Médian MT22 - A2019

Aucun document ni calculatrice.

La rédaction est très importante, rédigez et justifiez clairement vos réponses ou démonstrations!

Les exercices 1, 2, 3 et 4 sont indépendants.

Exercice 1 (Barème approximatif : 5 points)

Soit $\alpha \in \mathbb{R}$ un paramètre. Soit f la fonction définie par

$$f(x,y) = \begin{cases} \frac{x^3 - \alpha x y^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

- 1. Justifier que f est de classe \mathscr{C}^1 sur $\mathbb{R}^2 \setminus \{(0,0)\}$.
- 2. Montrer que la fonction f est continue en (0,0).
- 3. Déterminer les dérivées partielles premières de f en (0,0).
- 4. Montrer que f est différentiable en (0,0) si et seulement $\alpha = -1$. (Indication : étudier bien les cas $\alpha = -1$ et $\alpha \neq -1$ pour démontrer l'équivalence.)
- 5. Pour quelle(s) valeur(s) de α , la fonction f est-elle de classe \mathscr{C}^1 sur \mathbb{R}^2 ?

Exercice 2 (Barème approximatif: 4 points)

Soit f la fonction définie sur \mathbb{R}^2 par

$$f(x,y) = x^2 + y\sqrt{3} + 2\cos(x+y).$$

- 1. Déterminer le gradient de la fonction f.
- 2. En déduire le (ou les) point(s) critique(s) de f.
- 3. Déterminer les dérivées partielles secondes de f.
- 4. En déduire la nature des points critiques (minimum, maximum, point selle).

Exercice 3 (Barème approximatif : 5 points)

On rappelle les formules suivantes : pour $g: \mathbb{R}^3 \to \mathbb{R}$ et $A: \mathbb{R}^3 \to \mathbb{R}^3$ différentiables, on a $\operatorname{div}(gA) = \nabla g \cdot A + g \operatorname{div} A$ et $\operatorname{rot}(gA) = \nabla g \wedge A + g \operatorname{rot} A$.

1. Soit V le champ de vecteurs défini sur $D = \{M(x, y, z) \in \mathbb{R}^3 \mid 1 + x + y + z > 0\}$ par

$$V(x,y,z) = \frac{1}{1+x+y+z} \begin{pmatrix} y-z\\ z-x\\ x-y \end{pmatrix}.$$

- (a) Montrer que V dérive d'un potentiel vecteur $U: D \to \mathbb{R}^3$.
- (b) Déterminer la fonction $\phi:]-1, +\infty[\to \mathbb{R}$ dérivable, de sorte que

$$U(x, y, z) = \phi(x + y + z)\overrightarrow{OM} \text{ et } U(0, 0, 1) = \vec{0}.$$

TSVP!

2. Soit $W: (\mathbb{R}_+^*)^3 \to \mathbb{R}^3$ le champ de vecteurs défini par

$$W(x, y, z) = \begin{pmatrix} \ln(yz) + \frac{y + \beta z}{x} \\ \ln(xz) + \frac{z + \beta x}{y} \\ \ln(xy) + \frac{x + \beta y}{z} \end{pmatrix}.$$

- (a) Déterminer $\beta \in \mathbb{R}$ de sorte que W dérive d'un potentiel scalaire $f: (\mathbb{R}_+^*)^3 \to \mathbb{R}$.
- (b) Déterminer la forme générale des fonctions f telles que $\nabla f = W$.

Exercice 4 (Barème approximatif: 6 points)

Soit S_1 et S_2 deux surfaces définies par les équations cartésiennes suivantes :

$$(S_1): \quad x^2 + y^2 = 2z^2$$
 et $(S_2): \quad x + 1 = 2z$.

Soit $\mathscr{C} = S_1 \cap S_2$ la courbe d'intersection des deux surfaces S_1 et S_2 et $M_0 = (1, 1, 1) \in \mathscr{C}$.

- 1. Déterminer un vecteur normal à la surface S_1 au point M_0 .
- 2. En déduire l'équation du plan tangent à S_1 passant par M_0 .
- 3. (a) Montrer que \mathscr{C} peut également s'écrire comme l'intersection d'un cylindre elliptique d'axe de direction (Oz) et d'un plan.
 - (b) En déduire les équations paramétriques de la courbe \mathscr{C} .
- 4. (a) Déterminer un vecteur tangent à \mathscr{C} au point M_0 .
 - (b) En déduire les équations paramétriques de la droite tangente \mathcal{T} à \mathscr{C} au point M_0 .