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Abstract. Vehicle driving consists of selecting and applying the best control actions in real
time to optimize several objectives such as the traveling time and the fuel consumption.
Because more than one objective is optimized, this problem can be solved using multi-
objective optimization techniques. However, the existing optimization algorithms mostly
combine objectives into a weighted-sum cost function and solve the corresponding single-
objective problem. To test the multiobjective approach, we developed the multiobjective
optimization algorithm for discovering driving strategies (MODS) that searches for the best
driving strategies by taking into account the entire route. Although this algorithm, on
average, outperforms existing single-objective algorithms for discovering driving strate-
gies, it has a drawback, namely, it cannot be used for real-time optimization because of
its time complexity. To overcome this shortage, we redesigned the MODS algorithm,
obtaining the real-time multiobjective optimization algorithm for discovering driving
strategies (MODS-RT). The MODS-RT algorithm was tested on data from real-world
routes and compared with MODS and traditional single-objective algorithms for dis-
covering driving strategies. Although MODS-RT found worse driving strategies than
MODS, it found better driving strategies than the single-objective algorithms, thus
proving that the multiobjective approach can be effectively adapted for real-time
discovery of driving strategies.
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1. Introduction
Autonomous vehicle driving is currently being investi-
gated by many automotive and other companies, for
example, Ford (Fitchard 2012),Mercedes-Benz (Ingraham
2013), Toyota (Read 2013), BMW (Elmer 2013), Audi
(Johnson 2013), and Google (Rosen 2012). Several driver
assistance systems are already installed in modern ve-
hicles, such as lane assistance (see, e.g., Audi 2014, Toyota
2014, Volkswagen 2014). In addition, fully autonomous
vehicles have begun driving in urban environments. For
example, 100 self-driving Volvo cars will drive on
public roads around the city of Gothenburg by 2021
(Elsom 2017).

Autonomous driving can be achieved by applying
real-time control algorithms that select the best control
action at each step with respect to current vehicle and
route state. A set of connections between the vehicle

and route states and control actions is a driving strat-
egy. The best control action is selected by optimizing
various objectives, such as the traveling time and the
fuel consumption. The objectives have to be taken into
account simultaneously because, in most cases, the im-
provement of one objective deteriorates another objective;
for example, by minimizing the traveling time, more fuel
is consumed.
Several techniques can be used to discover driving

strategies. Most of them use single-objective optimi-
zation methods in combination with predictive control
(PC; Del Re et al. 2010) and can be divided into two
groups: model-based techniques and black-box tech-
niques. Model-based techniques are analytical and re-
quire knowledge about the applied vehicle model. They
optimize either a weighted sum of the fuel consump-
tion and the traveling time (see, e.g., Huang et al. 2008;
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Ivarsson, Aslund, and Nielsen 2008), or the fuel con-
sumption only while considering the traveling time
as a constraint (see, e.g., Khmelnitsky 2000; Howlett,
Pudney, and Vu 2009; Melnik 2009). Black-box tech-
niques are usually numerical and use the vehicle models
without any knowledge of vehicle operation. Such
techniques are more suitable for driving optimization
because such knowledge is usually unavailable. In ad-
dition, they mainly use dynamic programming (DP)
methods tofind thedriving strategies. Similarly tomodel-
based approaches, they optimize either a weighted
sum of the fuel consumption and the traveling time
(see, e.g, Hooker, Rose, and Roberts 1983; Monastyrsky
and Golownykh 1993; Hellstrom et al. 2009), or the fuel
consumption only while considering the traveling time
as a constraint (see, e.g., Johannesson, Pettersson, and
Egardt 2009; Hellstrom, Aslund, and Nielsen 2010).

The previously presented techniques use single-
objective methods to find driving strategies, although
they optimize two objectives. Multiobjective techniques
should be, in principle, better suited for solving such
problems, because they enable better exploration of the
multiobjective search space (Deb 2001). To explore the
multiobjective approach, we implemented and tested
a two-level multiobjective optimization algorithm for
discovering driving strategies (MODS) that minimizes
the traveling time and the fuel consumption (Dovgan
et al. 2012, 2013, 2014). The lower-level algorithm is
a deterministic multiobjective optimization algorithm
based on breadth-first search (Russell and Norvig 2010),
which uses multiobjective mechanisms based on fast
nondominated sort and crowding distance mecha-
nisms from the nondominated sorting genetic algo-
rithm (NSGA-II; Deb et al. 2002). It searches for driving
strategies and minimizes the traveling time and the
fuel consumption. The optimal values of the input
parameters for the lower-level algorithm are searched for
by the upper-level algorithm. This is a single-objective
evolutionary algorithm (Eiben and Smith 2003) that
maximizes the hypervolume (Zitzler and Thiele 1999)
covered by the driving strategies found by the lover-
level algorithm. The results show that MODS finds
better driving strategies than traditional single-objective
optimization algorithms, namely, predictive control (Del
Re et al. 2010) and dynamic programming (Hellstrom,
Aslund, and Nielsen 2010). Although capable of finding
good driving strategies, MODS has a disadvantage: its
time complexity does not enable to produce good driving
strategies in real time. High time complexity is the
consequence of the following MODS properties: (1) the
two-level structure of the algorithm, where the upper-
level algorithm is a metaoptimization algorithm that
optimizes the parameter values of the lower-level algo-
rithm; and (2) the usage of the fast nondominated sort
and crowding distance, whose original implementation
does not fulfill high time constraints.

In this paper, we present a real-time multiobjective
optimization algorithm for discovering driving strat-
egies (MODS-RT) that finds good driving strategies in
real time and optimizes the traveling time and the fuel
consumption. It is a deterministic algorithm based on
breadth-first search (Russell and Norvig 2010) and
uses multiobjective mechanisms based on those from
NSGA-II (Deb et al. 2002). The MODS-RT algorithm
was derived from the lower-level algorithm of the two-
level MODS algorithm (Dovgan et al. 2014; the upper-
level MODS algorithm is not included inMODS-RT) by
improving the search capabilities of driving prediction
and significantly reducing the time complexity of the
multiobjectivemechanisms used in theMODS algorithm.
This paper is organized as follows. Section 2 describes

the MODS-RT algorithm and the vehicle driving simula-
tor used by MODS-RT to evaluate the driving strategies.
The numerical experiments performed with MODS-
RT, MODS, and two traditional algorithms for com-
parison, namely, predictive control and dynamic
programming, are presented in Section 3. This section
also describes how the vehicle behavior changes when
the obtained driving strategies are applied to the ve-
hicle. Finally, Section 4 concludes this paper with ideas
for future work.

2. Real-Time Discovery of Driving
Strategies with a Multiobjective
Optimization Algorithm

This section presents a real-time multiobjective opti-
mization algorithm for discovering driving strategies
that uses a black-box driving simulator to search for
driving strategies on a given route and minimizes
the traveling time and the fuel consumption. First,
the multiobjective optimization approach is described.
Second, the black-box driving simulator is presented in
terms of inputs, outputs, and internal behavior. Third,
a detailed description of the MODS-RT algorithm is
given.

2.1. Multiobjective Optimization Approach
Multiobjective optimization deals with optimization
problems involvingmore than one objective function to
be optimized simultaneously. In contrast to the single-
objective optimization, it finds more than one solution,
each with different trade-off between objectives. To
find such a set of solutions, it is not enough to find
an optimal solution corresponding to each objective
function using single-objective approaches.
A multiobjective optimization problem consists of

a number of objective functions (to be minimized or
maximized) and constraints that any feasible solution
must satisfy. Because each solution is evaluated with
multiple objective functions, the comparison of solu-
tions is performed using the dominance relation that is
defined as follows (Deb 2001): a solution dominates
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another solution if it is not worse in all objectives and
strictly better in at least one objective. Consequently, if
a solution is better in some and worse in other objec-
tives when compared with another solution, these
two solutions are incomparable. If a solution is not
dominated by any other solution, it is called a non-
dominated solution. The dominance relation is used by
most multiobjective optimization methods to search
for nondominated solutions, that is, solutions that are
not dominated by any other solution.

A multiobjective problem can be solved with (mul-
tiple simulation runs of) single-objective techniques by
applying various approaches such as the weighted-
sum approach. The weighted-sum approach weights
and sums the objectives into a single function that is
optimized afterward. However, such single-objective
optimization depends on the selected weights. On the
other hand, multiobjective optimization algorithms
find a set of nondominated solutions without multiple
simulation runs and without reduction of the optimi-
zation to a single objective function. To that end, they
work with a population of solutions, which enables to
capture a set of nondominated solutions in a single
simulation run. An example is NSGA-II, which uses a
crowded tournament selection operator to compare
the solutions, and fast nondominated sort and crowd-
ing distance to select the best solutions for the new/
improved population (Deb et al. 2002).

2.2. Vehicle Driving Simulator
The driving strategies found with MODS-RT and other
algorithms were tested using a black-box driving
simulator that we implemented based on the vehicle
descriptions from Lechner and Naunheimer (1999),
Blundell and Harty (2004), Randolph (2007), and Jazar
(2008). The simulator receives the throttle and braking
percentage εV and the gear gV (i.e., the control action),
simulates one step of Δs meters, and returns the spent
time, the consumed fuel, the new vehicle state, and the
driving feasibility. The driving is infeasible if the ve-
locity limit is exceeded or if the vehicle stops.

To simulate one step, the following forces acting on
the vehicle (Lechner and Naunheimer 1999) are taken
into account:

• Engine moving force is the force produced by
the engine when throttle percentage is greater than
zero.

• Engine braking force is the force produced by the
engine when throttle percentage is zero.

• Tire braking force is the force produced by brake
pads when braking percentage is greater than zero.

• Wheel friction force is the force resisting the
motion when the vehicle wheels roll on the road.

• Aerodynamic drag force is the force experienced
by the vehicle moving through the air.

• The tangential component of the g-force is the
force acting on the vehicle when the road is inclined.
By combining these forces together, the inertial force

is obtained, which causes the changes in vehicle ve-
locity, that is, vehicle state. Next, the initial and final
vehicle velocities are used to calculate the traveling time
and assess the driving feasibility. Moreover, the fuel
consumption is determined by taking into account the
engine moving force and the specific fuel-consumption
diagram (Randolph 2007) shown in Figure 1. The ve-
hicle driving simulator is described in detail in Dovgan
et al. (2014).

2.3. Real-Time Multiobjective Optimization
Algorithm for Discovering Driving Strategies

MODS-RT is an optimization algorithm that searches
for driving strategies in real time by minimizing the
traveling time t and the fuel consumption c. The op-
timization at each step Δs searches for the best control
action (i.e., discretized throttle and braking percentage
εV ∈ Dε and gear gV ∈ Dg) for the next step. The best
control action is selected by predicting the vehicle
driving for several steps ahead using multiobjective
approaches and minimizing a weighted sum of trav-
eling time t and fuel consumption c, that is, f � ωcc +
(1 − ωc)t (Lines 2–35 in Algorithm 1). After the best
control action is discovered, it is applied to the vehicle
for one-step simulation (Line 36). This procedure is
repeated until the entire route has been simulated or
the vehicle driving becomes infeasible (Lines 1–37).
The selection of the best control action for one step

consists of predicting vehicle driving for NP steps.
This procedure starts by cloning the current driving
strategy S and storing the clone in Spred, temp (Line 5).
Afterward, each driving strategy in Spred, temp is cloned
and NP,p ≤ NP steps are simulated for each possible
control action {εV , gV} (Lines 9–16). If the obtained

Figure 1. (Color online) Specific Fuel-Consumption
Diagram Shows the Fuel Consumption in Grams per
Kilowatt Hour

Dovgan, Gams, and Filipič: A Real-Time Multiobjective Optimization Algorithm
Transportation Science, 2019, vol. 53, no. 3, pp. 695–707, © 2019 The Author(s) 697



driving strategies are feasible, they are stored in S*pred, temp
for the next-step simulation. Such a procedure, similar
to the breadth-first search, repeats until NP steps have
been simulated (Lines 7–22).

The cloning of driving strategies produces an expo-
nentially growing number of driving strategies. To re-
solve this issue, elitism and multiobjective approaches
based on fast nondominated sort and crowding distance
mechanisms from NSGA-II (Deb et al. 2002) are used
(Line 17). This enables us to discover the best driving
strategies at each step and maintain a constant num-
ber of driving strategies Spop. More precisely, elitism
maintains the best Spop,E driving strategies with re-
spect to the weighted sum of the traveling time and the

fuel consumption as shown in Algorithm 2. The other
Spop − Spop,E driving strategies are selected using the
enhanced fast nondominated sort and crowding dis-
tance. These mechanisms perform several comparisons
between driving strategies to sort them with respect
to the traveling time and the fuel consumption. When
applied in the MODS-RT algorithm, they are used
several times, each time operating on a union of Spop
already compared driving strategies and up to |Dε| ×
|Dg| new driving strategies (obtained as shown in Lines
9–17). Such multiple usage is due to the fact that their
time complexity is not linear; therefore, it is better
to use them several times on a lower number of driving
strategies instead of once on a large number of
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driving strategies. However, these mechanisms, each
time, perform all the needed comparisons. Consequently,
the comparisons between Spop already compared
driving strategies are repeated, which is not efficient.
Therefore, these mechanisms were enhanced by storing
and reusing previously performed comparisons as
shown in Algorithm 3, which significantly reduced
the computational time.

The prediction of vehicle driving at one step is
computed for various NP,p steps. More precisely, the

prediction is done for NP,p � NP,NP/2,NP/4,NP/8, . . . , 1
(Lines 4–26). When driving prediction ends (Line 26),
all the feasible driving strategies are combined to-
gether, and the driving strategy that minimizes the
weighted sum of the traveling time and the fuel con-
sumption is selected (Lines 27–35). The first control
action that was applied to the selected driving strategy
is then used for simulating one step (Line 36).
During the driving prediction, the computational time

is checked several times (Lines 15, 16, 18, 21, and 25).
When the computational time is going to exceed the
available computational time, the driving prediction
stops, that is, the algorithm jumps to Line 27 and
continues with the selection of the best control action for
the next step. The computational time available for the
selection of the control action for the next step is equal to
the traveling time of the current step. For example, if the
best control action for step n spends tn seconds of the
traveling time, than the available computational time for
step n + 1 is equal to tn seconds. Therefore, during the
traveling along step n, the vehicle has time to find the
best control action for step n + 1. MODS-RT is shown in
Algorithm 1 and Figure 2. The differences between
MODS-RT and its predecessor, MODS, are shown in
Figure 3 (for the description of theMODS algorithm, see
also Dovgan et al. 2014).
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3. Experiments and Results
3.1. Experimental Setup
TheMODS-RT algorithmwas tested on data from three
real-world routes, which are presented in terms of their
inclinations and velocity limits in Figures 4–6. The data
on these routes were obtained from a database de-
scribing the main Slovenian routes provided by the
Slovenian Roads Agency (2014). The obtained results
were compared with the results of traditional algo-
rithms, that is, PC (Del Re et al. 2010) andDP (Hellstrom,
Aslund, and Nielsen 2010). In addition, they were also
compared with the state-of-the-art multiobjective op-
timization algorithm for discovering driving strate-
gies MODS (Dovgan et al. 2014). PC, DP, and MODS-
RT are algorithms that combine the objectives into
a weighted-sum function; therefore, the weight of
objectives,ωc, has to be given in advance. All of them
predict vehicle driving to find the best control action
for the current step, where the number of predictive
steps, NP, has to be given in advance. Therefore, to
obtain driving strategies with various trade-offs
between the traveling time and the fuel consump-
tion, the weights ωc were discretized and stored in
the vector Ω. Afterward, all combinations of input
parameter values {ωc,NP} were tested with each
algorithm, where ωc ∈ Ω and 1 ≤ NP ≤ NP,max. On the
other hand, MODS finds a set of driving strategies
with various trade-offs between objectives in one
run. However, MODS is a stochastic algorithm;
therefore, it was run 10 times on each route. Next, the
driving strategies obtained in all runs were combined
in 50% attainment curves (Fonseca and Fleming 1996).

Figure 3. (Color online) A Schematic View of Differences Between MODS-RT and Its Predecessor, MODS

Figure 2. (Color online) A Schematic View of MODS-RT
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A 50% attainment curve gives us an idea about the
average performance of the algorithm because the
region located to the top right of the curve is domi-
nated by the driving strategies found in 50% of runs.
MODS-RT, MODS, PC, and DP were tested with the
input parameter values shown in Table 1. For other
settings, such as parameter values of the vehicle
simulator, see Dovgan et al. (2014).

3.2. Experimental Results
The nondominated driving strategies found with
MODS-RT, PC, and DP and the 50% attainment curves
obtained with MODS are shown in Figure 7. These
results were obtained with a desktop computer with an
Intel Core i7 3.5 GHz processor, with 16 GB of RAM
and a 64-bit operating system. They show that MODS-
RT found driving strategies that always dominate the
driving strategies found with existing single-objective
optimization algorithms, PC and DP. On the other
hand, MODS found driving strategies that dominate
those found with MODS-RT. This is also confirmed by
the hypervolumes (Zitzler and Thiele 1999) covered by
the obtained driving strategies, which are shown in
Table 2. A higher hypervolume means that the algo-
rithm found better driving strategies, that is, the
driving strategies with lower traveling time and fuel
consumption. MODS found better driving strate-
gies thanMODS-RT, and consequently obtained higher
hypervolumes, because MODS searches for driving
strategies by taking into account the entire route (global
search), whereas MODS-RT searches forNP steps ahead
(local search) without considering the information
about the rest of the route. Nevertheless, the MODS-RT
driving strategies are similar to the MODS driving
strategies in terms of the traveling time and the fuel
consumption, or even better in some cases on the
second and third routes.

The times needed by the algorithms to find good
driving strategies are shown in Table 3 and Figure 8. In
addition, Figure 8 contains a gray shaded area denoting
the algorithms that meet real-time constraints, that
is, the algorithms whose computational times for dis-
covering driving strategies do not exceed the available
traveling time. The table and figure show that PC and

MODS-RT found driving strategies in real time,whereas
DP and MODS spent 2.8 to 5.9 times more computa-
tional time than available. In summary, MODS-RT finds
better driving strategies than traditional single-
objective algorithms for discovering driving strate-
gies, PC and DP. Although it does not find better
driving strategies than MODS on average, it per-
forms the search for driving strategies in real time,
which is significantly faster than MODS. The actual
time and space complexity of MODS-RT on the
testing routes are shown in Table 4. The time com-
plexity measured in floating point operations per
second (FLOPS) FLOPS was determined based on
the Lightspeed MATLAB toolbox.1

The results of MODS-RT could be, in theory, also
compared with the globally optimal driving strategies,
one driving strategy for each weightωc ∈ Ω. This could
be done with exhaustive search by selecting a number
of simulation steps NP that cover the entire testing
route and by keeping all the driving strategies at each
step. This would result in exponential growth of the
number of driving strategies, in contrast to a constant
number of driving strategies maintained at each step
by MODS-RT. Such a search space is equivalent to the

Figure 4. (Color online) Inclinations of the First Testing
Route

Note. The velocity limit is 50 kilometers per hour along the entire
route.

Figure 6. (Color online) Inclinations and Velocity Limits of
the Third Testing Route

Figure 5. (Color online) Inclinations of the Second Testing
Route

Note. The velocity limit is 50 kilometers per hour along the entire route.
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full decision tree with branching factor |Dε| × |Dg|. Be-
cause this search space is huge, it is not applicable to
obtain globally optimal driving strategies as illustrated
in Table 5. This table shows that the optimal driving
strategies can be obtained only for very short routes, that
is, routes of up to 15 meters, which is equivalent to three
simulation steps. This table also shows that the maxi-
mum number of driving strategies grows exponen-
tially with the number of simulation steps, although the
actual number of driving strategies is lower because,
when applying some control actions, the driving be-
comes infeasible and that subspace in not searched (this
is equivalent to pruning the decision tree). Even though
some subspaces are not searched, the required memory
still grows exponentially with the number of simulation
steps, which results in the premature end of the simu-
lation because of the out-of-memory error already at
four simulation steps. Thus, for four simulation steps,
the table gives only estimates.

Examples of the vehicle’s behavior when applying
the driving strategies can be seen in Figures 9–11.
Figure 9 shows the vehicle behavior on the first route for
one nondominated driving strategy per algorithm—the
strategy with a traveling time of around 45 seconds.
Similarly, Figure 10 shows the driving strategies with
a traveling time of around 1.5 minutes on the second
route, and Figure 11 the driving strategies with a trav-
eling time of around 4 minutes on the third route.
These figures show that MODS-RT produces driving
strategies with behavior similar to those of MODS,
because both produce driving strategies with a more
volatile vehicle velocity. On the other hand, PC and
DP generate driving strategies with a more constant
vehicle behavior. This is because PC and DP use the
weighted-sum function for evaluating control ac-
tions with a constant weight. On the other hand,
MODS-RT and MODS apply multiobjective search
procedures to find the best control actions, which
enables them to discover a larger set of driving
strategies and therefore find better driving strategies
without driving constantly in the same manner. Fig-
ures 7 and 9–11 also show that if the control actions
rarely change, as in the cases when DP driving
strategies are applied, worse driving strategies are

Table 1. The Parameter Values of MODS-RT, MODS, PC, and DP

Parameter Value

Simulation step, Δs 5 m
Discretized throttle and braking percentages, Dε [−1, −0.95, −0.9, −0.85, . . ., 0.9, 0.95, 1]
Gears, Dg [1, 2, 3, 4, 5]
Number of driving strategies, Spop 50
Number of elitist driving strategies, Spop,E 5
Discretized weights of objectives, Ω [0, 0.05, 0.1, . . ., 0.9, 0.95, 1]
Maximum number of predictive steps, NP,max 50

Figure 7. (Color online) Nondominated Driving Strategies
in the Objective Space for the First Route (Top), Second
Route (Middle), and Third Route (Bottom)
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obtained. Consequently, when searching for good
driving strategies, frequent changes of control ac-
tions are preferable.

Similar vehicle behavior based on driving strategies
as shown in Figures 9–11 can be also seen in Figure 12.
This figure shows the vehicle behavior based on driv-
ing strategies on the third, that is, the most complex,
route for one nondominated driving strategy per
algorithm—the strategy with a terminal velocity of
around 50 kilometers per hour. More precisely, it shows
that MODS and MODS-RT produce driving strategies
with a more volatile driving behavior, whereas PC and
DP generate driving strategies with a more constant
vehicle behavior. The driving strategies shown in this
figure are summarized in Table 6. This table shows that,
among the presented driving strategies, MODS and
MODS-RT driving strategies dominate PC and DP
driving strategies.

The presented driving strategies minimize the trav-
eling time and fuel consumption only, which might
result in oscillatory behavior, either from the point of
view of control actions or from the point of view of

vehicle state, that is, vehicle velocity. Such a behavior
might not be acceptable from a drivability point of
view. To overcome this issue, an additional objective
can be introduced, measuring the comfort as the
derivative of acceleration. For more details, see
Dovgan et al. (2012).
To sum up, PC and DP use one weight for each

driving strategy,which results in amore constant driving
behavior. On the other hand, MODS and MODS-RT
apply the multiobjective search without predefining
one weight per driving strategy. Consequently, the
multiobjective approach enables us to discover a larger
set of driving behaviors and find better driving strat-
egies, which is confirmed by the results presented in
Figures 7 and 9–12.

4. Conclusions
This paper presented a real-time multiobjective opti-
mization algorithm for discovering driving strate-
gies that minimizes the traveling time and the fuel

Table 2. Hypervolumes Obtained with the Applied
Algorithms on the Testing Routes

Route Algorithm Hypervolume

1 PC 0.8646
DP 0.8638
MODS 0.8828 ± 0.0016
MODS-RT 0.8760

2 PC 0.8467
DP 0.8351
MODS 0.8558 ± 0.0030
MODS-RT 0.8539

3 PC 0.9031
DP 0.8788
MODS 0.9062 ± 0.0011
MODS-RT 0.9050

Table 3. Time Spent for Discovering Driving Strategies

Route Algorithm

Average
traveling
time

Average computational
time for discovering a

driving strategy

Proportion of traveling time
spent for discovering
driving strategies (%)

1 PC 44 s <1 s 0.3
DP 55 s 2 min, 36 s 284.3
MODS 49 s 2 min, 42 s 330.9
MODS-RT 39 s 39 s 100.0

2 PC 1 min, 48 s <1 s 0.3
DP 1 min, 54 s 10 min, 25 s 548.6
MODS 1 min, 45 s 5 min, 45 s 328.6
MODS-RT 1 min, 35 s 1 min, 35 s 100.0

3 PC 3 min, 16 s 1 s 0.3
DP 3 min, 51 s 22 min, 54 s 594.9
MODS 3 min, 57 s 14 min, 10 s 358.1
MODS-RT 3 min, 14 s 3 min, 14 s 100.0

Figure 8. (Color online) Hypervolumes Obtained with the
Algorithms with Respect to Proportion of Spent Time
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consumption along a given route. This algorithm is
based on breadth-first search (Russell andNorvig 2010)
and multiobjective mechanisms from the non-
dominated sorting genetic algorithm (Deb et al. 2002).
Because it finds driving strategies in real time, it is
suitable for deployment in adaptive cruise control of
future intelligent vehicles, as suggested byVanWilligen,
Haasdijk, and Kester (2013).

The MODS-RT algorithm was tested using a simu-
lator and data from real-world routes, and the obtained
driving strategies were compared with the driving
strategies obtained with its predecessor, that is, MODS,
and two traditional algorithms for comparison, pre-
dictive control and dynamic programming. The results
show that MODS-RT performed better than PC and DP
in terms of the quality of driving strategies measured
by the traveling time and the fuel consumption. On the
other hand, MODS-RT did not outperform MODS.
Nevertheless, MODS-RT exhibited real-time perfor-
mance, which was not the case with MODS. Therefore,
the results show that MODS-RT found the best driving
strategies when the real-time constraint was taken into
account. Moreover, the multiobjective search procedures
(utilized by MODS-RT and MODS) proved to be better
suited for discovering driving strategies than single-
objective ones (utilized by PC and DP). This is not sur-
prising, because it is generally the case thatmultiobjective
optimization algorithms exhibit advantages over single-
objective ones. An additional analysis showed that the
driving strategies obtained with multiobjective search
procedures (MODS-RT and MODS driving strategies)
produced more volatile vehicle velocity, in contrast to
driving strategies obtained with single-objective search

Table 5. Limitations of Discovering Globally Optimal Solutions with Exhaustive Search

Number of driving strategies

Route length (m) Simulation steps Maximum Actual Computational time Max. memory usage (MB)

5 1 206 206 0.02 s 10
10 2 42,231 4,101 0.20 s 18
15 3 8,657,356 377,816 19.76 s 248
20 4 1,774,757,981 36,716,592* 27.21 min* 14,358*

Note. The values marked with an asterisk are estimated because the simulation ended prematurely because of the out-of-memory error.

Table 4. Complexity of the MODS-RT Algorithm

Route

Time complexity
(MFLOPS) Memory usage (MB)

Maximum Average Maximum Average

1 2,260 670 318 106
2 2,170 736 530 124
3 1,900 627 365 193

Figure 9. (Color online) Examples of Vehicle Behavior on
the First Route when Applying Driving Strategies with
a Traveling Time of Around 45 Seconds
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Figure 10. (Color online) Examples of Vehicle Behavior on
the Second Route when Applying Driving Strategies with
a Traveling Time of Around 1.5 Minutes

Figure 11. (Color online) Examples of Vehicle Behavior on
the Third Route when Applying Driving Strategies with
a Traveling Time of Around Four Minutes
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procedures (PC andDP driving strategies), which resulted
in more constant vehicle velocity.

In future work, we will test MODS-RT on addi-
tional routes. It would be interesting to include other

vehicles and/or unexpected events in the simulation.
Consequently, the MODS-RT algorithm should be
enhanced to take this additional information into
account appropriately and to include additional control
actions into driving strategies, such as changing
lanes and overtaking. A particular challenge would
be the deployment of the algorithm in a real-life ve-
hicle and its evaluation on a real route, where real-life
neighboring vehicles and unexpected events have to
be considered.

Endnote
1 Seehttps://github.com/tminka/lightspeed (acessed February 6, 2017).
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Dovgan, Gams, and Filipič: A Real-Time Multiobjective Optimization Algorithm
706 Transportation Science, 2019, vol. 53, no. 3, pp. 695–707, © 2019 The Author(s)

https://github.com/tminka/lightspeed
http://www.audi.co.uk/new-_cars/a3/a3-_sportback/driver-_assistants/audi-_active-_lane-_assist.html
http://www.audi.co.uk/new-_cars/a3/a3-_sportback/driver-_assistants/audi-_active-_lane-_assist.html
http://www.audi.co.uk/new-_cars/a3/a3-_sportback/driver-_assistants/audi-_active-_lane-_assist.html
http://www.autoguide.com/auto-_news/2013/02/bmw-_targets-_2020-_for-_self-_driving-_cars.html
http://www.autoguide.com/auto-_news/2013/02/bmw-_targets-_2020-_for-_self-_driving-_cars.html
https://www.thesun.co.uk/motors/5163726/volvo-delays-drive-me-driverless-trials-until-2021-over-safety-fears/
https://www.thesun.co.uk/motors/5163726/volvo-delays-drive-me-driverless-trials-until-2021-over-safety-fears/
http://gigaom.com/2012/04/09/ford-_is-_ready-_for-_the-_autonomous-_car-_are-_drivers/
http://gigaom.com/2012/04/09/ford-_is-_ready-_for-_the-_autonomous-_car-_are-_drivers/


Howlett PG, Pudney PJ, Vu X (2009) Local energy minimization in
optimal train control. Automatica 45(11):2692–2698.

HuangW, Bevly DM, Schnick S, Li X (2008) Using 3D road geometry
to optimize heavy truck fuel efficiency. Daily D, ed. Internat.
IEEE Conf. Intelligent Transportation (Institute of Electrical and
Electronics Engineers, Beijing, China), 334–339.

Ingraham N (2013) Mercedes-Benz shows off self-driving car tech-
nology in its new $100,000 S-Class. Accessed August 26, 2014,
http://www.theverge.com/2013/5/18/4341656/mercedes-_benz
-_shows-_off-_self-_driving-_car-_technology.

Ivarsson M, Aslund J, Nielsen L (2008) Optimal speed on
small gradients – consequences of a non-linear fuel map. Proc.
17th World Congress Internat. Federation Automatic Control,
3368–3373.

Jazar RN (2008) Vehicle Dynamics: Theory and Application (Springer,
New York).

Johannesson L, Pettersson S, Egardt B (2009) Predictive energy
management of a 4QT series-parallel hybrid electric bus. Control
Engrg. Practice 17(12):1440–1453.

Johnson D (2013) Audi predicts self-driving cars by 2020. Accessed
August 26, 2014, http://www.leftlanenews.com/audi-_predicts
-_self-_driving-_cars-_by-_2020.html.

Khmelnitsky E (2000) On an optimal control problem of train op-
eration. IEEE Trans. Automatic Control 45(7):1257–1266.

Lechner G, Naunheimer H (1999) Automotive Transmissions: Funda-
mentals, Selection, Design and Application (Springer, Berlin).

Melnik RVN (2009) Coupling control and human factors in mathe-
matical models of complex systems. Engrg. Appl. Artificial In-
telligence 22(3):351–362.

Monastyrsky VV, Golownykh IM (1993) Rapid computation of optimal
control for vehicles. Transportation Res. Part B: Methodological 27(3):
219–227.

Randolph T (2007) Waste heat regeneration systems for internal
combustion engines. Accessed August 20, 2012, http://www

.heat2power.net/downloads/GPC2007/20070618_heat2power
_GPC_WHR_presentation.pdf.

Read R (2013) Toyota will roll out autonomous cars by the ”mid-
2010s.” Accessed August 26, 2014, http://www.thecarconnection
.com/news/1087636_toyota-_will-_roll-_out-_autonomous-_cars
-_by-_the-_mid-_2010s.

Rosen RJ (2012) Google’s self-driving cars: 300,000 miles logged, not
a single accident under computer control. The Atlantic (August 9),
Accessed August 26, 2014, http://www.theatlantic.com/
technology/archive/2012/08/googles-_self-_driving-_cars-_300
-_000-_miles-_logged-_not-_a-_single-_accident-_under-_computer
-_control/260926/.

Russell SJ, Norvig P (2010) Artificial Intelligence: A Modern Approach
(Prentice Hall, Upper Saddle River, NJ).

Slovenian Roads Agency (2014) Accessed August 26, 2014, http://
www.dc.gov.si/.

Toyota (2014) Lane keeping assist. Accessed August 26, 2014, http://
www.toyota-_global.com/innovation/safety_technology/safety
_technology/technology_file/active/lka.html.

Van Willigen W, Haasdijk E, Kester L (2013) A multi-objective ap-
proach to evolving platooning strategies in intelligent trans-
portation systems. Blum C, Alba E, Auger A, Barcardit J,
Bongard J, Branke J, Bredeche N, et al., eds. Proc. Genetic Evo-
lutionary Comput. Conf. (ACM, New York), 1397–1404.

Volkswagen (2014) Lane assist. Accessed August 2014, http://www
.volkswagen.co.uk/technology/proximity-_sensing/lane-_assist.

Volvo (2013) Volvo car group initiates world unique Swedish pilot
project with self-driving cars on public roads. Accessed August
2014, https://www.media.volvocars.com/global/en-_gb/media/
pressreleases/136182/volvo-_car-_group-_initiates-_world
-_unique-_swedish-_pilot-_project-_with-_self-_driving-_cars
-_on-_public-_roads.

Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms:
A comparative case study and the strength Pareto approach.
IEEE Trans. Evolutionary Comput. 3(4):257–271.
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