MT22 - Automne 2016 - Médian

Durée : 2 heures. Aucun document, calculatrice ou smartphone ne sont autorisés. Rendez une copie par exercice.

Exercice 1. (les questions 1. et 2. sont indépendantes)

1. On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie pour $(x,y) \neq (0,0)$ par

$$f(x,y) = \frac{x(y+y^2)}{\sqrt{x^2+y^2}}$$

et vérifiant f(0,0) = 0.

(a) Etudier la continuité de f.

On a $|f(r\cos\theta, r\sin\theta) - f(0,0)| = |\cos\theta(r\sin\theta + r^2\sin^2\theta)| \le r + r^2 = \varepsilon(r)$, et comme $\lim_{r\to 0} \varepsilon(r) = 0$, f est continue en (0,0). Pour $(x_0,y_0) \ne (0,0)$ la continuité de f découle des résultats classiques (quotient de deux fonctions continues, la fonction au dénominateur ne s'annulant pas).

(b) Montrer que f n'est pas différentiable en (0,0). Que peut-on en déduire sur la continuité des dérivées partielles de f?

On calcule les dérivées partielles en (0,0): comme $\forall x \neq 0, f(x,0) = 0$,

$$\frac{\partial f}{\partial x}(0,0) = \lim_{x \to 0} \frac{f(x,0)}{x} = 0,$$

et de même puisque $\forall y \neq 0, f(0, y) = 0,$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{y \to 0} \frac{f(0,y)}{y} = 0.$$

Si f était différentiable en (0,0) on aurait

$$f(x,y) = f(0,0) + \frac{\partial f}{\partial x}(0,0)x + \frac{\partial f}{\partial y}(0,0)y + \sqrt{x^2 + y^2}\varepsilon(x,y),$$

avec $\lim_{(x,y)\to(0,0)} \varepsilon(x,y) = 0$. Or ici on a

$$\varepsilon(x,y) = \frac{f(x,y)}{\sqrt{x^2 + y^2}} = \frac{x(y+y^2)}{x^2 + y^2},$$

et comme

$$\lim_{x \to 0} \varepsilon(x, x) = \lim_{x \to 0} \frac{x^2 + x^3}{2x^2} = \frac{1}{2},$$

 ε ne tend pas vers 0 en (0,0), donc f n'est pas différentiable en (0,0). On en conclut que les dérivées partielles ne peuvent être continues en (0,0) car si elles l'étaient f serait différentiable en (0,0) (condition suffisante vue en cours).

2. Soit $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ solution de l'équation aux dérivées partielles

$$x\frac{\partial f}{\partial y} - y\frac{\partial f}{\partial x} = 1,\tag{1}$$

que l'on se propose de résoudre en coordonnées polaires.

(a) On définit $g(r,\theta) = f(r\cos\theta, r\sin\theta)$, calculer $\frac{\partial g}{\partial \theta}$.

On a $\frac{\partial g}{\partial \theta}(r,\theta) = -r\sin\theta \frac{\partial f}{\partial x}(r\cos\theta, r\sin\theta) + r\cos\theta \frac{\partial f}{\partial y}(r\cos\theta, r\sin\theta).$

(b) En déduire que $f(x,y) = \arctan\left(\frac{y}{x}\right) + \varphi(x,y)$ où φ est une fonction radiale arbitraire.

On pose $x = r \cos \theta$ et $y = r \sin \theta$ dans (1) ce qui donne

$$r\cos\theta\frac{\partial f}{\partial y}(r\cos\theta,r\sin\theta) - r\sin\theta\frac{\partial f}{\partial x}(r\cos\theta,r\sin\theta) = 1 \Longleftrightarrow \frac{\partial g}{\partial \theta}(r,\theta) = 1,$$

d'où par intégration par rapport à θ ,

$$g(r, \theta) = \theta + h(r),$$

et comme $\frac{y}{x} = \tan \theta$, on a

$$f(x,y) = \theta + h(r) = \arctan\left(\frac{y}{x}\right) + h(\sqrt{x^2 + y^2}).$$

Exercice 2.

On désire fabriquer une boite (sans couvercle sur le dessus) de volume 1 m^3 ayant la forme d'un parallélépipède rectangle de dimensions (en mètres) : largeur a, hauteur b, profondeur c. Pour optimiser la quantité de matière utilisée, on désire que la somme des aires des 5 faces soit aussi petite que possible. Quelles dimensions a, b, c doit-on choisir pour fabriquer la boite (on vérifiera que la solution obtenue est bien un minimum)?

La somme des aires des 5 faces est égale à S = ac + 2ab + 2bc et comme la boite est de volume 1 m³ on a nécessairement abc = 1, on peut donc déjà définir $b = \frac{1}{ac}$, et la fonction $f : (\mathbb{R}^{+*})^2 \to \mathbb{R}$ par

$$f(a,c) = ac + 2ab + 2bc = ac + \frac{2}{c} + \frac{2}{a}$$
.

La surface sera minimale si $\frac{\partial f}{\partial a} = \frac{\partial f}{\partial c} = 0$, soit

$$c - \frac{2}{a^2} = 0$$
, $a - \frac{2}{c^2} = 0$

ce qui donne $a^4 - 2a = 0$, d'où $a^* = 2^{\frac{1}{3}}$, puis par substitution $c^* = 2^{\frac{1}{3}}$ et $b = 4^{-\frac{1}{3}}$. Calculons les dérivées secondes :

 $\frac{\partial^2 f}{\partial a^2}(a^*, c^*) = \frac{4}{(a^*)^3} = 2, \quad \frac{\partial^2 f}{\partial c \partial a}(a^*, c^*) = 1, \quad \frac{\partial^2 f}{\partial c^2}(a^*, c^*) = \frac{4}{(c^*)^3} = 2.$

Comme le discriminant $\Delta = (\frac{\partial^2 f}{\partial c \partial a}(a^*, c^*))^2 - \frac{\partial^2 f}{\partial a^2}(a^*, c^*) \frac{\partial^2 f}{\partial c^2}(a^*, c^*) = -3$ est négatif et $\frac{\partial^2 f}{\partial a^2} > 0$ on a bien un minimum.

Exercice 3.

Soient $\overrightarrow{\omega} = (\omega_1, \omega_2, \omega_3)$ et le champ de vecteurs $\overrightarrow{V} : \mathbb{R}^3 \to \mathbb{R}^3$ défini en tout point M(x, y, z) par

$$\overrightarrow{V}(x,y,z) = \overrightarrow{\omega} \wedge \overrightarrow{OM}$$
.

1. Le champ \overrightarrow{V} dérive-t-il d'un potentiel scalaire? Si oui déterminer ce potentiel.

On a $\overrightarrow{V} = \begin{pmatrix} \omega_2 z - \omega_3 y \\ \omega_3 x - \omega_1 z \\ \omega_1 y - \omega_2 x \end{pmatrix}$ et $\overrightarrow{\operatorname{rot} V} = 2\overrightarrow{\omega}$. Donc si $\overrightarrow{\omega} \neq \overrightarrow{0}$ alors \overrightarrow{V} ne dérive pas d'un potentiel et si $\overrightarrow{\omega} = \overrightarrow{0}$ alors \overrightarrow{V} dérive d'un potentiel constant f(x,y,z) = c où c est une constante arbitraire.

2. Montrer que \vec{V} dérive d'un potentiel vecteur \vec{A} , puis déterminer ce potentiel sous la forme

$$\overrightarrow{A} = (P(y, z), Q(x, z), R(x, y)).$$

On a div $\vec{V} = \frac{\partial}{\partial x}(\omega_2 z - \omega_3 y) + \frac{\partial}{\partial y}(\omega_3 x - \omega_1 z) + \frac{\partial}{\partial z}(\omega_1 y - \omega_2 x) = 0$ donc \vec{V} dérive d'un potentiel vecteur \vec{A} et on a

$$\overrightarrow{\operatorname{rot} A} = \overrightarrow{V} \Leftrightarrow \begin{pmatrix} \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \\ \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \\ \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \end{pmatrix} = \begin{pmatrix} \omega_2 z - \omega_3 y \\ \omega_3 x - \omega_1 z \\ \omega_1 y - \omega_2 x \end{pmatrix}.$$

Il y a plusieurs solutions possibles puisque l'on peut ajouter à \overrightarrow{A} n'importe quel champ dérivant d'un potentiel scalaire. On peut procéder par identification et obtenir <u>une des solutions possibles</u> : comme R ne dépend pas de z on a $R(x,y) = -\omega_3 \frac{y^2}{2} + a(x)$ et comme Q ne dépend pas de y, $Q(x,z) = -\omega_2 \frac{z^2}{2} + b(x)$. Avec les équations suivantes on finit par obtenir

$$\vec{A} = \begin{pmatrix} -\omega_1 \frac{y^2 + z^2}{2} + \alpha \\ -\omega_2 \frac{x^2 + z^2}{2} + \beta \\ -\omega_3 \frac{x^2 + y^2}{2} + \gamma \end{pmatrix}$$

où α, β, γ sont trois constantes arbitraires. Mais il est possible d'obtenir avec quelques efforts supplémentaires d'autres solutions avec des arguments de "séparation des variables", comme par exemple :

$$\vec{A} = \begin{pmatrix} -\omega_1 \frac{y^2 + z^2}{2} + \beta z + \alpha y \\ -\omega_2 \frac{x^2 + z^2}{2} + \alpha x + \delta z \\ -\omega_3 \frac{x^2 + y^2}{2} + \beta x + \delta y \end{pmatrix},$$

on notera que dans ce cas les deux potentiels proposés diffèrent juste d'un champ dérivant d'un potentiel scalaire puisque

$$\overrightarrow{rot} \begin{pmatrix} \beta z + \alpha y \\ \alpha x + \delta z \\ \beta x + \delta y \end{pmatrix} = \overrightarrow{0}.$$

Exercice 4.

1. Montrer que l'image de l'application

$$\gamma: [0, 2\pi[\to \mathbb{R}^2 \\ \theta \mapsto (x_0 + R\cos\theta, y_0 + R\sin\theta)$$

est un cercle de centre $M_0(x_0, y_0)$ et de rayon R.

Posons $M = \gamma(\theta)$, on a

$$||M_0M||^2 = (\gamma_1(\theta) - x_0)^2 + (\gamma_2(\theta) - y_0)^2 = R^2(\cos^2\theta + \sin^2\theta) = R^2.$$

donc Im $\gamma \subset C(M_0, R)$. D'autre part soit $M(x, y) \in C(M_0, R)$, on a donc

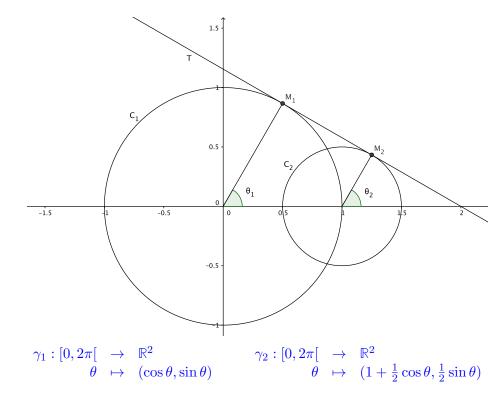
$$(x-x_0)^2 + (y-y_0)^2 = R^2 \Leftrightarrow ((x-x_0)/R)^2 + ((y-y_0)/R)^2 = 1,$$

comme on a une somme de deux carrés indépendants et égale à 1, il existe θ tel que

$$\cos \theta = (x - x_0)/R$$
, $\sin \theta = (y - y_0)/R$,

d'où il existe θ tel que $x = x_0 + R\cos\theta$ et $y = y_0 + R\sin\theta$. Donc $C(M_0, R) \subset \text{Im } \gamma$. Donc au final $\text{Im } \gamma = C(M_0, R)$ par double inclusion.

- 2. On considère les cercles C_1 de centre (0,0) et de rayon 1 et C_2 de centre (1,0) et de rayon 1/2.
 - (a) Préciser γ_1 et γ_2 telles que $C_1 = \operatorname{Im} \gamma_1$ et $C_2 = \operatorname{Im} \gamma_2$ et faire une figure représentant C_1 et C_2 ainsi que leur tangente commune T de pente négative.



(b) On note $M_1 = \gamma_1(\theta_1)$ et $M_2 = \gamma_2(\theta_2)$, les points de contact de T avec C_1 , C_2 respectivement. En utilisant γ_1' et γ_2' montrer que $\theta_1 = \theta_2$ et retrouver ainsi une propriété géométrique connue.

En ces deux points, les tangentes sont confondues donc leurs vecteurs directeurs $\gamma'_1(\theta_1)$ et $\gamma'_2(\theta_2)$ sont colinéaires donc le déterminant de ces deux vecteurs est nul :

$$\begin{vmatrix} -\sin\theta_1 & -\frac{1}{2}\sin\theta_2 \\ \cos\theta_1 & \frac{1}{2}\cos\theta_2 \end{vmatrix} = -\frac{1}{2}(\sin\theta_1\cos\theta_2 - \cos\theta_1\sin\theta_2) = 0,$$

d'où $\tan \theta_1 = \tan \theta_2$ soit $\theta_1 = \theta_2$.

(c) Ecrire que M_2 appartient à la tangente à C_1 en M_1 , en déduire que $\theta_1 = \theta_2 = \frac{\pi}{3}$.

 $\overrightarrow{M_1M_2}$ est colinéaire à $\gamma_1'(\theta_1)$ donc le déterminant de ces deux vecteurs est nul (on a posé $\theta_1 = \theta_2 = \theta$):

$$0 = \begin{vmatrix} 1 + \frac{1}{2}\cos\theta - \cos\theta & -\sin\theta \\ \frac{1}{2}\sin\theta - \sin\theta & \cos\theta \end{vmatrix} = \cos\theta - \frac{1}{2}(\cos^2\theta + \sin^2\theta) = \cos\theta - \frac{1}{2},$$

d'où $\theta = \frac{\pi}{3}$.

~~~~~~~~