MT23 - A20 - Test 2 - QCM

Durée 20 min

(Les valeurs numériques peuvent changer d'un étudiant à l'autre.)

Questions de cours
1. Soit $A\in\mathcal{M}_{nn}$ une matrice non diagonale ayant une unique valeur propre de multiplicité n,A est-elle diagonalisable ?
oui
○non
2. $A \in \mathcal{M}_{nn}$ diagonalisable $\Leftrightarrow A$ admet n valeurs propres distinctes
○vrai
○faux
3. $A \in \mathcal{M}_{nn}$ diagonalisable $\Leftrightarrow A$ inversible \bigcirc vrai
○faux
Claux
4. 0 est valeur propre de $A\Leftrightarrow A$ n'est pas diagonalisable
⊙vrai
Ofaux

```
On pose \forall x,y\in\mathbb{R}^2,\ < x,y>=x_1y_1+x_2y_2+ax_1y_2+bx_2y_1. Dire \mathrm{si}< x,y> est un produit scalaire dans les cas suivants : a)\ a=1\ \mathrm{et}\ b=2 Oution non b)\ a=1\ \mathrm{et}\ b=1 Oution non c)\ a=-1\ \mathrm{et}\ b=-1 Oution non d)\ a=0\ \mathrm{et}\ b=0 Oution non
```

1. On pose
$$Q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & 1 & -1 \end{pmatrix}$$

 ${\it Q}$ est-elle orthogonale ?

- oui
- onon
- 2. Même question pour $Q=\begin{pmatrix}1&0&0\\0&-1&0\\0&0&-1\end{pmatrix}$
- oui
- onon

Soit la matrice
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 2 \end{pmatrix}$$

1. Donner la valeur propre simple λ_1 :

2. Donner la valeur propre double λ_2 :

3. Que vaut le sous-espace propre associé à λ_2 ?

$$\bigcirc V_{\lambda_2} = \operatorname{vect} < \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} >$$

$$\bigcirc V_{\lambda_2} = \operatorname{vect} < \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} >$$

$$\bigcirc V_{\lambda_2} = \text{vect} < \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} >$$

$$\bigcirc V_{\lambda_2} = \operatorname{vect} < \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} >$$

- 4. La matrice A est-elle diagonalisable?
- Ooui
- Onon
- 5. La matrice A est-elle inversible ?
- oui
- onon
- 6. Que vaut A^4 ?

$$\bigcirc 3A^2 - 2A$$

$$\bigcirc 2A^2 - A$$

$$\bigcirc 2A^2 - A \qquad \bigcirc -3A^2 + 2A$$

$$\bigcirc -2A^2 + A$$

```
On munit \mathbb{R}^3 du produit scalaire : \forall x,y \in \mathbb{R}^3, < x,y>=x_1y_1+4x_2y_2+x_3y_3.
Soit x = (1, 1, -1) et F = \text{vect} < x >.
1. Dire dans les cas suivants si y \in F^{\perp} :
 a) y = (1, 0, 1)
oui
\bigcirc \mathsf{non}
 b) y = (0, 1, 1)
\bigcircnon
 c) y = (0, 1, 4)
Ooui
Onon
 d) y = (0, 4, 1)
oui
onon
2. Quelle est la norme de x ?
0\sqrt{6}
\bigcirc\sqrt{3}
 0\sqrt{18}
```