$\mathrm{MT}23$ - $\mathrm{A}2025$ - Test 1

NOM:	
PRENOM:	
Numéro, jour et horaire du TD :	

Durée 30 min - Barème approximatif (2.5; 4; 3.5). Les exercices 1, 2 et 3 sont indépendants. La rédaction est très importante, rédigez et justifiez clairement vos réponses ou démonstrations!

Exercice 1 Soient E et F deux espaces vectoriels sur \mathbb{R} et $f \in \mathcal{L}(E,F)$.

- 1. Donner la définition de $f \in \mathcal{L}(E, F)$.
- 2. Donner la définition de $\operatorname{Im} f$.
- 3. Montrer que $\operatorname{Im} f$ est un sous-espace vectoriel (on précisera de quel espace vectoriel).

Exercice 2 Soit u l'application de \mathbb{R}^2 dans \mathbb{R}^2 telle que

$$u(x_1, x_2) = (2x_1 + x_2, x_1 - x_2)$$
 $\forall x = (x_1, x_2) \in \mathbb{R}^2$.

et soit (\vec{e}_1, \vec{e}_2) la base canonique de \mathbb{R}^2 .

- 1. Montrer que $u \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$.
- 2. Déterminer $\operatorname{Ker} u$.
- 3. Montrer que $(u(\vec{e}_1), u(\vec{e}_2))$ est une base de Im (u)
- 4. u est-elle injective? surjective? bijective?

Exercice 3 Soient E et F deux espaces vectoriels sur \mathbb{R} , $u \in \mathcal{L}(E,F)$ et $(\vec{e_1},\vec{e_2},\ldots,\vec{e_n})$ une famille de E.

- 1. Donner une condition sur u pour que $(\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n)$ est une famille libre de $E \Rightarrow (u(\vec{e}_1), u(\vec{e}_2), \dots, u(\vec{e}_n))$ est une famille libre de F Démontrer alors cette propriété.
- 2. La réciproque est-elle vraie? Si oui la démontrer, sinon donner un contre-exemple.