_2) = \frac{14}{3}\vec{e'}_1 - \frac{7}{3}\vec{e'}_2$$

$$- A' = \begin{pmatrix} \frac{7}{3} & \frac{14}{3} \\ \frac{1}{3} & -\frac{7}{3} \end{pmatrix} = P^{-1}AP$$

Exercice II.26 Ch2-Exercice26

Soit $A \in \mathcal{M}_{mn}$, montrer que Im A est un sous espace vectoriel. Montrer plus précisément que Im A = vect $\langle A_1, \ldots, A_n \rangle$.

Solution : On démontre immédiatemment que Im *A* est un sous espace vectoriel. On a de plus :

$$Y \in \operatorname{Im} A \iff Y = AX \iff Y = \sum_{i=1}^{n} x_i A_i \text{ avec } x_i \in K \iff Y \in \operatorname{vect} \langle A_1, \dots, A_n \rangle.$$

Exercice II.27 Ch2-Exercice27

Déterminer le rang des matrices A suivantes :

- Si $E = E_1 \oplus E_2$, A est la matrice de la projection sur E_1 parallèlement à E_2 .
- A est la matrice de la rotation dans le plan.

$$-A = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 3 & 1 & 1 \end{array}\right).$$

Solution:

- rang $A = \dim E_1$
- rang A = 2
- rang A = 2 car $\{A_1, A_2, A_3\}$ est une famille liée et que $\{A_1, A_2\}$ est une famille libre.

Exercice II.28 Ch2-Exercice28

On définit les 5 propositions :

- a) *f* est injective.
- b) *f* est surjective.
- c) *f* est bijective.
- d) *f* n'est pas injective.
- e) f n'est pas surjective.

Dans chacun des cas suivants, énoncer parmi les 5 propositions lesquelles sont exactes (sans hypothèse supplémentaire)

1. f est linéaire de \mathbb{R}^3 dans \mathbb{R}^4

- 2. f est linéaire de \mathbb{R}^3 dans \mathbb{R}^3
- 3. f est linéaire de \mathbb{R}^4 dans \mathbb{R}^3
- 4. f est linéaire injective de \mathbb{R}^3 dans \mathbb{R}^4
- 5. f est linéaire injective de \mathbb{R}^3 dans \mathbb{R}^3
- 6. f est linéaire surjective de \mathbb{R}^3 dans \mathbb{R}^2
- 7. f est linéaire surjective de \mathbb{R}^5 dans \mathbb{R}^5

Solution:

- 1. e)
- 2. rien sans hypothèses supplémentaires
- 3. d)
- 4. a) e)
- 5. a), b), c)
- 6. b), d)
- 7. a), b), c)

Exercice II.29 Ch2-Exercice29

Montrer que si $A \in \mathcal{M}_{np}$, Ker A est un sous-espace vectoriel de \mathcal{M}_{p1} .

Solution: Ker *A* n'est pas vide puisque $0 \in \text{Ker } A$.

On vérifie de plus la stabilité

Si $X, X' \in \text{Ker } A, a \in K \text{ alors } X + X' \in \text{Ker } A, aX \in \text{Ker } A.$

Exercice II.30 Ch2-Exercice30

Les matrices suivantes sont-elles inversibles?

$$A = \left(\begin{array}{rrr} 1 & 2 & -3 \\ 3 & -1 & 5 \\ 2 & 3 & -4 \end{array}\right), B = \left(\begin{array}{rrr} 1 & 2 & -3 \\ 3 & -1 & 5 \\ 2 & 3 & 1 \end{array}\right).$$

Solution: On constate que la recherche du noyau de A revient à chercher les coefficients x_1, x_2, x_3 qui vérifient $x_1A_1 + x_2A_2 + x_3A_3 = 0$, ce qui revient à étudier si les colonnes A_1, A_2, A_3 forment un famille libre, ce qui permet de savoir si le rang de A vaut 3.

Dans le cas de A on trouve des coefficients non nuls possibles, donc Ker $A \neq \{0\}$, ou encore rang A < 3, ce qui permet de conclure que A n'est pas inversible.

Dans le cas de *B*, la seule solution est $x_1 = x_2 = x_3 = 0$, donc *B* est inversible.