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Abstract: This paper presents a multiobjective genetic algorithm approach to the design of a water distribution network. The objectives
considered are minimization of the network cost and maximization of a reliability measure. In this study, a new reliability measure, called
network resilience, is introduced. This measure mimics a designer’s desire of providing excess head above the minimum allowable hea
at the nodes and of designing reliable loops with practicable pipe diameters. The proposed method produces a set of Pareto-optim
solutions in the search space of cost and network resilience. Genetic algorithms are observed to be poor in handling constraints. To hanc
constraints in a better way, a constraint handling technique that does not require a penalty coefficient and is applicable to water distributio
systems is presented. The present model is applied to two example problems, which are widely reported. Comparison of the presei
method with other methods revealed that the network resilience based approach gave better results.
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Introduction sidered the layout optimization along with the cost due to the
extreme complexity involved and because layout is largely re-
When a source of water is far off demand points, water has to bestricted by the location of roads. Therefore, for a given network
transmitted through a network of pipes from the source to demandlayout and demands, the pipe network optimization problem has
points. The present day water distribution networks are complex been considered as the selection of pipe sizes that will minimize
and require huge investments in their construction and mainte-the cost of a network. In addition to cost, obviously, there are
nance. For these reasons, a need to improve their efficiency byother possible objectives such as reliability, redundancy, and
way of minimizing their cost and maximizing the benefit accrued Water quality that can be included in the optimization process.
from them is strongly felt. In the past, design of a water distribu- Quindry et al(1981)and Goulter and Morgaf1985)have shown
tion network was based on experience. However, in the last threethat networks designed by cost minimization and for a single
decades, a significant number of methods have been devebpeépading condition resulted in branched networks. Stanic et al.
using linear programming, dynamic programming, enumeration (1998)and Abebe and Solomatir{@998) have also demonstrated
techniques, heuristic methods, and evolutionary techni¢figs this tendency of single objective optimization algorithms.
erovits and Shamir 1977; Quindry et al. 1981; Gessler and Walski Branched water distribution networks will have severe conse-
1985; Goulter and Morgan 1985; Duan et al. 1990; Fujiwara and gueénces in terms of reliability under failure conditions. In order to
Khang 1990; Simpson et al. 1994; Savic and Walters 1997; Vaira- reduce their risk of failure to supply, often designers introduce
vamoorthy and Ali 2000). Most of these methods consider the rédundancy into networks by adding pipes to close loops. For this
minimization of cost of a pipe network as the objective, although PUrPOSe, many researchers have used a minimum diameter con-
some reliability studies and stochastic modeling of demands haveStraint, causing some of the pipes to be of an allowed minimum
been attemptedGoulter and Bouchart 1990; Xu and Goulter dlametel_r. It mus_t be emphasa_ed_here that the loops in a_network
1999). Of all the preceding methods, genetic algoritt@A) are 'prowded to increase .|ts rellap|llty, o] that'the system will haye
based methods appear to be robust, as they can handle discret%‘!ﬁ'c'e”t capamty to deﬁver during meghanlcal and/or hydraulic
pipe sizes with ease and produce a set of promising solutions. failures. Mechanical failures are the failure of network compo-

Most of the pipe network optimization methods have not con- nents such as pumps, pipe breakage, etc., and hydraulic failures
are changes in demand or pressure, aging of pipe,(Btays
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nodes of a water distribution system as possible, subject to mon-network resilience, which is a measure of reliability. NSGA was
etary constraints. The surplus head is then utilized to overcomeobserved to converge towards the true Pareto-front and distribute
increased head losses under increased demand or failure condisolutions along the front uniformlyDeb 1999). This gives a de-
tions. Walski(2001) also stressed the need for developing meth- signer a number of alternatives that are superior to the rest of
ods that produce reliable or practicable loops and avoid loops solutions in the search space in a multiobjective sense. The model
having pipes of widely different diameters such as 16 in. pipe was applied to two example problems, which were previously
connected to 2 in. pipe. These aspects strongly motivate a re-reported. From the analysis of the results, it is observed that use
searcher to include other legitimate objectives such as measuresf network resilience in the objective function gave better results
of reliability into the objective function in addition to cost. in terms of both surplus power and redundancy. Comparison of
Gessler and Walsk{1985) were probably the first to use a the present method with the other reliability measures shows the
benefit function in pipe network optimization in thaitADISO superiority of the proposed reliability measure. Here it must be
computer program. In their model, the benefit was measured asmentioned that maximization of network resilience improves the
the amount of excess pressure above the minimum required at theeliability of network solutions but does not guarantee the deliv-
worst node in the system over all of the loading test@liski ery of water at different nodes under a failure condition. Engi-
and Gessler 1999). Halhal et ¢.997) were the first to use a  neering judgment coupled with reliability assessment methods
multiobjective genetic algorithm to solve water distribution net- such as that by Xu and Goult€t998) and Tolson et al(2001)
work rehabilitation problems. They considered minimization of can be used to select a solution from the Pareto set.
network cost and maximization of benefit as the objectives. Ben-
efit in this model was calculated as the summation of hydraulic
benefit, physical integrity benefit, flexibility benefit, and quality Formulation of the Model
benefit with each component given a weight. Here, the hydraulic
benefit is quantified as the difference between the pressure defi-The following is the proposed two-objective optimization model
ciencies in the initial network before improvement and in the for a water distribution network design. The two objective func-
solution obtained. They used the structured messy genetic algodions are(1) minimization of network cost; an?) maximization
rithm (SMGA) to solve the optimization problem. Walters et al. of a reliability measure

(1999) applied the preceding algorithm to solve the “Anytown” np
distribution network. Todini{2000) presented a heuristic method Minimize fle Ci(D; L)) 1)
considering cost function and resilience index, a reliability mea- i=1

sure, as the objectives. This method solves for minimum cost
networks, heuristically, by fixing a value of resilience index be-
tween 0 and 1. More recently, Wu et §002) presented a mul-  whereC;(D,,L;) =cost of the pipe with diameterD; and length
tiobjective model with cost and benefit functions as objectives. In L;; np=number of pipes in the system; amhg= network resil-
this model, the benefit was calculated as the summation of totalience. The preceding optimization model is subjected to the fol-
flow delivered at each demand node. Here total flow is modeled lowing constraints:

as the sum of a baseline demand and an emitter flow. Although

Maximize f,=1, (2)

these methods are a step forward in considering multiple objec- gi(H,D)=0 j=1,2,...nn (3)
tives in pipe network optimization, they do not incorporate the HjBH} j=1,2,...,nn 4)
effect of redundancy in the benefit function. Halhal et(4b97)

have included flexibility benefit—a measure of redundancy—in Die{A} i=12..np (5)

their benefit function, but it requires a weight to add to the total \yherenn =number of junction nodesy(H,D)=nodal mass bal-
benefit. Thus, there is a need for the method to be further devel-ance and loopath) energy balance equationtd; =head at any
oped using better reliability measures and multiobjective algo- nodej, which must be greater than a minimum]valdéa' and all

rithms. L . o D;’s=discrete pipe sizes selected from a set of commercially
When more than one objective is present in an objective func- 5yilable sizes.

tion, there may not exist one solution that is best with respect 0 e apove-formulated model is a multiobjective mixed integer
all objectives. Instead in a multiobjective optimization problem nqnjinear optimization model. It can be solved using a multiob-
thers exists %setl of solutions ggged I;areto-olptl'mal solutions Ofjective genetic algorithm. A major problem associated with GA
nondominated solutiongHans 1988). These solutions are supe- ontimization is the poor ability of GAs to handle constraints.
rior to the rest of solutions in the search space when all objectivesTnhearefore. in general, when GAs are applied to a water distribu-
are considered, but are inferior to other solutions in the space intjon network design, some of the constraints such as nodal mass
one or more objectives. It must be recognized that optimization p51ance equations and energy conservation equations are satisfied
can only assist the engineer and that engineering judgment anthyiernally by using a hydraulic network solver. In this study, net-

experience i; still requirgd to provide a p.rgct!cable solutiqn. The work hydraulic analysis is performed using EPANET hydraulic
Pareto set gives an engineer more flexibility in the selection of a gqyer.

practicable solution. The classical way of solving multiobjective
problems is to scale the vector of objectives into one objective o
and solve for the optimal solution. This process results in a solu- Reliability Measures

tion that is largely dependent on the weight vector used in the | east cost design of looped networks under a single loading con-
scaling process. Most of these drawbacks can be eliminated usingition resulted in some of the pipes having a minimum diameter
multiobjective genetic algorithms. Therefore, in this study a mul- ang heads at some of the nodes being barely satisfied. This situ-
tiobjective genetic algorithm, called the nondominated sorting ge- ation is improved by designing a network to satisfy the con-
netic algorithm(NSGA) (Srinivas and Deb 1994), is used t0 0b-  syraints under many critical loadings. Identification of various
tain a Pareto-front. In the present model, the objective function citical loadings is a complex process for large networks, and
consists of minimization of network cost and maximization of
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evolutionary algorithms require numerous hydraulic simulations whereQ;=demand at nodg and H;=head at whiclQ; is sup-
during the optimization process. These aspects encourage the usplied. The resilience index of a network is then defined as
of a second approach—multiobjective optimization—that seeks

for a set of solutions with improved reliabilifydalhal et al. 1997, l,=1—
Walters et al. 1999; Todini 2000). In this approach, the objectives

are(1) to minimize network cost; an@®) to maximize a reliability where P;,,= amount of power dissipated in a network; aRfi™
measure. Solution of this model with either a single loading or a _ 1 aximum power that would be dissipated internally in order to
few critical loadings gives a set of Pareto-optimal solutions. satisfy design deman@® and design hea' at the junction

Whenever there is a mechanical or hydraulic failure, the inter- oqes Substitution of appropriate quantities in Eid.) gives
nal head losses will increase causing failure of the network. These

increased head losses during failure conditions can be met, if B =M Qj(Hj—H))
sufficient excess power is available for internal dissipation. Based l’_(EE’:leHkJr SPPUP fy) -3 leH'-
on this premise, the following reliability measures are defined. ' .

Pin
P_r!?ax) (11)

int

(12)

Maximization of the resilience index also improves the ability of

a pipe network to counter the failure conditions.
Minimum Surplus Head Index (I )

The surplus head at a node is equal to the difference between theVetwork Resilience (I )
actual headH at which the deman@) is supplied and the mini-
mum required head or design heldd| at that node. This surplus
head indicates the available energy for dissipation during failure
conditions. Maximization of the available surplus head at the
most depressed node improves the reliability of a network to
some extent. Accordingly the minimum surplus head intlgxs
defined as

Maximization of the preceding three indices may increase surplus
head or power at junction nodes, but they do not reflect the effect
of redundancy. A branched network with sufficient surplus head at
the nodes may adjust to increased demands, but a pipe outage will
have severe consequences at one or more downstream nodes.
Therefore, maximization of surplus head or power alone is not
sufficient for a reliable network. The following reliability mea-

| = min{Hj—H}} i=1,2,...nn (6) sure, called network resilie_ncan, incorporates the effects of
both surplus power and reliable loops. The surplus power at any

This index was used as the indicator of benefits in\#¥#&DISO nodej is given by

computer prograniWalski and Gessler 1999).
Pj=vQj(H;—H)) (13)

Total Surplus Head Index (I ) Reliable loops can be ensured, if the pipes connected to a node

_ o are not widely varying in diameter. B,, D,, andD3 (where
Another index that can be used to measure the reliability of a p,>p,=D,) are the diameters of three pipes connected to node
network is the summation of surplus head at each junction node.j then uniformity of that node is given by

In mathematical form, the total surplus head indgx, can be

expressed as o =—(D1+3DD21+ Bs) (14)
nn
|t:2 (HJ-—H}) for all j=1,2,...nn 7 and in generalized form
AR o S{PiD,
Maximization of I; also improves the ability of a network to CFW (15)

adjust under stressed conditions.
wherenp;=number of pipes connected to nofeThe value of
C=1, if pipes connected to a node have the same diameter; and
C<1, if pipes connected to a node have different diameters. For
Todini (2000) proposed the following resilience index, based on Nodes connected with only one pipe, the valu€a$ taken to be

the concept that the power input into a network is equal to the One. The combined effect of both surplus power and nodal uni-
power lost internally to overcome the friction plus the power that formity of nodej, called weighted surplus power, is expressed as

Resilience Index (I ,)

is delivered at demand points: Xj=C;P;
Pinp= Pintt Pout (8) For a network, it is given by
The total input power into a network including power supplied by nn nn nn
pumps is given by X=]ZI X;=121 C Pfgl CiQj(H;—H}) (16)
nr npu
PianYz Qka+E P, (9) Eq. (16) may be normalized by dividing with maximum surplus
k=1 i=1 power to get network resilience as
where Q, and H,=discharge and head corresponding to each X zj“glchj(ijH})
reservoir nodd; nr=number of reservoir node®; = power sup- In= = —<nwr mpu 5 st T (A7)
plied by pumpi; and npu=number of pumps in a network. The Xmax [ Zkz QuHict ZiZ2(Pi/v) 1= 22, QjH,
total output power is given by where X pmad =Pinp— =}~ leH})=maximum surplus power.
nn The network resilience can also be viewed as equivalent to the
p FVE QH. (10) resilience index with surplus power at each npdésen a weight
out e < of C; based on the uniformity in diameter of pipes connected to it.
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Theoretically, the value of network resilience may vary between 0 1.

and 1. However, for real systems it never attains a value of 1. It
must be noted that forcing diameters of all pipes of a network to

be the same need not always provide a Pareto-optimal solution in2.

cost-l, space, as, is a measure of combined effect of surplus
power and nodal uniformity.

The solutionx® is no worse(say the operato denotes
worse andD denotes betterfhan x® in all objectives, or
f;(xM) ¢ f;(x®?) for all j=1,2,...M objectives, and

The solutionx® is strictly better tharx(® in at least one
objective, or f;(xM)Df;(x?) for at least one |
e{1,2,..M}.

If any of the preceding conditions is violated, the solutid®

Multiobjective Genetic Algorithms

Many real world engineering design problems involve simulta-
neous optimization of multiple objectives. In single objective op-
timization, the goal is to find the best design solution, called the

does not dominate the solutio?. If x(*) dominates the solution
(2)
X

, thenx® is said to be a nondominated solution.

Fitness Assignment

global optimum. Conversely, in a multicriterion optimization with ~ Consider a set oN population members, each havihg (>1)
conflicting objectives, there is no single optimal solution. The objective function values. The following procedure can be used to
interaction among different objectives gives rise to a set of com- find the set of nondominated solutions:

promised solutions, largely known as the Pareto-optimal solu- *
tions. Since none of these Pareto-optimal solutions can be identi-
fied as better than others without any further consideration, the
goal in a multicriterion optimization is to find as many Pareto-
optimal solutions as possible. Once such solutions are found, ite
usually requires higher-level decision making with other consid-
erations to choose one of them for implementation. .
In dealing with multicriterion optimization problems, classical
search and optimization methods are not efficient, simply because
(1) most of them cannot find multiple solutions in a single run, -
thereby requiring them to be applied as many times as the number

Step 0: Begin with =1.

Step 1: For allj=1,2,...,.Nand j#i, compare solutiong®
and x( for domination using the two aforementioned condi-
tions, for allM objectives.

Step 2: If for anyj, x) is dominated byx!), mark x() as
“dominated.”

Step 3: If all solutiondi.e., wheni =N is reachedjn the set
are considered, go to Step 4; else, increndaytone and go to
Step 1.

Step 4: All solutions that are not marked “dominated” are
nondominated solutions.

of desired Pareto-optimal solution&) multiple application of All these nondominated solutions are assumed to constitute the
these methods does not guarantee finding widely different Paretofirst nondominated front in the population and assigned a large
optimal solutions; and@3) most of them cannot efficiently handle dummy fitness valuéwe assign fitneshl). The same fitness value
problems with discrete variables and problems having multiple is assigned to give an equal reproductive potential to all these
optimal solutions. On the other hand, studies based on evolution-nondominated individuals. In order to maintain diversity in the
ary search algorithms, over the past few years, have shown thapopulation, these nondominated solutions are then shared with
these methods can be efficiently used to eliminate most of thetheir dummy fitness values. Sharing is achieved by dividing the
aforementioned difficulties of classical methd@@®b 2001). Be- dummy fitness value of an individual by a quantity, called the
cause they use a population of solutions in their search, multiple niche count, proportional to the number of individuals around it.
Pareto-optimal solutions can, in principle, be found in one single This procedure causes multiple optimal points to coexist in the
run. The use of diversity preserving mechanisms can be added tgpopulation. The worst shared fitness value in the solutions of the
the evolutionary search algorithms to find widely different Pareto- first nondominated front is noted for further use. After sharing,
optimal solutions. Many multiobjective genetic algorithms such these nondominated individuals are ignored temporarily to pro-
as the vector enabled GA/EGA), multiobjective optimization cess the rest of the population members. The above step-by-step
GA (MOGA), niched Pareto GA, and nondominated sorting GA procedure is used to find the second level of nondominated solu-
(NSGA), are published in the literature. In this study, NSGA, tions in the population. Once they are identified, a dummy fitness
developed by Srinivas and D&fh994), is used. value, which is a little smaller than the worst shared fitness value
observed in solutions of the first nondominated set, is assigned.
Thereafter, the sharing procedure is performed among the solu-
tions of the second nondomination level and shared fitness values
are found as before. This process is continued until all population
members are assigned a shared fitness value. The population is
then reproduced with the shared fitness values. In this study, a real
coded NSGA with tournament selection, arithmetic crossover, and
Gaussian mutation, which are explained in the following sections,
is used.

Nondominated Sorting Genetic Algorithm

The idea behind NSGA is that a ranking method is used to em-
phasize current nondominated points and a niching method is
used to maintain diversity in the population. NSGA can be ap-
plied either with binary coded strings or real coded strings. NSGA
differs from a simple genetic algorithm only in the way the selec-
tion operator is used. The crossover and mutation operators re-
main as usual. Before selection is performed, first the population
is ranked on the basis of an individual's nondomination level, ]
which is found by the following procedure, and then fitness is Sharing Procedure

assigned to each population member. Given a set of, solutions in thekth nondominated front, each
having a dummy fitness valui , the sharing procedure is per-
formed in the following way for each solutiar=1,2,...,1y:

e Step 1: Compute a normalized Euclidean distance measure

Nondominated Solution

For a problem having more than one objective function, any two  with another solutiorj in the kth nondominated front, as fol-
solutions x® and x? can have one of two possibilities, one

lows:
dominating the other, or neither dominating the other. A solution

P (I>_ (i)
xM is sai [ i i /E ( x4 )
ing conditions are true: p= x —X

(1) is said to dominate the other solutiaf? if both the follow- (18)
p
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Table 1. Pipe Cost Data for Two-Loop Network

1

1 Diameter(mm) Cost($/m)
2
[3] [2] 25.4 2
50.8 5
76.2 8
7 3
101.6 11
152.4 16
4 203.2 23
[ ———————8[4]
254.0 32
g 5 304.8 50
355.6 60
406.4 90
(7 5 5] 457.2 130
508.0 170
Fig. 1. Two-loop network 558.8 300
609.6 550

where P=number of decision variables in the problem. The

parameterx; andx'p are the upper and lower bounds of vari-

ablex,,. give good results for water distribution network optimization with
e Step 2: This distancdij is Compared with a prespeciﬁed pa- A=0.75 (Vairavamoorthy and Ali 2000). The same is used in this

rametero 4,5, following sharing function value is computed: ~ study also.

( d )2 if di<oq,
SHd;)= Oshar U

(19) Gaussian Mutation
_ 0 otherwise If y(k) is an offspring andyX is a gene randomly selected for
 Step 3: Increment If j<n,, go to Step 1. If>ny, calculate  mutation, then the gene obtained after Gaussian mutation is as
niche count for theth solution as follows: follows:
Nk
k_ ok
mzz SHdy) (20) z;=y;+N(0,0) (24)
=

where N(0,0) =random Gaussian number with mean zero and
standard deviatioo = f(y}"), wherey}' is the maximum value of
the gene. Here the value o6f=0.1Xy}' is used. With this scheme

« Step 4: Degrade the dummy fitnegsof theith solution in the
kth nondomination front to calculate the shared fithésss

follows: applied, if new gene values exceed their range at either end, the
fr values are adjusted to take limiting values.
fi=— (21)
m;
This procedure is continued for al=1,2,...,n, and a corre- Constraint Handling

spondingf; is found. Thereafter, the smallest valtg" of all f,
in thekth nondominated front is found for further processing. The
dummy fitness of the next nondominated front is assigned to be
fri=f"—e,, wheregy is a small positive number.

The preceding sharing procedure requires a prespecified pa
rametero ¢, Which can be calculated as follows:

Although the nodal mass balance and loop energy balance equa-
tions [Eq. (3)] are satisfied externally by using a hydraulic net-
work solver, the other constrain{€q. (4)] must be satisfied
within the framework of a GA. In the previous GA applications to
water distribution network optimization, many improvements
were suggested for constraint handlifi@andy et al. 1996; Savic
0.5 and Walters 1997; Vairavamoorthy and Ali 2000). However, these
O sharé™ 7 (22) methods are not elegant in the sense that they all require a penalty
q coefficient. Identifying a penalty coefficient is a difficult task, and
Although the calculation ob g, depends org, the use of the it may change from problem to problem. The penalty coefficient
above equation witlg~10 works well. Moreover, the perfor-  must take a value that will not allow the best infeasible solution to
mance of NSGA is not very sensitive to this parameter oegd. be better than any feasible solution in the populatiSimpson
values calculated using~ 10 (Srinivas and Deb 1994). et al. 1994; Savic and Walters 1997). In this study a method of
constraint handling that does not require a penalty coefficient to
be specified and is applicable to water distribution network is

Arithmetic Crossover developed. The method was first introduced by Deb and Agrawal

If we assumexV=(x7,%3,...,%) andx@=(xi,x3,...,%,) are (1999) and is modified here to fit for water distribution network
two parents selected for crossover, then two offspring are gener-optimization.
ated as follows: A solutionxt" is constraint-dominating a solutiod!), if any
K — (kK k _ of the following are true:
YOS (1Y Yne) k=12 (23) 1. Solutionx® is feasible and solutior?) is infeasible,
where  yi=AxI+(1-N)x%  yP=(1-N)xt+ax%  and 2. Solution x® and x are both infeasible, bux® has a
A=constant (B=\<1). This crossover operator was found to smaller constraint violation, or
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Table 2. Node Data for Two-Loop Network Comparison of Reliability Measures

Node Minimum head(m) Demand(mh) The efficacy of a reliability measure can be accessed by its ability
1 210.0 —1,120.0 to prioritize the solutions according to the benefit accrued from

2 180.0 100.0 them. This aspect is investigated using the simple network shown
3 190.0 100.0 in Fig. 1, solved first by Alperovits and Shan{it977)and later

4 185.0 120.0 by many investigators. It is a two-loop network with seven nodes

5 180.0 270.0 and eight pipes, each having a length of 1,000 m. Pipe cost data
6 195.0 330.0 and node data are given in Tables 1 and 2, respectively. The
7 190.0 200.0 discrete search space for this example consists 8f(341.48

X 10%) solutions. Complete enumeration of these solutions with
single loading took about 30 h of CPU time using a Pentium-III
processor. The following loading conditions were used in the
analysis:

» Design criterion ADC1): Satisfy baseline demands and mini-
mum required heads as defined in Table 2.

Design criterion 2ADC2): Satisfy baseline demands and mini-
mum required heads as defined in Table 2 under the single
pipe outage scenari@xcept for pipe 1).

3. Solutionx® and x() are feasible and solutiondominates
solutionj.

This way, feasible solutions are constraint-dominated to any
infeasible solution and two infeasible solutions are compared ,
based on their constraint violations only. However, when two fea-
sible solutions are compared, they are checked on their domina-
tion level(fithess value). The constraint violation for any solution
can be calculated using a failure index as

Case 1
nn
| = 2j=18j 25 Initially the ability of the reliability measure to prioritize the so-
f nr npu ( ) . . . . .
2o 1 QHk+Z{E1(Py 1y) lutions according to benefit accrued from them was investigated.
Where To this end, the two-loop network was completely enumerated to
find the solutions that satisfy DC1. Table 3 gives the best five
0 when HJBH} feasible solutions for each of the aforementioned reliability mea-
e= ) : N . .
i Q,—(H}—Hj) otherwise sures. Solutions 1-6rable 3)are the maximunt,, solutions. It

can be observed that, in all these five solutions, pipes 4 and 6
The preceding constraint handling procedure does not require anyhave smallest diameters. Also, it was observed that most of the
penalty coefficient and a feasible solution always has more prior- solutions along the Pareto-front in cdsi-space have small
ity than any infeasible solution. diameters for pipes 4 and 6. This aspect discourages the uise of

Table 3. Two-Loop Network: Best Five Solutions for Each Reliability Measure

Diameter of pipe(mm)

Costx 10° I I
Number 1 2 3 4 5 6 7 8 (%) In I (m) (m)
Maximize |,
1 609.6 609.6 609.6 25.4 609.6 254 609.6 609.6 3.304 0.6223  0.9002  12.8559  127.0719
2 609.6 609.6 609.6 25.4 609.6 254 609.6 558.8 3.054 0.6141  0.8999  12.8559  127.0360
3 609.6 609.6 609.6 25.4 609.6 254  609.6 508.0 2.924 0.6059 0.8994  12.8559  126.9743
4 609.6 609.6 609.6 25.4 609.6 25.4 558.8 609.6 3.054 0.6091  0.8969  12.8558 126.7211
5 609.6 609.6 609.6 25.4 609.6 254  609.6 457.2 2.884 0.5976  0.8986  12.8558  126.8630
Maximize |,
6 609.6 609.6 609.6 609.6 609.6 203.2 609.6 609.6 3.873 0.8007  0.9038  12.6999  127.5184
7 609.6 609.6 609.6 609.6 609.6 1524 609.6 609.6 3.866 0.7878  0.9037  12.6944  127.5183
8 609.6 609.6 609.6 609.6 609.6 2540 609.6 609.6 3.882 0.8136  0.9037  12.7065  127.5182
9 609.6 609.6 609.6 609.6 609.6 1016 609.6 609.6 3.861 0.7749  0.9036  12.6907  127.5181
10 609.6 609.6 609.6 609.6 609.6 76.2 609.6 609.6 3.858 0.7685 0.9036  12.6897  127.5180
Maximizel,
11 609.6 609.6 609.6 609.6 609.6 609.6 609.6 609.6 4.400 0.9038  0.9038  12.7292  127.5159
12 609.6 609.6 609.6 609.6 609.6 558.8 609.6 609.6 4.150 0.8909 0.9038 12.7284  127.5160
13 609.6 609.6 609.6 609.6 609.6 508.0 609.6 609.6 4.020 0.8780 0.9038  12.7273  127.5162
14 609.6 609.6 609.6 609.6 609.6 457.2 609.6 609.6 3.980 0.8651  0.9037  12.7254  127.5165
15 609.6 609.6 609.6 609.6 609.6 406.4 609.6 609.6 3.940 0.8523  0.9037  12.7226  127.5169
Maximizel
16 609.6 609.6 609.6 609.6 609.6 609.6 609.6 609.6 4.400 0.9038 0.9038  12.7292  127.5159
17 609.6 609.6 609.6 609.6 558.8 558.8 609.6 609.6 3.900 0.8941  0.9030 12.6935  127.4472
18 609.6 609.6 609.6 609.6 558.8 609.6 609.6 609.6 4.150 0.8931  0.9030 12.6956  127.4473
19 609.6 609.6 558.8 609.6 609.6 609.6 609.6 609.6 4.150 0.8927  0.8989  12.6011  126.9401
20 609.6 609.6 609.6 558.8 609.6 609.6 609.6 609.6 4.150 0.8923  0.9037  12.7277  127.5046
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Table 4. Two-Loop Network: Solutions with Cost $870,000

Diameter of pipelmm)

1 2 3 4 5 6 7 8 r (r;\n) (m)
Feasible solutions that satisfy DC2

508.0 508.0 457.2 406.4 355.6 355.6 457.2 355.6 0.67 0.72 7.56 104.60

508.0 508.0 457.2 355.6 355.6 355.6 457.2 406.4 0.67 0.72 7.91 105.29

508.0 457.2 457.2 406.4 355.6 355.6 508.0 355.6 0.65 0.71 7.47 103.72

508.0 457.2 457.2 355.6 355.6 355.6 508.0 406.4 0.64 0.72 7.82 104.34
Maximuml,, I, I, andl, solutions, respectively, that satisfy DC1

558.8 457.2 508.0 25.4 457.2 152.4 406.4 254.0 0.54 0.76 10.63 110.42

558.8 457.2 508.0 254.0 406.4 76.2 406.4 304.8 0.59 0.78 10.04 112.60

558.8 457.2 508.0 254.0 406.4 76.2 406.4 304.8 0.59 0.78 10.04 112.60

558.8 406.4 508.0 355.6 406.4 304.8 355.6 304.8 0.71 0.77 9.13 112.55

as a reliability measure in multiobjective optimization. Solutions least-cost$870,000)solutions that satisfy DC2. These solutions
6—10 (Table 3) are the maximum total headl ] solutions. are presented in Table 4. It was also found from complete enu-
It can be observed that these solutions have small diametersmeration of the two-loop network that there are 32,174 solutions
for pipe 6. Also, it was observed that most of the solutions that satisfy DC1 and have a network cost of $870,000. Maximum
along the Pareto-front in cost-kpace have small diameters for 1,,, I, I,, andl, solutions, selected from the aforementioned
pipes 4 and/or 6. Another important observation is that both 32,174 solutions, are also presented in Table 4. In a multiobjec-
the maximum |, solution and the maximuml; solution tive optimization with a single loading, these solutions would
are different from the maximum cost solutidn=[609.6, 609.6, have been selected as nondominated solutions. It can be observed
609.6, 609.6, 609.6, 609.6, 609.6, 60MEM. from Table 4 that the solutions df,,, I;, and |, have small
Solutions 11-15Table 3)are the maximum resilience index diameters for pipes 4 and/or 6. Conversely, thesolution has
(I,) solutions. Comparatively, appears to be a better reliability loops with practicable diameters. None of these solutions match
measure, as the maximum cost solution has the maximum resil-with the four feasible solution§Table 4)for the pipe breakage
ience index value. However, it was observed that some of the case. However, the solution provided by is far superior as
solutions along the Pareto-front in costspace have small diam-  compared with the solutions of the other reliability measures.
eters for pipes 4 and/or 6. This can be understood as the solutiorSimilar resultgTable 5)were also observed with various levels of
D=[609.6, 609.6, 609.6, 609.6, 609.6, 203.2, 609.6, 608G redundancy such as outage of any pipe in loo@.€, outage of
has a better resilience index valug0.903691) than the solu-  any pipe among pipes 4, 5, 6, and 8). It must be noted that maxi-
tion D=[609.6, 609.6, 609.6, 558.8, 609.6, 609.6, 609.6, 609.6 mization of the network resilience improves the reliability of net-
mm, which has a resilience index value of 0.903686. In contrast, work solutions but does not guarantee the delivery of water at
the designs 16-2(QTable 3)—maximum network resilience different nodes under a failure condition.
solutions—are providing both increased capacity and redundancy.
It can be observed from these solutions that the prioritization of
designs is performed based on both output power and redundancyApplication Model

The proposed multiobjective algorithm was applied to two ex-
Case 2 . . .

ample problems. The first example is a two-loop network used in
The ability of a reliability measure to represent the effect of re- the previous section and the second is a trunk network of Hanoi,
dundancy was then investigated. For this purpose, the two-loopVietnam. The results obtained were then used to compare reliabil-
network was solved to satisfy DC2. Through complete enumera- ity measures. Sensitivity of the GA parametegf,,,.0n the Pareto-
tion of the discrete search space it was found that there are fourfront was also investigated using these examples.

Table 5. Two-Loop Network: Solutions with Cost $710,000
Diameter of pipe(in.)

1 2 3 4 5 6 7 8 n ' Iy (M) I; (M)
Feasible solutions
508.0 406.4 406.4 406.4 355.6 355.6 355.6 406.4 0.60 0.64 5.68 95.32
508.0 406.4 406.4 355.6 355.6 406.4 355.6 406.4 0.59 0.63 5.64 94.97
508.0 406.4 406.4 355.6 355.6 355.6 406.4 406.4 0.61 0.65 6.12 96.66
508.0 355.6 406.4 406.4 355.6 406.4 355.6 406.4 0.58 0.61 5.13 91.83
508.0 355.6 406.4 355.6 355.6 406.4 406.4 406.4 0.57 0.62 5.37 92.31
Maximum |, I, I,, andl, solutions, respectively, that satisfy DC1
508.0 457.2 457.2 50.8 457.2 50.8 406.4 304.8 0.47 0.68 8.97 100.12
558.8 355.6 457.2 76.2 406.4 355.6 355.6 25.4 0.45 0.69 6.96 102.93
508.0 457.2 457.2 254.0 406.4 76.2 406.4 355.6 0.55 0.70 7.91 102.72
508.0 355.6 508.0 355.6 406.4 304.8 355.6 304.8 0.65 0.69 7.41 101.81
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Table 6. Two-Loop Network: Some Solutions Obtained Using NSGA

Maximize |, (diameter in mm) Maximize |, (diameter in mm)
Pipe 1 2 3 4 1 2 3 4
1 457.2 457.2 457.2 457.2 457.2 457.2 457.2 508.0
2 355.6 355.6 304.8 355.6 254.0 355.6 406.4 355.6
3 355.6 355.6 406.4 406.4 406.4 355.6 355.6 355.6
4 50.8 203.2 254.0 254.0 101.6 25.4 254 101.6
5 355.6 355.6 355.6 355.6 406.4 355.6 355.6 304.8
6 152.4 50.8 152.4 152.4 254.0 152.4 25.4 50.8
7 355.6 355.6 254.0 254.0 254.0 355.6 355.6 355.6
8 254.0 254.0 254.0 254.0 25.4 254.0 254.0 254.0
Cost($) 423,000 430,000 442,000 452,000 419,000 420,000 436,000 448,000
Iy 0.3451 0.3508 0.3339 0.3675 0.2103 0.3444 0.3875 0.4125
I'n 0.2544 0.2887 0.3063 0.3370 0.1535 0.2488 0.2763 0.3039
Example 1 is not a Pareto-optimal solution. In order to realize the effect of

. . . . . C. on reliability measure, the two-loop network was solved with
The two-loop networkFig. 1) is a typical network, as it contains J S L oL -
. . . the objectives of minimizing cost and maximizing resilience
many alternative solutions with the same network cost. There are,
. " . . . T . index. The GA parameters used were the same as before. Some of
eight decision variables in this example; i.e., each pipe can take . . ; : ) ;
. . . . o the designs obtained using this approach along with their cost,
any of the 14 discrete diameters listed in Table 1. Initially, the . L . .
. - S L network resilience, and resilience index are presented in Table 6.
model was applied with the objectives of minimizing cost and . o .
A o . These results further substantiate that the use of resilience index
maximizing network resilience. The GA parameters used for this U . .
. - i . . as a reliability measure in the model has improved surplus power
run were population size00; probability of crossoverz.0; ; T . i
. . : = . at the nodes, but it could not eliminate impracticable loops. In
probability of mutation=0.05; oga¢ 0.375; and number of . . . o
. . : . . view of the preceding observations, it is suggested to use network
generations=,000. Some of the designs obtained using this ap- . N AR .
- ) . . resilience as a measure of reliability in multiobjective analysis.
proach along with their cost, network resilience, and resilience
index are presented in Table 6. These designs not only have in-
creased surplus power at the nodes, but also have loops withExample 2
graggcgglﬁtigfg;e;e;% rl:h?oE:?I:et(:;]féogitacr)::g;sdo'fsasuhO;Nréslno'f:'g'The present method was also applied to another benchmark prob-
nétwork 10 be the same ,does n%t alwavs lead to a Parpeft)o-o tima,em’ the Hanoi trunk network. This example was used to investi-
. alway P gate the sensitivity 06 4,,cin the derivation of the Pareto-front.
solution. For example, the solutiob =[457.2, 457.2, 457.2, The | fh Kis sh in Fiq(Buii d Kh
457.2, 457.2, 457.2, 457.2, 457,81 has the same diameter for | 1 |yout of the network is shown in Fig(Bujiwara and Khang
all .i 'es T.hé Iot.tin’ o:s,ifion of this solution in cdstspace is 1990). This network consists of 32 nodes and 34 pipes and is
as IZr?ow.n in F!O 2 Igrgm this it can be realized th£ tk?is solution supplied by a fixed grade source at an elevation of 100 m. The
9. 2 minimum required head at the junction nodes is specified to be 30
m. The set of commercially available diametdns inches)is
A=[304.8, 406.4, 508.0, 609.6, 762.0, 1,01600M, and their

5] corresponding cost per unit length is calculated using the equation
s 1.1XD'5, For this problem, the number of decision variables was
] ¢ 34 and the GA parameters used were population=s20; prob-
4 — : ability of crossover=1.0; probability of mutation=8.01; o gpare
1 : =0.467 (i.e., g=~10); and number of generationd8,000. This
] .
L
— ] . 12]
§° : TR b
T A - e(11]
@ 4 s 10
5 . B1] 33 34 [ 26 = 27 _2g[16l15. 14 _ 13 o9
8 2 — Solution With all pipes of 457.2 mm diameter .: 132) [26) [27) g (8] 14} (1ol
] * 32 25 Ll &
] / 17 ¢[8]
4 s #130] ®(24] o 18] 7
1 18  y]
- “.' 31 24 & 19] 6
4 @ ee w* o smew 8900 0 . 29 23 [20] oo 19 3 4 . 5
o (29] [28) 123) 21 2|B B (1
T T T T ] T T T T ] T T T T | T T T T [21] [2] ‘\-
0.2 0.4 0.6 0.8 1 ” 0
Network Resilience (1) [22]
Fig. 2. Two-loop network: Pareto-front in cost-space Fig. 3. Hanoi network
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Fig. 4. Hanoi network: Pareto-front in cost-space

model as explained in Halhal et dl1997). Also, it can be ob-
served from Figs. 2 and 4 that there are few solutigaps)near

the lower end of the reliability measure. One of the reasons for
this is that there are more infeasible solutions in this range and
thereby gap(sin the Pareto-front. That is, the boundary between
feasible and infeasible solutions is not a smooth rising curve.

Conclusions

Most of the water distribution network optimization models have
considered network cost as a sole objective. This may be due to
the computational complexity involved in considering the other
legitimate objectives such as reliability, redundancy, and water
quality. This paper describes the application of a multiobjective
genetic algorithm model to the design of a water distribution net-
work. The objectives considered in this study are minimization of
network cost and maximization of a reliability measure. The reli-
ability measure used is network resilience, which is a measure of
both the nodal surplus power and the uniformity in diameters
connected to that node. Increase in the value of network resilience
improves the reliability of a network under failure conditions.
Genetic algorithms were observed to be weak at handling con-
straints. Therefore, a better constraint handling technique that

example further substantiates the observations made for the two-does not require a penalty coefficient and is applicable to water

loop network. The Pareto-front in cost-bpace is as shown in

Fig. 4. Cost and network resilience values for some of the solu-

distribution networks is presented. This technique ensures that a
feasible solution is better than any infeasible solution in the popu-

tions along the Pareto-front are given in Table 7. Using the samelation. Application of the model to the example problems revealed

set of GA parameters as before and different valuesgf., the
model was applied. The Pareto-fronts obtained dgf,,& 0.46
and 0.4(i.e.,q~17 and 1,972, respectivelgre also presented in
Fig. 4. It can be observed from the figure that wheg,.values
are calculated using Eq422) (i.e., q~10), the Pareto-front con-
tained many solutions distributed along the front. Though the
Pareto-front obtained withrg,,,&=0.4 converged towards the

the superiority of the network resilience based approach. The

method produces a set of Pareto-optimal solutions in the search
space of cost and network resilience. The designer can use high
level decision-making tools to select an appropriate design from

the Pareto set.

Pareto-front, the number of different solutions has decreased. ThisAcknowledgment

can be understood, as,,iS used to get many diversified solu-
tions. If one would like to obtain more solutions towards the
lower cost region(due to limits on funding), then an additional
constraint (costsa predefined valuegan be introduced into the

Table 7. Hanoi Network: Some Pareto-Optimal Solutions in Clst-
Space

Network Network
Solution Cost resilience Solution Cost resilience
number %) (1n) number %) (1)
1 6,349,285.0 0.231 16 6,697,784.5 0.272
2 6,374,160.0 0.234 17 6,701,748.5 0.273
3 6,406,231.0 0.237 18 6,731,132.0 0.276
4 6,430,537.5 0.242 19 6,736,188.5 0.277
5 6,444,537.5 0.243 20 6,768,259.5 0.278
6 6,457,077.5 0.244 21 6,783,057.5 0.281
7 6,476,932.5 0.247 22 6,795,963.0 0.282
8 6,509,003.5 0.249 23 6,811,428.0 0.283
9 6,535,294.0 0.252 24 6,825,057.5 0.283
10 6,561,047.5 0.255 25 6,847,828.0 0.284
11 6,578,748.0 0.256 26 6,873,552.0 0.286
12 6,604,863.5 0.257 27 6,900,152.0 0.287
13 6,631,273.5 0.267 28 6,901,996.5 0.287
14 6,660,657.0 0.269 29 6,934,696.0 0.288
15 6,665,713.5 0.271 30 6,938,396.5 0.289

The writers are grateful to the anonymous reviewers for their
valuable comments and suggestions in improving this paper.

References

Abebe, A. J., and Solomatine, D. ®998). “Application of global opti-
mization to the design of pipe networksProc., Hydroinformatics
'98, Balkema, Rotterdam, The Netherlands, 989—-996.

Alperovits, E., and Shamir, U1977). “Design of optimal water distri-
bution system."Water Resour. Resl3(6), 885—900.

Dandy, G. C., Simpson, A. R., and Murphy, L.(1996). “An improved
genetic algorithm for pipe network optimization/Vater Resour. Res.,
32(2), 449-458.

Deb, K.(1999). “Multi-objective genetic algorithms: problem difficulties
and construction of test problemsEvol. Comput.7(3), 205-230.
Deb, K. (2001). Multi-objective optimization using evolutionary algo-

rithms, Wiley, London.

Deb, K., and Agrawal, S(1999). “A niched-penalty approach for con-
straint handling in genetic algorithmsProc., ICANNGA-99, Por-
toroz, Slovenia, 123-135.

Duan, N., Mays, L. W., and Lansey, K. E1990). “Optimal reliability
based design of pumping and distribution systends Mydraul. Eng.,
116(2), 249-268.

Fujiwara, O., and Khang, D. B(1990). “A two-phase decomposition
method for optimal design of looped water distribution networks.”
Water Resour. Res23(6), 977—982.

Gessler, J., and Walski, T. M1985). “Water distribution system optimi-
zation.” Technical Rep. TR EL-85-11, U.S. Army Corps of Engineers,

JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT © ASCE / JANUARY/FEBRUARY 2004 / 81



Waterways Experimentation Station, Vicksburg, Miss.

Goulter, 1. C., and Bouchart, F1990). “Reliability constrained pipe
networks model.”J. Hydraul. Eng.,116(2), 211-229.

Goulter, I. C., and Morgan, D. R1985). “An integrated approach to the
layout and design of water distribution networksCiv. Eng. Sys.,
2(2), 104-113.

Halhal, D., Walters, G. A., Ouzar, D., and Savic, D. (A997). “Water
network rehabilitation with structured messy genetic algorithch.”
Water Resour. Plan. Managel23(3), 137-146.

Hans, A. E.(1988). “Multicriteria optimization for highly accurate sys-
tems: multicriteria optimization in engineering and scienddath-

ematical concepts and methods in science and engineering, E. Stadler,

ed., Plenum, New York, 309—-352.
Mays, L. W.(1996). “Review of reliability analysis of water distribution

systems."Proc., Stochastic Hydraulics '96, Balkema, Rotterdam, The

Netherlands, 53—-62.

Quindry, G. E., Liebman, J. C., and Brill, E. DL981). “Optimization of
looped water distribution systemsJ. Environ. Eng. Div. (Am. Soc.
Civ. Eng.),107(4), 665—679.

Savic, D., and Walters, G(1997). “Genetic algorithms for least cost
design of water distribution networksJ. Water Resour. Plan. Man-
age.,123(2), 67-77.

Simpson, A. R., Dandy, G. C., and Murphy, L.(1994). “Genetic algo-
rithms compared to other techniques for pipe optimizatiah.Water
Resour. Plan. Managel,20(4), 423-443.

Srinivas, N., and Deb, K(1994). “Multi-objective function optimization
using non-dominated sorting genetic algorithm&vol. Comput.,
2(3), 221-248.

Stanic, M., Avakumovic, D., and Kapelan, 71998). “Evolutionary al-
gorithm for determining optimal layout of water distribution net-

works.” Proc., Hydroinformatics 98, Balkema, Rotterdam, The Neth-
erlands, 901-908.

Todini, E. (2000). “Looped water distribution networks design using a
resilience index based heuristic approacrban Water,2(3), 115—
122.

Tolson, B. A., Maier Holger, R., and Simpson, A. RR001). “Water
distribution network reliability estimation using the first-order reli-
ability method.” Proc., World Water and Environmental Resources
CongresgCD-Rom), Sect. 1, Chap. 483, ASCE, Reston, Va.

Vairavamoorthy, K., and Ali, M(2000). “Optimal design of water distri-

bution systems using genetic algorithm&€bmput. Aided Civ. Infra-

struct. Eng.,15(2), 374-382.

Walski, T. M. (2001). “The wrong paradigm—Why water distribution
optimization doesn’t work.’J. Water Resour. Plan. Managd.27(4),
203-205.

Walski, T. M., and Gessler, §1999). “Discussion of ‘Improved design of
“Anytown” distribution network using structured messy genetic algo-
rithms,” by G. A. Walters, D. Halhal, D. A. Savic, and D. Ouzar.”
Urban Water,1(2), 265—268.

Walters, G. A., Halhal, D., Savic, D. A., and Ouzar,(999). “Improved
design of ‘Anytown’ distribution network using structured messy ge-
netic algorithms.”Urban Water,1(1), 23—-38.

Wu, Z. Y., et al.(2002). “Optimal capacity design of water distribution
systems.”Proc., 1st Annual Environmental and Water Resources Sys-
tems Analysis (EWRSA) SynieD-Rom), Roanoke, Va.

Xu, C., and Goulter, I. C(1998). “Probabilistic model for water distri-
bution reliability.” J. Water Resour. Plan. Managd.24(4), 218-228.

Xu, C., and Goulter, I. C(1999). “Reliability-based optimal design of
water distribution networks.J. Water Resour. Plan. Managd25(6),
352-362.

82 / JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT © ASCE / JANUARY/FEBRUARY 2004





