— Corrigé: Final P17—

(Changer de copie)

Exercice I (6 points)— (Les questions I. et II. sont indépendantes.)

I- (a) Question de cours. Soit [a, b] un segment de \mathbb{R} (avec a < b). Enoncer le théorème de Rolle pour une fonction $f : [a, b] \longrightarrow \mathbb{R}$.

Soit [a,b] un segment de \mathbb{R} (avec a < b) et $f : [a,b] \longrightarrow \mathbb{R}$, telle que f est continue sur [a,b], dérivable sur [a,b] et f(a) = f(b). Alors:

$$\exists c \in]a, b[; f'(c) = 0.$$

(b) Soit I un intervalle ouvert non vide de \mathbb{R} et $f:I\longrightarrow\mathbb{R}$ une fonction deux fois dérivable en tout point de I et s'annulant en trois points distincts $\alpha<\beta<\gamma$ de I. Montrer que la fonction dérivée seconde (notée f'') s'annule au mois une fois dans I.

La fonction f est dérivable sur l'ouvert I en particulier sur les deux intervalles $]\alpha,\beta[\subsetneq I$ et $]\beta,\gamma[\subsetneq I$ (entre autre elle est continue sur les segments $[\alpha,\beta]$ et $[\beta,\gamma]$ comme elle est dérivable sur tout I). De plus $f(\alpha)=f(\beta)=f(\gamma)=0$, donc d'après le théorème de Rolle on a

$$\exists c_1 \in]\alpha, \beta[; f'(c_1) = 0 \ et \ \exists c_2 \in]\beta, \gamma[; f'(c_2) = 0.$$

On a $\alpha < c_1 < \beta < c_2 < \gamma$ donc sur l'intervalle non réduit à un point $[c_1, c_2] \subsetneq I$ la fonction dérivée f' est continue, dérivable sur $]c_1, c_2[$ et $f'(c_1) = f'(c_2) = 0$. On applique le théorème de Rolle à f' et on a le résultat escompté, c'est à dire

$$\exists c \in]c_1, c_2[\subset I; \ f''(c) = 0.$$

II- (a) Question de cours. Enoncer le théorème des accroissements finis.

Soit [a,b] un segment de \mathbb{R} (avec a < b) et $f : [a,b] \longrightarrow \mathbb{R}$, telle que f est continue sur [a,b], dérivable sur [a,b]. Alors:

$$\exists c \in]a, b[; f(b) - f(a) = (b - a)f'(c).$$

(b) Soient deux réels a et b (avec a < b) et soit f une fonction dérivable sur l'intervalle ouvert]a,b[telle que f' soit bornée. (C'est à dire il existe un réel $M \ge 0$ telle que $\sup_{t \le a} |f'(t)| = M$).

Montrer que pour tout x, y dans]a, b[on a $|f(x) - f(y)| \le M|x - y|$.

Dans le cas où x = y le résultat est immédiat. On suppose, maintenant, que $x \neq y$ (soit par exemple x < y, le cas où x > y s'en déduit de la même manière) alors dans l'intervalle $[x,y] \subset]a,b[$, f est continue, dérivable sur]x,y[donc d'après

le théorème des accroissements on a $\exists c \in]x,y[; f(x)-f(y)=f'(c)(x-y).$ Comme f' est bornée dans]a,b[on en déduit que

$$|f(x) - f(y)| = |f'(c)||x - y| \le \sup_{t \in]a,b[} |f'(t)| \times |x - y| \le M|x - y|.$$

(c) Déduire que pour tout x, y dans a, b on a

$$\forall \varepsilon > 0, \ \exists \ \eta > 0, \ (|x - y| < \eta) \Longrightarrow (|f(x) - f(y)| < \varepsilon).$$

(On distingera le cas où M=0 et M>0.)

 $Si\ M = 0\ alors\ d'après\ I - a)\ la\ fonction\ f\ est\ constante\ sur\]a,b[\ et\ le\ résultat\ est\ vérifié\ pour\ tout\ x,y\ dans\]a,b[.$

On suppose, ici, que $M \neq 0$, on a toujours d'après I - a), pour tout x, y dans [a, b[et pour tout $\varepsilon > 0$,

$$\left(|x-y|<\eta(\varepsilon)=\frac{\varepsilon}{M}\right)\Longrightarrow \left((|f(x)-f(y)|< M|x-y|< M\times\frac{\varepsilon}{M}=\varepsilon)\right).$$

(d) Montrer que f est bornée sur]a, b[. (Indication: pour tout x_0 fixé dans]a, b[on a $\forall x \in]a, b[$, $||f(x)| - |f(x_0)|| \le |f(x) - f(x_0)|$.)

Soit x_0 un point arbitrairement fixé dans]a,b[. Pour tout $x \in]a,b[$ on a d'après I-a)

$$||f(x)| - |f(x_0)|| \le |f(x) - f(x_0)| \le M|x - x_0| \le M(b - a).$$

On déduit de cette inégalité que pour tout $x \in]a, b[$

$$|f(x)| \le |f(x_0)| + M(b-a),$$

 $donc \ f \ est \ born\'ee \ dans \]a,b[.$

(e) On suppose qu'il existe deux réels l_a et l_b tels que pour toutes suites $(a_n)_n$ et $(b_n)_n$ à valeurs dans a_n, b_n l'on a :

$$\left(\lim_{n\to+\infty}a_n=a\right)\Longrightarrow\left(\lim_{n\to+\infty}f(a_n)=l_a\right)\,\mathrm{et}\,\left(\lim_{n\to+\infty}b_n=b\right)\Longrightarrow\left(\lim_{n\to+\infty}f(b_n)=l_b\right).$$

Justifier que f est prolongeable par continuité sur tout le segment [a,b].

D'après les hypothèses de cette question on a, quand $x \longrightarrow a$, $f(x) \longrightarrow l_a$ (critère des limites par les suites) et quand $x \longrightarrow b$, $f(x) \longrightarrow l_b$. Donc f est prolongeable par continuité sur tout le segment [a,b] et le prolongement \tilde{f} prend les valeurs $\tilde{f}(a) = l_a$; $\tilde{f}(b) = l_b$ aux extrémité et $\tilde{f}(x) = f(x)$ pour tout $x \in]a,b[$.

(Changer de copie)

Exercice II (6 points)—

Soit [a,b] (a < b) un segment de \mathbb{R} et f une fonction continue de [a,b] dans [a,b].

1. En utilisant le théorème des valeurs intermédiaires, montrer qu'il existe au moins un nombre l dans [a, b] tel que f(l) = l, c'est à dire, que f admet un point fixe.

On pose g la fonction définie par g(x) = f(x) - x pour tout x dans [a,b] qui est continue sur cet intervalle. Du fait que f est à valeurs dans [a,b] on vérifie aisément que $g(a) \geq 0$ et que $g(b) \leq 0$. Si g(a)g(b) = 0, alors f admet a ou b comme point fixe. Si $g(a)g(b) \neq 0$ alors on a nécessairement g(a)g(b) < 0 et le le théorème des valeurs intermédiaires assure l'existence d'au moins un réel $l \in]a,b[$ qui annule g étant donné que celle-ci est continue sur [a,b].

En conclusion: il existe au moins un nombre l dans [a,b] tel que f(l)=l.

2. On suppose de plus, à partir de cette question, que f vérifie cette condition

$$\forall x \in [a, b], \forall y \in [a, b], (x = y) \text{ ou } (|f(x) - f(y)| < |x - y|).$$

Montrer alors que le point fixe l de f est unique.

On montre l'unicité par l'absurde. On suppose que f admet deux points fixes distincts l_1 et l_2 dans [a,b] tels que $f(l_1)=l_1$ et $f(l_2)=l_2$; alors d'après la condition vérifiée par f on a, comme $l_1 \neq l_2$, $|f(l_1)-f(l_2)|=|l_1-l_2|<|l_1-l_2|$ ce qui est absurde; d'où l'unicité.

3. Soit $x \in [a, b]$. Montrer que l'on a aussi $\frac{x + f(x)}{2} \in [a, b]$.

On a $x \in [a,b]$ et $f(x) \in [a,b]$ comme [a,b] est un intervalle (fermé) de \mathbb{R} il contient tout le segment d'extrémités x et f(x), en particulier son milieu $\frac{x+f(x)}{2}$.

4. On introduit la suite $(u_n)_n$ pour tout $n \ge 0$ définie par

$$\begin{cases} u_0 = \alpha \in [a, b] \\ u_{n+1} = \frac{u_n + f(u_n)}{2}, \quad \forall n \in \mathbb{N} \end{cases}$$

(a) Justifier (en utilisant le résultat établi à la question (3.)) que pour tout $n \in \mathbb{N}, u_n \in [a, b].$

Par récurrence on montre que $\forall n \in \mathbb{N}, u_n \in [a, b].$

Initialisation : pour le premier terme $u_0 = \alpha \in [a,b]$ d'après l'hopthèse, la propriété est donc vraie.

Héridité: on suppose que le terme u_n est bien définie dans [a,b]. $f(u_n)$ est aussi bien définie et appartient bien à l'intervalle [a,b], donc d'après la question 3. $\frac{u_n + f(u_n)}{2} = u_{n+1} \in [a,b].$ Ce qui permet de conclure la propriété: pour tout $n \in \mathbb{N}$, $u_n \in [a,b]$.

(b) Montrer que pour tout $n \in \mathbb{N}^*$, $(u_{n+1} - u_n)$ est du même signe que $(u_n - u_{n-1})$. En déduire que la suite $(u_n)_n$ est monotone (croissante ou décroissante).

Pour tout $n \in \mathbb{N}^*$, on a

$$u_{n+1} - u_n = \frac{(u_n - u_{n-1}) + (f(u_n) - f(u_{n-1}))}{2},$$

or d'après l'hypothèse de la question 2. on a $|f(u_n) - f(u_{n-1})| < |u_n - u_{n-1}|$. Ceci prouve que les nombres $(u_n - u_{n-1})$ et $(u_n - u_{n-1}) + (f(u_n) - f(u_{n-1}))$ sont de même signe et donc que le signe de $u_{n+1} - u_n$ est celui de $u_n - u_{n-1}$. On en déduit que la suite $(u_n)_n$ est bien monotone (croissante ou décroissante).

(c) Montrer que la suite $(u_n)_n$ converge vers l'unique point fixe l de f.

La suite $(u_n)_n$ est une suite monotone (donc croissante ou décroissante) de nombres réels tous dans un même segment [a,b]. Cette suite est donc à la fois majorée et minorée. Elle converge donc vers une limite l'. Comme f est continue, la suite $(f(u_n))_n$ converge vers f(l') et on a, par passage à la limite dans la relation de récurrence, l' = (l' + f(l'))/2, soit f(l') = l'. Ce qui prouve que le nombre l' est un point fixe de f. Comme f admet un unique point fixe l alors $\lim_{n \to +\infty} u_n = l' = l$.

(Changer de copie)

Exercice III (6 points)—

On définit la fonction f suivante sur \mathbb{R}^* par :

$$f(x) = x\sin(x)\sin(\frac{1}{x}).$$

1. Vérifier que f est continue sur \mathbb{R}^* .

Sur \mathbb{R}^* les fonctions $x \mapsto \sin(x)$ et $x \mapsto \frac{1}{x}$ sont continues donc $\forall x \in \mathbb{R}^*, x \mapsto \sin(\frac{1}{x})$ est continue sur \mathbb{R}^* comme composée de fonctions continues sur \mathbb{R}^* . Enfin la fonction f est continue sur \mathbb{R}^* comme produit de fonctions continues sur \mathbb{R}^* .

2. En calculant la limite $\lim_{x\to 0} f(x)$, montrer que f est prolongeable par continuité sur tout \mathbb{R} . On notera la fonction g son prolongement par continuité.

Pour tout x dans \mathbb{R}^* on a $|\sin(x)\sin(\frac{1}{x})| \leq 1$ donc $|f(x)| \leq |x|; \forall x \in \mathbb{R}^*;$ d'après le théorème des gendarmes $|f(x)| \longrightarrow 0$ quand $x \longrightarrow 0$ ce qui est équivalent à dire que $\lim_{x\to 0} f(x) = 0$. La fonction f est donc prolongeable par continuité à tout \mathbb{R} et on peut définir son prolongement, qu'on note par g, la fonction définie par g(x) = f(x) si $x \neq 0$ et par g(0) = 0.

3. Vérifier que g est dérivable en tout point $x \in \mathbb{R}^*$ et calculer le nombre dérivé g'(x).

Pour tout x dans \mathbb{R}^* les fonctions $x \mapsto \sin(x)$ et $x \mapsto \frac{1}{x}$ sont dérivables et leurs dérivées respectives sont $x \mapsto \cos(x)$ et $x \mapsto -\frac{1}{x^2}$. Donc la fonction définie pour $x \in \mathbb{R}^*$ $x \mapsto \sin(\frac{1}{x})$ est aussi dérivable sur \mathbb{R}^* comme composée de fonctions dérivables sur \mathbb{R}^* et on a sa dérivée la fonction $x \mapsto -\frac{1}{x^2}\cos(\frac{1}{x})$. Il en découle que g est dérivable sur \mathbb{R}^* comme produit de fonctions dérivables et l'on a

$$\forall x \in \mathbb{R}^*, \ g'(x) = \sin(x)\sin(\frac{1}{x}) + x\cos(x)\sin(\frac{1}{x}) - \frac{1}{x}\sin(x)\cos(\frac{1}{x}).$$

4. Montrer que la fonction g est aussi dérivable en 0 et calculer g'(0).

Pour tout $h \in \mathbb{R}^*$ on a

$$\lim_{h \to 0} \frac{g(h) - g(0)}{h} = \lim_{h \to 0} \frac{f(h)}{h}.$$

Or pour $h \in \mathbb{R}^*$ on a $|f(h)| \le |h| |\sin(h)|$ donc $|\frac{f(h)}{h}| \le |\sin(h)|$ ce qui prouve, en utilisant le théorème de comparaison des limites, que $\frac{f(h)}{h} \to 0$ quand $h \to 0$; Ceci

prouve que $\lim_{h\to 0} \frac{g(h)-g(0)}{h}$ existe et est finie, elle est égale à zéro et que le nombre dérivée g'(0)=0.

5. La fonction g' est-elle continue sur \mathbb{R} ?

Pour tout x dans \mathbb{R}^* la fonction g' est définie continue sur \mathbb{R}^* comme somme de produit de fonctions continues. Pour x=0 on montre que g' n'est pas continue en utilisant le critère des limites par les suites; En effet soit la suite $(x_k)_k$ définie par $x_k = \frac{1}{2k\pi}$ pour tout $k \in \mathbb{N}^*$. On a alors $\cos(x_k) = \cos(2k\pi) = 1$, et

$$\lim_{k \to +\infty} \frac{\sin(x_k)}{x_k} \times \cos(x_k) = 1$$

étant donné que $\lim_{k\to+\infty} x_k = 0$. On a de plus $|\sin(\frac{1}{x_k})| \le 1$ et $|\cos(x_k)\sin(\frac{1}{x_k})| \le 1$, donc compte tenue de l'expression de g pour $x \ne 0$ la limite

$$\lim_{k \to +\infty} g'(x_k) = -1.$$

On conclusion on a $\lim_{k\to +\infty} x_k = 0$ et $\lim_{k\to +\infty} g'(x_k) = -1 \neq g'(0) = 0$ la fonction g' n'est pas continue en 0 (elle n'est pas donc de classe \mathcal{C}^1 sur \mathbb{R}).

(Changer de copie)

Exercice IV (7 points)—

Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = \begin{cases} \sqrt{-x} & \text{si } x < 0\\ 0 & \text{si } x = 0\\ x \ln(x) & \text{si } x > 0 \end{cases}$$

1. Montrer que f est continue sur \mathbb{R} (en particulier en 0).

Pour tout x < 0 la fonction $x \mapsto \sqrt{-x}$ est continue sur $]-\infty,0[$ comme composée de fonctions continues. Pour tout x > 0 la fonction $x \mapsto x \ln(x)$ est continue sur $]0,+\infty[$ comme produit de fonctions continues.

Continuité en x = 0: on a

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \sqrt{-x} = 0 = f(0) \quad et \quad \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} x \ln(x) = 0 = f(0).$$

Donc la fonction f est continue aussi en x = 0.

2. Etudier la dérivabilité de f pour tout réel non nul et calculer f'(x) quand x < 0 et quand x > 0.

Pour tout x < 0 la fonction $x \mapsto \sqrt{-x}$ est dérivable sur $]-\infty,0[$ comme composée de fonctions dérivables et on a :

$$\forall x < 0; \ f'(x) = ((-x)^{\frac{1}{2}})' = -\frac{1}{2}(-x)^{-\frac{1}{2}} = \frac{-1}{2\sqrt{-x}}.$$

Pour tout x > 0 la fonction $x \mapsto x \ln(x)$ est dérivable sur $]0, +\infty[$ comme produit de fonctions dérivable et on a :

$$\forall x > 0; \ f'(x) = \ln(x) + x \frac{1}{x} = \ln(x) + 1.$$

3. La fonction f est-elle dérivable en 0? On précisera l'allure de la tangente en x=0.

Quand $x \to 0^+$ avec x > 0

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^+} \frac{x \ln(x)}{x} = \lim_{x \to 0^+} \ln(x) = -\infty.$$

Quand $x \to 0^-$ avec x < 0

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{-}} \frac{\sqrt{-x}}{x} = \lim_{x \to 0^{-}} \frac{-1}{\sqrt{-x}} = -\infty.$$

La fonction f n'est pas drivable en 0. La limite du taux de variation étant $-\infty$ en 0 la courbe de f présente une tangente verticale au point de coordonnées (0,0).

4. Dresser le tableau de variation de f et tracer son graphe (on tracera les tangentes remarquables).

Pour x < 0, f'(x) < 0 donc la fonction est décroissante sur l'intervalle $]-\infty,0[$. Pour x > 0, f'(x) = 0 si et seulement si $\ln(x) = -1$ donc $x = e^{-1}$. Pour $x \in]0,e^{-1}[$, f'(x) < 0 donc la fonction est décroissante, pour $x > e^{-1}$, f'(x) > 0 donc f est croissante. D'autre part

$$\lim_{x \to -\infty} \sqrt{-x} = +\infty, \quad \lim_{x \to +\infty} x \ln(x) = +\infty,$$

et $f(e^{-1}) = e^{-1} \ln(e^{-1}) = -e^{-1}$. Il en découle le tableau de variation de f suivant :

x	$-\infty$ ()	e^{-1}		$+\infty$
f'(x)	_	_	0	+	
f(x)	$+\infty$)	$-e^{-1}$	7	$+\infty$

5. Montrer que f est une bijection de $[e^{-1}, +\infty[$ sur $[-e^{-1}, +\infty[$.

La fonction f est continue et strictement croissante sur $[e^{-1}, +\infty[$ (car $\forall x \in]e^{-1}, +\infty[$, f'(x) > 0). Donc f est injective. D'autre part, du fait que f est continue alors l'image de l'intervalle $[e^{-1}, +\infty[$ par f est l'intervalle $f([e^{-1}, +\infty[) = [-e^{-1}, +\infty[]; la fonction est alors surjective. Donc elle est bijective de <math>[e^{-1}, +\infty[$ sur $[-e^{-1}, +\infty[]]$.

6. Justifier que la fonction réciproque, qu'on note par f^{-1} , est dérivable sur $]-e^{-1}$, $+\infty[$. Calculer $(f^{-1})'(0)$.

Sur l'intervalle ouvert $]e^{-1}, +\infty[$ la fonction f est dérivable et on a pour tout x dans $]e^{-1}, +\infty[$, $f'(x) \neq 0$ donc la fonction réciproque f^{-1} est dérivable sur $f(]e^{-1}, +\infty[) =]-e^{-1}, +\infty[$ et on a

$$\forall x \in]-e^{-1}, +\infty[, \quad (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}.$$

En particulier pour x=0 $(\in]-e^{-1},+\infty[)$ la fonction f est dérivable, de plus on a, d'une part, $f(1)=0 \Leftrightarrow f^{-1}(0)=1$ et d'autre part, pour x>0, $f'(x)=1+\ln(x)$, ce qui donne que

$$(f^{-1})'(0) = \frac{1}{f'(1)} = \frac{1}{1 + \ln(1)} = 1.$$

