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1 Introduction

1.1 But du projet en une phrase

En une phrase, Assemble Your Memories (AYM) est une petite expérience web où l’on
discute avec un agent conversationnel qui, au lieu de simplement donner des conseils, nous invite
à construire un graphe interactif de nos propres stratégies et conséquences futures
attendues pour nous aider à comprendre nos attentes et à réfléchir à nos options.

1.2 AYM dans le contexte de SI28

Le cours SI28 met l’accent sur la création de dispositifs numériques où l’interaction et
l’écriture sont intimement liées : récits hypertextuels, expériences participatives, jeux vidéo
narratifs, installations d’art numérique, etc. AYM s’inscrit dans cette continuité, mais avec un
angle un peu différent :

— l’enjeu n’est pas de raconter une histoire de fiction, mais de mettre en scène le propre
récit de l’utilisateur sur son futur, au travers du graph et de la conversation, de manière
à provoquer en lui certaines réactions ;

— l’expérience veut pousser l’utilisateur à s’exprimer, en reproduisant une forme de conver-
sation naturelle avec un interlocuteur "vivant" et perspicace qui questionne l’utilisateur
sur ses décisions, ses doutes, ses projets.

— au fil de l’expérience, l’utilisateur crée un objet numérique unique, le graph, qui peut être
consulté restrospectivement et partagé.

Nous avons donc choisi de traiter le LLM et le graphe comme un dispositif d’écriture inter-
active littéral.

1.3 Le défi du scénario : de l’écriture linéaire à l’écriture de règles

Dans une acception classique du multimédia (type CD-Rom ou webdocumentaire), le scénario
contient « l’ensemble des textes qui vont apparaître à l’écran ». Avec l’usage d’un LLM, cette
définition doit évoluer : il est impossible de rédiger à l’avance les réponses exactes de l’agent.

Cependant, nous défendons l’idée qu’AYM repose sur une scénarisation forte, mais dépla-
cée du contenu vers la structure :

— Le Prompt System comme scénario : Au lieu d’écrire les dialogues, nous écrivons les
contraintes psychologiques et les objectifs de la scène. Le "System Prompt" agit comme un
metteur en scène qui dirige un acteur d’improvisation. C’est une forme d’écriture indirecte
mais rigoureuse.

— Les Milestones (Jalons) comme nœuds narratifs : Pour éviter une expérience tota-
lement libre et informe, nous avons intégré des Milestones (objectifs ludiques et narratifs).
L’utilisateur ne "finit" pas l’expérience tant que certains états du graphe ne sont pas
atteints. Cela permet d’avoir un certain contrôle sur la trajectoire de l’expérience, d’encou-
rager l’utilisateur à expérimenter ceci ou cela. (Notez que les milestones sont encore à un
état expérimental dans notre projet)

Ainsi, AYM propose un scénario probabiliste : nous ne savons pas quels mots seront utili-
sés, mais nous avons scénarisé les étapes de réflexion par lesquelles l’utilisateur doit passer, et
différents aspects de son expérience via le comportement de l’agent et les choix d’interface.

1.4 Organisation du rapport

Ce rapport suit la structure suivante :
— Section 2 : positionnement, intentions et inspirations (en lien avec le cours SI28) ;
— Section 3 : description des écrans, des menus et de l’expérience utilisateur ;
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— Section 4 : fonctionnement interne de l’agent conversationnel (prompts, orchestration,
étapes de traitement) ;

— Section 5 : structure du graphe et manière dont le LLM l’utilise ;
— Section 6 : aspects pratiques (choix de modèles, historique, hébergement, multi-utilisateurs) ;
— Section 7 : conclusion, difficultés rencontrées et pistes d’amélioration.

2 Positionnement, intentions et inspirations

2.1 Une expérience interactive à vivre plutôt qu’un service

Concrètement, AYM propose à l’utilisateur de s’exprimer sur un sujet qui le préoccupe.
Plutôt qu’à lui fournir des informations clés en main, l’agent cherche à lui poser des questions
qui l’amènent à réfléchir, à explorer des points de tension. Cela donne :

— un échange court et dynamique, qui explore naturellement un grand nombre de sujets ;
— une carte visuelle de stratégies possibles et de conséquences anticipées produites par l’uti-

lisateur ;
On est donc plus proche d’un dispositif d’écriture de soi que d’un service d’aide à la

décision :
— l’objectif n’est pas que l’IA « trouve la bonne solution » ;
— l’objectif est que l’utilisateur voie mieux ce qu’il pense déjà, ce qu’il suppose, ce qu’il n’a

pas encore exploré.
Cette posture rejoint directement les préoccupations de SI28 :

— comment un dispositif numérique peut-il transformer la manière dont on écrit (ici : sur
soi, son avenir) ?

— quelles formes interactives peuvent aider à prendre du recul sur ses propres récits ?
— que se passe-t-il quand on donne une « forme graphique » à ce qu’on raconte ?

2.2 Inspirations : des chatbots à la maïeutique visuelle

Rappels historiques : d’ELIZA aux agents outillés

Une première source d’inspiration évidente est ELIZA, le programme de Joseph Weizen-
baum qui simulait un pseudo-psychanalyste en reformulant les paroles de l’utilisateur. AYM
s’en rapproche sur plusieurs points :

— la conversation est centrée sur la personne qui écrit ;
— l’agent ne donne pas de conseils directs mais renvoie des questions ;
— l’effet recherché est que l’utilisateur parle de lui-même et réfléchisse.
Mais il y a une différence majeure :

— ELIZA se contentait de reformuler sans mémoire structurée ;
— AYM, lui, matérialise progressivement ce qui se dit dans un graphe explicite de stratégies

et de prédictions.
Plus largement, on s’inscrit dans la vague récente des agents LLM outillés :

— un LLM ne répond pas seulement en texte libre, il manipule aussi des structures de don-
nées ;

— il peut appeler des « outils » (ici un outil de mutation de graphe, un outil d’ouverture
d’entrée utilisateur, etc.) ;

— il suit un plan de conversation qui est lui-même explicité et renvoyé à l’interface.

Graphes, cartes mentales et réflexion guidée

Une autre source d’inspiration vient des cartes conceptuelles, des mind-maps et des outils
de prise de notes structurées. Beaucoup de personnes disent qu’elles y voient plus clair quand
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elles :
— dessinent un schéma sur papier ;
— mettent des flèches entre des idées ;
— ou utilisent un logiciel de carte mentale.
AYM reprend cette intuition mais essaye de l’automatiser par la conversation :

— l’utilisateur n’a pas besoin de « penser en graphes » ;
— il parle normalement, et l’agent se charge de détecter dans ses phrases des stratégies (« je

pourrais faire X ») et des prédictions (« je m’attends à Y ») ;
— ces éléments sont alors ajoutés au graphe avec des liens logiques simples (Stratégie →

Prédiction, Prédiction → Stratégie, Prédiction → Prédiction).
On retrouve ici notre intuition de départ : un graphe peut être une bonne externalisation

de ce qu’on a en tête, mais ce n’est pas forcément naturel de le dessiner soi-même. C’est cette
partie « pénible » que l’on délègue au LLM.

Parler à quelqu’un pour y voir plus clair

Un autre point de départ, plus quotidien, vient de l’expérience très banale suivante :
— parfois, le simple fait de raconter un problème à un ami ou à un psy permet d’y voir plus

clair ;
— la personne en face n’a pas besoin d’avoir la solution ;
— le fait de devoir formuler, répondre à des questions, revenir sur certains points

suffit déjà à réorganiser le problème.
C’est un peu cette idée que nous avons voulu retrouver ici :

— l’agent ne se présente pas comme un expert, mais comme un « ami stratégique » qui pose
des questions ;

— les questions cherchent à faire émerger des options (« Et si tu faisais ça ? ») et des consé-
quences (« Et dans ce cas, tu t’attendrais à quoi ? ») ;

— le graphe joue le rôle de « cahier de notes » qu’on aurait rempli à plusieurs, mais également
de contrainte, qui encadre la manière d’y ajouter ses idées.

Éviter les réponses toutes faites et les biais commerciaux

Une autre motivation derrière AYM est de limiter l’effet « boîte noire » du LLM qui
donne des réponses toutes faites, parfois biaisées, parfois obsolètes :

— dans beaucoup d’applications, le modèle est utilisé comme une encyclopédie universelle
qui renvoie des faits ou des conseils ;

— cela met l’utilisateur dans une posture assez passive : il « consomme » une réponse.
Dans AYM, on essaie de renverser ce rapport :

— le LLM sert surtout à générer des questions et des pistes de réflexion, pas des pres-
criptions ;

— l’utilisateur reste celui qui définit ses propres stratégies et ses propres prédictions ;
— le graphe est construit à partir de ce que l’utilisateur a dit, pas à partir d’une base de

connaissances externe.
Autrement dit, on peut « faire réfléchir les gens par eux-mêmes », les encourager à partager

des informations et à se regarder avec un œil critique, sans les submerger de recommandations
issues d’un modèle entraîné sur des données potentiellement commerciales, datées ou partiales.

Vers une communauté de graphes vivants ?

Enfin, derrière AYM, on a aussi une idée plus spéculative :
— si plusieurs personnes utilisaient ce type d’agent sur un même thème (par exemple un

problème mécanique, un sujet de santé, un même type de projet), on pourrait imaginer
mutualiser leurs graphes ;
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— à la longue, ça pourrait devenir une source d’information construite par les usages : des
stratégies testées, des conséquences observées, des objectifs récurrents.

Pour le projet SI28, nous sommes restés au niveau d’une expérience individuelle. Mais le
design du graphe et des outils de mutation laisse ouverte cette possibilité de passer à l’échelle
communautaire plus tard :

— les nœuds sont assez génériques (labels courts, contenus textuels détaillés) ;
— les liens Stratégie/Prédiction sont simples ;
— la structure est facilement sérialisable et partageable.

2.3 Public cible et types d’usages

Qui a envie d’utiliser AYM ?

Concrètement, on imagine AYM comme un outil pour des personnes qui :
— sont face à une décision ou à un problème un peu complexe (orientation, projet, relationnel,

organisation de travail, etc.) ;
— aiment le format conversationnel (un chat) et ne veulent pas passer par un gros logiciel de

mind-mapping ;
— ont envie de prendre un temps pour réfléchir sans forcément en parler à quelqu’un de

proche.
Dans le cadre du cours, le premier public évident, ce sont les étudiants eux-mêmes :

— très concrètement, on peut utiliser AYM pour réfléchir à son semestre, à un projet de
stage, à une décision entre deux cursus ;

— ça peut aussi être un prétexte pour explorer la psychologie du personnage « IA » avec
lequel on discute.

Mais on peut très bien imaginer :
— des personnes en reconversion professionnelle ;
— des créateurs (graphistes, devs, musiciens) qui cherchent à structurer un projet ;
— voire des usages plus quotidiens (organiser un déménagement, préparer un voyage, anticiper

un conflit).

Situations d’usage typiques

Un scénario d’usage courant pourrait ressembler à ceci :
a) Onboarding : la personne arrive, entre son prénom, choisit le prénom de l’agent, téléverse

une image de son « ami numérique ».
b) Choix du sujet : l’agent demande simplement « Quel sujet ou problème veux-tu explorer

aujourd’hui ? ». L’utilisateur parle d’un projet, d’une hésitation, d’un souci récurrent.
c) Exploration guidée : l’agent pose des questions ouvertes, propose quelques pistes (« Et

si tu faisais plutôt X ? ») et essaye à chaque fois de faire expliciter ce que l’utilisateur
s’attend à voir comme résultat.

d) Construction du graphe : pendant ce temps, le graphe évolue : de nouveaux nœuds
apparaissent, les liens se densifient, certaines zones restent vides.

e) Prise de recul : au bout d’un moment, l’utilisateur peut zoomer dans le graphe, tourner
la caméra, voir quelles stratégies il a accumulées, quels objectifs ressortent le plus.

f) Clôture : la session se termine naturellement quand l’utilisateur sent qu’il a « fait le
tour ». Le graphe reste une trace de ce moment de réflexion. Le système de milestones peut
également lui envoyer un signal de fin (lorsqu’il a atteint tous les objectifs "ludiques").
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3 Interface, écrans et expérience utilisateur

3.1 États de l’application

L’application Streamlit est structurée autour de trois grands états d’interface, gérés par une
variable stage dans l’état global (AppState) :

a) Onboarding ("onboarding") : paramétrage initial (noms, image de l’agent, options d’ex-
pressions faciales) ;

b) Préchargement des portraits ("loading") : génération en tâche de fond des variantes
d’image (« réflexion », « dessin ») à partir du portrait de base ;

c) État principal ("main") : l’écran de conversation avec le graphe et la carte de l’agent.
Cette structuration simple nous a permis d’avoir une progression claire dans l’expérience :

— on commence par préparer le dispositif (onboarding) ;
— on laisse l’application faire un peu de travail caché (preload d’images) ;
— puis on entre dans le cœur de l’expérience (conversation + graphe).

3.2 Écran d’onboarding : appropriation de l’agent

L’écran d’onboarding a deux objectifs :
— technique : récupérer un portrait de référence pour l’agent, afin de générer ensuite des

variations d’expressions ;
— narratif : permettre à l’utilisateur de s’approprier l’agent en le nommant et en choisissant

son apparence.
Concrètement, cet écran contient :

— un champ texte « Ton nom » ;
— un champ texte « Nom de ton ami » (le prénom de l’agent) ;
— un file uploader pour téléverser une image (png/jpg) de l’ami ;
— si un portrait existe déjà dans le dossier, une option « Réutiliser le dernier portrait im-

porté » avec prévisualisation ;
— une case à cocher « Désactiver les expressions faciales (Image fixe) ».
Ce dernier point est important pour l’aspect pratique :

— sur certaines machines, on ne dispose pas d’API de génération d’images ;
— ou bien on préfère éviter des requêtes supplémentaires ;
— la case permet donc de forcer l’utilisation d’une image neutre unique.
Le bouton « Confirm » valide l’onboarding. Si aucun portrait n’est fourni ni réutilisé, l’ap-

plication affiche un avertissement et bloque la suite, ce qui évite d’entrer dans la conversation
sans visage pour l’agent.

3.3 Écran principal : chat, carte de l’agent et graphe

L’écran principal est divisé en deux colonnes principales, plus une grande zone en dessous.

Colonne de gauche : la conversation

La colonne de gauche est centrée sur la conversation :
— en haut, on a un conteneur « Conversation » qui affiche l’historique des messages ;
— les messages de l’agent (rôle ai) sont associés au portrait courant de l’agent ;
— les messages spéciaux (résumé, graph) sont différenciés par leur rôle ;
— sous le flux de messages, un champ st.chat_input permet à l’utilisateur d’envoyer un

nouveau message.
Un détail important est que ce champ est désactivé tant que l’agent n’a pas « relâché » la

main. Concrètement :

6



Figure 1 – Vue d’ensemble de l’interface principale : le flux de conversation à gauche et la carte
de l’agent (portrait et statut) à droite, créant un face-à-face numérique.

— le flux d’événements internes (WaitEvent, FlagEvent) indique à Streamlit quand l’agent
« réfléchit » ou « dessine » ;

— pendant ce temps, le bouton d’envoi reste gris, accompagné d’un petit statut (« Ton ami
réfléchit. ») ;

— dès que l’agent est prêt, le statut passe à « À toi de jouer » et le champ est réactivé.
Cela donne un rythme plus humain à l’échange, au lieu d’avoir un modèle qui répondrait

instantanément à chaque frappe.

Colonne de droite : carte de l’agent et stratégie

La colonne de droite contient la carte de l’agent :
— le nom de l’agent ;
— le portrait courant (expression faciale associée à l’état interne) ;
— un statut textuel : « prêt pour toi », « en réflexion », « dessine pour toi » ;
— une série de « chips » affichant les noms des moods déjà générés (joyeux, sérieux, curieux...).
Juste en dessous, un panneau pliable « Stratégie & Idées » affiche la stratégie courante

de l’agent, telle que renvoyée par l’LLM :
— c’est un texte qui synthétise le plan de conversation (par exemple : « 1. Clarifier ton

objectif principal. 2. Explorer deux options concrètes. 3. Évaluer les conséquences de chaque
option. ») ;

— il rappelle aussi les grandes lignes du « document d’idées » utilisé en interne.
Cela permet à l’utilisateur de voir le raisonnement méta de l’agent :

— on n’est pas seulement face à des questions isolées ;
— on voit le fil rouge, ce qui donne plus de transparence au dispositif.
Enfin, la colonne propose :

— un bouton (à terme) pour régénérer manuellement les images de mood ;
— un bouton « Reset graph » qui vide complètement le graphe (nœuds, arêtes, jalons) et le

remet à zéro.
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Zone inférieure : graphe 3D et objectifs

Sous les deux colonnes, une zone pleine largeur affiche :
a) la visualisation du graphe : un graphe 3D Plotly, manipulable à la souris (zoom, rota-

tion, déplacement), où chaque nœud est un élément de stratégie ou de prédiction ;
b) un tableau des objectifs (milestones) : une table qui liste plusieurs objectifs ludiques

(par exemple « Bananes », « Remplisseur de graphe », etc.) avec un pourcentage de pro-
gression.

Pour le graphe :
— les nœuds récents peuvent être mis en évidence (couleur différente, indicateur « new ») ;
— les arêtes représentent les liens cause-conséquence ;
— un survol permet d’afficher un tooltip avec le contenu complet du nœud.
L’utilisateur peut ainsi suivre l’évolution de la carte au fil de la conversation :

— on voit des branches se développer ;
— on peut repérer des zones encore vides ;
— on voit quel type de stratégies revient souvent.

3.4 Dimension multimédia : images génératives et graphe spatial

Le cours SI28 insiste sur l’association Texte / Image / Son / Vidéo. Si AYM est une expérience
web, elle dépasse le simple affichage de texte par une utilisation dynamique du média visuel.

L’image dynamique : vers une forme d’animation procédurale

Un élément assez spécifique d’AYM est la gestion des expressions faciales de l’agent :
— le LLM principal renvoie à chaque tour un champ facial_expression (par exemple « cu-

rious », « thoughtful », « expecting ») ;
— la passerelle d’images (ImageGateway) se charge alors de trouver ou de générer une image

correspondant à cette humeur ;
— cette image est affichée dans la carte de l’agent et dans certains états d’attente.

Figure 2 – Génération dynamique d’expressions : à partir d’un portrait initial, l’agent adopte
visuellement l’attitude (curiosité, réflexion, joie) dictée par le contexte de la conversation.
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Au-delà du simple côté « joli », ces expressions faciales ont plusieurs effets intéressants :
— Lien affectif : Elles peuvent aider l’utilisateur à humaniser l’agent. Un visage qui change

d’humeur donne l’impression d’une présence plus incarnée ;
— Sentiment d’Immersion : Il est renforcé car l’expression faciale s’accorde avec le ton

actuel de la conversation ;
— Retour visuel immédiat : L’utilisateur ne lit pas seulement que l’agent réfléchit, il le

voit changer d’attitude visuelle. Le portrait en « mode réflexion » ou en « mode dessin »
donne un feedback clair sur ce que fait la machine.

Pour rester réalistes dans le cadre du projet, on a gardé la possibilité de désactiver ces moods :
— certains environnements n’ont pas accès aux API d’images ;
— sur une simple machine de démo, il est parfois plus confortable de n’afficher qu’une seule

image.
Bien qu’il ne s’agisse pas de vidéo pré-calculée, cette succession d’états visuels (Neutral →
Thinking → Drawing → Happy) crée une narration visuelle animée qui compense l’absence
de pistes vidéo lourdes. L’image devient un vecteur d’information temps-réel au même titre que
le texte.

Le graphe 3D comme média visuel

Nous considérons également le graphe 3D interactif non pas comme une simple "dataviz",
mais comme un média à part entière :

— Il spatialise la pensée : l’utilisateur manipule des concepts dans un espace 3D (rotation,
zoom).

— Il raconte l’histoire de la session : la structure qui se dessine est la trace visuelle de la
conversation.

L’association Texte (Chat) / Image (Avatar dynamique) / Espace 3D (Graphe) constitue donc
le cœur multimédia du projet.

3.5 Choix techniques d’interface (sans rentrer dans le code)

D’un point de vue technique, quelques choix importants ont orienté le design :
— Streamlit comme framework web : cela nous a permis de construire rapidement un pro-

totype interactif, avec des composants de chat et des graphiques intégrés, sans gérer ma-
nuellement tout le HTML/CSS/JS ;

— Plotly pour la 3D : on profite de la capacité de zoom, rotation, survol, simplement en
renvoyant une figure 3D depuis Python ;

— une gestion d’état centralisée : l’objet AppState maintient l’état de la session (messages,
graphe, portrait, jalons, etc.), ce qui simplifie la gestion des nombreux événements ;

— une boucle d’événements (ConversationFlow) qui découple la logique de conversation
de l’interface Streamlit.

4 Fonctionnement interne de l’agent conversationnel

4.1 Vue d’ensemble : de la phrase utilisateur au graphe mis à jour

À chaque message utilisateur, plusieurs étapes se déclenchent côté agent. L’idée générale
est la suivante :

1. on stocke le message dans un buffer de messages récents ;
2. un routeur (petit LLM rapide) décide si on doit « recharger » les idées et le résumé global

ou si on peut continuer avec le plan actuel ;
3. si besoin, on met à jour en parallèle :

— un document de résumé de la conversation (ce que l’utilisateur veut, où il en est) ;
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— un document d’idées (pistes de stratégies, prédictions possibles, dilemmes à pro-
poser) ;

4. on appelle ensuite l’agent principal, le « Stratège maïeuticien », avec :
— le résumé global ;
— le document d’idées ;
— le tampon de messages récents ;
— une description textuelle du graphe actuel ;
— le plan de conversation en cours.

5. l’agent principal renvoie :
— une nouvelle question ou réponse courte à afficher ;
— une mise à jour du plan de conversation (sa stratégie) ;
— une expression faciale ;
— éventuellement des mutations de graphe (nœuds/liaisons à créer ou modifier) ;
— éventuellement un jalon atteint (par exemple « Bananes »).

6. l’interface applique les mutations, met à jour le graphe et l’affichage, et redonne la main à
l’utilisateur.

4.2 Schéma des étapes de traitement

Nous avons représenté ce flux sous la forme d’un petit schéma que l’on peut compiler grâce
à tikz :

Message
utilisateur

Routeur
(LLM rapide)

Mise à jour
du résumé global

Mise à jour
du document d’idées

Agent principal
Stratège maïeuticien

Mutation
du graphe

Interface
(chat, graphe, portrait)

si besoin

si besoin

Figure 3 – Chaîne de traitement d’un tour de dialogue dans AYM.

Ce schéma illustre le rôle de chaque composant :
— le routeur régule le rythme de la conversation ;
— les « cerveaux » (résumé et document d’idées) maintiennent une mémoire de plus haut

niveau ;
— l’agent principal fait le lien entre tout ça et la prochaine question à poser ;
— la couche interface (Streamlit) se charge de rendre visibles les changements : texte,

graphe, portrait.
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4.3 Document d’idées, stratégie de conversation et expressions faciales

Faire réfléchir le LLM « en coulisses ». Le document d’idées est une pièce centrale de
l’architecture : c’est un texte que l’utilisateur ne voit jamais, mais qui sert de boîte à idées pour
l’agent. Il permet au LLM de réfléchir à l’avance à partir du problème décrit par l’utilisateur,
de générer une palette d’options et de conséquences possibles, puis d’utiliser cette matière pour
poser des questions plus ciblées dans la suite de la conversation.

Concrètement, ce document est produit par un « cerveau » dédié (prompt ideas_updater_system_prompt)
qui joue le rôle d’« Analyste de scénarios et de risques ». Il ne donne jamais de conseils prêts
à l’emploi ; il fabrique plutôt des dilemmes, des options et des conséquences que le « Stratège
maïeuticien » peut ensuite transformer en questions (« Est-ce que tu as envie d’essayer X ?
Qu’est-ce que tu t’attendrais à voir si tu faisais ça ? »).

Quand (re)génère-t-on le document d’idées ? Nous ne régénérons pas ce document à
chaque message, car ce serait coûteux en tokens et inutilement verbeux. C’est le routeur
(router_system_prompt) qui décide, à chaque tour, si une mise à jour est nécessaire (update_needed
= True) ou si l’on peut continuer avec les idées actuelles.

Il demande une mise à jour du document d’idées notamment lorsque :
— l’utilisateur introduit un nouveau problème ou un nouvel enjeu clé ;
— l’utilisateur semble bloqué (« Je ne sais pas quoi faire ») et manque de pistes concrètes ;
— le graphe ne contient pas assez de stratégies ou de prédictions claires pour relancer la

discussion ;
— le document actuel n’est plus pertinent par rapport au sujet en cours (par exemple il parle

encore de « solutions dialectiques » alors que l’utilisateur discute de pommes de terre) ;
— le document d’idées contient seulement une indication d’attente (« en attente du sujet de

l’utilisateur ») alors que la personne est désormais engagée sur un vrai problème.
Dans tous ces cas, un modèle plus puissant (type GPT-5.1) est appelé pour régénérer ou

enrichir le document d’idées en parallèle de la mise à jour du résumé global. Le reste du temps,
on réutilise le même document sur plusieurs tours pour amortir le coût de génération.

Contenu typique du document d’idées. Le document d’idées suit une structure simple à
deux étages, imposée par le prompt ideas_updater_system_prompt :

1. Pistes de stratégies (options) : une liste d’actions possibles, parfois techniques, parfois
de contournement, parfois très pragmatiques (« faire une réparation de fortune », « appeler
un pro », « tout laisser comme ça mais changer son organisation », etc.).

2. Pistes de prédictions (conséquences & risques) : pour chaque option, ce qui pourrait
se passer en termes de coût, de délai, de confort, de risque social, d’impact émotionnel,
etc.

L’idée est de fournir au Stratège une carte mentale compressée du problème, déjà structurée en
relations Stratégie → Conséquence, afin qu’il puisse ensuite interroger l’utilisateur en se basant
sur ces scénarios.

Ci-dessous, un extrait ultra-condensé d’un document d’idées pour une conversation à
propos de la cuisson d’un steak :

Substitution (soja / bouillon / parmesan).
Demander du sel au voisin.
Cuire sans sel, miser sur poivre / réaction de Maillard.
Substitution → goût modifié, croûte fragilisée.
Voisin → coût social, délai, risque hygiène.
Sans sel → frustration, impression de repas fade.

Dans l’application, ce document reste caché par défaut à l’utilisateur : le Stratège s’en
sert uniquement pour varier ses questions et proposer de nouvelles branches de graphe quand
l’échange commence à tourner en rond.
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L’utilisateur peut le consulter en cliquant sur un bouton explicite sous le portrait de
l’agent, mais ce n’est pas une voie d’intéraction principale.

Stratégie de conversation (conversation_plan). En parallèle du document d’idées, l’agent
principal maintient une stratégie explicite de conversation, renvoyée à chaque tour dans le
champ conversation_plan. Ce plan joue un rôle de méta-scénario local :

— il résume en quelques points ce que l’agent compte faire dans les prochains tours (« 1.
Clarifier l’objectif ; 2. Faire émerger deux options ; 3. Discuter des risques pour chacune ») ;

— il sert de garde-fou pour éviter que le LLM saute d’un sujet à l’autre sans terminer une
branche de raisonnement ;

— il est réinjecté dans le prompt d’instance (format_instance_prompt) pour rappeler
au modèle son propre plan au tour suivant, avec la consigne explicite « si ce plan aide
encore, continue-le, sinon change-le ».

Cette stratégie est également affichée dans l’interface (panneau « Stratégie & Idées ») pour
que l’utilisateur voie où l’agent veut aller. C’est donc un point de jonction entre le travail
invisible (document d’idées, résumé, graphe) et la perception qu’a l’utilisateur de la cohérence
de la discussion.

Figure 4 – Transparence du raisonnement : l’interface permet de déplier le panneau « Straté-
gie » pour voir le plan courant de l’agent ainsi que les idées de dilemmes générées en coulisses.

D’un point de vue coût, la stratégie est courte (quelques lignes) mais régénérée à chaque
tour, tandis que le document d’idées est plus long mais mis à jour moins souvent. On joue donc
sur ce différentiel : un document d’idées relativement volumineux, amorti sur plusieurs tours, et
un plan léger qui peut s’adapter finement à chaque nouvelle réponse.

Pourquoi résumer la conversation ? Si l’on envoyait systématiquement toute l’historique
brut de la conversation au LLM, le contexte serait rapidement saturé :

— les vieux messages de l’utilisateur occuperaient une grande partie du budget de tokens ;
— les messages les plus récents risqueraient d’être dilués au milieu d’un long historique, de

la stratégie, du graphe et du document d’idées ;
— chaque appel deviendrait plus coûteux et plus lent.
Pour éviter cela, nous séparons la mémoire en trois couches :

1. un tampon de messages récents (message_buffer) qui ne contient que les derniers
échanges, utilisés pour garder le ton et le contexte immédiat ;

2. un résumé global (summary_doc), mis à jour par le « Greffier du Projet » (summary_updater_system_prompt),
qui condense les objectifs, les stratégies déjà envisagées et l’état d’esprit de l’utilisateur ;
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3. le document d’idées (ideas_doc), qui se concentre uniquement sur les options futures et
leurs conséquences, sans recopier toute la conversation. En occupant une place importante
dans le prompt, il aide le LLM à saisir le sujet de la conversation et comprendre que sa
réponse doit porter sur ces perspectives.

De cette façon, le dernier message utilisateur reste très visible pour le modèle (dans le
message_buffer), tandis que le résumé global et le document d’idées fournissent une mémoire
de premier plan et une réserve de scénarios, sans que l’historique de messages brut prenne toute
la place.

4.4 Contrôle de la narration : le système de Milestones.

Pour répondre à l’exigence de scénarisation malgré l’usage d’IA générative, nous avons implé-
menté un module de Milestones (Jalons). Ce module surveille en permanence l’état du graphe
et de la conversation pour valider des étapes narratives précises (ex : "Le problème est défini",
"Une stratégie risquée est identifiée", "Le graphe contient au moins 3 branches"). Cela permet
de :

1. Gamifier l’écriture : L’utilisateur a des objectifs clairs à atteindre.
2. Forcer la structure : L’IA est incitée (via le prompt système qui lit ces jalons) à pousser

la conversation vers les étapes non validées.
C’est ici que réside notre « scénario » : non pas dans les répliques, mais dans la grille d’objectifs
obligatoires que le système impose subtilement à la conversation.
(Notez que ce système a été peu développé dans la version actuel, et que très peu de milestones
sont disponibles. Ce n’est pas suffisant pour influencer le comportement de l’agent.)

4.5 Latence et organisation des appels LLM

Comme l’architecture repose sur plusieurs appels LLM par tour, la latence était un enjeu
pratique :

— le routeur utilise un modèle rapide (GPT-4.1) pour être quasi instantané ;
— la mise à jour du résumé (*summary updater*) utilise aussi ce modèle rapide ;
— la mise à jour du document d’idées utilise un modèle plus coûteux mais plus puissant

(GPT-5.1) pour générer des scénarios riches ;
— ces deux mises à jour se font en parallèle grâce à un ThreadPoolExecutor ;
— l’agent principal, lui aussi basé sur GPT-5.1, prend un peu plus de temps, mais c’est lui

qui décide des mutations de graphe.
Pour que cette latence soit supportable du point de vue utilisateur :

— nous avons introduit des WaitEvent qui permettent d’afficher un message de type « AI
is cooking » ou « Analyzing Context... » pendant que les appels s’exécutent ;

— la carte de l’agent passe en mode « réflexion » ou « dessin » grâce aux portraits correspon-
dants ;

— la barre d’entrée se désactive clairement, ce qui évite de taper pendant que l’agent est en
train de planifier sa réponse.

Cela transforme un temps mort technique en un temps « narratif » :
— on a l’impression que l’agent prend réellement le temps de réfléchir ;
— le passage en mode « dessin » pour la mise à jour du portrait vient renforcer ce ressenti.

5 Le graphe stratégique : structure et usage par le LLM

5.1 Rappel du modèle conceptuel

Le cœur du projet est le graphe Stratégies & Prédictions. Conceptuellement :
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— un nœud de stratégie représente une action possible (par exemple « Parler à mon res-
ponsable », « Changer d’organisation », « Tester une solution temporaire ») ;

— un nœud de prédiction représente un résultat attendu, un état futur ou un objectif
(« Moins de stress », « Projet terminé à temps », « Perdre en crédibilité »).

Les liens autorisés sont :
— Stratégie → Prédiction : ce qui se passe si on applique une stratégie ;
— Prédiction → Stratégie : comment on réagit si un certain état se produit ;
— Prédiction → Prédiction : relations entre états ou entre un état et un objectif plus

global.

Figure 5 – Exemple de structure générée sur le thème « Voisin Bruyant ». Dans AYM, c’est
une visualisation 3D interactive.

Le LLM est encouragé à garder des labels de noeuds très courts (1 à 3 mots) et des
contenus qui débutent toujours par « [Stratégie] » ou « [Prédiction] », ce qui simplifie la lecture
humaine et le traitement automatique.

5.2 Représentation interne et outil de mutation

En interne, le graphe est stocké dans une structure de type GraphStorage :
— une liste de nœuds (label, contenu textuel, indicateurs comme new) ;
— une liste d’arêtes (source, cible, indicateur new) ;
— le tout sérialisé dans un fichier JSON local.
Le LLM ne manipule jamais cette structure directement. À la place, il renvoie des instructions

sous la forme d’un objet GraphMutateInput, qui contient :
— nodes : une liste de créations ou mises à jour de nœuds (avec option connect_to pour

relier un nouveau nœud à des nœuds existants) ;
— edges : des arêtes explicites à créer entre nœuds déjà présents ;
— delete_nodes : des identifiants de nœuds à supprimer ;
— delete_edges : des paires (source, cible) à supprimer.
Une fonction asynchrone mutate_graph se charge ensuite d’appliquer ces mutations :

— elle marque d’abord tous les nœuds et arêtes existants comme « anciens » ;
— elle crée ou met à jour les nœuds demandés ;
— elle gère les identifiants éphémères (quand le LLM fait référence à des nœuds qui n’existent

pas encore) ;
— elle ajoute les arêtes correspondantes en évitant les doublons ;
— elle supprime éventuellement certains nœuds et les arêtes incidentes.
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Pour le rapport à l’utilisateur, un détail appréciable est la méthode describe de GraphMutateInput,
qui produit un résumé en français des modifications (par exemple « a ajouté "Tourner la
viande", a connecté "Tourner la viande" à "Devenir rouge" »). Ce résumé est affiché comme un
message spécial dans le chat.

5.3 Ce que le LLM « voit » du graphe

Le LLM ne reçoit pas la structure brute du graphe, mais une description textuelle produite
par une méthode de type describe_for_llm :

— nombre de nœuds et d’arêtes ;
— liste des labels et d’extraits de contenu ;
— représentation des arêtes sous la forme « (id :1, label :"Tourner") -> (id :2, label :"Devenir

rouge") ».
Ce compromis permet de :

— donner au modèle une vision globale du graphe qu’il peut mentionner, sans exploser la
longueur du contexte ;

— lui permettre de se servir du graph comme d’une forme de mémoire de la conversation
complémentaire aux résumés des messages ;

— l’aider à choisir des identifiants cibles (pour connect_to ou edges) ;
— lui rappeler quelles stratégies et prédictions sont déjà présentes pour éviter les redondances.

5.4 Quand et pourquoi le graphe est modifié

Le graphe n’est pas mis à jour à chaque phrase automatiquement. L’agent est encouragé, via
le prompt, à le faire lorsque :

— l’utilisateur formule clairement une nouvelle stratégie (« Je pourrais faire X ») ;
— l’utilisateur exprime une nouvelle prédiction ou un nouvel objectif (« Ce que je vou-

drais, c’est Y ») ;
— l’utilisateur clarifie une relation causale (« Si ça se passe comme ça, alors il arrivera Z »).
Cela évite de remplir le graphe avec des détails superficiels ou des reformulations. Le routeur,

de son côté, peut déclencher une mise à jour du document d’idées s’il constate que :
— le graphe manque de stratégies concrètes ;
— on tourne un peu en rond sur un même nœud.
Du point de vue de l’utilisateur, le graphe devient ainsi une sorte de synthèse des moments

importants de la conversation :
— les questions de l’agent « soulèvent » des nœuds ;
— quand une nouvelle option ou une nouvelle conséquence est stabilisée, elle est figée dans

la structure ;
— l’utilisateur n’a pas besoin de gérer le détail de quand ça arrive : il le constate visuellement

avec la mise à jour du graph et le petit message affiché dans le chat.

6 Aspects pratiques : historique, modèles, hébergement, multi-
utilisateurs

6.1 Historique de conversation et mémoire

Côté interface, tous les messages sont stockés dans une liste messages au sein de AppState :
— chaque message a un rôle (« user », « ai », « graph », « summary », etc.) ;
— certains messages peuvent porter des événements associés (par exemple des annotations

liées au graphe).
Côté agent, nous distinguons :
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— un tampon de messages récents (message_buffer) qui sert de contexte immédiat pour
le routeur et l’agent principal (afin de limiter la taille du prompt) ;

— un document de résumé (summary_document) qui condense l’état d’esprit et les objectifs
de l’utilisateur à plus long terme ;

— un document d’idées (ideas_document) qui sert de réserve de scénarios et de dilemmes ;
— le graphe lui-même, qui est une mémoire structuraliste des stratégies et prédictions vali-

dées.
Cette séparation entre « mémoire courte » (buffer) et « mémoire longue » (résumé + graphe)

permet :
— de ne pas saturer le contexte du LLM avec tout l’historique brut ;
— de favoriser un style de conversation concentré sur l’avenir et non sur la répétition du

passé ;
— de conserver une trace stable (le graphe) qui survit au-delà de quelques tours de conver-

sation.

6.2 Stratégie multi-modèles : GPT-5.1 et GPT-4.1

Pour équilibrer qualité de raisonnement et réactivité, nous avons choisi d’utiliser deux familles
de modèles :

— GPT-4.1 (ou équivalent) pour :
— le routeur (décider s’il faut mettre à jour les documents internes) ;
— la mise à jour rapide du résumé ;
— certains retours succincts nécessitant peu de réflexion.

— GPT-5.1 (ou équivalent) pour :
— la génération du document d’idées (qui demande de produire beaucoup de scénarios

et de conséquences) ;
— l’agent principal, qui doit manipuler la structure de graphe tout en gardant un style

de conversation précis.
En pratique :

— les appels à GPT-5.1 sont plus coûteux et plus lents, donc on les limite à ce qui a vraiment
besoin de profondeur ;

— les appels à GPT-4.1 servent de « colle » : routage, résumés, décisions rapides. Ils ont aussi
très peu de latence comparé aux 5.1.

6.3 Multi-utilisateurs avec Streamlit : contraintes et contournements

Streamlit n’est pas conçu à la base pour gérer des milliers d’utilisateurs simultanés avec des
états complexes par session. Nous avons néanmoins mis en place quelques mécanismes pour
supporter le multi-utilisateur raisonnable :

— tout l’état de la conversation est encapsulé dans un objet AppState, stocké dans st.session_state["app_state"] ;
— chaque session navigateur a donc son propre ConversationFlow, son propre graphe en

mémoire, ses propres messages ;
— les images et graphes sont mis en cache localement, ce qui réduit la charge de génération.
Cela reste :

— suffisant pour un contexte de démo ou de petit groupe ;
— mais évidemment pas dimensionné pour un service de production massif.
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7 Conclusion, difficultés et pistes d’amélioration

7.1 Ce qui a bien marché

Sur le plan technique comme sur le plan expérimental, plusieurs points nous ont surpris
positivement.

Compréhension des insertions dans le graphe. L’agent s’est révélé très doué pour dé-
cider quand ajouter un nœud au graphe et comment le relier :

— il comprend bien les formulations du type « Je pourrais faire X » ou « Je veux Y » ;
— il distingue assez proprement les stratégies (actions) des prédictions (résultats, objectifs) ;
— il recycle les nœuds existants au lieu de créer des doublons partout.
La structure GraphMutateInput et les instructions de prompt sur le format des nœuds (labels

courts, contenu préfixé par [Stratégie]/[Prédiction]) ont clairement aidé à obtenir ce comporte-
ment.

Externalisation du plan de conversation. Le fait de faire expliciter par le LLM un plan
de conversation (champ conversation_plan) a été très utile :

— pour nous, en tant que développeurs, cela donnait un feedback immédiat sur la manière
dont le modèle comprenait les consignes ;

— pour l’utilisateur, cela offrait une fenêtre sur le « métaniveau » de la discussion, ce qui
renforce la sensation de transparence.

— les idées en elles mêmes sont en général de bonne qualité.

7.2 Ce qui a été difficile

Tout n’a pas été simple, et certaines difficultés sont directement liées aux limites actuelles
des LLM.

Faire générer des idées pour relancer l’utilisateur. Autant l’agent est bon pour encoder
ce que l’utilisateur dit dans le graphe, autant il est moins naturel dans la génération d’idées
nouvelles pour relancer la conversation :

— s’il n’est pas guidé, il a tendance à poser des questions très générales (« Et qu’en penses-
tu ? ») qui n’apportent pas grand-chose ;

— ou au contraire des questions trop vagues ou trop précises, auxquelles l’utilisateur ne sait
pas quoi répondre.

C’est précisément pour ça que nous avons introduit le document d’idées :
— ce document propose au LLM des pistes de stratégies (« Tenter une solution temporaire »,

« Attendre plus d’informations », « Demander de l’aide ») et des conséquences possibles ;
— l’agent se sert de ces pistes non pas pour « conseiller » directement, mais pour formuler

des questions plus concrètes.
Nous avons constaté que :

— quand on demandait explicitement au modèle d’inclure des suggestions dans ses ques-
tions (« Est-ce que tu as pensé à X ? Que se passerait-il selon toi ? ») plutôt que de
simplement rebondir vaguement, l’échange devenait immédiatement plus intéressant ;

— mais on a eu énormément de mal à faire tenir cette consigne tout au long de la conver-
sation. Les LLMs semblent rester bloqués sur une idée initiale, malgré que la quasi
totalité de nos efforts de prompting visaient à éviter ce phénomène.

— cette difficulté à même faire usage du document d’idées a été remarquées chez Gemini 3
pro et GPT 5.1 reasoning high, qui sont pourtant les modèles state of the art à l’heure
de la rédaction de ce rapport. Ce problème est d’autant plus prononcé chez les modèles
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plus anciens (GPT 4.1, Gemini 2.5 pro). Cela suggère que la tâche en elle même est
difficile.

— On espère une amélioration avec l’arrivée des modèles futures, et de nouvelles stratégies
de prompting.

Coût et fragilité du document d’idées. Le document d’idées, justement, est une structure
puissante mais :

— coûteuse en nombre de tokens, donc en argent et en temps ;
— parfois fragile : si le LLM générateur sort trop de détails, le document devient difficile à

exploiter ;
— difficile à garder bien synchronisé avec la conversation si on le met à jour trop souvent

ou pas assez.
Le routeur nous a aidés à trouver un compromis :

— on ne met à jour le document que quand on voit un vrai changement de sujet ou un
blocage ;

— le reste du temps, on s’appuie sur le plan de conversation et sur ce qui est déjà dans le
graphe.

Éviter que le LLM saute d’un sujet à l’autre. Un autre problème classique est la ten-
dance du modèle à sauter de branche en branche :

— il passe parfois trop vite à des sujets voisins sans avoir « fini » une idée ;
— parfois, le LLM étalait également son raisonnement dans sa réponse ;
— cela casse le naturel de la conversation.
Notre réponse a été la stratégie explicite :

— on demande au LLM de se doter d’un plan simple (par exemple « 1. Éclaircir l’objectif ;
2. Explorer deux options ; 3. Discuter des risques ») ;

— on lui rappelle ce plan à chaque tour dans le prompt d’instance, en lui laissant le choix de
le continuer ou de le remplacer ;

— on expose ce plan à l’interface, ce qui responsabilise un peu le modèle (au sens où toute
incohérence devient visible).

Cela ne règle pas tout, mais :
— on a beaucoup moins de « sauts » incompréhensibles ;
— le LLM sépare plus constamment raisonnement et réponse ;
— l’utilisateur peut mieux suivre le cheminement de la discussion.

7.3 Pistes d’amélioration

Plusieurs directions restent à explorer si l’on voulait pousser AYM plus loin.

Coupler l’agent à un système de récupération d’informations. Actuellement, l’agent
est très centré sur ce que dit l’utilisateur et sur les idées produites par le LLM lui-même. On
pourrait imaginer le coupler à un système de recherche d’informations pertinentes :

— sur des bases internes (par exemple les graphes d’autres utilisateurs, anonymisés) ;
— ou sur des ressources externes (documentation, articles).
L’idée serait surtout d’aider à la construction du document d’idées et surtout de proposer

des exemples d’approches "de maieutique" adaptées à la situation de l’utilisateur.

Évaluer finement l’impact sur les utilisateurs. Dans le cadre de SI28, nous n’avons pas
mené d’étude formelle d’usage. Il serait intéressant de :

— faire tester AYM à un panel plus large ;
— mesurer ce que les personnes retiennent de l’expérience ;
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— voir si le graphe les aide réellement à prendre des décisions ou à clarifier des objectifs.
Cela pourrait passer par des questionnaires, des entretiens, ou une analyse qualitative des

graphes produits.

Affiner la relation entre texte, graphes et images. Enfin, d’un point de vue plus artis-
tique et multimédia (dans l’esprit de SI28), on pourrait travailler davantage sur :

— la mise en scène visuelle de l’évolution du graphe (animations, transitions, effets de mise
en avant) ;

— la cohérence esthétique entre le style du portrait de l’agent et le style du graphe (couleurs,
formes) ;

— la manière dont les expressions faciales pourraient directement refléter la structure du
graphe (par exemple un visage plus tendu quand le graphe contient beaucoup de risques,
plus serein quand les stratégies convergent).

7.4 Bilan

En résumé, AYM nous a permis de :
— expérimenter une forme d’écriture interactive de soi, où la conversation, le graphe et

l’image d’un agent se répondent ;
— explorer concrètement comment orchestrer plusieurs rôles LLM (routeur, greffier, ana-

lyste d’idées, stratège) dans une même expérience, pour tenter de produire le comportement
souhaité ;

— confronter ces choix à des contraintes très pragmatiques (latence, coût des appels, limite
de contexte, multi-utilisateurs léger).

Le projet reste perfectible, mais il s’inscrit pleinement dans la logique de SI28 :
— utiliser le numérique non seulement comme un support technique, mais comme un

terrain d’expérimentation pour de nouvelles formes d’écriture ;
— ici, l’écriture porte sur nos propres stratégies et prédictions, mises en scène par une IA qui

ne cherche pas à nous remplacer, mais à nous faire penser.
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