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Abstract: This paper focuses on the parameter optimization for the CVT (a continuously variable
transmission) based plug-in 4WD (4-wheel drive) hybrid electric vehicle powertrain. First, the plug-in
4WD hybrid electric vehicle (plug-in 4WD HEV)’s energy management strategy based on the CD
(charge depleting) and CS (charge sustain) mode is developed. Then, the multi-objective optimization’s
mathematical model, which aims at minimizing the electric energy consumption under the CD stage,
the fuel consumption under the CS stage and the acceleration time from 0–120 km/h, is established.
Finally, the multi-objective parameter optimization problem is solved using an evolutionary based
non-dominated sorting genetic algorithms-II (NSGA-II) approach. Some of the results are compared
with the original scheme and the classical weight approach. Compared with the original scheme,
the best compromise solution (i.e., electric energy consumption, fuel consumption and acceleration
time) obtained using the NSGA-II approach are reduced by 1.21%, 6.18% and 5.49%, respectively.
Compared with the weight approach, the Pareto optimal solutions obtained using NSGA-II approach
are better distributed over the entire Pareto optimal front, as well as the best compromise solution is
also better.

Keywords: plug-in 4WD hybrid electric vehicle; powertrain; electric energy consumption; fuel
consumption; acceleration time; multi-objective optimization

1. Introduction

Owing to regulations on fuel economy and emissions become more and more stringent,
the development of electrified vehicles in recent years have been a surging trend [1,2]. Plug-in
hybrid electric vehicles (PHEVs), which achieve a longer all-electric range compared to conventional
hybrid electric vehicles and have no driver range anxiety compared to pure battery electric vehicles,
become an important research direction in the field of electric vehicles [3,4].

The parameters of PHEV’s powertrain have a significant impact on the electric energy consumption,
fuel consumption and dynamic performance of the vehicle. Therefore, parameter optimization of the
powertrain is the basis of the vehicle development. The research on PHEV’s parameter optimization
has gone through the following process. In the initial stage, scholars did not realize the problem that
powertrain parameters and control strategy parameters coupled and affected vehicles’ performance
together. Therefore, the parameter optimization during this stage is mainly focused on independent
optimization of powertrain parameters, instead of joint optimizing the parameters of powertrain and
control strategy [5,6]. With the in-depth research, attention has been paid to the coupling problem
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of powertrain parameters and control strategy parameters. Then, simultaneously optimization of
powertrain parameters and control strategy parameters begins to appear in some literature [7–9].
Actually, literatures [5–9] take parameter optimization as a single objective optimization problem,
the parameters of PHEV are optimized to only improve the economy of the vehicle. However,
the objectives of vehicle economy, power system cost, emission and power performance usually conflict
with each other. The optimization only considering the vehicle economy will result in achieving optimal
economic performance at the expense of other objectives that conflict with it. Therefore, in recent
years, multi-objective optimization has been applied to optimize PHEV’s parameters. In reference [10],
energy storage system costs and fuel economy are considered as the objective functions for hybrid
electric vehicle’s battery size optimization. Reference [11] presents a multi-objective optimization
methodology for vehicles design considering the parameters for design and macro level operating
strategy. Reference [12] applies multi-objective algorithms (minimization of the couples cost and fuel,
cost and LCA (life cycle impact) CO2eq, fuel and LCA CO2eq) to perform the powertrain components
optimization. Reference [13] takes powertrain cost, fuel consumption and emission as multi-objectives
to optimize the parameters of powertrain and control parameters simultaneously. In [14], the usage
cost, acceleration performance and mode discrimination of the whole vehicle under a new European
driving cycle (NEDC) are considered as the optimization objectives to optimize the transmission system
of a new hybrid power system. Reference [15] aims at minimizing the cost of the power supply and
the energy flow of batteries, and adopts the convex optimization algorithm to optimize the power
supply’s parameters and energy management strategy.

Multi-objective optimization and its applications have been an important area of research for over
two decades now [16]. The key of solving the multi-objective optimization problem is how to get the
Pareto solution set. Traditional algorithms for solving multi-objective optimization problems include
the linear weighting method [17], constraint method [18], mini–max method [19], goal programming
method [20] and goal satisfaction method [21]. In order to get the Pareto solution set, these methods
need to run many times, which reduces the efficiency of the algorithm. Evolutionary algorithms
are a group-based global optimization algorithm that simulate the evolution process of natural
organisms [22]. The evolutionary algorithm has achieved great success in solving power system’s
multi-objective optimization problems [16,23–25], e.g., a strength Pareto evolutionary algorithm
is used to solve the multi-objective reactive power price clearing problem [23]; a novel-efficient
evolutionary-based multi-objective optimization approach is proposed to solve multi-objective optimal
power flow problems [16,24] and the multi-objective strength Pareto evolutionary algorithm 2+ has
been employed to solve the congestion management problem [25]. Therefore, it has become an
important method for solving multi-objective optimization problems.

Parameter optimization of PHEVs is related to the energy management strategy, and energy
management strategies need to be developed before parameter optimization. At present, the research
on the energy management strategy for PHEVs mainly focuses on the development of the
advanced optimization algorithm, such as the algorithm based on the minimum equivalent
fuel consumption [26–29], the dynamic programming algorithm [30–32], stochastic dynamic
programming [33], the algorithm based on convex optimization [2,34] and the model predictive
control algorithm [35–38]. Although the above-mentioned optimization algorithm can obtain the local
or global optimum, it is difficult to apply to real vehicle control for hardly knowing the driving cycles
beforehand or the large amount of calculation. However, the rule control strategy based on the charge
depleting–charge sustain (CD–CS) mode does not need to know the driving cycles beforehand, and the
calculation is small, so it is widely used in the real vehicle control of PHEVs.

As a summary of the entire literature review, in order to complete the plug-in 4WD HEV’s
parameter optimization well, the simultaneous optimization for the main parameters of powertrain
and control strategy is necessary, multi-objective optimization should be taken into account and
the rule control strategy based on the CD–CS mode for plug-in 4WD HEVs should be developed.
However, there is still a large shortage for plug-in 4WD HEV’s parameter optimization. Firstly, it is still
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challenging to select reasonably multi-objective functions, which can evaluate the optimal performance
of plug-in 4WD HEV well. Secondly, although the evolutionary algorithm has achieved great success
in solving power system’s multi-objective optimization problems, it rarely applies to solve plug-in
4WD HEV’s multi-objective parameter optimization problems. Finally, the rule control strategy based
on the CD–CS mode for plug-in 2WD hybrid electric vehicles is mature, but there is little literature on
the rule control strategy based on the CD–CS mode for plug-in 4WD HEVs.

To address the challenges summarized above, in this study, the energy management strategy
based on the CD–CS mode for plug-in 4WD HEV is developed. Then, the reasonably multi-objective
functions, which are composed of electric energy consumption under the CD stage, fuel consumption
under the CS stage and acceleration time from 0–120 km/h, are established. Finally, the evolutionary
based NSGA-II (non-dominated sorting genetic algorithms-II) approach is selected to simultaneously
optimize the parameters of the powertrain and control strategy.

The outline of this paper is as follows. The structure and dynamic model of the powertrain
are provided in Section 2. The energy management strategy based on the CD–CS mode is
developed in Section 3. Mathematical model of multi-objective optimization is built in Section 4.
Optimization algorithm is proposed in Section 5. Optimization results are discussed in Section 6.
Finally, conclusions are summarized in Section 7.

2. The Structure and Dynamic Model of the Powertrain

2.1. Structure of the Plug-In 4WD Hybrid Electric Vehicle

This study focuses on a plug-in 4WD HEV. Its structure layout is shown in Figure 1. Its powertrain
is mainly composed of gasoline engine, an integrated starter and generator motor (ISG motor),
rear-drive motor, CVT, one-way clutch C1, the front final drive and the rear final drive. The ISG motor
mounted on the gearbox input (referred to as P2 [39]), and the rear-drive motor mounted on the rear
driving axle (referred to as P4 [39]).
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Figure 1. The plug-in 4-wheel drive (4WD) hybrid electric vehicle powertrain.

2.2. The Dynamic Model of the Powertrain

The powertrain dynamic model is mainly applied to the development of the energy management
strategy and the evaluation of economy and dynamic performance. Therefore, the model was deduced
by quasi-static modeling technology [40,41] in this study. The total driving force at the wheel is
described as:

Ft(t) = mg fr cos(α(t)) + mg sin(α(t)) +
cdA

21.15
v(t)2 + m

dv(t)
dt

(1)
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where m, cd, A and fr are the vehicle mass, the coefficient of air resistance, the windward area
and the rolling resistance coefficient, respectively. v(t) and α(t) are the vehicle speed and road
gradient, respectively.

During deceleration, Ft(t) is negative, and the front and the rear axle braking force’s distribution
follows the fixed factor β. Assuming the front and the rear axle braking force are F f b(t) and Frb(t),
respectively. The braking force are calculated by:

Ft(t) = F f b(t) + Frb(t)
F f b(t) = βFt(t)
Frb(t) = (1− β)Ft(t)

(2)

Then, the torque and power demand at the wheel is described as:{
Treq(t) = Ft(t) ·R
Preq(t) = Ft(t) · v(t)

(3)

where R is the wheel’s radius.
The torque and angular speed relationship of powertrain elements can be described as:

(Te(t) + Tisg(t)) · icvt · i f o + Tm(t) · iro = Treq(t)
ωe(t) = ωisg(t) = ωw · icvt · i f o
ωm = ωw · iro

(4)

where Te, Tisg and Tm are the output torque of the engine, ISG motor and the rear-drive motor,
respectively. ωe, ωisg, ωm and ωw are the angular speed of the engine, ISG motor, the rear-drive motor
and the wheel, respectively. icvt, i f o and iro are the gear ratio of CVT, the front final drive and the rear
final drive, respectively.

The electric power demanded or generated by the ISG motor and the rear-drive motor is
described as: 

Pb(t) = Pbi(t) + Pbm(t)

Pbi(t) =
{

Pisg(t)/ηisg Pisg(t) ≥ 0
Pisg(t) · ηisg Pisg(t) < 0

Pbm(t) =
{

Pm(t)/ηm Pm(t) ≥ 0
Pm(t) · ηm Pm(t) < 0

(5)

where Pb(t), Pbi(t), Pbm(t), Pisg(t) and Pm(t) are the battery terminal power, the electric power
demanded or generated by the ISG motor, the electric power demanded or generated by the rear-drive
motor, ISG motor’s output power and the rear-drive motor’s output power, respectively. ηisg and ηm

are the efficiency of the ISG motor and the rear-drive motor, respectively. These efficiencies are related
to the motors’ working point and obtained by looking up tables, and the base motor/generator for the
ISG motor is shown in Figure 2a with a maximum torque of 115 Nm and maximum speed of 6000 rpm,
the base motor/generator for the rear-drive motor is shown in Figure 2b, with a maximum torque of
145 Nm and maximum speed of 9200 rpm.
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Figure 2. (a) The base integrated starter and generator (ISG) motor efficiency map and (b) the base
rear-drive motor efficiency map.

Then, the battery’s state of charge (SOC) is calculated by: I(t) = −Voc+
√

V2
oc−4RintPb(t)

2Rint

SOC(t + 1) = SOC(t) − I(t)·∆t
Q0

(6)

where Voc and Rint are the battery’s terminal voltage and the battery’s internal resistance, respectively.
They are related to SOC and obtained by looking up tables according to SOC, as shown in Figure 3a Q0

is the nominal battery capacity and ∆t is the sample time.
The fuel consumption can be solved by looking up the table, and the base engine is shown in

Figure 3b.
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Figure 3. (a) The battery’s terminal voltage and internal resistance and (b) the engine’s fuel consumption.

3. The Energy Management Strategy Based on the CD–CS Mode

The energy management strategy based on the CD–CS mode for a plug-in 4WD HEV has two
operating modes (CD mode and CS mode). When SOC ≥ SOCcd (SOCcd is the switch threshold
between the CD mode and the CS mode) is satisfied, the vehicle operates in the CD mode. However,
when the SOC drops to the lower limit, the vehicle runs in the CS mode to sustain the battery SOC.
The CD and CS operating modes switching strategy is shown in Figure 4, where SOCo is the margin of
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switching back to the CD mode from the CS mode. In this paper, the value of SOCcd and SOCo were
set to 0.3 and 0.05, respectively.
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3.1. CD Mode

When SoC ≥ SOCcd, the vehicle operates in the CD mode, its corresponding control strategy flow
is shown in Figure 5. V, Treq, Tmmax and Tisgmax are the vehicle’s speed, the demand torque at the
wheel, the rear-drive motor’s maximum output torque and the ISG motor’s maximum output torque,
respectively. ifo, iro and icvt are the speed ratio of the front final drive, the rear final drive and CVT,
respectively. Their definitions are as follows: i f o = ωcvt_out/ωw, iro = ωm/ωw and icvt = ωisg/ωcvt_out,
ωisg, ωm and ωw are the same as Equation (4) and ωcvt_out is the angular speed of the CVT output shaft.
Tmmax_w is the equivalent wheel torque of rear-drive motor’s maximum output torque, it is expressed
as Tmmax_w = Tmmax × iro. Tisgmax_w is the equivalent wheel torque of ISG motor’s maximum output
torque, it is expressed as Tisgmax_w = Tisgmax × ifo × icvt × ηcvt. There are three drive modes (rear
motor drive mode, dual motor drive mode and 4WD hybrid mode). In the rear motor drive mode,
the vehicle is only driven by the rear-drive motor. In the dual motor drive mode, the vehicle is jointly
driven by the rear-drive motor and the ISG motor. The rear-drive motor, the ISG motor and engine
work jointly to meet the driving demand in the 4WD hybrid mode. If 0 ≤ Treq ≤ Tmmax_w is satisfied,
the vehicle drives in the rear motor drive mode. When the vehicle runs at a low speed, and if Treq

> Tmmax_w is satisfied, the vehicle drives in the dual motor drive mode. When the vehicle speed is
higher than the predetermined speed Vo, and if Tmmax_w ≤ Treq ≤ (Tmmax_w + Tisgmax_w) is satisfied,
the vehicle drives in the dual motor drive mode, otherwise the vehicle drives in the 4WD hybrid mode.
Regenerative braking can be employed to recover energy in the braking mode, the braking strategy
will be introduced in Section 3.3.
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3.2. CS Mode

When SoC ≤ SOCcd, vehicle operates in the CS mode. The control strategy of the CS mode is
shown in Figure 6. SOCl, Temax, Tel and Teh are the lower limit of SOC in the CS mode, the engine’s
maximum output torque, engine’s minimum output torque and engine output torque’s upper limit
under the pure engine drive mode, respectively. Temax_w, Tel_w and Teh_w are the equivalent wheel
torque of engine’s maximum output torque, engine’s minimum output torque and engine’s upper limit
output torque, respectively. They are expressed as Temax_w = Temax × ifo × icvt × ηcvt, Tel_w = Tel × ifo
× icvt × ηcvt and Teh_w = Teh × ifo × icvt × ηcvt, respectively. Tel and Teh are obtained by:{

Teh = Teopt + kup · (Temax − Teopt)

Tel = klow · Teopt
(7)

where Teopt is the output torque corresponding to the engine’s minimum fuel consumption rate
at a certain speed and kup and klow are the control strategy parameters that need to be optimized.
In addition to satisfying Equation (7), Teh and Tel also need to satisfy these inequality constraints:
Teopt < Teh ≤ Temax and 0 < Tel ≤ Teopt, therefore, these parameters kup and klow are less than 1, and their
ranges are usually set to [0.1,1]. The initial values of these parameters are generated in the population
initialization process of the evolutionary algorithm.

There are four drive modes (rear motor drive mode, pure engine drive mode, 2WD hybrid mode
and charging mode). When the SOC is less than SOCl, it needs to charge the battery packs, if the
demand torque is less than Temax_w, the vehicle drives in the charging mode, the torque distribution in
this mode is carried out by:

Te = Tel, Tm = 0, Tisg = max(Tisg_min, (Treq/(i f o · icvt · ηcvt) − Te)) if 0 ≤ Treq ≤ Tel_w
Te = Teopt, Tm = 0, Tisg = max(Tisg_min, (Treq/(i f o · icvt · ηcvt) − Te)) if Tel_w < Treq ≤ Teopt · i f o · icvt · ηcvt

Te = Temax, Tm = 0, Tisg = max(Tisg_min, (Treq/(i f o · icvt · ηcvt) − Te)) if Teopt · i f o · icvt · ηcvt < Treq ≤ Temax_w

(8)

When the SOC is higher than SOCl, and if Treq ≤ Tel_w is satisfied, the vehicle drives in the rear
motor drive mode, if Tel_w ≤ Treq ≤ Teh_w is satisfied, the pure engine drive mode is adopted, otherwise
the vehicle drives in the 2WD hybrid mode.
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3.3. The Braking Strategy

The braking strategy of the above CD and CS mode is shown in Figure 7. In the figure, Z is the
braking strength and Zm is the braking strength, which can be provided by the rear-drive motor’s peak
torque for the whole vehicle, its value is 0.09. Freq is the total braking force on the wheel. Ffb is the
braking force distributed to the front axle. Frb is the braking force distributed to the rear axle. β is
the braking force’s distribution factor. Fm and Fisg are the braking force distributed to the rear-drive
motor and ISG motor, respectively. Fmmax and Fisgmax are the maximum braking force, which can
be distributed to rear-drive motor and ISG motor, respectively. Fµ1 and Fµ2 are the braking force
distributed to the front wheel hydraulic brake and the rear wheel hydraulic brake, respectively.

The rear axle has no transmission, so in the low braking strength case (0 < Z ≤ Zm), only the
rear-drive motor braking is used to ensure high energy recovery efficiency. When the braking strength
is higher than Zm, the braking force is distributed to the front and rear axles. If the braking strength
is between Zm and 0.7, the motor brake and hydraulic brake work together, the front axle braking
force is distributed to the ISG motor brake and hydraulic brake according to the value of the Ffb and
Fisgmax and the rear axle braking force is distributed to the rear-drive motor brake and hydraulic brake
according to the value of the Frb and Fmmax. If SOC > 0.85 or the braking strength is higher than 0.7,
regenerative braking is not allowed, only hydraulic braking works.
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3.4. Strategy Validation

To verify the feasibility of the proposed strategy for plug-in 4WD HEV, a hardware-in-the-loop
(HIL) test system was established, as shown in Figure 8a. A real-world vehicle controller was selected
for the verification of the proposed strategy. The schematic diagrams of the HIL tests are shown
in Figure 8b. It mainly includes three parts: The vehicle controller, test cabinet and host computer.
The proposed strategy runs in the vehicle controller. The test cabinet integrates the power management
module, fault injection module, signal conditioning module, signal acquisition and control module,
system connection and conversion device, industrial computer, etc. It is mainly used to provide signal
for the vehicle controller and process the output signal from the vehicle controller. The vehicle’s
real-time simulation model and fuel and battery consumption were solved by the host computer.

A CVT-based plug-in 4WD HEV was selected as the study object. The main parameters of this
vehicle are shown in Table 1. Eight repeated NEDCs (new European driving cycles) were chosen for
the simulation. The initial SOC and SOCcd were 0.95 and 0.3, respectively, and the allowable SOC
range was 0.25–0.95.

The HIL test results are shown in Figure 9. The SOC’s change curve, as shown in Figure 9a,
indicated that the vehicle ran in the CD mode at the beginning, then, the vehicle ran in the CS mode
when SOC was below 0.3. The torque’s change curve is shown in Figure 9b. In the CD mode: Treq

was less than Tmmax_w, so only the rear-drive motor provided the demand torque in the driving mode.
In the CS mode: The engine provided the main drive torque, the ISG motor gave the assisted drive
torque and the rear-drive motor worked only when required drive torque was less than Tel_w. In the
brake mode, in most cases, both the rear-drive motor and ISG motor provided the braking torque.
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Summing up, the proposed strategy could distribute the demand torque between the engine, rear-drive
motor and ISG motor according to the already established rules. Therefore, the proposed strategy for
the plug-in 4WD HEV was feasible.

Table 1. Main parameters of the plug-in 4WD hybrid electric vehicle (HEV).

Name Value

Vehicle mass 1590 kg
Windward area 2.265 m2

Tire radius 0.307 m
Coefficient of air resistance 0.0135
Max power of the engine 93 kW

Max power of the rear-drive motor 55 kW
Max power of the ISG motor 30 kW
Rated capacity of the battery 30 Ah
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4. Mathematical Model of the Multi-Objective Optimization

When establishing the objective function, scholars mainly take fuel consumption, equivalent fuel
consumption or use the cost under certain driving cycles as the objective function of the economy
index. In fact, PHEVs usually run in the CD and CS stage. In the CD stage, the vehicle is basically
driven by the battery, the emission and fuel consumption in this stage are approximately zero, so it is
reasonable to select electric energy consumption as the objective function of economy index in this
stage; in the CS stage, energy consumption mainly comes from the engine, so fuel consumption should
be chosen as the objective function of the economy index in this stage.

The objectives of vehicle economy and power performance usually conflict with each other.
Therefore, in the optimization process, if the power performance is not considered, the vehicle economy
is only taken as the optimization objective, the power performance will be greatly sacrificed to obtain
the optimal economy. The power performance evaluation indices include the vehicle’s maximum speed,
acceleration time and the maximum climbing gradient. When dealing with the PHEVs parameter
optimization problem, the acceleration time is generally chosen as the evaluation index of the power
performance. In this study, the acceleration time of 0–120 km/h is selected as the objective function of
the power performance index.

The parameters of powertrain (maximum power of engine, rear-drive motor and ISG motor, speed
ratio of the front final drive and the rear final drive) and control strategy parameters (kup and klow)
have significant effects on the electric energy consumption of the CD stage, fuel consumption of the CS
stage and acceleration time from 0 to 120 km/h. Therefore, this paper chose the above parameters to
optimize, as shown in Table 2.

Table 2. The powertrain and control strategy’s parameters.

Parameters Descriptions Range

Pe max/kw Engine’s maximum power [63, 120]
Pm max/kw Rear-drive motor’s maximum power [65, 110]
Pisg max/kw ISG motor’s maximum power [20, 60]

ifo Speed ratio of the front final drive [3.81, 6.92]
iro Speed ratio of the rear final drive [4.4, 8.68]
kup Control strategy parameter [0.1, 1]
klow Control strategy parameter [0.1, 1]

The multi-objective parameter optimization problem is a highly non-linear and non-convex
optimization problem due to a large number of variables and limit constraints. This optimization
problem minimizes objective functions subjected to a set of inequality constraints. Mathematically,
this optimization problem is defined as,

Minimize J(X) = [ fele(X), f f uel(X), facc(X)]T

Subjected to



a j ≤ X j ≤ b j
Nemin ≤ Ne(X) ≤ Nemax

Temin ≤ Te(X) ≤ Temax

Nmmin ≤ Nm(X) ≤ Nmmax

Tmmin ≤ Tm(X) ≤ Tmmax

Nisgmin ≤ Nisg(X) ≤ Nisgmax

Tisgmin ≤ Tisg(X) ≤ Tisgmax

X = [Pemax, Pmmax, Pisgmax, i f o, iro, kup, klow]
T

(9)

where the object function J(X) is a vector object function assembled by three scalar object functions,
which are the 100 km fuel consumption f f uel(X), 100 km electric energy consumption fele(X) and
acceleration time from 0 to 120 km/h facc(X), as illustrated in Equations (10)–(12). X is the decision
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vector, which includes the maximum power of the engine Pemax, maximum power of the rear-drive
motor Pmmax, maximum power of the ISG motor Pisgmax, speed ratio of the front final drive i f o, speed
ratio of the rear final drive iro and control strategy parameters (kup and klow), X j is the decision variable,
a and b are the lower and upper limits of each decision variable, respectively. The value of a and b
is given in the “Range” column of Table 2. Nimax and Nimin are the upper and lower limits of the
components’ speed, respectively. Timax and Timin are the upper and lower limits of the components’
output torque, respectively.

In order to obtain the above objective functions’ values, different simulations are needed.
When the electric energy consumption function is simulated, the vehicle runs in the CD stage

through the SOC constraint. The 100 km electric energy consumption under the CD stage is calculated
by:

fele(X) = 100
3600S1

Nele∑
k=0

Pb(X, k)

Vehicle is running in the CD stage, and the SOC constraint is described as


SOC(0) = 0.95
0.25 ≤ SOC(k) ≤ 0.95
0.3 ≤ SOC(Nele) ≤ 0.95

(10)

where k represents the kth simulation step, one simulation step was set to one second in this paper.
Nele is the total step for the electric energy consumption simulation, so k = 1, 2, . . . , Nele − 1. Pb is the
battery power, its unit is kw and S1 is the driving mileage in the CD stage, its unit is km. SOC(0) is the
initial SOC value. SOC(k) is the SOC value in the kth simulation step. SOC(Nele) is the SOC value at
the end of the simulation.

When the fuel consumption function is simulated, the vehicle runs in the CS stage through
constraining the final SOC to be equal to the initial SOC. The 100 km fuel consumption under the CS
stage is calculated by:

f f uel(X) = 100
ρS2

N f uel∑
k=0

.
m f (X, k)

Vehicle is running in the CS stage, and the SOC constraint is described as


SOC(0) = 0.3
0.25 ≤ SOC(k) ≤ 0.95
0.25 ≤ SOC(N f uel) ≤ 0.35

(11)

where
.

m f is the instantaneous fuel consumption, it can be obtained by looking up the table by the
engine speed and engine torque, its unit is g/s. S2 is the driving mileage in the CS stage. ρ is the density
of gasoline. N f uel is the total steps for the fuel consumption simulation.

When the electric energy consumption and fuel consumption functions are simulated, the required
torque and speed at the wheel can be obtained from the given driving cycle, while the acceleration
time function is simulated, the required torque at the wheel is determined by the outputs of the
engine, rear-drive motor and ISG motor. The speed at the wheel is determined after vehicle’s velocity
discretization at the interval of ∆V. Then, the acceleration time from 0 to 120 km/h is regarded as the
time accumulation between two velocity steps. The acceleration time function is described as:

facc(X) =

Nacc∑
k=0

∆V
a(X, k)

(12)

where ∆V is the velocity interval selected as 1 km/h, Nacc are the total velocity steps, its value is 121.
a(X, k) is the acceleration at velocity step k, it can be calculated by:

a(X, k) =
Tw(X,k)

R −Fdrag(X,k)
δm

Tw(X, k)= (Te(k) + Tisg(k)) · icvt · i f o + Tm(k) · iro

Fdrag(X, k) = mg sinα+ mg f cosα+ Cd·A·V(k)2

21.15

(13)
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where Tw(X, k) is the driving torque at the wheel, R is the radius of the wheel and Fdrag(X, k) is the
sum of rolling resistance, gradient resistance and air resistance.

5. Optimization Algorithm

Compared with single-objective optimization problems, the solution of multi-objective
optimization problems is more difficult. In single-objective optimization problems, the optimal
solution is unique, while in multi-objective optimization problems, the optimal solution is not unique,
there is a set of compromise solutions, called the Pareto solution set. In this paper, the evolutionary
based NSGA-II approach was selected to obtain the Pareto solution set of the multi-objective parameter
optimization problems.

The flow chart of multi-objective parameter optimization based on the NSGA-II algorithm is
shown in Figure 10. Firstly, the population was initialized, and then the vehicle ran in the CD stage,
CS stage and 0–120 km/h acceleration stage by setting different operating conditions, and the objective
function values in different operating stages were calculated. On the basis of obtaining fele, f f uel and
facc, the hierarchy and crowding degree of each individual could be obtained by fast non-dominated
ranking and crowding degree calculation. Individuals with small hierarchy and high crowding degree
were selected to enter the mating pool. After crossover and mutation, the offspring were generated,
the offspring and the parent were merged into a unified population, and the elite strategy was used to
generate a new generation of population. Then the above steps were repeated until the termination
conditions were met.Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 20 
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Figure 10. The flow chart of multi-objective parameter optimization based on the non-dominated
sorting genetic algorithms-II (NSGA-II) algorithm.
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6. Optimization Results and Analysis

The powertrain’s dynamic model, energy management strategy and calculation model of the
objective function were built by using MATLAB/Simulink simulation software, in which the driving
cycles were selected under the urban road environment, as shown in Figure 11, the CD stage ran under
one FUDS (federal urban driving schedule) driving cycle and the CS stage ran under three repetitive
FUDS driving cycles. The parameters of the dynamic model were as follows: The wind resistance
coefficient was 0.32 and the windward area was 2.28. The rolling resistance coefficient was 0.0135,
the wheel radius was 0.307 and the conversion coefficient of rotary inertia was 1.02. The vehicle mass
was calculated by:

m = 1100 + 3.2Pemax+63Pmmax/30 + 58Pisgmax/30 (14)
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Figure 11. FUDS (federal urban driving schedule) driving cycle.

The parameters of the NSGA-II algorithm were as follows: Population size was 100, the Pareto
fraction was 0.2, the maximum generation was 500, the termination algebra was 500, the deviation
of fitness function was 1 × 10–100, the crossover rate was 0.8 and the mutation rate was 0.1.
After optimization, we got the three-dimensional Pareto solution set as shown in Figure 12a. There are
20 non-dominant solutions. Almost all the optimal solutions distribute on a narrow space surface.

The term Pareto front graph between the acceleration time and electric energy consumption
is shown in Figure 12b. From the graph, the achievable extreme electric energy consumption was
obtained at non-dominated solution 3 (NDS-3, as shown in Figure 12), its value was 11.63 kwh/100 km.
The achievable extreme acceleration time was obtained at non-dominated solution 1 (NDS-1, as shown
in Figure 12), its value was 6.5 s. It can be seen that the 100 km electric energy consumption was in
conflict with the acceleration time from 0–120 km/h, so it was impossible to achieve the extreme electric
energy consumption and the extreme acceleration capacity at the same time. The main reason was that
these two goals have different requirements for powertrain parameters. Electric energy consumption is
related to the parameters of the maximum power of the rear-drive motor and ISG motor, speed ratio of
the front final drive and the rear final drive. In order to obtain the extreme electric energy consumption,
the optimal above-mentioned parameters need to be achieved to make the rear-drive motor and ISG
motor’s efficiencies highest. However, extreme acceleration capacity was achieved by increasing
the maximum power of the engine, the rear-drive motor and ISG motor as much as possible on the
condition that all kinds of constraints were satisfied. The comparison of the rear-drive motor and ISG
motor’s efficiencies between NDS-1 and NDS-3 is provided in Table 3. The rear-drive motor and ISG
motor’s operating efficiencies of NDS-3 was obviously higher than that of NDS-1.
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Figure 12. The optimal solutions. (a) The three-dimensional Pareto solution set; (b) the term Pareto
front graph between the acceleration time and electric energy consumption and (c) the term Pareto
front graph between the acceleration time and fuel economy.

Table 3. Comparison of the rear-drive motor and ISG motor’s efficiencies between NDS-1 and NDS-3.

The Rear-Drive Motor ISG Motor

0.7 ≤ ηmot < 0.8 ηmot ≥ 0.8 0.7 ≤ ηisg < 0.8 ηisg ≥ 0.8

NDS-1 0.74 0.26 0.54 0.46
NDS-3 0.63 0.37 0.37 0.63

The term Pareto front graph between the acceleration time and fuel consumption is shown in
Figure 12c. From the graph, the achievable extreme fuel consumption was obtained at non-dominated
solution 4 (NDS-4, as shown in Figure 12), its value was 4.34 L/100 km. It can be seen that the 100 km
fuel consumption was also in conflict with the acceleration time from 0–120 km/h. The maximum
power of the engine played a major role. The effects of the engine’s maximum power on the fuel
consumption and acceleration time are shown in Figure 13. The points in Figure 13 corresponded to
the points in the term Pareto front in Figure 12. From Figure 13, fuel consumption increased with the
increase of the maximum power of engine (the reason was that the load rate of the engine decreased
with the increase of the maximum power of engine). However, the acceleration time decreased with
the increase of engine maximum power.
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Figure 13. Effects of the engine’s maximum power on the fuel consumption and acceleration time.

From Figure 12, in order to achieve one extreme goal, solutions of NDS-1, NDS-3 and NDS-4
sacrificed a lot of the other goals. Therefore, a best compromise solution should be found after
obtaining the Pareto optimal front. The fuzzy min–max approach in [14] can be applied to find the
best compromise solution. The pth objective function is represented by a membership function hp,
defined as:

hp =


1 fp ≤ fpmin

fpmax− fp
fpmax− fpmin

fpmin < fp < fpmax

0 fp ≥ fpmax

(15)

where p = 1, 2, . . . , Nobj, Nobj is the number of the objective functions for the member of the Pareto
optimal front and fpmin and fpmax are the minimum and maximum values of the pth objective function
of Pareto optimal set. Each member of the Pareto optimal front is evaluated using h, defined as:

h =

Nobj∑
p=1

hp (16)

The best compromise solution is that having the maximum value of h. The solution of NDS-2
is the best compromise solution after using the fuzzy min–max approach. Therefore, the solution of
NDS-2 was chosen as the final optimal solution in this paper. The results for NDS-1, NDS-2, NDS-3,
NDS-4 and the original scheme (OS) are shown in Table 4. The comparison between the original
scheme (OS) and the final optimization scheme (NDS-2) is also shown in Table 4. The original scheme’s
powertrain parameters and control strategy parameters were obtained from the prototype vehicle
manufactured by an automobile company. The original scheme’s 100 km electric energy consumption,
100 km fuel consumption and acceleration time were achieved from a simulation using the uniform
simulation model built in this study. According to this table, compared with the original scheme (OS),
the final optimized scheme (NDS-2)’s 100 km electric energy consumption, 100 km fuel consumption
and acceleration time were reduced by 1.21%, 6.18% and 5.49%, respectively.
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Table 4. The results for NDS-1, NDS-2, NDS-3, NDS-4 and the original scheme (OS).

Pemax Pmmax Pisg max ifo iro kup klow fele f fuel facc

NDS-1 118 102 49 6.32 7.52 0.69 0.33 13.98 6.94 6.5
NDS-3 66 66 22 6.9 7.24 0.7 0.97 11.63 5.43 9.1
NDS-4 65 67 21 3.87 5.95 0.12 0.79 12.17 4.33 10.2

Contrast
OS 93 55 35 5.18 6.68 0.54 0.73 12.39 5.34 9.1

NDS-2 72 73 30 5.26 7.42 0.71 0.78 12.24 5.01 8.6
Reduce by – – – – – – – −1.21% −6.18% −5.49%

In this study, the Pareto optimal front obtained from the NSGA-II approach was compared with
the weight approach. The weight approach is described as follows:

J = w1 Jele + w2 J f uel + w3 Jacc
3∑

i=1
wi = 1

wi ⊂ [0 : 0.25 : 1], i = 1, 2, 3

(17)

The weight approach transforms the multi-objective optimization into single-objective optimization
by setting weight factors w1, w2 and w3. By varying these weight factors, different portions of the
Pareto optimal front can be generated [14]. In this study, the varying step of all weight factors was
0.25, then, there were 15 combinations of weight factors for plug-in HEV parameter optimization.
These weight factor combinations were computed one by one to obtain a group of optimal solutions.
These optimal solutions were the Pareto optimal solutions searching by the weight approach.

The distribution of optimal solutions in the Pareto optimal front obtained using the weight
approach is shown in Figure 14. Comparing Figure 14 with Figure 12, it can be seen that the Pareto
optimal solutions obtained by the NSGA-II algorithm are well distributed over the entire Pareto
optimal front. However, the optimal solutions obtained by the weight approach were non-uniformly
distributed over the entire Pareto optimal front. Further, all the non-dominated solutions could not be
obtained and some of the solutions obtained were inferior.Appl. Sci. 2019, 9, x FOR PEER REVIEW 17 of 20 

 

Figure 14. The Pareto optimal front using the weight approach. (a) The term Pareto front graph 

between the acceleration time and electric energy consumption and (b) the term Pareto front graph 

between the acceleration time and fuel economy. 

After obtaining the Pareto optimal front, the fuzzy min–max approach in [14] was applied to 

find the best compromise solution. The best compromise solutions obtained by using the NSGA-II 

algorithm and the weight approach are shown in Table 5. The best compromise solutions obtained 

by using the NSGA-II algorithm and the weight approach were (12.24 kwh/100 km, 5.01 L/100 km 

and 8.6 s) and (11.82 kwh/100 km, 5.27 L/100 km and 8.8 s), respectively. This shows that the best 

compromise solution obtained by using the NSGA-II algorithm was better than the weight approach. 

Table 5. The best compromise solution obtained by using the NSGA-II algorithm and the weight 

approach. 

           

NSGA-II approach 72 73 30 5.26 7.42 0.71 0.78 12.24 5.01 8.6 

Weight approach 87 60 25 5.89 7.06 0.51 0.53 11.82 5.27 8.8 

7. Conclusions 

The plug-in 4WD HEV’s energy management control strategy based on the CD–CS mode was 

developed. Then, the multi-objective optimization’s mathematical model, which aims at minimizing 

the electric energy consumption under the CD stage, the fuel consumption under the CS stage and 

the acceleration time from 0–120 km/h, was established. Finally, the multi-objective parameter 

optimization problem was solved using the evolutionary based NSGA-II approach. Some of the 

results were compared with the original scheme and the classical weight approach. 

From the term Pareto front graph obtained using the NSGA-II approach, it could be seen that 

the two objectives of 100 km electric energy consumption and 100 km fuel consumption were in 

conflict with the acceleration time from 0–120 km/h, respectively. It was impossible for them to 

achieve the optimum at the same time. Therefore, the best compromise solution (NDS-2) was chosen 

as the final optimized scheme. Compared with the original scheme, the final optimized scheme’s 100 

km electric energy consumption, 100 km fuel consumption and acceleration time were reduced by 

1.21%, 6.18% and 5.49% respectively. 

Compared with the weight approach, the Pareto optimal solutions obtained using the NSGA-II 

approach were better distributed over the entire Pareto optimal front, as well as the best compromise 

solution was also better. 

NSGA-II is an evolutionary based multi-objective optimization algorithm, the main drawback 

of this approach is computationally burdensome. Therefore, pursuing a more efficient algorithm to 

solve plug-in 4WD HEV’s multi-objective parameter optimization problems is future research work. 

6.5 7 7.5 8 8.5 9 9.5 10 10.5
11

11.5

12

12.5

13

13.5

14

14.5

facc/s
(a)

f e
le
/(

k
w

h
/1

0
0

k
m

)

6.5 7 7.5 8 8.5 9 9.5 10 10.5
4.5

5

5.5

6

6.5

7

facc/s
(b)

f f
u
e
l/(

L
/1

0
0

k
m

)

maxeP maxmP isg maxP
foi roi upk

lowk elef fuelf accf

Figure 14. The Pareto optimal front using the weight approach. (a) The term Pareto front graph
between the acceleration time and electric energy consumption and (b) the term Pareto front graph
between the acceleration time and fuel economy.

After obtaining the Pareto optimal front, the fuzzy min–max approach in [14] was applied to
find the best compromise solution. The best compromise solutions obtained by using the NSGA-II
algorithm and the weight approach are shown in Table 5. The best compromise solutions obtained
by using the NSGA-II algorithm and the weight approach were (12.24 kwh/100 km, 5.01 L/100 km
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and 8.6 s) and (11.82 kwh/100 km, 5.27 L/100 km and 8.8 s), respectively. This shows that the best
compromise solution obtained by using the NSGA-II algorithm was better than the weight approach.

Table 5. The best compromise solution obtained by using the NSGA-II algorithm and the
weight approach.

Pemax Pmmax Pisg max ifo iro kup klow fele ffuel facc

NSGA-II approach 72 73 30 5.26 7.42 0.71 0.78 12.24 5.01 8.6
Weight approach 87 60 25 5.89 7.06 0.51 0.53 11.82 5.27 8.8

7. Conclusions

The plug-in 4WD HEV’s energy management control strategy based on the CD–CS mode was
developed. Then, the multi-objective optimization’s mathematical model, which aims at minimizing
the electric energy consumption under the CD stage, the fuel consumption under the CS stage
and the acceleration time from 0–120 km/h, was established. Finally, the multi-objective parameter
optimization problem was solved using the evolutionary based NSGA-II approach. Some of the results
were compared with the original scheme and the classical weight approach.

From the term Pareto front graph obtained using the NSGA-II approach, it could be seen that the
two objectives of 100 km electric energy consumption and 100 km fuel consumption were in conflict
with the acceleration time from 0–120 km/h, respectively. It was impossible for them to achieve the
optimum at the same time. Therefore, the best compromise solution (NDS-2) was chosen as the final
optimized scheme. Compared with the original scheme, the final optimized scheme’s 100 km electric
energy consumption, 100 km fuel consumption and acceleration time were reduced by 1.21%, 6.18%
and 5.49% respectively.

Compared with the weight approach, the Pareto optimal solutions obtained using the NSGA-II
approach were better distributed over the entire Pareto optimal front, as well as the best compromise
solution was also better.

NSGA-II is an evolutionary based multi-objective optimization algorithm, the main drawback of
this approach is computationally burdensome. Therefore, pursuing a more efficient algorithm to solve
plug-in 4WD HEV’s multi-objective parameter optimization problems is future research work.
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Abbreviations

The following abbreviations were used in this manuscript:
CD charge depleting
CS charge sustain
CVT a continuously variable transmission
4WD 4-wheel drive
PHEVs plug-in hybrid electric vehicles
NSGA-II Non-dominated Sorting Genetic Algorithms-II
A the windward area, its unit is m2

a(X, k) the acceleration at velocity step k, its unit is m/s2
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α(t) road gradient
cd the coefficient of air resistance
fr the rolling resistance coefficient
fele(X) the 100 km electric energy consumption under CD stage, its unit is kwh/100 km
f f uel(X) the 100 km fuel consumption under CS stage, its unit is L/100 km
facc(X) the acceleration time from 0 to 120 km/h, its unit is s
i gear ratio
kup control strategy parameter
klow control strategy parameter
.

m f the instantaneous fuel consumption, its unit is g/s
Nele the total steps for electric energy consumption simulation
N f uel the total steps for fuel consumption simulation
Nacc the total velocity steps
Pb the battery terminal power, its unit is kw
Pemax the maximum power of engine, its unit is kw
Pmmax the maximum power of rear-drive motor, its unit is kw
Pisgmax the maximum power of ISG motor, its unit is kw
Q0 the nominal battery capacity, its unit is Ah
R the wheel’s radius, its unit is m
Rint the battery’s internal resistance, its unit is Ω
S1 the driving mileage in CD stage, its unit is km
S2 the driving mileage in CS stage, its unit is km
Te the output torque of the engine, its unit is Nm
Tisg the output torque of ISG motor, its unit is Nm
Tm the output torque of the rear-drive motor, its unit is Nm
v(t) the vehicle speed, its unit is km/h
Voc the battery’s terminal voltage, its unit is V
ω the angular speed, its unit is rad/s
ηisg the efficiency of ISG motor
ηm the efficiency of the rear-drive motor
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