Chapitre 4 - Intégrale double

Introduction: Premiers exemples

Proposition (intégrer sur un rectangle)

Soit f une application continue sur $D = [a, b] \times [c, d]$, avec $a \le b$ et $c \le d$.

Alors,
$$\iint_{D} f(x, y) dxdy = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx = \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy.$$

Exemple 1:
$$D = [0, 1] \times [0, 2]$$
 et $f(x, y) = x^2 + y^2$.

:

Exemple 2: Cas des fonctions à variables séparées
$$f(x, y) = g(x)k(y)$$
.

:

Proposition (calcul d'aire entre deux courbes représentatives)

Soient φ_1 et φ_2 deux fonctions définies et continues sur un même intervalle [a,b], a < b et telles que

$$\forall t \in [a,b], \ \varphi_1(t) \leqslant \varphi_2(t). \ \textit{On definit} \ \boxed{D := \{(x,y) \in \mathbb{R}^2 \ ; \ a \leqslant x \leqslant b \ \ \textit{et} \ \ \varphi_1(x) \leqslant y \leqslant \varphi_2(x)\}}$$

Alors Aire(D) =
$$\int_a^b (\varphi_2(x) - \varphi_1(x)) dx = \int_a^b (\int_{\varphi_1(x)}^{\varphi_2(x)} 1 dy) dx$$

I - Intégrale double au sens de Riemann

A Domaine quarrable du plan (xOy)

Rappel: Soit [a, b] un segment de \mathbb{R} , avec (a < b), et $N \in \mathbb{N}^*$. On peut découper cet intervalle en N sous-intervalles

$$[x_{i-1}, x_i]$$
 pour $i = 1, ..., N$ tels que $[a, b] = \bigcup_{i=1}^{N} [x_{i-1}, x_i]$ et $a = x_0 < \cdots < x_i < \cdots < x_N = b$.

L'ensemble $\{x_0; \dots; x_N\}$ est appelé **subdivision** de [a, b]. On peut la choisir **régulière** de pas constant $x_{i+1} - x_i = h = \frac{b-a}{N}$

Ainsi,
$$x_0 = a, \dots, x_i = a + ih, \dots$$
 et $x_N = a + Nh = b$.

Definition (1) quadrillage d'un rectangle)

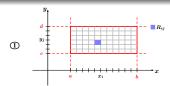
Soit $[a, b] \times [c, d]$ un rectangle avec a < b et c < d. Soit $N \in \mathbb{N}^*$ et $M \in \mathbb{N}^*$.

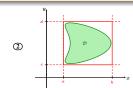
On note $\{x_0, \dots, x_N\}$ et $\{y_0, \dots, y_M\}$ les subdivisions régulières des segments [a, b] et [c, d].

La réunion des rectangles $R_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j]$ est appelée quadrillage du rectangle $[a, b] \times [c, d]$.

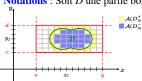
Definition (2) partie bornée de \mathbb{R}^2)

Soit *D* une partie de \mathbb{R}^2 . On dit que *D* est bornée s'il existe un rectangle $[a,b] \times [c,d]$ contenant *D*.





Notations: Soit *D* une partie bornée de \mathbb{R}^2 telle que $D \subset [a,b] \times [c,d]$. On fixe $N=M \in \mathbb{N}^*$ et on note



$$I_N^- := \{(i,j) \in \llbracket 1,N \rrbracket^2 ; R_{ij} \subset D \}, \quad \text{puis } D_N^- = \bigcup_{(i,j) \in I_-^-} R_{ij}$$

$$I_N^+ := \{(i,j) \in [\![1,N]\!]^2 \; ; \; R_{ij} \cap D \neq \varnothing \}, \qquad \text{puis } D_N^+ = \bigcup_{(i,j) \in I_N^+} R_{ij}$$

Enfin, on note $\mathcal{A}(D_N^-)$ et $\mathcal{A}(D_N^+)$ les aires respectives de D_N^+ et D_N^+ .

On a
$$\mathcal{A}(D_N^-) = \frac{(b-a)(d-c)}{N^2} \times \operatorname{card}(I_N^-) \leqslant \mathcal{A}(D) \leqslant \mathcal{A}(D_N^+) = \frac{(b-a)(d-c)}{N^2} \times \operatorname{card}(I_N^+).$$

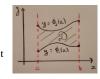
Definition (Partie quarrable de \mathbb{R}^2)

On dit que D est **quarrable** ssi $\exists \ell \in \mathbb{R}, \quad \lim_{N \to \infty} \mathcal{A}(D_N^-) = \lim_{N \to \infty} \mathcal{A}(D_N^+) = \ell.$

Dans ce cas, on définit **l'aire de** *D* comme étant la limite commune : $\mathcal{A}(D) = \ell$.

Exemples: • Tout rectangle $[a, b] \times [c, d]$ est quarrable $(D_N^- = D_N^+ = D)$.

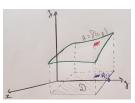
- Toute partie de \mathbb{R}^2 délimitée par des courbes explicites continues comme suit $D:=\{(x,y)\in\mathbb{R}^2:a\leq x\leq b\ \text{et}\ \phi_1(x)\leq y\leq\phi_2(x)\}$ sont quarrables.
- Toute partie bornée de \mathbb{R}^2 dont la frontière est une courbe paramétrée de classe \mathscr{C}^1 est quarrable (cercle, ellipse, etc. . .).



B Intégrale double d'une fonction de deux variables $\iint_{D} f(x, y) dxdy$

Rappel MT02: intégrabilité des fonctions d'une variable réelle sur [a, b], a < b.

Cas des fonctions de deux variables :



Soit $f: D \to \mathbb{R}$ une application avec D quarrable. On suppose $D \subset [a, b] \times [c, d]$ et on prolonge f en une fonction définie sur $[a, b] \times [c, d]$ par

$$\tilde{f}(x,y) = \begin{cases} f(x,y) & \text{si } (x,y) \in D \\ 0 & \text{si } (x,y) \notin D. \end{cases}$$

Soit $N \in \mathbb{N}^*$ et $\{x_0, \dots, x_N\}$ et $\{y_0, \dots, y_N\}$ deux subdivisions régulières de [a,b] et [c,d]. Pour $i,j=1,\dots,N$, on pose

$$u_{ij} = \inf \left\{ \tilde{f}(x, y) \; ; \; (x, y) \in R_{ij} \right\} \quad \text{et } U_{ij} = \sup \left\{ \tilde{f}(x, y) \; ; \; (x, y) \in R_{ij} \right\}$$

$$S_N^- = \frac{(b-a)(d-c)}{N^2} \sum_{i=1}^N \sum_{j=1}^N u_{i,j} \qquad S_N^+ = \frac{(b-a)(d-c)}{N^2} \sum_{i=1}^N \sum_{j=1}^N U_{ij}$$

Remarque : $\frac{(b-a)(d-c)}{N^2} \times u_{ij}$ = volume du parallélépipède de base R_{ij} et de hauteur u_{ij} .

Definition (intégrale double)

Soit $f: D \to \mathbb{R}$ une application avec D quarrable. On suppose qu' $\exists \ell \in \mathbb{R}$, $\lim_{N \to \infty} S_N^- = \lim_{N \to \infty} S_N^+ = \ell$.

Alors f est dite intégrable sur D. On définit la valeur de l'intégrale double de f sur D comme étant la limite commune : $\iint f(x,y) \, dx dy = \ell.$

Exemple 1: Soit *D* une partie quarrable de \mathbb{R}^2 et $f:(x,y)\in D\mapsto 1$. Montrons que $\bigg|\iint_D 1\,dxdy=\mathcal{A}(D)\bigg|$

$$\int_{D} 1 \, dx dy = \mathcal{A}(D)$$

Correction, en cours.

Exemple 2: Soit *D* le disque unité et $f:(x,y) \in D \mapsto c$ avec $c \in \mathbb{R}$.

Montrer que f est intégrable sur D. Que représente le nombre $\iint f(x, y) dxdy$?

Correction, en cours.

Theorem (admis)

Toute application continue et bornée $f:D\to\mathbb{R}$ avec D quarrable est intégrable sur D.

Interprétation géométrique : Le nombre $\iint f(x, y) dxdy$ est le **volume signé** du solide de l'espace délimité par la surface $D \subset (xOy)$ et le graphe d'équation z = f(x, y).