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Multiobjective Genetic Algorithms for Design
of Water Distribution Networks

T. Devi Prasad1 and Nam-Sik Park, M.ASCE2

Abstract: This paper presents a multiobjective genetic algorithm approach to the design of a water distribution network. The object
considered are minimization of the network cost and maximization of a reliability measure. In this study, a new reliability measure, ca
network resilience, is introduced. This measure mimics a designer’s desire of providing excess head above the minimum allowable
at the nodes and of designing reliable loops with practicable pipe diameters. The proposed method produces a set of Pareto-o
solutions in the search space of cost and network resilience. Genetic algorithms are observed to be poor in handling constraints. To h
constraints in a better way, a constraint handling technique that does not require a penalty coefficient and is applicable to water distrib
systems is presented. The present model is applied to two example problems, which are widely reported. Comparison of the pr
method with other methods revealed that the network resilience based approach gave better results.
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Introduction

When a source of water is far off demand points, water has to
transmitted through a network of pipes from the source to dem
points. The present day water distribution networks are comp
and require huge investments in their construction and mai
nance. For these reasons, a need to improve their efficienc
way of minimizing their cost and maximizing the benefit accru
from them is strongly felt. In the past, design of a water distrib
tion network was based on experience. However, in the last t
decades, a significant number of methods have been devel
using linear programming, dynamic programming, enumera
techniques, heuristic methods, and evolutionary techniques~Alp-
erovits and Shamir 1977; Quindry et al. 1981; Gessler and Wa
1985; Goulter and Morgan 1985; Duan et al. 1990; Fujiwara
Khang 1990; Simpson et al. 1994; Savic and Walters 1997; Va
vamoorthy and Ali 2000!. Most of these methods consider
minimization of cost of a pipe network as the objective, althou
some reliability studies and stochastic modeling of demands h
been attempted~Goulter and Bouchart 1990; Xu and Goult
1999!. Of all the preceding methods, genetic algorithm~GA!
based methods appear to be robust, as they can handle di
pipe sizes with ease and produce a set of promising solution

Most of the pipe network optimization methods have not c
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sidered the layout optimization along with the cost due to th
extreme complexity involved and because layout is largely r
stricted by the location of roads. Therefore, for a given netwo
layout and demands, the pipe network optimization problem h
been considered as the selection of pipe sizes that will minim
the cost of a network. In addition to cost, obviously, there a
other possible objectives such as reliability, redundancy, a
water quality that can be included in the optimization proces
Quindry et al.~1981!and Goulter and Morgan~1985!have shown
that networks designed by cost minimization and for a sing
loading condition resulted in branched networks. Stanic et
~1998!and Abebe and Solomatine~1998!have also demonstrated
this tendency of single objective optimization algorithms
Branched water distribution networks will have severe cons
quences in terms of reliability under failure conditions. In order
reduce their risk of failure to supply, often designers introduc
redundancy into networks by adding pipes to close loops. For t
purpose, many researchers have used a minimum diameter c
straint, causing some of the pipes to be of an allowed minimu
diameter. It must be emphasized here that the loops in a netw
are provided to increase its reliability, so that the system will ha
sufficient capacity to deliver during mechanical and/or hydrau
failures. Mechanical failures are the failure of network compo
nents such as pumps, pipe breakage, etc., and hydraulic failu
are changes in demand or pressure, aging of pipe, etc.~Mays
1996!. To improve the performance of a water distribution ne
work under failure conditions, Goulter and Bouchart~1990!have
solved a reliability constrained least cost optimization problem
However, explicit consideration of reliability in an optimization
model is a difficult and complex task, and there are no universa
accepted definitions for reliability~Mays 1996; Todini 2000!.

Walski ~2001!, in a recent editorial, stressed the need for t
development of new models, which addresses not only minimiz
tion of network cost but also maximization of net benefits. Th
biggest hurdle faced in water distribution network design is pr
dicting future demands. Thus, a designer would like to provide
much excess head above the minimum allowable head at

st

.
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and
nodes of a water distribution system as possible, subject to m
etary constraints. The surplus head is then utilized to overc
increased head losses under increased demand or failure c
tions. Walski~2001!also stressed the need for developing me
ods that produce reliable or practicable loops and avoid lo
having pipes of widely different diameters such as 16 in. p
connected to 2 in. pipe. These aspects strongly motivate
searcher to include other legitimate objectives such as mea
of reliability into the objective function in addition to cost.

Gessler and Walski~1985! were probably the first to use
benefit function in pipe network optimization in theirWADISO
computer program. In their model, the benefit was measure
the amount of excess pressure above the minimum required
worst node in the system over all of the loading tested~Walski
and Gessler 1999!. Halhal et al.~1997! were the first to use
multiobjective genetic algorithm to solve water distribution n
work rehabilitation problems. They considered minimization
network cost and maximization of benefit as the objectives. B
efit in this model was calculated as the summation of hydra
benefit, physical integrity benefit, flexibility benefit, and qua
benefit with each component given a weight. Here, the hydra
benefit is quantified as the difference between the pressure
ciencies in the initial network before improvement and in
solution obtained. They used the structured messy genetic
rithm ~SMGA! to solve the optimization problem. Walters et
~1999! applied the preceding algorithm to solve the ‘‘Anytow
distribution network. Todini~2000!presented a heuristic metho
considering cost function and resilience index, a reliability m
sure, as the objectives. This method solves for minimum
networks, heuristically, by fixing a value of resilience index
tween 0 and 1. More recently, Wu et al.~2002!presented a mul
tiobjective model with cost and benefit functions as objectives
this model, the benefit was calculated as the summation of
flow delivered at each demand node. Here total flow is mod
as the sum of a baseline demand and an emitter flow. Altho
these methods are a step forward in considering multiple ob
tives in pipe network optimization, they do not incorporate
effect of redundancy in the benefit function. Halhal et al.~1997!
have included flexibility benefit—a measure of redundancy—
their benefit function, but it requires a weight to add to the t
benefit. Thus, there is a need for the method to be further de
oped using better reliability measures and multiobjective a
rithms.

When more than one objective is present in an objective fu
tion, there may not exist one solution that is best with respe
all objectives. Instead in a multiobjective optimization probl
there exists a set of solutions called Pareto-optimal solution
nondominated solutions~Hans 1988!. These solutions are su
rior to the rest of solutions in the search space when all objec
are considered, but are inferior to other solutions in the spac
one or more objectives. It must be recognized that optimiza
can only assist the engineer and that engineering judgmen
experience is still required to provide a practicable solution.
Pareto set gives an engineer more flexibility in the selection
practicable solution. The classical way of solving multiobject
problems is to scale the vector of objectives into one objec
and solve for the optimal solution. This process results in a s
tion that is largely dependent on the weight vector used in
scaling process. Most of these drawbacks can be eliminated
multiobjective genetic algorithms. Therefore, in this study a m
tiobjective genetic algorithm, called the nondominated sorting
netic algorithm~NSGA! ~Srinivas and Deb 1994!, is used to o
tain a Pareto-front. In the present model, the objective func
consists of minimization of network cost and maximization
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network resilience, which is a measure of reliability. NSGA w
observed to converge towards the true Pareto-front and distr
solutions along the front uniformly~Deb 1999!. This gives a de
signer a number of alternatives that are superior to the res
solutions in the search space in a multiobjective sense. The m
was applied to two example problems, which were previou
reported. From the analysis of the results, it is observed that
of network resilience in the objective function gave better res
in terms of both surplus power and redundancy. Compariso
the present method with the other reliability measures shows
superiority of the proposed reliability measure. Here it must
mentioned that maximization of network resilience improves
reliability of network solutions but does not guarantee the de
ery of water at different nodes under a failure condition. En
neering judgment coupled with reliability assessment meth
such as that by Xu and Goulter~1998! and Tolson et al.~2001!
can be used to select a solution from the Pareto set.

Formulation of the Model

The following is the proposed two-objective optimization mod
for a water distribution network design. The two objective fun
tions are~1! minimization of network cost; and~2! maximization
of a reliability measure

Minimize f 15(
i 51

np

Ci~Di ,Li ! (1)

Maximize f 25I n (2)

whereCi(Di ,Li)5cost of the pipei with diameterDi and length
Li ; np5number of pipes in the system; andI n5network resil-
ience. The preceding optimization model is subjected to the
lowing constraints:

gj~H,D !50 j 51,2,...,nn (3)

H j>H j
l j 51,2,...,nn (4)

DiP$A% i 51,2,...,np (5)

wherenn5number of junction nodes;g(H,D)5nodal mass bal-
ance and loop~path!energy balance equations;H j5head at any
nodej, which must be greater than a minimum valueH j

l ; and all
Di ’s5discrete pipe sizes selected from a set of commerci
available sizes.

The above-formulated model is a multiobjective mixed inte
nonlinear optimization model. It can be solved using a multi
jective genetic algorithm. A major problem associated with G
optimization is the poor ability of GAs to handle constrain
Therefore, in general, when GAs are applied to a water distr
tion network design, some of the constraints such as nodal m
balance equations and energy conservation equations are sa
externally by using a hydraulic network solver. In this study, n
work hydraulic analysis is performed using EPANET hydrau
solver.

Reliability Measures

Least cost design of looped networks under a single loading
dition resulted in some of the pipes having a minimum diame
and heads at some of the nodes being barely satisfied. This
ation is improved by designing a network to satisfy the c
straints under many critical loadings. Identification of vario
critical loadings is a complex process for large networks,
T © ASCE / JANUARY/FEBRUARY 2004
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evolutionary algorithms require numerous hydraulic simulation
during the optimization process. These aspects encourage the
of a second approach—multiobjective optimization—that seek
for a set of solutions with improved reliability~Halhal et al. 1997;
Walters et al. 1999; Todini 2000!. In this approach, the objective
are~1! to minimize network cost; and~2! to maximize a reliability
measure. Solution of this model with either a single loading or
few critical loadings gives a set of Pareto-optimal solutions.

Whenever there is a mechanical or hydraulic failure, the inte
nal head losses will increase causing failure of the network. The
increased head losses during failure conditions can be met,
sufficient excess power is available for internal dissipation. Bas
on this premise, the following reliability measures are defined.

Minimum Surplus Head Index (I m)

The surplus head at a node is equal to the difference between
actual headH at which the demandQ is supplied and the mini-
mum required head or design headHl at that node. This surplus
head indicates the available energy for dissipation during failu
conditions. Maximization of the available surplus head at th
most depressed node improves the reliability of a network
some extent. Accordingly the minimum surplus head indexI m is
defined as

I m5min$H j2H j
l % j 51,2,...,nn (6)

This index was used as the indicator of benefits in theWADISO
computer program~Walski and Gessler 1999!.

Total Surplus Head Index (I t)

Another index that can be used to measure the reliability of
network is the summation of surplus head at each junction nod
In mathematical form, the total surplus head index,I t , can be
expressed as

I t5(
j 51

nn

~H j2H j
l ! for all j 51,2,...,nn (7)

Maximization of I t also improves the ability of a network to
adjust under stressed conditions.

Resilience Index (I r)

Todini ~2000!proposed the following resilience index, based o
the concept that the power input into a network is equal to th
power lost internally to overcome the friction plus the power tha
is delivered at demand points:

Pinp5Pint1Pout (8)

The total input power into a network including power supplied b
pumps is given by

Pinp5g(
k51

nr

QkHk1(
i 51

npu

Pi (9)

where Qk and Hk5discharge and head corresponding to eac
reservoir nodek; nr5number of reservoir nodes;Pi5power sup-
plied by pumpi; and npu5number of pumps in a network. The
total output power is given by

P 5g

nn

Q H (10)
out (
j 51

j j
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whereQj5demand at nodej; and H j5head at whichQj is sup-
plied. The resilience index of a network is then defined as

I r512S Pint

Pint
maxD (11)

wherePint5amount of power dissipated in a network; andPint
max

5maximum power that would be dissipated internally in order to
satisfy design demandQ and design headHl at the junction
nodes. Substitution of appropriate quantities in Eq.~11! gives

I r5
( j 51

nn Qj~H j2H j
l !

~(k51
nr QkHk1( i 51

npuPi /g!2( j 51
nn QjH j

l (12)

Maximization of the resilience index also improves the ability of
a pipe network to counter the failure conditions.

Network Resilience (I n)

Maximization of the preceding three indices may increase surplus
head or power at junction nodes, but they do not reflect the effec
of redundancy. A branched network with sufficient surplus head a
the nodes may adjust to increased demands, but a pipe outage w
have severe consequences at one or more downstream node
Therefore, maximization of surplus head or power alone is not
sufficient for a reliable network. The following reliability mea-
sure, called network resilience (I n), incorporates the effects of
both surplus power and reliable loops. The surplus power at any
nodej is given by

Pj5gQj~H j2H j
l ! (13)

Reliable loops can be ensured, if the pipes connected to a nod
are not widely varying in diameter. IfD1 , D2 , and D3 ~where
D1>D2>D3) are the diameters of three pipes connected to node
j, then uniformity of that node is given by

Cj5
~D11D21D3!

3D1
(14)

and in generalized form

Cj5
( i 51

np j Di

npj3max$Di%
(15)

wherenpj5number of pipes connected to nodej. The value of
C51, if pipes connected to a node have the same diameter; an
C,1, if pipes connected to a node have different diameters. Fo
nodes connected with only one pipe, the value ofC is taken to be
one. The combined effect of both surplus power and nodal uni-
formity of nodej, called weighted surplus power, is expressed as

Xj5Cj Pj

For a network, it is given by

X5(
j 51

nn

Xj5(
j 51

nn

Cj Pj5(
j 51

nn

CjQj~H j2H j
l ! (16)

Eq. ~16! may be normalized by dividing with maximum surplus
power to get network resilience as

I n5
X

Xmax
5

( j 51
nn CjQj~H j2H j

l !

@(k51
nr QkHk1( i 51

npu~Pi /g!#2( j 51
nn QjH j

l (17)

whereXmax(5Pinp2( j 51
nn QjH j

l )5maximum surplus power.
The network resilience can also be viewed as equivalent to the

resilience index with surplus power at each nodej given a weight
of Cj based on the uniformity in diameter of pipes connected to it.
NING AND MANAGEMENT © ASCE / JANUARY/FEBRUARY 2004 / 75
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Theoretically, the value of network resilience may vary betwee
and 1. However, for real systems it never attains a value of 1
must be noted that forcing diameters of all pipes of a network
be the same need not always provide a Pareto-optimal solutio
cost-In space, asI n is a measure of combined effect of surplu
power and nodal uniformity.

Multiobjective Genetic Algorithms

Many real world engineering design problems involve simul
neous optimization of multiple objectives. In single objective o
timization, the goal is to find the best design solution, called
global optimum. Conversely, in a multicriterion optimization wit
conflicting objectives, there is no single optimal solution. T
interaction among different objectives gives rise to a set of co
promised solutions, largely known as the Pareto-optimal so
tions. Since none of these Pareto-optimal solutions can be ide
fied as better than others without any further consideration,
goal in a multicriterion optimization is to find as many Paret
optimal solutions as possible. Once such solutions are found
usually requires higher-level decision making with other cons
erations to choose one of them for implementation.

In dealing with multicriterion optimization problems, classic
search and optimization methods are not efficient, simply beca
~1! most of them cannot find multiple solutions in a single ru
thereby requiring them to be applied as many times as the num
of desired Pareto-optimal solutions;~2! multiple application of
these methods does not guarantee finding widely different Par
optimal solutions; and~3! most of them cannot efficiently handle
problems with discrete variables and problems having multi
optimal solutions. On the other hand, studies based on evolut
ary search algorithms, over the past few years, have shown
these methods can be efficiently used to eliminate most of
aforementioned difficulties of classical methods~Deb 2001!. Be-
cause they use a population of solutions in their search, mult
Pareto-optimal solutions can, in principle, be found in one sin
run. The use of diversity preserving mechanisms can be adde
the evolutionary search algorithms to find widely different Pare
optimal solutions. Many multiobjective genetic algorithms su
as the vector enabled GA~VEGA!, multiobjective optimization
GA ~MOGA!, niched Pareto GA, and nondominated sorting G
~NSGA!, are published in the literature. In this study, NSG
developed by Srinivas and Deb~1994!, is used.

Nondominated Sorting Genetic Algorithm

The idea behind NSGA is that a ranking method is used to e
phasize current nondominated points and a niching metho
used to maintain diversity in the population. NSGA can be a
plied either with binary coded strings or real coded strings. NS
differs from a simple genetic algorithm only in the way the sele
tion operator is used. The crossover and mutation operators
main as usual. Before selection is performed, first the popula
is ranked on the basis of an individual’s nondomination lev
which is found by the following procedure, and then fitness
assigned to each population member.

Nondominated Solution

For a problem having more than one objective function, any t
solutions x(1) and x(2) can have one of two possibilities, on
dominating the other, or neither dominating the other. A solut
x(1) is said to dominate the other solutionx(2) if both the follow-

ing conditions are true:
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1. The solutionx(1) is no worse~say the operator, denotes
worse and. denotes better!than x(2) in all objectives, or
f j(x

(1))ú f j(x
(2)) for all j 51,2,...,M objectives, and

2. The solutionx(1) is strictly better thanx(2) in at least one
objective, or f j(x

(1)). f j(x
(2)) for at least one j

P$1,2,...,M %.
If any of the preceding conditions is violated, the solutionx(1)

does not dominate the solutionx(2). If x(1) dominates the solution
x(2), thenx(1) is said to be a nondominated solution.

Fitness Assignment

Consider a set ofN population members, each havingM ~.1!
objective function values. The following procedure can be used
find the set of nondominated solutions:
• Step 0: Begin withi 51.
• Step 1: For allj 51,2,...,N and j Þ i , compare solutionsx( i )

and x( j ) for domination using the two aforementioned condi-
tions, for allM objectives.

• Step 2: If for anyj, x( i ) is dominated byx( j ), mark x( i ) as
‘‘dominated.’’

• Step 3: If all solutions~i.e., wheni 5N is reached!in the set
are considered, go to Step 4; else, incrementi by one and go to
Step 1.

• Step 4: All solutions that are not marked ‘‘dominated’’ are
nondominated solutions.
All these nondominated solutions are assumed to constitute t

first nondominated front in the population and assigned a larg
dummy fitness value~we assign fitnessN!. The same fitness value
is assigned to give an equal reproductive potential to all thes
nondominated individuals. In order to maintain diversity in the
population, these nondominated solutions are then shared w
their dummy fitness values. Sharing is achieved by dividing th
dummy fitness value of an individual by a quantity, called the
niche count, proportional to the number of individuals around it
This procedure causes multiple optimal points to coexist in th
population. The worst shared fitness value in the solutions of th
first nondominated front is noted for further use. After sharing
these nondominated individuals are ignored temporarily to pro
cess the rest of the population members. The above step-by-s
procedure is used to find the second level of nondominated so
tions in the population. Once they are identified, a dummy fitnes
value, which is a little smaller than the worst shared fitness valu
observed in solutions of the first nondominated set, is assigne
Thereafter, the sharing procedure is performed among the so
tions of the second nondomination level and shared fitness valu
are found as before. This process is continued until all populatio
members are assigned a shared fitness value. The population
then reproduced with the shared fitness values. In this study, a r
coded NSGA with tournament selection, arithmetic crossover, an
Gaussian mutation, which are explained in the following section
is used.

Sharing Procedure

Given a set ofnk solutions in thekth nondominated front, each
having a dummy fitness valuef k8 , the sharing procedure is per-
formed in the following way for each solutioni 51,2,...,nk :
• Step 1: Compute a normalized Euclidean distance measu

with another solutionj in the kth nondominated front, as fol-
lows:

dij5A(
P S xp

~ i !2xp
~ j !

xu2xl D 2

(18)

p51 p p

© ASCE / JANUARY/FEBRUARY 2004
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where P5number of decision variables in the problem. T
parametersxp

u andxp
l are the upper and lower bounds of va

ablexp .
• Step 2: This distancedi j is compared with a prespecified p

rametersshare5following sharing function value is compute

Sh~dij !5H12S dij

sshare
D 2

if di j <sshare

0 otherwise
(19)

• Step 3: Incrementj. If j <nk , go to Step 1. Ifj .nk , calculate
niche count for thei th solution as follows:

mi5(
j51

nk

Sh~dij ! (20)

• Step 4: Degrade the dummy fitnessf k8 of the i th solution in the
kth nondomination front to calculate the shared fitness,f i as
follows:

f i5
f k8

mi
(21)

This procedure is continued for alli 51,2,...,nk and a corre-
spondingf i is found. Thereafter, the smallest valuef k

min of all f i

in thekth nondominated front is found for further processing. T
dummy fitness of the next nondominated front is assigned t
f k118 5 f k

min2«k , where«k is a small positive number.
The preceding sharing procedure requires a prespecified

rametersshare, which can be calculated as follows:

sshare'
0.5

AP q
(22)

Although the calculation ofsshare depends onq, the use of the
above equation withq'10 works well. Moreover, the perfo
mance of NSGA is not very sensitive to this parameter nearsshare

values calculated usingq'10 ~Srinivas and Deb 1994!.

Arithmetic Crossover

If we assumex(1)5(x1
1,x2

1,...,xnd
1 ) and x(2)5(x1

2,x2
2,...,xnd

2 ) are
two parents selected for crossover, then two offspring are ge
ated as follows:

y~k!5~y1
k ,y2

k ,...,ynd
k ! k51,2 (23)

where yi
15lxi

11(12l)xi
2; yi

25(12l)xi
11lxi

2; and

Fig. 1. Two-loop network
l5constant (0<l<1). This crossover operator was found to
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give good results for water distribution network optimization with
l50.75~Vairavamoorthy and Ali 2000!. The same is used in this
study also.

Gaussian Mutation

If y(k) is an offspring andyi
k is a gene randomly selected for

mutation, then the gene obtained after Gaussian mutation is a
follows:

zi
k5yi

k1N~0,s! (24)

where N(0,s)5random Gaussian number with mean zero and
standard deviations5 f (yi

u), whereyi
u is the maximum value of

the gene. Here the value ofs50.13yi
u is used. With this scheme

applied, if new gene values exceed their range at either end, th
values are adjusted to take limiting values.

Constraint Handling

Although the nodal mass balance and loop energy balance equ
tions @Eq. ~3!# are satisfied externally by using a hydraulic net-
work solver, the other constraints@Eq. ~4!# must be satisfied
within the framework of a GA. In the previous GA applications to
water distribution network optimization, many improvements
were suggested for constraint handling~Dandy et al. 1996; Savic
and Walters 1997; Vairavamoorthy and Ali 2000!. However, these
methods are not elegant in the sense that they all require a pena
coefficient. Identifying a penalty coefficient is a difficult task, and
it may change from problem to problem. The penalty coefficient
must take a value that will not allow the best infeasible solution to
be better than any feasible solution in the population~Simpson
et al. 1994; Savic and Walters 1997!. In this study a method o
constraint handling that does not require a penalty coefficient to
be specified and is applicable to water distribution network is
developed. The method was first introduced by Deb and Agrawa
~1999!and is modified here to fit for water distribution network
optimization.

A solution x( i ) is constraint-dominating a solutionx( j ), if any
of the following are true:
1. Solutionx( i ) is feasible and solutionx( j ) is infeasible,
2. Solution x( i ) and x( j ) are both infeasible, butx( i ) has a

Table 1. Pipe Cost Data for Two-Loop Network

Diameter~mm! Cost ~$/m!

25.4 2
50.8 5
76.2 8

101.6 11
152.4 16
203.2 23
254.0 32
304.8 50
355.6 60
406.4 90
457.2 130
508.0 170
558.8 300
609.6 550
smaller constraint violation, or
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3. Solutionx( i ) and x( j ) are feasible and solutioni dominates
solution j.

This way, feasible solutions are constraint-dominated to a
infeasible solution and two infeasible solutions are compa
based on their constraint violations only. However, when two f
sible solutions are compared, they are checked on their dom
tion level ~fitness value!. The constraint violation for any solutio
can be calculated using a failure index as

I f5
( j 51

nn ej

(k51
nr QkHk1( i 51

npu~Pi /g!
(25)

where

ej5H 0 when H j>H j
l

Qj~H j
l 2H j ! otherwise

The preceding constraint handling procedure does not require
penalty coefficient and a feasible solution always has more pr
ity than any infeasible solution.

Table 2. Node Data for Two-Loop Network

Node Minimum head~m! Demand~m3/h!

1 210.0 21,120.0
2 180.0 100.0
3 190.0 100.0
4 185.0 120.0
5 180.0 270.0
6 195.0 330.0
7 190.0 200.0
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Comparison of Reliability Measures

The efficacy of a reliability measure can be accessed by its abil
to prioritize the solutions according to the benefit accrued fro
them. This aspect is investigated using the simple network sho
in Fig. 1, solved first by Alperovits and Shamir~1977!and later
by many investigators. It is a two-loop network with seven node
and eight pipes, each having a length of 1,000 m. Pipe cost d
and node data are given in Tables 1 and 2, respectively. T
discrete search space for this example consists of 148 (51.48
3109) solutions. Complete enumeration of these solutions wi
single loading took about 30 h of CPU time using a Pentium-I
processor. The following loading conditions were used in th
analysis:
• Design criterion 1~DC1!: Satisfy baseline demands and mini

mum required heads as defined in Table 2.
• Design criterion 2~DC2!: Satisfy baseline demands and mini

mum required heads as defined in Table 2 under the sing
pipe outage scenario~except for pipe 1!.

Case 1

Initially the ability of the reliability measure to prioritize the so-
lutions according to benefit accrued from them was investigate
To this end, the two-loop network was completely enumerated
find the solutions that satisfy DC1. Table 3 gives the best fiv
feasible solutions for each of the aforementioned reliability me
sures. Solutions 1–5~Table 3!are the maximumI m solutions. It
can be observed that, in all these five solutions, pipes 4 and
have smallest diameters. Also, it was observed that most of t
solutions along the Pareto-front in cost-I m space have small
diameters for pipes 4 and 6. This aspect discourages the use oI m
19
60
43
11
30

184
183
182
181
180

159
160
162
165
169

159
472
473
401
046
Table 3. Two-Loop Network: Best Five Solutions for Each Reliability Measure

Number

Diameter of pipe~mm! Cost3106

~$! I n I r

I m

~m!
I t

~m!1 2 3 4 5 6 7 8

Maximize I m

1 609.6 609.6 609.6 25.4 609.6 25.4 609.6 609.6 3.304 0.6223 0.9002 12.8559 127.07
2 609.6 609.6 609.6 25.4 609.6 25.4 609.6 558.8 3.054 0.6141 0.8999 12.8559 127.03
3 609.6 609.6 609.6 25.4 609.6 25.4 609.6 508.0 2.924 0.6059 0.8994 12.8559 126.97
4 609.6 609.6 609.6 25.4 609.6 25.4 558.8 609.6 3.054 0.6091 0.8969 12.8558 126.72
5 609.6 609.6 609.6 25.4 609.6 25.4 609.6 457.2 2.884 0.5976 0.8986 12.8558 126.86

Maximize I t

6 609.6 609.6 609.6 609.6 609.6 203.2 609.6 609.6 3.873 0.8007 0.9038 12.6999 127.5
7 609.6 609.6 609.6 609.6 609.6 152.4 609.6 609.6 3.866 0.7878 0.9037 12.6944 127.5
8 609.6 609.6 609.6 609.6 609.6 254.0 609.6 609.6 3.882 0.8136 0.9037 12.7065 127.5
9 609.6 609.6 609.6 609.6 609.6 101.6 609.6 609.6 3.861 0.7749 0.9036 12.6907 127.5
10 609.6 609.6 609.6 609.6 609.6 76.2 609.6 609.6 3.858 0.7685 0.9036 12.6897 127.5

Maximize I r

11 609.6 609.6 609.6 609.6 609.6 609.6 609.6 609.6 4.400 0.9038 0.9038 12.7292 127.5
12 609.6 609.6 609.6 609.6 609.6 558.8 609.6 609.6 4.150 0.8909 0.9038 12.7284 127.5
13 609.6 609.6 609.6 609.6 609.6 508.0 609.6 609.6 4.020 0.8780 0.9038 12.7273 127.5
14 609.6 609.6 609.6 609.6 609.6 457.2 609.6 609.6 3.980 0.8651 0.9037 12.7254 127.5
15 609.6 609.6 609.6 609.6 609.6 406.4 609.6 609.6 3.940 0.8523 0.9037 12.7226 127.5

Maximize I n

16 609.6 609.6 609.6 609.6 609.6 609.6 609.6 609.6 4.400 0.9038 0.9038 12.7292 127.5
17 609.6 609.6 609.6 609.6 558.8 558.8 609.6 609.6 3.900 0.8941 0.9030 12.6935 127.4
18 609.6 609.6 609.6 609.6 558.8 609.6 609.6 609.6 4.150 0.8931 0.9030 12.6956 127.4
19 609.6 609.6 558.8 609.6 609.6 609.6 609.6 609.6 4.150 0.8927 0.8989 12.6011 126.9
20 609.6 609.6 609.6 558.8 609.6 609.6 609.6 609.6 4.150 0.8923 0.9037 12.7277 127.5
T © ASCE / JANUARY/FEBRUARY 2004



4.60
5.29
3.72
4.34

0.42
2.60
2.60
2.55
Table 4. Two-Loop Network: Solutions with Cost $870,000

Diameter of pipe~mm!

I n I r

I m

~m!
I t

~m!1 2 3 4 5 6 7 8

Feasible solutions that satisfy DC2
508.0 508.0 457.2 406.4 355.6 355.6 457.2 355.6 0.67 0.72 7.56 10
508.0 508.0 457.2 355.6 355.6 355.6 457.2 406.4 0.67 0.72 7.91 10
508.0 457.2 457.2 406.4 355.6 355.6 508.0 355.6 0.65 0.71 7.47 10
508.0 457.2 457.2 355.6 355.6 355.6 508.0 406.4 0.64 0.72 7.82 10

Maximum I m , I t , I r , andI n solutions, respectively, that satisfy DC1
558.8 457.2 508.0 25.4 457.2 152.4 406.4 254.0 0.54 0.76 10.63 11
558.8 457.2 508.0 254.0 406.4 76.2 406.4 304.8 0.59 0.78 10.04 11
558.8 457.2 508.0 254.0 406.4 76.2 406.4 304.8 0.59 0.78 10.04 11
558.8 406.4 508.0 355.6 406.4 304.8 355.6 304.8 0.71 0.77 9.13 11
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as a reliability measure in multiobjective optimization. Solutio
6–10 ~Table 3! are the maximum total head (I t) solutions.
It can be observed that these solutions have small diame
for pipe 6. Also, it was observed that most of the solutio
along the Pareto-front in cost-It space have small diameters fo
pipes 4 and/or 6. Another important observation is that b
the maximum I m solution and the maximumI t solution
are different from the maximum cost solution:D5@609.6, 609.6,
609.6, 609.6, 609.6, 609.6, 609.6, 609.6# mm.

Solutions 11–15~Table 3!are the maximum resilience inde
(I r) solutions. Comparatively,I r appears to be a better reliability
measure, as the maximum cost solution has the maximum r
ience index value. However, it was observed that some of
solutions along the Pareto-front in cost-Ir space have small diam
eters for pipes 4 and/or 6. This can be understood as the solu
D5@609.6, 609.6, 609.6, 609.6, 609.6, 203.2, 609.6, 609.6# mm
has a better resilience index value (I r50.903691) than the solu-
tion D5@609.6, 609.6, 609.6, 558.8, 609.6, 609.6, 609.6, 609#
mm, which has a resilience index value of 0.903686. In contr
the designs 16–20~Table 3!—maximum network resilience
solutions—are providing both increased capacity and redunda
It can be observed from these solutions that the prioritization
designs is performed based on both output power and redunda

Case 2

The ability of a reliability measure to represent the effect of
dundancy was then investigated. For this purpose, the two-l
network was solved to satisfy DC2. Through complete enume
tion of the discrete search space it was found that there are
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least-cost~$870,000!solutions that satisfy DC2. These solution
are presented in Table 4. It was also found from complete en
meration of the two-loop network that there are 32,174 solutio
that satisfy DC1 and have a network cost of $870,000. Maximu
I m , I t , I r , and I n solutions, selected from the aforementione
32,174 solutions, are also presented in Table 4. In a multiobje
tive optimization with a single loading, these solutions woul
have been selected as nondominated solutions. It can be obse
from Table 4 that the solutions ofI m , I t , and I r have small
diameters for pipes 4 and/or 6. Conversely, theI n solution has
loops with practicable diameters. None of these solutions ma
with the four feasible solutions~Table 4! for the pipe breakage
case. However, the solution provided byI n is far superior as
compared with the solutions of the other reliability measure
Similar results~Table 5!were also observed with various levels o
redundancy such as outage of any pipe in loop 2~i.e., outage of
any pipe among pipes 4, 5, 6, and 8!. It must be noted that ma
mization of the network resilience improves the reliability of ne
work solutions but does not guarantee the delivery of water
different nodes under a failure condition.

Application Model

The proposed multiobjective algorithm was applied to two e
ample problems. The first example is a two-loop network used
the previous section and the second is a trunk network of Han
Vietnam. The results obtained were then used to compare relia
ity measures. Sensitivity of the GA parametersshareon the Pareto-
front was also investigated using these examples.
.32

.97

.66

.83

.31

.12

.93

.72
1.81
Table 5. Two-Loop Network: Solutions with Cost $710,000

Diameter of pipe~in.!

I n I r I m ~m! I t ~m!1 2 3 4 5 6 7 8

Feasible solutions
508.0 406.4 406.4 406.4 355.6 355.6 355.6 406.4 0.60 0.64 5.68 95
508.0 406.4 406.4 355.6 355.6 406.4 355.6 406.4 0.59 0.63 5.64 94
508.0 406.4 406.4 355.6 355.6 355.6 406.4 406.4 0.61 0.65 6.12 96
508.0 355.6 406.4 406.4 355.6 406.4 355.6 406.4 0.58 0.61 5.13 91
508.0 355.6 406.4 355.6 355.6 406.4 406.4 406.4 0.57 0.62 5.37 92

Maximum I m , I t , I r , andI n solutions, respectively, that satisfy DC1
508.0 457.2 457.2 50.8 457.2 50.8 406.4 304.8 0.47 0.68 8.97 100
558.8 355.6 457.2 76.2 406.4 355.6 355.6 25.4 0.45 0.69 6.96 102
508.0 457.2 457.2 254.0 406.4 76.2 406.4 355.6 0.55 0.70 7.91 102
508.0 355.6 508.0 355.6 406.4 304.8 355.6 304.8 0.65 0.69 7.41 10
NING AND MANAGEMENT © ASCE / JANUARY/FEBRUARY 2004 / 79
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Table 6. Two-Loop Network: Some Solutions Obtained Using NSGA

Pipe

Maximize I n ~diameter in mm! Maximize I r ~diameter in mm!

1 2 3 4 1 2 3 4

1 457.2 457.2 457.2 457.2 457.2 457.2 457.2 508.0
2 355.6 355.6 304.8 355.6 254.0 355.6 406.4 355.6
3 355.6 355.6 406.4 406.4 406.4 355.6 355.6 355.6
4 50.8 203.2 254.0 254.0 101.6 25.4 25.4 101.6
5 355.6 355.6 355.6 355.6 406.4 355.6 355.6 304.8
6 152.4 50.8 152.4 152.4 254.0 152.4 25.4 50.8
7 355.6 355.6 254.0 254.0 254.0 355.6 355.6 355.6
8 254.0 254.0 254.0 254.0 25.4 254.0 254.0 254.0

Cost ~$! 423,000 430,000 442,000 452,000 419,000 420,000 436,000 448,0
I r 0.3451 0.3508 0.3339 0.3675 0.2103 0.3444 0.3875 0.4125
I n 0.2544 0.2887 0.3063 0.3370 0.1535 0.2488 0.2763 0.3039
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Example 1

The two-loop network~Fig. 1! is a typical network, as it contains
many alternative solutions with the same network cost. There
eight decision variables in this example; i.e., each pipe can t
any of the 14 discrete diameters listed in Table 1. Initially, th
model was applied with the objectives of minimizing cost an
maximizing network resilience. The GA parameters used for t
run were population size5100; probability of crossover51.0;
probability of mutation50.05; sshare50.375; and number of
generations51,000. Some of the designs obtained using this a
proach along with their cost, network resilience, and resilien
index are presented in Table 6. These designs not only have
creased surplus power at the nodes, but also have loops
practicable diameters. The Pareto-front obtained is shown in F
2. As mentioned before, forcing the diameters of all pipes of
network to be the same does not always lead to a Pareto-opti
solution. For example, the solutionD5@457.2, 457.2, 457.2,
457.2, 457.2, 457.2, 457.2, 457.2#mm has the same diameter fo
all pipes. The plotting position of this solution in cost-I n space is
as shown in Fig. 2. From this it can be realized that this soluti

Fig. 2. Two-loop network: Pareto-front in cost-I n space
80 / JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT
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is not a Pareto-optimal solution. In order to realize the effe
Cj on reliability measure, the two-loop network was solved
the objectives of minimizing cost and maximizing resilie
index. The GA parameters used were the same as before. S
the designs obtained using this approach along with their
network resilience, and resilience index are presented in Ta
These results further substantiate that the use of resilience
as a reliability measure in the model has improved surplus p
at the nodes, but it could not eliminate impracticable loop
view of the preceding observations, it is suggested to use ne
resilience as a measure of reliability in multiobjective analys

Example 2

The present method was also applied to another benchmark
lem, the Hanoi trunk network. This example was used to inv
gate the sensitivity ofssharein the derivation of the Pareto-fro
The layout of the network is shown in Fig. 3~Fujiwara and Khan
1990!. This network consists of 32 nodes and 34 pipes a
supplied by a fixed grade source at an elevation of 100 m
minimum required head at the junction nodes is specified to
m. The set of commercially available diameters~in inches! is
A5@304.8, 406.4, 508.0, 609.6, 762.0, 1,016.0#mm, and the
corresponding cost per unit length is calculated using the equ
1.13D1.5. For this problem, the number of decision variables
34 and the GA parameters used were population size5200; prob
ability of crossover51.0; probability of mutation50.01; sshar

50.467 ~i.e., q'10); and number of generations510,000. Thi

Fig. 3. Hanoi network
© ASCE / JANUARY/FEBRUARY 2004
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example further substantiates the observations made for the t
loop network. The Pareto-front in cost-In space is as shown in
Fig. 4. Cost and network resilience values for some of the so
tions along the Pareto-front are given in Table 7. Using the sa
set of GA parameters as before and different values ofsshare, the
model was applied. The Pareto-fronts obtained forsshare50.46
and 0.4~i.e., q'17 and 1,972, respectively!are also presented in
Fig. 4. It can be observed from the figure that whenssharevalues
are calculated using Eq.~22! ~i.e., q'10), the Pareto-front con-
tained many solutions distributed along the front. Though t
Pareto-front obtained withsshare50.4 converged towards the
Pareto-front, the number of different solutions has decreased. T
can be understood, assshareis used to get many diversified solu
tions. If one would like to obtain more solutions towards th
lower cost region~due to limits on funding!, then an additiona
constraint (cost<a predefined value!can be introduced into the

Fig. 4. Hanoi network: Pareto-front in cost-I n space

Table 7. Hanoi Network: Some Pareto-Optimal Solutions in Cost-I n

Space

Solution
number

Cost
~$!

Network
resilience

(I n)
Solution
number

Cost
~$!

Network
resilience

(I n)

1 6,349,285.0 0.231 16 6,697,784.5 0.272
2 6,374,160.0 0.234 17 6,701,748.5 0.273
3 6,406,231.0 0.237 18 6,731,132.0 0.276
4 6,430,537.5 0.242 19 6,736,188.5 0.277
5 6,444,537.5 0.243 20 6,768,259.5 0.278
6 6,457,077.5 0.244 21 6,783,057.5 0.281
7 6,476,932.5 0.247 22 6,795,963.0 0.282
8 6,509,003.5 0.249 23 6,811,428.0 0.283
9 6,535,294.0 0.252 24 6,825,057.5 0.283
10 6,561,047.5 0.255 25 6,847,828.0 0.284
11 6,578,748.0 0.256 26 6,873,552.0 0.286
12 6,604,863.5 0.257 27 6,900,152.0 0.287
13 6,631,273.5 0.267 28 6,901,996.5 0.287
14 6,660,657.0 0.269 29 6,934,696.0 0.288
15 6,665,713.5 0.271 30 6,938,396.5 0.289
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model as explained in Halhal et al.~1997!. Also, it can be ob-
served from Figs. 2 and 4 that there are few solutions~gaps!near
the lower end of the reliability measure. One of the reasons fo
this is that there are more infeasible solutions in this range an
thereby gap~s!in the Pareto-front. That is, the boundary between
feasible and infeasible solutions is not a smooth rising curve.

Conclusions

Most of the water distribution network optimization models have
considered network cost as a sole objective. This may be due
the computational complexity involved in considering the other
legitimate objectives such as reliability, redundancy, and wate
quality. This paper describes the application of a multiobjective
genetic algorithm model to the design of a water distribution net
work. The objectives considered in this study are minimization o
network cost and maximization of a reliability measure. The reli-
ability measure used is network resilience, which is a measure
both the nodal surplus power and the uniformity in diameters
connected to that node. Increase in the value of network resilienc
improves the reliability of a network under failure conditions.
Genetic algorithms were observed to be weak at handling con
straints. Therefore, a better constraint handling technique th
does not require a penalty coefficient and is applicable to wate
distribution networks is presented. This technique ensures that
feasible solution is better than any infeasible solution in the popu
lation. Application of the model to the example problems reveale
the superiority of the network resilience based approach. Th
method produces a set of Pareto-optimal solutions in the sear
space of cost and network resilience. The designer can use hi
level decision-making tools to select an appropriate design from
the Pareto set.
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