Exercice A.2.5. Équations de plans

1. \mathscr{P} est le plan perpendiculaire à la direction $\vec{n}=(a,b,c)\in\mathbb{R}^3\setminus\{(0,0,0\}\text{ et passant par le point }M_0(x_0,y_0,z_0).$

Equation cartésienne implicite : On utilise la caractérisation

$$M \in \mathscr{P} \quad \Leftrightarrow \quad \overrightarrow{M_0 M} \perp \vec{n} \quad \Leftrightarrow \quad \overrightarrow{M_0 M} \cdot \vec{n} = 0$$

On obtient l'équation implicite

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

2. \mathscr{P} est le plan parallèle aux directions $\vec{u}_1 = (a_1, b_1, c_1) \in \mathbb{R}^3$ et $\vec{u}_2 = (a_2, b_2, c_2) \in \mathbb{R}^3$ et passant par le point $M_0(x_0, y_0, z_0)$.

Les vecteurs \vec{u}_1 et \vec{u}_2 sont bien-entendu non colinéaires et $(M_0, \vec{u}_1, \vec{u}_2)$ est un repère (non nécessairement orthonormé) du plan \mathscr{P} .

Equation cartésienne implicite : Comme les vecteurs \vec{u}_1 et \vec{u}_2 sont supposés non colinéaires, le produit vectoriel fourni un vecteur orthogonal \vec{n} non nul et

$$\vec{n} = \vec{u}_1 \wedge \vec{u}_2 = \begin{pmatrix} b_2 c_3 - b_3 c_2 \\ b_3 c_1 - b_1 c_3 \\ b_1 c_2 - b_2 c_1 \end{pmatrix}.$$

Ensuite, on procède comme à la question 1 et on obtient

$$b_2c_3 - b_3c_2(x - x_0) + (b_3c_1 - b_1c_3)(y - y_0) + (b_1c_2 - b_2c_1)(z - z_0) = 0$$

Application:
$$M_0(3, 1, 0), \vec{a} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \vec{b} = \begin{pmatrix} 7 \\ 8 \\ -2 \end{pmatrix}.$$

On trouve
$$4(x-1) - 5(y-1) - 6z = 0$$
 ou $4x - 5y - 6z = 7$

Exercice A.2.7. Courbes de l'espace

1.

(1) Le système $\begin{cases} x^2 + y^2 = 1 \\ z = 3 \end{cases}$ caractérise l'intersection d'un cylindre de révolution autour de l'axe (Oz) avec le plan horizontal d'équation z = 3. Graphiquement, on obtient le cercle C_1 de couleur rouge ci-dessous. Une paramétrisation de ce cercle est

$$M(x, y, z) \in \mathcal{C}_1 \iff \exists \theta \in [0; 2\pi[\ , \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \Phi(\theta) = \begin{pmatrix} \cos \theta \\ \sin \theta \\ 3 \end{pmatrix} .$$

(2) Le système $\begin{cases} x^2 + y^2 = 1 \\ x + y + z = 1 \end{cases}$ caractérise l'intersection d'un cylindre de révolution autour de l'axe (Oz) avec le plan oblique d'équation x + y + z = 1. Graphiquement, on obtient la courbe C_2 de couleur bleue ci-dessous.

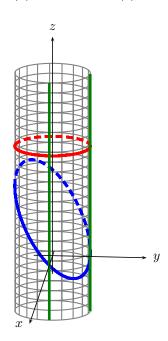
Une paramétrisation de cette courbe est

$$M(x, y, z) \in \mathcal{C}_2 \iff \exists \theta \in [0; 2\pi[\ , \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \Phi(\theta) = \begin{pmatrix} \cos \theta \\ \sin \theta \\ 1 - \cos \theta - \sin \theta \end{pmatrix}.$$

(3) Le système $\begin{cases} x^2 + y^2 = 1 \\ x + y = 1 \end{cases}$ caractérise l'intersection d'un cylindre de révolution autour de l'axe (Oz) avec le plan vertical d'équation x + y = 1. Il suffit de résoudre ce système de deux équations à deux inconnues. Graphiquement, on obtient la courbe \mathcal{C}_3 de couleur verte ci-dessous, constituée de droites verticales d'équations $\begin{cases} x = 1 \\ y = 0 \end{cases}$ et $\begin{cases} x = 0 \\ y = 1 \end{cases}$.

Une paramétrisation de cette courbe est

$$M(x, y, z) \in \mathcal{C}_3 \iff \exists t \in \mathbb{R} , \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \Phi_1(t) = \begin{pmatrix} 1 \\ 0 \\ t \end{pmatrix} \text{ ou } \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \Psi(t) = \begin{pmatrix} 0 \\ 1 \\ t \end{pmatrix}.$$



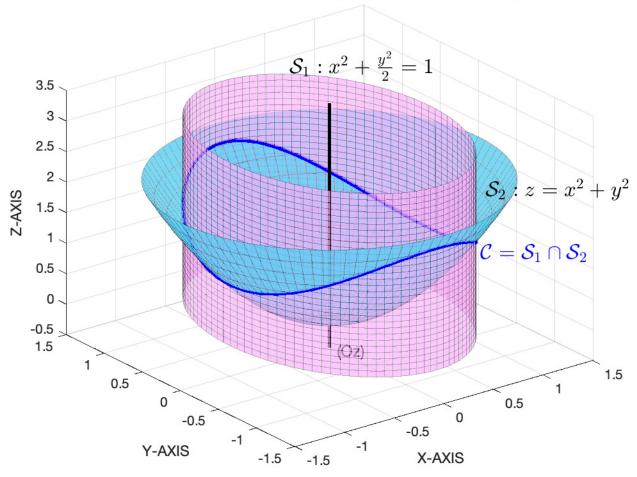
2. Le système $\begin{cases} z=x^2+y^2 \\ x^2+\frac{1}{2}y^2=1 \end{cases}$ caractérise l'intersection d'un paraboloïde de révolution autour de l'axe (Oz) avec un cylindre elliptique centré en l'origine, d'axe (Oz) et demi-axes de longueur a=1 et $b=\sqrt{2}$. Graphiquement, on obtient la courbe \mathcal{C}_4 de couleur rouge ci-dessous.

$$\begin{cases} z = x^2 + y^2 \\ x^2 + \frac{1}{2}y^2 = 1 \end{cases} \iff \begin{cases} z = 2 - x^2 \\ x^2 + \frac{1}{2}y^2 = 1 \end{cases} \iff \begin{cases} z = 1 + \frac{1}{2}y^2 \\ x^2 + \frac{1}{2}y^2 = 1 \end{cases}$$

Une paramétrisation de cette courbe est

$$M(x, y, z) \in \mathcal{C}_4 \iff \exists \theta \in [0; 2\pi[\ , \begin{cases} x \\ y \\ z \end{cases}) = \Phi(\theta) = \begin{pmatrix} \cos \theta \\ \sqrt{2} \sin \theta \\ 2 - \cos^2 \theta = 1 + \sin^2 \theta \end{pmatrix}.$$

Intersection cylindre (S_1) /paraboloïde (S_2)



Un vecteur tangent à la droite tangente \mathcal{T} à cette courbe au point $M(x_0 = x(\theta_0), y_0 = y(\theta_0), z_0 = z(\theta_0))$

est

$$\Phi'(\theta_0) = \begin{pmatrix} -\sin\theta_0 = -\frac{1}{\sqrt{2}}y_0\\ \sqrt{2}\cos\theta_0 = \sqrt{2}x_0\\ 2\cos\theta_0\sin\theta_0 = \sqrt{2}x_0y_0 \end{pmatrix}.$$

La droite tangente \mathcal{T} est donc paramétrée par

$$M(x,y,z) \in \mathcal{T} \iff \exists t \in \mathbb{R} , M = M_0 + t\Phi'(\theta_0) \iff \exists t \in \mathbb{R} , \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \cos \theta_0 - t \sin \theta_0 = x_0 - t \frac{y_0}{\sqrt{2}} \\ \sqrt{2}(\sin \theta_0 + t \cos \theta_0) = y_0 + t x_0 \sqrt{2} \\ 1 + \sin^2 \theta_0 + t \sin 2\theta_0 = z_0 + t x_0 y_0 \sqrt{2} \end{pmatrix}.$$

Chapitre 3. Exercice A.2.6 Surfaces de \mathbb{R}^3

Exemple: (1) $x^2 + \alpha y^2 + z^2 = 1$.

• Si $\alpha > 0$, on réécrit l'équation $x^2 + \frac{y^2}{(\sqrt{\frac{1}{\alpha}})^2} + z^2 = 1$. C'est un ellipsoïde centré èn l'origine d'axes dirigés selon

les direction (Ox), (Oy), (Oz) et de demi-axes de longueurs 1, $\sqrt{\frac{1}{\alpha}}$ et 1 respectivement. Une paramétrisation possible est

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \sin \theta \cos \varphi \\ \sqrt{\frac{1}{\alpha}} \sin \theta \sin \varphi \\ \cos \theta \end{pmatrix}, \theta \in [0; \pi], \ \varphi \in [0; 2\pi] \ .$$

• si $\alpha = 0$, on obtient l'équation $x^2 + z^2 = 0$. Cela ressemble à l'équation du cylindre. La variable y n'apparaît pas. C'est un cylindre infini de révolution autour de l'axe (Oy) de rayon 1. Une paramétrisation est

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \cos \varphi \\ y \\ \sin \varphi \end{pmatrix} , y \in \mathbb{R}, \ \varphi \in [0; 2\pi] .$$

• Si $\alpha < 0$, on réécrit l'équation $x^2 - \frac{y^2}{(\sqrt{-\frac{1}{\alpha}})^2} + z^2 = 1$. Cela ressemble à l'équation de l'hyperboloïde à une nappe avec cette fois un signe moins devant y^2 . C'est un hyperboloïde à une nappe de révolution autour de l'axe (Oy). Une paramétrisation possible s'obtient en réécrivant l'équation sous la forme

$$x^2 + z^2 = \underbrace{\left(\sqrt{1 - \alpha y^2}\right)^2}_{R^2}$$

puis en utilisant les coordonnées cylindriques :

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \sqrt{1 - \alpha y^2 \cos \varphi} \\ y \\ \sqrt{1 - \alpha y^2 \sin \varphi} \end{pmatrix} , y \in \mathbb{R}, \ \varphi \in [0; 2\pi] .$$

(2) $-2x^2 + y^2 + z^2 = \alpha$.

• Si $\alpha > 0$, on réécrit l'équation $-\left(\frac{x}{\sqrt{\frac{\alpha}{2}}}\right)^2 + \left(\frac{y}{\sqrt{\alpha}}\right)^2 + \left(\frac{z}{\sqrt{\alpha}}\right)^2 = 1$. C'est un hyperboloïde à une nappe de révolution autour de l'axe (Ox). En écrivant $y^2 + z^2 = \left(\sqrt{\alpha + 2x^2}\right)^2$, une paramétrisation possible est

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ \sqrt{\alpha + 2x^2} \cos \varphi \\ \sqrt{\alpha + 2x^2} \sin \varphi \end{pmatrix} , x \in \mathbb{R}, \ \varphi \in [0; 2\pi] .$$

• si $\alpha = 0$, on réécrit l'équation $x^2 = \left(\frac{y}{2}\right)^2 + \left(\frac{z}{2}\right)^2$. C'est un cône de révolution autour de l'axe (Ox). En écrivant $y^2 + z^2 = (\sqrt{2}|x|)^2$, une paramétrisation est

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ \sqrt{2}|x|\cos\varphi \\ \sqrt{2}|x|\sin\varphi \end{pmatrix} , x \in \mathbb{R} , \varphi \in [0; 2\pi] .$$

• Si $\alpha < 0$, on réécrit l'équation $\left(\frac{x}{\sqrt{-\frac{\alpha}{2}}}\right)^2 - \left(\frac{y}{\sqrt{-\alpha}}\right)^2 - \left(\frac{z}{\sqrt{-\alpha}}\right)^2 = 1$. C'est un hyperboloïde à deux nappes de révolution autour de l'axe (Ox). Une paramétrisation possible est

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{x}{\sqrt{\alpha + 2x^2}} \cos \varphi \\ \sqrt{\alpha + 2x^2} \sin \varphi \end{pmatrix} , \ x \in \left] - \infty; - \sqrt{-\frac{\alpha}{2}} \right] \cup \left[\sqrt{-\frac{\alpha}{2}}; + \infty \right[, \ \varphi \in [0; 2\pi] \ .$$

Chapitre 3. Exercice A.2.8 Courbes et intersection de surfaces de \mathbb{R}^3 On considère deux surfaces de \mathbb{R}^3 définies par les paramétrisations suivantes :

$$S_1 := \left\{ M \begin{pmatrix} u + v + \frac{1}{3} \\ u - 2v + \frac{1}{3} \\ -2u + v + \frac{1}{3} \end{pmatrix} \in \mathbb{R}^3 \mid u, v \in \mathbb{R} \right\} ,$$

$$S_2 := \left\{ M \begin{pmatrix} u \\ v \\ u^2 + v^2 \end{pmatrix} \in \mathbb{R}^3 \mid u, v \in \mathbb{R} \right\} .$$

- **1.** La surface S_1 est un plan d'équation x + y + z = 1.
- La surface S_2 est un paraboloïde de révolution autour de l'axe (Oz) d'équation $z=x^2+y^2$.
- **2.** A faire!