Université de Technologie de Compiègne

MT22 - Avril 2021 - Médian Durée : 1h30.

Indiquer clairement le numéro de votre groupe Les documents et calculatrices sont interdits La clarté et la rigueur de la rédaction seront prises en compte.

Exercice 1. (9 points)

1. Soit f la fonction définie par :

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin(\frac{x-y}{x^2 + y^2}) & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0). \end{cases}$$

(a) La fonction f est-elle continue en (0,0)?

Corrigé (1 pt): On considère les coordonnées polaires $x = r\cos(\theta)$ et $y = r\sin(\theta)$, avec r > 0 et $0 < \theta < 2\pi$. On peut vérifier que

$$|f(r\cos(\theta), r\sin(\theta))| = r^2 \left| \sin\left(\frac{\cos(\theta) - \sin(\theta)}{r}\right) \right| \le r^2.$$

Ce qui prouve que

$$\lim_{r \to 0} f(r\cos(\theta), r\sin(\theta)) = 0 = f(0, 0).$$

Alors f est continue en (0,0).

(b) La fonction f admet-elle des dérivées partielles en (0,0)?

Corrigé (1 pt): Par la définition des dérivées partielles, on a

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} h \sin\left(\frac{1}{h}\right) = 0$$

car $|h\sin(\frac{1}{h})| \le |h|$. De même, on peut prouver que $\frac{\partial f}{\partial y}(0,0) = 0$.

(c) La fonction f est-elle différentiable en (0,0)?

Corrigé (1 pt) : Il suffit de calculer la limite suivante

$$\lim_{(h,k)\to 0} \epsilon(h,k) = \lim_{(h,k)\to 0} \frac{f(h,k)}{\sqrt{h^2 + k^2}} = \lim_{(h,k)\to 0} \sqrt{h^2 + k^2} \sin\left(\frac{h - k}{h^2 + k^2}\right).$$

Puisque $|\sqrt{h^2 + k^2} \sin(\frac{h-k}{h^2+k^2})| \le \sqrt{h^2 + k^2}$, cette limite est bien nulle, donc f est différentiable en (0,0).

(d) Les dérivées partielles de f sont-elles continues en (0,0)?

Corrigé (2 pts): On peut voir que

$$\frac{\partial f}{\partial x}(x,y) = \begin{cases} 2x\sin(\frac{x-y}{x^2+y^2}) + \frac{y^2 - x^2 + 2xy}{x^2+y^2}\cos(\frac{x-y}{x^2+y^2}) & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0). \end{cases}$$

De plus, si on considère le chemin y = x, on peut vérifier que

$$\lim_{x \to 0} \frac{\partial f}{\partial x}(x, x) = 1.$$

Cela montre que la dérivée partielle de f par rapport à x, n'est pas continue en (0,0). De même façon on peut montrer que la dérivée partielle de f par rapport à y, n'est pas aussi continue en (0,0).

- 2. On souhaite étudier les extremums de la fonction définie auparavant.
 - (a) Montrer qu'il n'y a qu'un seul point critique de la forme (x_0, x_0) , en distinguant les cas $x_0 = 0$ et $x_0 \neq 0$.

Corrigé (2 pts) : On a

$$\frac{\partial f}{\partial x}(x,y) = \begin{cases} 2x\sin(\frac{x-y}{x^2+y^2}) + \frac{y^2 - x^2 + 2xy}{x^2+y^2}\cos(\frac{x-y}{x^2+y^2}) & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases}$$

et

$$\frac{\partial f}{\partial y}(x,y) = \begin{cases} 2y \sin(\frac{x-y}{x^2+y^2}) + \frac{y^2-x^2-2xy}{x^2+y^2} \cos(\frac{x-y}{x^2+y^2}) & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0). \end{cases}$$

Cela montre que (0,0) est un point critique et c'est le seul point critique sous la forme (x_0,x_0) , car pour $x_0 \neq 0$ on a $\frac{\partial f}{\partial x}(x_0,x_0) = 1$ et $\frac{\partial f}{\partial y}(x_0,x_0) = -1$.

(b) Pour tout $n \in \mathbb{N}$, on considère la suite

$$x_n = \frac{1}{\frac{\pi}{2} + n\pi}.$$

Calculer la limite de x_n lorsque n tend vers $+\infty$ et $f(x_n, -x_n)$.

Corrigé (1 pt):

$$\lim_{n \to +\infty} x_n = 0, \quad \text{et} \quad f(x_n, -x_n) = 2x_n^2 \sin\left(\frac{1}{x_n}\right) = \frac{2(-1)^n}{\left(\frac{\pi}{2} + n\pi\right)^2}.$$

(c) En utilisant la question précédente, donner la nature du point critique de la forme (x_0, x_0) .

Corrigé (1 pt): Vu que (0,0) est le seul point critique, il suffit d'étudier le signe de f(x,y)-f(0,0)=f(x,y) au voisinage de (0,0). D'après la question précédente, on sait que la suite $(x_n,-x_n)\to (0,0)$ lorsque n tend vers $+\infty$, donc les points $(x_n,-x_n)$ (à partir d'un certain n) sont toujours voisins de l'origine. De plus, on sait que $f(x_n,-x_n)$ change de signe, cela montre que (0,0) n'est pas un point d'extremum.

Exercice 2. (6 points) Soit h une fonction dérivable définie de \mathbb{R} dans \mathbb{R} . On considère le champ de vecteurs :

$$\vec{V} = \begin{pmatrix} -xh(z) \\ -yh(z) \\ x^2 + y^2 + h(z) \end{pmatrix} \text{ avec } h(0) = 1.$$

1. Trouver la fonction h telle que $\mathbf{rot}(\vec{V}) = \vec{0}$.

Corrigé (1 pt) : On a

$$\mathbf{rot}(\vec{V}) = \begin{pmatrix} y(2+h'(z)) \\ -x(2+h'(z)) \\ 0 \end{pmatrix}.$$

Cela montre que $\mathbf{rot}(\vec{V}) = \vec{0}$ ssi 2 + h'(z) = 0. Par conséquent, $h(z) = -2z + c_1$, vu que h(0) = 1 on déduit que h(z) = -2z + 1.

2. Trouver la fonction h telle que $\mathbf{div}(\vec{V}) = 0$.

Corrigé (1 pt) : Si $\operatorname{div}(\vec{V}) = 0$, alors -2h(z) + h'(z) = 0. Cela implique que $h(z) = c_2 e^{2z}$ et puisque h(0) = 1, on déduit que $h(z) = e^{2z}$.

3. On suppose que \vec{V} dérive d'un potentiel scalaire f. Déterminer f.

Corrigé (2 pts): Dans ce cas, on sait que $rot(\vec{V}) = \vec{0}$, donc h(z) = -2z+1. On cherche maintenant une fonction f telle que

$$\frac{\partial f}{\partial x}(x, y, z) = 2xz - x \tag{1}$$

$$\frac{\partial f}{\partial y}(x, y, z) = 2yz - y \tag{2}$$

$$\frac{\partial f}{\partial z}(x, y, z) = x^2 + y^2 - 2z + 1 \tag{3}$$

On intègre l'équation (1) par rapport à x, on obtient

$$f(x, y, z) = x^2 z - \frac{x^2}{2} + g(y, z).$$

On dérive cette équation par rapport à y, on déduit, par l'équation (2), que

$$\frac{\partial g}{\partial y}(y,z) = 2yz - y.$$

Cela montre que $g(y,z) = y^2z - \frac{y^2}{2} + h(z)$ et par conséquent

$$f(x, y, z) = x^2 z + y^2 z - \frac{x^2}{2} - \frac{y^2}{2} + h(z).$$

Finalement, on dérive cette équation par rapport à z, on déduit, par l'équation (3), que

$$h'(z) = -2z + 1.$$

Alors $h(z) = -z^2 + z + c$, d'où

$$f(x,y,z) = x^2z + y^2z - \frac{x^2}{2} - \frac{y^2}{2} - z^2 + z + c.$$

4. On suppose que \vec{V} dérive d'un potentiel vecteur, que l'on note \vec{U} . On cherche un tel champ sous la forme

$$\vec{U} = \begin{pmatrix} -g(y)f(z) - \phi(y) \\ g(x)f(z) + \phi(x) \\ 0 \end{pmatrix}, \text{ avec } \phi(0) = 1, f(0) = 1, g(2) = 1.$$

Déterminer la forme générale des fonctions g, f et ϕ . En déduire la forme de \vec{U} .

Corrigé (2 pts): Dans ce cas, on sait que $\operatorname{div}(\vec{V}) = 0$, donc $h(z) = e^{2z}$. On commence à calculer

$$\mathbf{rot}(\vec{U}) = \begin{pmatrix} -g(x)f'(z) \\ -g(y)f'(z) \\ (g'(x) + g'(y))f(z) + \phi'(x) + \phi'(y) \end{pmatrix}.$$

On doit donc résoudre le système suivant

$$\begin{array}{ll} g(x)f'(z) = xe^{2z} & (1) \\ g(y)f'(z) = ye^{2z} & (2) \\ (g'(x) + g'(y))f(z) + \phi'(x) + \phi'(y) = x^2 + y^2 + e^{2z} & (3) \end{array}$$

$$g(y)f'(z) = ye^{zz} \tag{2}$$

$$(q'(x) + q'(y)) f(z) + \phi'(x) + \phi'(y) = x^2 + y^2 + e^{2z}$$
 (3)

D'après (1) et (2), on a

$$\frac{g(x)}{x} = \frac{g(y)}{y} = \frac{e^{2z}}{f'(z)}.$$

On en déduit que ces trois quantités ne dépendent ni de x, ni de y, ni de z et qu'elles sont donc constantes, à savoir

$$g(x) = \lambda_1 x, g(y) = \lambda_1 y$$
 et $f'(z) = \frac{1}{\lambda_1} e^{2z}$.

Vu que g(2)=1 et f(0)=1, on obtient que $\lambda_1=\frac{1}{2}$ et par conséquent, $g(x)=\frac{1}{2}x$ et $f(z)=e^{2z}$. Maintenant, par l'équation (3), on peut voir que

$$\phi'(x) - x^2 = y^2 - \phi'(y)$$

On en déduit que ces deux quantités ne dépendent ni de x, ni de y et qu'elles sont donc constantes, à savoir

$$\phi'(x) - x^2 = y^2 - \phi'(y) = \alpha$$

Alors, $\alpha = 0$ et de plus puisque $\phi(0) = 1$, on a

$$\phi(x) = \frac{x^3}{3} + 1.$$

On conclut que

$$\vec{U} = \begin{pmatrix} -\frac{1}{2}ye^{2z} - \frac{y^3}{3} - 1\\ \frac{1}{2}xe^{2z} + \frac{x^3}{3} + 1\\ 0 \end{pmatrix}.$$

Exercice 3. (5 points) On considère la fonction suivante

$$f(x, y, z) = \sin(\sqrt{x^2 + y^2 + z^2})$$

1. Calculer le la placien de f, " Δf ".

Corrigé (3 pts) : on a

$$\frac{\partial f}{\partial x}(x,y,z) = \frac{x}{\sqrt{x^2+y^2+z^2}}\cos(\sqrt{x^2+y^2+z^2}), \quad \frac{\partial f}{\partial y}(x,y,z) = \frac{y}{\sqrt{x^2+y^2+z^2}}\cos(\sqrt{x^2+y^2+z^2}),$$

$$\frac{\partial f}{\partial z}(x,y,z) = \frac{z}{\sqrt{x^2 + y^2 + z^2}} \cos(\sqrt{x^2 + y^2 + z^2}).$$

En dérivant une deuxième fois, pour calculer les dérivées partielles secondes, à savoir :

$$\frac{\partial^2 f}{\partial x^2}(x,y,z) = \frac{y^2+z^2}{(x^2+y^2+z^2)^{\frac{3}{2}}}\cos(\sqrt{x^2+y^2+z^2}) - \frac{x^2}{x^2+y^2+z^2}\sin(\sqrt{x^2+y^2+z^2}),$$

$$\frac{\partial^2 f}{\partial y^2}(x,y,z) = \frac{x^2+z^2}{(x^2+y^2+z^2)^{\frac{3}{2}}}\cos(\sqrt{x^2+y^2+z^2}) - \frac{y^2}{x^2+y^2+z^2}\sin(\sqrt{x^2+y^2+z^2}),$$

et

$$\frac{\partial^2 f}{\partial z^2}(x,y,z) = \frac{x^2 + y^2}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}\cos(\sqrt{x^2 + y^2 + z^2}) - \frac{z^2}{x^2 + y^2 + z^2}\sin(\sqrt{x^2 + y^2 + z^2})$$

La somme des trois équations implique

$$\Delta f(x,y,z) = \frac{\partial^2 f}{\partial x^2}(x,y,z) + \frac{\partial^2 f}{\partial y^2}(x,y,z) + \frac{\partial^2 f}{\partial z^2}(x,y,z) = \frac{2}{\sqrt{x^2 + y^2 + z^2}}\cos(\sqrt{x^2 + y^2 + z^2}) - \sin(\sqrt{x^2 + y^2 + z^2}).$$

2. Retrouver le résultat précédent en utilisant les coordonnées sphériques.

Corrigé (2 pts) : Pour utiliser la formule du Laplacien en coordonnées sphériques, on exprime f en

 $x = r\cos(\phi)\cos(\theta), y = r\cos(\phi)\sin(\theta)$ et $z = r\sin(\phi)$, à savoir

$$\begin{split} f(r\cos(\phi)\cos(\theta),r\cos(\phi)\sin(\theta),r\sin(\phi)) &= \sin\sqrt{(r^2\cos^2(\phi)\cos^2(\theta) + r^2\cos^2(\phi)\sin^2(\theta) + r^2\sin^2(\phi))} \\ &= \sin\sqrt{(r^2\cos^2(\phi)(\cos^2(\theta) + \sin^2(\theta)) + r^2\sin^2(\phi))} \\ &= \sin\sqrt{(r^2\cos^2(\phi)(\cos^2(\theta) + \sin^2(\theta)) + r^2\sin^2(\phi))} \\ &= \sin\sqrt{(r^2\cos^2(\phi) + r^2\sin^2(\phi))} = \sin(r) = g(r,\theta,\phi). \end{split}$$

Alors

$$\frac{\partial g}{\partial r}(r,\theta,\phi) = \cos(r), \quad \frac{\partial^2 g}{\partial r^2}(r,\theta,\phi) = -\sin(r), \quad \frac{\partial^2 g}{\partial \theta^2}(r,\theta,\phi) = 0, \quad \text{et} \quad \frac{\partial^2 g}{\partial \phi^2}(r,\theta,\phi) = 0.$$

Nous remplaçons cela dans la formule du Laplacien en coordonnées sphériques, nous déduisons que

$$\begin{split} \Delta f(x,y,z) &= \frac{\partial^2 f}{\partial x^2}(x,y,z) + \frac{\partial^2 f}{\partial y^2}(x,y,z) + \frac{\partial^2 f}{\partial z^2}(x,y,z) \\ &= \frac{\partial^2 g}{\partial r^2}(r,\theta,\phi) + \frac{2}{r}\frac{\partial g}{\partial r}(r,\theta,\phi) + \frac{1}{r^2\frac{\partial g}{\partial \theta^2}(r,\theta,\phi)} - \frac{\tan(\phi)}{r}\frac{\partial g}{\partial \phi}(r,\theta,\phi) + \frac{1}{r^2}\frac{\partial^2 g}{\partial \phi^2}(r,\theta,\phi) \\ &= -\sin(r) + \frac{2}{r}\cos(r) \\ &= \frac{2}{\sqrt{x^2 + y^2 + z^2}}\cos(\sqrt{x^2 + y^2 + z^2}) - \sin(\sqrt{x^2 + y^2 + z^2}). \end{split}$$

 $\frac{\textbf{Rappel}}{laplacien}: Soit \ r, \ \theta \ et \ \phi \ les \ coordonnées \ sphériques \ d'un \ point \ M = (x,y,z) \ de \ \mathbb{R}^3. \ Alors \ l'experssion \ du \ laplacien \ en \ coordonnées \ sphériques \ est \ donnée \ par \ la \ forumle \ suivante$

$$\begin{split} \Delta f(r\cos(\phi)\cos(\theta),r\cos(\phi)\sin(\theta),r\sin(\phi)) = \\ \frac{\partial^2 g}{\partial r^2}(r,\theta,\phi) + \frac{2}{r}\frac{\partial g}{\partial r}(r,\theta,\phi) + \frac{1}{r^2\cos^2(\phi)}\frac{\partial^2 g}{\partial \theta^2}(r,\theta,\phi) - \frac{\tan(\phi)}{r^2}\frac{\partial g}{\partial \phi}(r,\theta,\phi) + \frac{1}{r^2}\frac{\partial^2 g}{\partial \phi^2}(r,\theta,\phi) \\ où \ f(r\cos(\phi)\cos(\theta),r\cos(\phi)\sin(\theta),r\sin(\phi)) = g(r,\theta,\phi). \end{split}$$