SY01 Final

14 janvier 2011—Automne 10—Durée : 2h UNE FEUILLE A4 RECTO/VERSO ET MACHINE À CALCULER AUTORISÉES

Le barème est donné à titre indicatif. Il tiendra compte de la rédaction. Justifiez clairement vos réponses. Les exercices sont indépendants les uns des autres.

Exercice 1. (4pts) CHANGER DE COPIE

Soit X_1, X_2, \ldots une suite de variables aléatoires réelles définies sur le même espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$. Nous supposons ces variables aléatoires indépendantes, identiquement distribuées et ayant la fonction f pour densité de probabilité :

$$f(x) = \begin{cases} 0 & \text{si} & x < 0, \\ \frac{x}{2} & \text{si} & 0 \le x \le 2, \\ 0 & \text{si} & x > 2. \end{cases}$$

Définissons pour tout $n \in \mathbb{N}^*$, la variable aléatoire réelle $Y_n = \frac{1}{n} \sum_{i=1}^n X_i$.

- 1. Déterminer l'espérance et la variance de Y_n , $n \in \mathbb{N}^*$.
- 2. Déterminer une valeur n_0 dans \mathbb{N}^* telle que pour tout $n \geq n_0$, $\mathbb{P}(|Y_n \mathbb{E}Y_n| > 0.1) \leq 0.01$.
- 3. La variable aléatoire réelle Y_n converge-t-elle en probabilité quand n tend vers l'infini ? Si oui, donner la limite de la convergence en probabilité de Y_n .
- 4. Considérons la variable aléatoire $T_n = \frac{3}{\sqrt{2}}Y_n 2\sqrt{2}$. En utilisant le Théorème de la Limite Centrale, quelle loi permet d'approcher la loi de $\sqrt{n}T_n$ quand n tend vers l'infini ?

Exercice 2. (6pts) CHANGER DE COPIE

Soient X et Y deux variables aléatoires réelles indépendantes définies sur le même espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ telles que X suit la loi exponentielle de paramètre $\lambda > 0$ et Y suit la loi exponentielle de paramètre $\mu > 0$. Supposons que X représente la durée de vie d'un atome radioactif et que Y représente un instant d'observation de cet atome. Nous rappelons que la densité d'une loi exponentielle de paramètre $\beta > 0$ est $f(x) = \beta \exp(-\beta x) \mathbb{I}_{x>0}$.

1. Absence faible de mémoire

- a. Déterminer la fonction de survie de X, c'est à dire la fonction $G(t) = \mathbb{P}(X > t)$.
- **b.** En utilisant la question précédente, montrer que la loi de X vérifie la propriété dite "propriété d'absence faible de mémoire":

$$\forall (t,s) \in (\mathbb{R}_{+}^{*})^{2}, \ \mathbb{P}(X > t + s | X > s) = \mathbb{P}(X > t),$$

où $\mathbb{P}(X>t+s|X>s)$ désigne la probabilité conditionnelle de l'événement $\{X>t+s\}$ sachant $\{X>s\}$.

2. Absence forte de mémoire

- a. Déterminer la loi de la variable aléatoire réelle Z = -Y.
- b. En utilisant la question précédente, déterminer la densité de la variable aléatoire réelle R=X+Z.
- c. En déduire que $\mathbb{P}(X < Y) = \mathbb{P}(X \le Y) = \frac{\lambda}{\lambda + \mu}$ et $\mathbb{P}(X > Y) = \mathbb{P}(X \ge Y) = \frac{\mu}{\lambda + \mu}$.
- ullet d. Montrer que la loi de X vérifie la propriété dite "propriété d'absence forte de mémoire":

$$\forall s \in \mathbb{R}_+^{\star}, \ \mathbb{P}(X > Y + s | X > Y) = \mathbb{P}(X > s).$$

Exercice 3. (10pts) CHANGER DE COPIE

Considérons deux variables aléatoires réelles U et V définies sur le même espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$. Supposons U et V indépendantes et distribuées toutes les deux selon la loi uniforme sur]0,1[.

- 1. Préliminaires.
 - a. Montrer que la loi de $T=2\pi U$ est la loi uniforme sur $]0,2\pi[$.
 - b. Montrer que la loi de $W=-2\ln(V)$ est une loi exponentielle de paramètre $\frac{1}{2}$.
 - \bullet c. Justifier l'indépendance de T et W.
- 2. Covariance et indépendance. Soient les variables aléatoires $Z_1 = \sin(2\pi U) = \sin(T)$ et $Z_2 = \cos(2\pi U) = \cos(T)$.
 - a. Montrer que la covariance de Z_1 et Z_2 est nulle.
 - **b.** Déterminer $\mathbb{P}(Z_1 \in [0, \frac{\sqrt{2}}{2}]; Z_2 \in [\frac{\sqrt{3}}{2}, 1]) = \mathbb{P}(Z_1 \in [0, \frac{\sqrt{2}}{2}] \cap Z_2 \in [\frac{\sqrt{3}}{2}, 1]).$

rappel: primitives: $\int \sin(x)dx = -\cos(x) + K_1$ et $\int \cos(x)dx = \sin(x) + K_2$ pour tout réel x et avec $(K_1, K_2) \in \mathbb{R}^2$.

Valeurs: $\cos(\frac{\pi}{6}) = \cos(\frac{11\pi}{6}) = \frac{\sqrt{3}}{2} et \sin(\frac{\pi}{4}) = \sin(\frac{3\pi}{4}) = \frac{\sqrt{2}}{2}$.

- c. En déduire que Z_1 et Z_2 ne sont pas des variables aléatoires indépendantes.
- 3. Définissons le vecteur aléatoire de dimension deux, $X = (X_1, X_2)$, avec

$$\begin{cases} X_1 = \sqrt{-2\ln(V)}\sin(2\pi U) = \sqrt{W}\sin(T) \\ X_2 = \sqrt{-2\ln(V)}\cos(2\pi U) = \sqrt{W}\cos(T) \end{cases}$$

• a. Montrer que le vecteur aléatoire X est un vecteur gaussien de dimension deux dont la densité est :

$$\forall (x_1, x_2) \in \mathbb{R}^2, \ f(x_1, x_2) = \frac{1}{2\pi} \exp(-\frac{1}{2}(x_1^2 + x_2^2)).$$

rappel : la fonction $Arctan : \mathbb{R} \to]-\pi/2, \pi/2[$ est la fonction réciproque de tan $(\tan x = \frac{\sin(x)}{\cos(x)}, \ x \neq \pi/2 + k\pi, k \in \mathbb{Z}),$ et sa dérivée est pour tout réel x, $Arctan'(x) = \frac{1}{1+x^2}$.

- b. Donner (sans calcul) l'espérance et la matrice de variance-covariance du vecteur aléatoire gaussien X.
- c. Les variables aléatoires X_1 et X_2 sont-elles indépendantes (justifiez votre réponse)?
- d. Définissons par Y = AX le vecteur aléatoire de dimension 2 où $A = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$ est une matrice 2×2 .

Le vecteur aléatoire Y est-il gaussien (justifiez votre réponse) ? Déterminer son espérance et sa matrice de variance-covariance.