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Abstract
In this paper, we proposed a new evolutionary multi-objective optimization method for solving drone delivery problems
(DDP). It can be formulated as a constrained multi-objective optimization problem. In our previous research, we proposed the
“aspiration-point-based method” to solve multi-objective optimization problems. However, this method needs to calculate the
optimal values of each objective function value in advance. Moreover, it does not consider the constraint conditions except
for the objective functions. Therefore, it cannot apply to DDP which has many constraint conditions. To solve these issues,
we proposed “provisional-ideal-point-based method.” The proposed method defines a “penalty value” to search for feasible
solutions. It also defines a new reference solution named “provisional-ideal point” to search for the preferred solution for a
decision maker. In this way, we can eliminate the preliminary calculations and its limited application scope. The results of
the benchmark test problems show that the proposed method can generate the preferred solution efficiently. The usefulness
of the proposed method is also demonstrated by applying it to DDP. As a result, the delivery path when combining one drone
and one truck drastically reduces the traveling distance and the delivery time compared with the case of using only one truck.

Keywords Multi-objective optimization · Genetic algorithm · Drone delivery · Provisional-ideal point

1 Introduction

1.1 Drone Delivery Service

Attempts to utilize drones for delivery services have been
rapidly expanding in recent years. In 2013, as soon as Ama-
zon CEO announced that he had been aiming to realize drone
delivery services [1], major venture companies had been
competing for achieving this goal [2]. Using the drones for
delivery services can reduce the delivery cost and the time.
However, the payload of the drone and the flight duration are
strictly limited. To solve these issues, some venture compa-
nies have been developing a new delivery service combining
drones and trucks [3,4]. Figure 1 is the conceptual diagram
of that [5].
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In this service, after arriving close to a delivery destina-
tion, a driver launches a drone with a package and makes
it fly toward there. In the meantime, the driver continues to
travel his route. The drone returns to the truck after releasing
the package, and finally, the driver collects the drone at the
next destination.

It is expected that this concept can not only realize the cost
reduction but also compensate for the limited performance of
the drone. In addition, the complete automation of the deliv-
ery service may be possible in the future by combining the
drone and an automatic driving vehicle [6]. The construction
of such a delivery system will be extremely effective and
useful for emergency transport of relief supplies in the event
of a natural disaster.

1.2 Drone Delivery Problem

The drone delivery problem (DDP) can be formulated to a
constrainedmulti-objective optimization problemas follows:

(
min
x

F (x) = min
x

[F1 (x) , F2 (x) , . . . , Fi (x) , . . . , FM (x)]T

subject to g j (x) ≤ 0, j = 1, 2, . . . ,m,

(1)
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Fig. 1 Conceptual diagram of
the drone delivery service

where x is a vector of design variables, Fi (x) is i th objective
function, M is the number of objective functions, g j (x) is
j th constraint condition, and m is the number of constraint
conditions. In DDP, the fuel cost of the delivery truck, the
traveling time, the quality of the delivery services, etc. can
be considered as Fi (x). Drone’s loadable weight or flight
duration can be regarded as g j (x). x represents the delivery
plan or route. DDP is typically formulated as some variant of
TSP with various constraints [2]. Since TSP is already NP-
hard, DDP is often formulated as an NP-hard problem, so it
is expected that many computational resources are required
to solve the problem.

The outline of this study is as follows. In Sect. 2, we intro-
duce some studies related to DDP. In Sect. 3, we describe the
detail of the proposed method and show the advantage of it.
In Sect. 4, we show the usefulness of the proposed method
by applying it to some benchmark problems. In Sect. 5, we
evaluate the benefits of utilizing the drone in delivery ser-
vice by applying the proposed method to DDP. In Sect. 6, we
discuss the conclusion of this paper and future works.

2 Background

2.1 RelatedWorks

Murray et al. first mentioned DDP as the flying sidekick trav-
eling salesman problem (FSTSP) for the first time [2]. FSTSP
is a new delivery concept that combining the drone and the
truck for delivering packages to customers. They formulated
FSTSP as a mixed integer programming problem and solved
these problems by applying a solver called “Gurobi” or some
simple heuristics. By comparing and analyzing the calcula-
tion results, they reported that it has a trade-off relationship
between the drone speed and its endurance. In addition, they
also referred to the form called “parallel drone scheduling
TSP (PDSTSP)”. This problem assumed a scenario that the

drone delivers a package to one of the customers who lives
near the depot, and the conventional truck is used for the oth-
ers who live where the drone cannot use because of its battery
restriction. The drone departing from the depot returned after
delivering the package. This paper suggested that the benefit
of utilizing the drone is greater in PDSTSP than in FSTSP
in the problem set. Mathew et al. proposed a method for
solving DDP by converting it into a generalized traveling
salesman problem (GTSP) [7]. In this study, they showed
that the truck moves to the vicinity of the destination and
the drone delivers the package by flying remaining distance,
thereby reducing not only the fuel consumption of the truck
but also the time required for delivery. Dorling et al. showed
that there was a trade-off relationship between the delivery
cost and the time required for the delivery using simulated
annealing (SA) heuristic [8].

What is common to those studies is that DDP has been
solved as a single-objective optimization problem. However,
as mentioned earlier, DDP should be considered as a con-
strained multi-objective optimization problem. Moreover,
there is little time for planning the delivery schedules at the
actual site. Unfortunately, there are few studies to solve these
problems so far.

2.2 Genetic Algorithm

The genetic algorithm (GA) is one of the evolutionary com-
putations (EC) advocated by John H. Holland, Michigan
University in 1975 [9]. GA imitates the evolutionary process
of living organisms, and it can calculate a suboptimal solution
easily in a short time without being limited to a specific prob-
lem. It is known that GA is an effective method for solving
NP-hard problems. Therefore, it can be said that it is suitable
for solvingDDP.A typical application example ofGA is TSP.
It is a problem of finding the shortest passing order of N cities
without overlapping. When GA is applied to TSP, a subopti-
mal solution is obtained by considering the traveling path as
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Fig. 2 Conceptual diagram of the multi-objective optimization

one individual and repeating three genetic operations called
selection, crossover, andmutation.Meanwhile, in DDP, indi-
viduals need to include its task assignment, passage order of
customers, and location of the take-off and landing waypoint
(WP) of drone in the solution.

2.3 Multi-objective Optimization

Tovisualize concepts related tomulti-objective optimization,
we consider the following expression:

minx F (x) = min
x

[F1 (x) , F2 (x)]T . (2)

Equation (2) means searching for x to minimize F1 and F2
simultaneously. Figure 2 is the conceptual diagram of that
problem. It assumed that there are three solutions xA, xB and
xC in the solution space. The relationship between xA and
xB is F1 (xA) < F1 (xB) and F2 (xA) > F2 (xB). In this case,
we cannot distinguish the superiority or inferiority of the two
solutions.A solutionwhich has such the relationshipwith any
other is called “Pareto-optimal solution”. On the other hand,
the relationship between xA and xC is F1 (xA) < F1 (xC)

and F2 (xA) < F2 (xC). At this time, xC is inferior to xA, so
a solution like this is called “inferior solution”. In this way,
the generated solutions in the multi-objective problem can
be divided into the “Pareto-optimal solution” or the “infe-
rior solution”. Thus, there is no solution which can optimize
all objective functions simultaneously. The green lines are
formed by a set of the Pareto-optimal solutions, which is
called “Pareto-frontier”. The Pareto-optimal solutions have
a trade-off relationship with each other. A decision maker
(DM) needs to choose only one solution from them. The
selected solution is called “preferred solution”,which, is cho-
sen, depends on the preference information of the DM. One
of the purposes in a multi-objective problem is to obtain the
preferred solution.

Numerous prior studies on multi-objective optimization
method have focused mainly on the generation of the Pareto-
frontier [10].Meanwhile, there are fewpapersmentioning the
method for generating the preferred solution for the DM. For
these reasons, we proposed a multi-objective optimization
method which is called “Aspiration-point-based method” to
solve this problem in the past research [11]. In this method,
we define a virtual solution named “ideal point” which can
optimize all the objective functions at the same time. The
ideal point is obtained by optimizing each objective function
independently. Then, we repeat generating and selecting a
solution which is the closest to the ideal point within the pre-
specified constraint conditions until the calculation condition
is satisfied. We confirmed that the method could generate
the preferred solution efficiently and with high probability
compared with the weighted sum method [12].

However, this method does not consider the constraint
conditions except for the objective functions, so the appli-
cation scope is limited. Moreover, it needs to calculate the
optimal value of each objective function in advance. For these
reasons, it cannot be applied to solve DDP.

3 ProposedMethod

We propose the “Provisional-Ideal-Point-Based Method”
to solve those problems as mention above. The proposed
method consists of two steps. The first one is to define
“Penalty Value” to eliminate the limited application scope.
The second one is to use “Provisional-Ideal Point” to omit
the pre-calculation. The details of the proposed method are
as follows.

Figure 3 is an example of the visualized constraint condi-
tions. In this figure, if the value of g j (x) is in the blue area,
it can be said that the constraint condition is satisfied. Con-
versely, if the value of g j (x) is in the red area, it can be said
that the constraint condition is not satisfied. In other words, it
becomes possible to eliminate the limited application scope
by proposing a method that can generate a solution whose all
g j (x) are included in the blue area.

To realize above, we define the penalty values P (x) and
Pj (x) in the first step as follows:

P (x) =
m∑
j=1

Pj (x) s.t.

{
Pj (x) = g j (x) , g j (x) > 0
Pj (x) = 0, g j (x) ≤ 0.

(3)

Then, we search for a feasible solution whose P (x) equals
to 0 using GA. At this time, no problem arises even if Pj (x)
having different units are handled as scalar values, because
the purpose of this step is to search for the feasible solution
whose P (x) equals to 0. If the evolution of the solution stag-
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Fig. 3 Conceptual diagram of the constraint conditions

nates without generating a feasible solution, it requires to
relax the constraint conditions or changes the problem set-
ting. On the other hand, if one feasible solution is obtained,
we move on to next step.

In the second step, we define solution point Csol (x) and
provisional-ideal point Cideal as follows:

Csol (x) =
[
F1 (x)
F1_pro

,
F2 (x)
F2_pro

, . . . ,
Fi (x)
Fi_pro

, . . . ,
FM (x)
FM_pro

]T

= [
F ′
1 (x) , F ′

2 (x) , . . . , F ′
i (x) , . . . , F ′

M (x)
]T (4)

Cideal =
[
F1_pro
F1_pro

,
F2_pro
F2_pro

, . . .
Fi_pro
Fi_pro

. . .
FM_pro

FM_pro

]T

= [1, 1, . . . , 1, . . . 1]T , (5)

where Fi_pro is the provisional minimum value of Fi (x)
obtained by the solution search process so far. The value
of Fi_pro is assigned as the same as Fi (x) if it is greater
than Fi (x). Csol (x) are generated by normalizing the gener-
ated feasible solutions. On the other hand, Cideal is a virtual
solution which optimizes each objective function Fi (x) to
Fi_pro simultaneously. The notation of the dash attached to
Fi (x) means that it is dimensionless. Figure 4 is a concep-
tual diagram in which these coordinate points are plotted in
F ′
1 (x) − F ′

2 (x) non-dimensional coordinate system.
Then, the multi-objective optimization can be realized

by searching for solution points which minimize a distance
between Cideal and Csol (x) as follows:

minxDPS (x) = min
x

|Cideal − Csol (x)| . (6)

Fig. 4 Conceptual diagram of Csol (x) and Cideal

Fig. 5 Searching for the preferred solution

In this way, the generated feasible solutions Csol (x) close
to Cideal are inherited to the next generation preferentially.
Of course, there would be some cases that the population
includes some infeasible solutions whose penalty value is not
0, but all of them will be given lower priority than Csol (x).
Therefore, it is possible which not only prevents the feasible
solution from being lost in the second step, but also realizes
multi-objective optimization simultaneously. In addition, it
can be said that the second step can omit the pre-calculation
which is required in the previous method [11].

Figure 5 shows a conceptual diagram of generating the
preferred solution for the DM by minimizing DPS (x). This
method is based on the solution search technique called
“Proximate Optimality Principle (POP)” [13].
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Table 1 Calculation conditions

Items Values

Number of individuals 100

Elite population 5

Crossover probability 80%

Mutation probability 1%

Max number of generation 3000

Table 2 Simulation result

Problem Optimal
value

Proposed
method

Calculation
time (s)

GO1 − 15.0000 − 14.7338 821.2191

GO2 0.8036 0.7103 1309.1

GO3 1.0000 0.9978 614.9905

GO4 − 30,665 − 30,636 45.0231

GO5 5126.5 5151.2 252.5760

GO6 − 6961.8 − 6925.7 26.0341

GO7 24.3062 26.4786 58.9143

GO8 0.0958 0.0958 0.8372

GO9 680.6300 681,2954 40.6823

GO10 7049.3 7262.0 502.1607

4 Benchmark Test

To verify the usefulness of the proposedmethod, we used two
kinds of benchmark test problems called “GOproblems” [14]
and “DTLZ problem [15]”. The GO problems can be used
to confirm the capability of generating feasible solutions.
Meanwhile, the DTLZ problems can be used to confirm the
capability of the multi-objective optimization. Therefore, we
applied the proposed method to both test problems, respec-
tively, and verified the two performances of the proposed
method. Note that there is no need to normalize the objective
functions given in the two benchmark test problems, because
these are originally dimensionless.

In this paper, we used the “simple genetic algorithm
(SGA)” [16] to apply the proposed method. The numerical
simulation was done using MATLAB ver. 2016b. The solu-
tions were computed on a laptop computer with Intel Core
i7-4790 3.60GHz CPU with 8GBytes of RAM.

4.1 Global Optimization Problem

The global optimization (GO) problems [14] are constrained
single-objective optimization problems. The optimal values
and that of the design variables are known in advance. We
used ten kinds of the test problems among them. Table 1
shows the calculation conditions.

We also assumed that each solution search process was
terminated when it reached the maximum number of genera-
tions or when the deviation from the optimal solution became
0.001% or less. Table 2 shows the comparison between the
results obtained using the proposed method and the optimal
solution.

The results show that the proposed method can generate
the suboptimal solutions in all benchmark problems within
at least 20 min. Figure 6a–j shows the transition of each
evaluation function value and the penalty value, respectively.
Magenta lines represent the cases where the penalty values
are larger than 0. Blue lines represent the cases where the
values are 0. The red lines are already known as optimal
values for each benchmark problem.

As can be seen from these figures, the proposed method
first searches for feasible solutions that satisfy all of the con-
straint conditions. Then, it searches for the optimal value
while satisfying the constraint conditions. In Fig. 6b, h, since
the feasible solutions were generated at the first generation,
the penalty values were 0 from the first generation and kept
constant. These results show that the proposed method can
search for the optimal solution while satisfying all constraint
conditions.

4.2 DTLZ Problems

We also used some scalable benchmark test problems known
as “DTLZ problems”[15]. The DTLZ problems have fre-
quently been used to evaluate the performance of the
multi-objective optimization methods [17]. The test prob-
lems can freely change the number of objective functions
and the number of design variables. In addition, the shape
of the Pareto-frontier is known in advance, so that we can
calculate the Euclidean distance from the solution point
to the Pareto-frontier. We used the three benchmark test
problems called “DTLZ1,” “DTLZ3,” and “DTLZ7”. The
Pareto-frontier shape of DTLZ1 is linear, DTLZ3 is a fan
shape, and DTLZ7 is a discontinuous shape, as shown in
Figs. 7, 8, and 9.

Since any DTLZ problems originally are not given the
constraint condition, so we arbitrary gave those as shown
in Table 3, those conditions are drawn with blue translucent
regions as shown in Figs. 7, 8, and 9. In other words, it can
be said that these regions represent the feasible region of the
test problems.

The other calculation conditions were given as below.
The objective functions of DTLZ problems are originally

dimensionless, so there was also no need for normaliza-
tion process when we applied the proposed method to
DTLZ problems. In addition, since the minimum value
of each objective function is 0, we set the coordinates
of the provisional-ideal point exceptionally to Cideal =[
F1_pro, F2_pro

]T to avoid the definition of that becoming
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(a) GO 1 (b) GO 2

(a) GO 3 (b) GO4

5 (b) GO(a) GO 6

Fig. 6 Simulation results of GO problems
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(a) GO7 (b) GO8

(a) GO9 (b) GO10

Fig. 6 continued

Fig. 7 DTLZ1
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Fig. 8 DTLZ3

Fig. 9 DTLZ7

Table 3 Constraint conditions

Types of DTLZ Given constraint conditions

DTLZ1 g1 (x) = F1 (x) − 1.5 < 0

DTLZ3 g2 (x) = F2 (x) − 0.3 < 0

DTLZ7 g1 (x) = F1 (x) − 3 < 0

g2 (x) = F2 (x) − 4 < 0

indeterminate form. We also assumed that each solution
search process was terminated when it reached the maxi-
mum number of generations or when the preferred solution
was generated on the Pareto-frontier.

Figures 7a, 8a, 9a represent the states before starting the
solution search (State 1); and Figs. 7b, 8b, 9b show just after
generating the feasible solution (State 2). Figures 7c, 8c, 9c
are just after generating the preferred solution on the Pareto-
frontier (State 3). The red marker indicates the position of
the provisional-ideal point. The yellowmarker represents the
position of the solution point.

As can be seen in these figures, it was confirmed that the
provisional-ideal point had been generated at the originwhen
the feasible solutions were found. It was also shown that the
proposed method was able to generate the solution points
on the Pareto-frontier within the constraint conditions in all
cases. The calculation times until the search processes were
terminated were 56.32 s on DTLZ1, 50.93 s on DTLZ3, and
4.21 s on DTLZ7, respectively. Therefore, it can be said
that the proposed method can obtain the preferred solution
without any pre-calculation. It can also be said that the com-
putational load of the proposed method is relatively small,
because the calculation times required for searching these
solutions were less than 1 min in any cases.

4.3 Advantages of the ProposedMethod

The advantages of the proposed method are summarized as
follows:
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Table 4 Calculation conditions

Items Values

Number of individuals 200

Elite population 30

Crossover probability 100 (%)

Mutation probability 1 (%)

Max number of generation 300

• Even if many constraint conditions are given, the feasi-
ble solutions can be generated easily and efficiently by
searching for a solution whose penalty value equals to 0.

• There is no need to pre-calculate the optimal values of
each objective function unlike the previous method [11].

• It is possible to efficiently generate the preferred solutions
for the DM by searching for solutions which are close to
the provisional-ideal point preferentially.

5 Drone Delivery Problem

In this section,wedescribe how to apply the proposedmethod
to DDP which assumed FSTSP. We also show the results of

the numerical simulation. The computing environment is the
same as Sect. 4. The calculation conditions are shown in
Table 4.

5.1 Problem Setting

As mentioned above, we assume a drone delivery service,
as shown in Fig. 1. The target area considered in this paper
is a part of Japan. The map was excerpted from the Google
map. Figure 10 shows the map of the delivery area. We set
passable WPs to the roads, delivery destinations, corners,
intersections, etc., as shown in this figure.

5.1.1 Parameter Definition

The set of passable WPs is represented by WPpassible =
[w1, w2, . . . , wN ]. Assume that the number of delivery
destinations is n and these sets are expressed by C =
[C1,C2, . . . ,Cn], C ⊂ WPpassible. In addition, Let C ′ =[
C ′
1,C

′
2, . . . ,C

′
n′

]
, C ′ ⊂ C be the delivery destinations that

need to carry a parcel exceeding the loadable weight of the
drone, C ′′ = [

C ′′
1 ,C ′′

2 , . . . ,C ′′
n′′

]
, C ′′ ⊂ C be the places

where the time zone of home delivery is preset by customer.

Fig. 10 Map of the delivery area
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Fig. 11 Location of the delivery WPs

The location of the delivery base the so-called “depot” is
arbitrarily selected from WPpassible, and it is represented by
Ldepo, Ldepo ∈ WPpassible.

The number of drones and trucks used for the delivery ser-
vice is represented by Ndrone and Ntruck, respectively. Flight
velocity of the drone is notated by Vdrone, Loadable weight
of the drone is Wdrone, the duration is tduration, the launch-
ing time is tlaunch, the landing time is tlanding, and the time
required for changing the drone’s battery and loading parcel
is tload. The traveling velocity is notated by Vtruck. The time
at which the driver parks the truck to deliver the parcel at the
delivery destination is represented by tdriver.

We also define CWP, Spath and Pcost to shorten the time
required to generate a delivery path in DDP:

CWP =

⎡
⎢⎢⎢⎣

0 c12
c21 0

· · · c1N
c2N

...
. . .

...

cN1 cN2 · · · 0

⎤
⎥⎥⎥⎦ ,

⎛
⎝ WPα andWPβ are adjacent ⇒ cαβ = cβα = 1

Otherwise ⇒ cαβ = cβα = 0
α, β = 1, 2, . . . , N , α �= β

⎞
⎠
(7)

Spath =

⎡
⎢⎢⎢⎣

[ ] Path12
Path21 [ ]

· · · Path1N
Path2N

...
. . .

...

PathN1 PathN2 · · · [ ]

⎤
⎥⎥⎥⎦ , (8)

Pcost =

⎡
⎢⎢⎢⎣

0 Cost12
Cost21 0

· · · Cost1N
Cost2N

...
. . .

...

CostN1 CostN2 · · · 0

⎤
⎥⎥⎥⎦ , (9)

where we call CWP “adjacency matrix”, Spath “shortest path
matrix”, and Pcost “distance cost matrix”. CWP assumes that
cαβ = 1 if WP α and WP β are adjacent to each other, and
cαβ = 0 otherwise. The shortest path Pathαβ between WP
α and WP β is calculated by applying the “A* algorithm”
[18] to CWP, and all Pathαβ are stored in Spath. The distance
cost Costαβ between WP α and WP β is calculated using
Pathαβ and all Costαβ are stored in Pcost. In this way, we
can speed up the evaluation of generated solution using Pcost
when applying GA to DDP. In addition, Spath can be used
when drawing the finally obtained delivery path on the map.
The above method is based on the concept of the “A*-EC
algorithm” [19].
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Figure 11 represents some passable roads with the black
lines by connecting these passable WPs. In addition, the yel-
low star represents the location of the depot. These green
circles are the deliveryWPs. These red diamondmarkers rep-
resent the deliveryWPswhere exceeds the loadableweight of
the drone. The cross markers mean the delivery WPs where
customers have specified the time zone of the delivery ser-
vice.

5.1.2 Assumption

The following conditions are assumed:

(1) Only one package can be loaded on the drone.
(2) After completing the delivery of the package, the drone

heads to a pre-specified rendezvous WP.
(3) The driver will not move to the next delivery WP until

he collects the drone at the rendezvous WP.
(4) A WP to launch the drone can be selected from any

passableWPs, but aWP to collect the drone are limited
to the delivery WPs.

(5) The driver must have the drone when the truck returns
to the depot.

(6) The number of times which the driver can launch or
collect a drone at the same WP is limited to once,
respectively.

(7) Parcels exceeding the loadable weight of the drone
must be transported by the truck.

(8) The battery of the drone must be exchange each time
when the driver collects the drone at the rendezvous
WP.

(9) The drone rises in the vertical direction when it is
launched and moves in the horizontal flight. Then, it
descends vertically toward the rendezvous WP.

(10) The drone can fly autonomously.
(11) Related laws of drones, obstacle avoidance, weather

conditions, and influences on road conditions such as
traffic congestion or accidents are not considered.

(12) All parameter values (i.e.,Vdrone,Vtruck,Wdrone, tduration,
tlaunch, tlanding, tload, and tdriver) are constant values.

5.1.3 Individual Expression

The solution structure of DDP in this paper consists of three
kinds of chromosomes called “DWP”, “TWP” and “RN ”. DWP

represents the delivery WPs assigned to the drone. TWP rep-
resents the passage order of the delivery WP assigned to the
truck. RN has the same individual length as that of TWP, and
it is expressed by the number of 0 or 1. The place where
the element of RN becoming 1 means one of the rendezvous
WPs. The drone heads to the rendezvous WP from the cor-
responding delivery WP after releasing the package. On the

Fig. 12 Sample problem of DDP

other hand, the WP to launch the drone can be automati-
cally determined by selecting the place where the time lag
when the truck and the drones merge in the rendezvous WP
becomes the smallest. The notations DWP, TWP and RN are
shown below:

DWP =
[
DWP1 , DWP2 , . . . , DWPi , . . . , DWPDall

]
, (10)

DWPi = [
Dlaunchi ,CDi , Dlandi

]
,

∀Dlaunchi ∈ WPpassible, ∀CDi , ∀Dlandi ∈ C, (11)

TWP =
[
Ldepo,CTWP1 ,CTWP2 , . . . ,CTWP j , . . . ,CTWPTall

, Ldepo

]
,

∀CTWP j ∈ C, (12)

RN = [
r1, r2, . . . , r j , . . . , rTall

]
, (13)

r j =
{
1 the path gose fromCDi to Dlandi
0 otherwise,

(14)

where Dall is total number of WP where delivered by using
the drone, Dlaunchi is i th launching WP of the drone, CDi is
i th place where delivered by the drone, Dlandi is i th landing
WP of the drone, CTWP j is j th place where delivered by the
truck, and Tall is total number of WP where delivered by
using the truck.

Figure 12 shows a sample problem of DDP which has 14
delivery WPs, and Fig. 13 describes an example of “DWP”,
“TWP”, and “RN ”, respectively. Figure 14 is a part of the
solution structure in Fig. 13, and it shows the diagram of the
above concept. Figure 15 represents the entire delivery path
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Fig. 13 Solution structure of
DDP

Fig. 14 Part of the solution structure in Fig. 13

Fig. 15 Entire delivery path of FSTSP

which is expressed by the solution structure described above.
Therefore, the delivery plan can be completely represented
by these chromosomes.

5.1.4 Formulation

As mentioned above, DDP has many constraint conditions
to be considered in the real delivery scenarios. In this study,
we consider the traveling distance and the delivery time as
the objective functions. Meanwhile, the flight duration, the
loadable weight of drones, the designated delivery time zone,
and allowable time of stopping the truck at the same place
can be considered as the constraint conditions. Based on the
above, we formulated DDP as a constrained multi-objective
optimization problem as follows:

minx F (x) = min
x

[F1 (x) , F2 (x)]T (15)

F1 (x) = CostLdepoTWP1
+

Tall−1∑
j=1

CostTWP j TWP j+1

+CostTWPTall
Ldepo (16)

F2 (x) = F1 (x) /Vtruck +
Dall∑
i=1

×|(‖ Dlaunchi − CDi ‖

+ ‖ CDi − Dlandi ‖)/Vdrone
−CostDlaunchi Dlandi

/Vtruck
∣∣∣ (17)

subject to g1 (x) = F1 (x) − 100,000 ≤ 0, (18)

g2 (x) = F2 (x) − 14,400 ≤ 0, (19)

g3 (x) = ∣∣(‖ Dlaunchi − CDi ‖ + ‖ CDi − Dlandi

)
/Vdrone

−CostDlaunchi ‖Dlandi
/Vtruck

∣∣∣
− 600 ≤ 0, (20)
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Fig. 16 Genetic operation for
multiple chromosomes

Fig. 17 Flow chart of the proposed method

g4 (x) = Wdrone − 5 ≤ 0, (21)

g5 (x1) = F2 (x1) − 7200 ≤ 0, (22)

g6 (x2) = 3600 − F2 (x2) ≤ 0, (23)

g7 (x2) = F2 (x2) − 10,800 ≤ 0, (24)

g8 (x3) = 7200 − F2 (x3) ≤ 0, (25)

g9 (x3) = F2 (x3) − 14,400 ≤ 0, (26)

where the onewith the suffix attached tox represents the route
from the depot to the place where delivery time is specified.
x1 is within 2 h from the start of home delivery, x2 is 3 h from
1 h later, and x3 needs to arrive at the delivery destination
within 4 h as from 2 h later.

The values of various parameters were set as follows.

Ndrone = 1, (27)

Ntruck = 1, (28)

Vdrone = 13 (m/s), (29)

Vtruck = 15 (m/s), (30)

tduration = 15 (min), (31)

tlaunch = 15 (s), (32)

tlanding = 15 (s), (33)

tload = 30 (s), (34)

Table 5 Calculation results

Items Truck only FSTSP

Traveling distance 114.14 (km) 67.74 (km)

Delivery time 4 (h) 14 (min) 3 (h) 1 (min)

Calculation time 29.26 (s) 73.23 (s)

tdriver = 120 (s). (35)

5.2 Genetic Operation

Since the individual representing the delivery plan is com-
posed of three kinds of chromosomes and these are related to
each other, the conventionalmethodwhich adds genetic oper-
ation to one chromosome is insufficient. To compensate for
this, we proposed some methods for applying genetic oper-
ations to multiple chromosomes simultaneously as shown
below.

(1) Select one WP from DWP and TWP, respectively, and
exchange.
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Fig. 18 a Delivery path using only one truck. b Delivery path of FSTSP
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(2) Select one WP from DWP and move it to an arbitrary
position of TWP.

(3) Select one WP from TWP and move it to an arbitrary
position of DWP.

Note that the operations of (2) and (3) need to change the
individual structure of RN . For example, the operation of (3)
needs to reduce the individual length of RN when moving
one of the WP of TWP to DWP, as shown in Fig. 16.

5.3 Flow Chart of the ProposedMethod

Figure 17 shows the flow chart to generate the delivery plan
by applying the proposed method to FSTSP. As shown in
the figure, there are two methods of crossover and mutation.
The first one is to add genetic operation to one chromosome
like the conventional method. This is expressed as “Single
genetic operation”. The second one is to add the operation
to multiple chromosomes at the same time. This is expressed
as “Multiple genetic operations”. In the proposed method,
solutions are searched by adding one of the two operations
or both to individuals simultaneously in a random manner.

5.4 Simulation Results

Table 5 shows the calculation results obtained using the pro-
posedmethod. Figure 18a shows thedelivery pathwhenusing
only one truck. Figure 18b shows the delivery path when
combining one drone and one truck. The black lines are the
truck paths, and the blue dash lines are the flight paths of the
drone. Each number attached to the delivery WPs represents
the passage order of the delivery service.

From these simulation results, we found that the deliv-
ery path combining one drone and one truck can reduce the
traveling distance by 40.7% and the delivery time by 28.7%
compared with the case where using one truck while satis-
fying all constraint conditions. In addition, both calculation
times were about 1 min. Therefore, it can be said that the
purpose of this research had achieved.

6 Conclusion

We proposed the provisional-ideal-point-based method for
solving the drone delivery problem. This method defines the
penalty value by summing all evaluation values that do not
satisfy given constraint conditions. The feasible solutions can
be generated by searching for a solution whose penalty value
is equal to 0. After that, it also defines the provisional-ideal
point and the solution point using the provisional minimum
value of each objective function. The former is a virtual solu-
tion which can optimize all objective functions at the same
time, and the later represents one of the normalized feasible

solutions. The preferred solution for a decision maker can
be generated by minimizing the distance between the two
points.

We showed the usefulness of the proposed method using
two kinds of test problems. As a result, the proposed method
was able to generate the feasible solutions and the preferred
solution efficiently without any preliminary calculations. We
also applied this method to DDP which assumes FSTSP, and
evaluated its validity and the potential benefits of the drone
delivery service. The simulation results showed that the drone
has the potential of drastically reducing the delivery costs or
times while maintaining its quality.
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