B Potentiel vecteur.

Proposition

Soit D une partie ouverte de \mathbb{R}^3 et $\vec{F}: D \to \mathbb{R}^3$ une application de classe \mathscr{C}^2 . Alors on a $|\operatorname{div}(\overrightarrow{\operatorname{Rot}} \vec{F})| = 0$

Preuve. Calcul en cours.

Definition (dériver d'un potentiel vecteur)

Soit D une partie ouverte de \mathbb{R}^3 et $\vec{V}:D\to\mathbb{R}^3$ un champ de vecteur. On dit que \vec{V} dérive d'un potentiel vecteur s'il existe un champ de vecteur \vec{F} différentiable sur D tel que $\vec{V}=\overrightarrow{\text{Rot}}\,\vec{F}$.

Exemple. Vérifier que $\vec{V}(M) = \begin{pmatrix} z \\ x \\ y \end{pmatrix}$ dérive du potentiel vecteur $-\frac{1}{2}\begin{pmatrix} y^2 \\ z^2 \\ x^2 \end{pmatrix}$. *Vérification en cours.*

Theorem (C.N.S. admise)

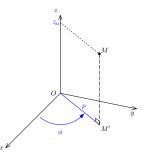
Soit
$$\vec{V} = \begin{pmatrix} P \\ Q \\ R \end{pmatrix}$$
 un champ de vecteur de classe \mathscr{C}^1 sur $D \subset \mathbb{R}^3$. Alors div $\vec{V} = 0 \Leftrightarrow \exists \vec{F} : D \to \mathbb{R}^3$ de classe \mathscr{C}^2 tq $\vec{V} = \overrightarrow{\text{Rot}} \vec{F}$.

NB. Qu'en est-il de la dimension d = 2?

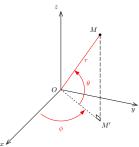
III - Calculs en coordonnées polaires/cylindriques/sphériques

A Les systèmes de coordonnées cylindriques et sphériques dans l'espace (Oxyz).

Soit $M(x_M, y_M, z_M)$ un point de l'espace (Oxyz).



Les coordonnées cylindriques de M sont (ρ, ϕ, z_M) $\begin{cases} x_M = OM' \cos \phi = \rho \cos \phi \\ y_M = OM' \sin \phi = \rho \sin \phi \\ z_M \end{cases}$ $\rho \in [0, +\infty[, \phi \in [0, 2\pi[\text{ et } z_M \in \mathbb{R}])]$

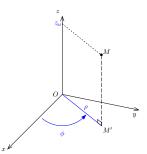


Les coordonnées sphériques de
$$M$$
 sont (r, ϕ, θ)
$$\begin{cases} x_M = OM' \cos \phi = r \cos \phi \cos \theta \\ y_M = OM' \sin \phi = r \sin \phi \cos \theta \\ z_M = MM' = r \sin \theta \end{cases}$$
$$r \in [0, +\infty[, \phi \in [0, 2\pi[\text{ et } \theta \in [-\frac{\pi}{2}, \frac{\pi}{2}].$$

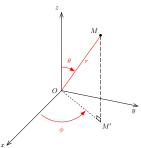
III - Calculs en coordonnées polaires/cylindriques/sphériques

A Les systèmes de coordonnées cylindriques et sphériques dans l'espace (Oxyz).

Soit $M(x_M, y_M, z_M)$ un point de l'espace (Oxyz).



Les coordonnées cylindriques de M sont (ρ, ϕ, z_M) $\begin{cases} x_M = OM' \cos \phi = \rho \cos \phi \\ y_M = OM' \sin \phi = \rho \sin \phi \\ z_M \end{cases}$ $\rho \in [0, +\infty[, \phi \in [0, 2\pi[\text{ et } z_M \in \mathbb{R}])]$



Les coordonnées sphériques de
$$M$$
 sont (r, ϕ, θ)

$$\begin{cases} x_M = OM' \cos \phi = r \cos \phi \sin \theta \\ y_M = OM' \sin \phi = r \sin \phi \sin \theta \\ z_M = MM' = r \cos \theta \end{cases}$$
 $r \in [0, +\infty[, \phi \in [0, 2\pi[\text{ et } \theta \in [0, \pi].$

Calcul différentiel.

On rappelle que la différentielle de f est liée au gradient de f par la formule $|\mathbf{d}f(M)| = \nabla f(M) \cdot \mathbf{d}\vec{OM}|$ invariante selon le système de coordonnées utilisé.

• En dimension 2, cela signifie que $df(M) = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy = \frac{\partial f}{\partial x}dr + \frac{\partial f}{\partial \theta}d\theta$.

On a
$$\vec{OM} = \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow d\vec{OM} = \begin{pmatrix} dx \\ dy \end{pmatrix} = dx\vec{i} + dy\vec{j}$$
 et
$$\vec{OM} = \begin{pmatrix} r\cos\theta \\ r\sin\theta \end{pmatrix} \Rightarrow d\vec{OM} = \begin{pmatrix} \cos\theta dr - r\sin\theta d\theta \\ \sin\theta dr + r\cos\theta d\theta \end{pmatrix} = dr\underbrace{\begin{pmatrix} \cos\theta \\ \sin\theta \end{pmatrix}}_{\vec{e}_{T}} + d\theta\underbrace{\begin{pmatrix} -r\sin\theta \\ r\cos\theta \end{pmatrix}}_{r\times\vec{e}_{\theta}}$$

On peut alors vérifier qu'en coord. polaires $\nabla f(M) = \frac{\partial f}{\partial r} \vec{e}_r + \frac{1}{r} \frac{\partial f}{\partial \theta} \vec{e}_\theta$ est compatible avec (*)

En dimension 3, cela signifie que pour le système de coord. cylindriques (ρ, ϕ, z) on a $df(M) = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz = \frac{\partial f}{\partial z}d\rho + \frac{\partial f}{\partial z}d\phi + \frac{\partial f}{\partial z}dz$

et pour le système de coord. sphériques (r, ϕ, θ) on a

$$df(M) = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz = \frac{\partial f}{\partial r}dr + \frac{\partial f}{\partial \phi}d\phi + \frac{\partial f}{\partial \theta}d\theta$$