Final MT90/MA90 - P2018

Aucun document ni calculatrice n'est autorisé.

La rédaction est très importante, rédigez et justifiez clairement vos réponses ou démonstrations!

Les exercices 1 et 2 sont indépendants.

Barème approximatif (6, 4, 5, 7).

Exercice 1 - CHANGER DE COPIE

Dans cet exercice, les questions 1 et 2 sont indépendantes.

- 1. (a) Soit f une fonction définie sur un intervalle Ω et $a \in \Omega$. Rappeler la définition avec quantificateurs de « f est continue en a ».
 - (b) Utiliser cette définition pour montrer que la fonction f définie sur \mathbb{R} par $f(x) = \sqrt{1+x^2}$ est continue en 0.

(Indication : on remarquera que $f(x) - 1 \ge 0$.)

- 2. Soit $\ell \in \mathbb{R}$ et f la fonction définie sur]-1, $+\infty[$ par $\begin{cases} f(x) = \frac{(\sin x)^2}{\ln(1+x)} & \text{si } x \neq 0 \\ f(0) = \ell. \end{cases}$
 - (a) Montrer que $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$.
 - (b) Pour quelle valeur de ℓ , la fonction f est-elle continue en 0?

Dans toute la suite de l'exercice on choisit cette valeur de ℓ .

- (c) Montrer que la fonction f est dérivable en 0, puis préciser la valeur de f'(0).
- (d) Justifier que f est dérivable sur $]-1,+\infty[$, puis montrer que pour $x\neq 0$ on a

$$f'(x) = \frac{\sin 2x}{\ln(1+x)} - \frac{(\sin x)^2}{(1+x)(\ln(1+x))^2}.$$

(e) La fonction f' est-elle continue sur $]-1,+\infty[$? Justifier votre réponse.

Exercice 2 - CHANGER DE COPIE

Dans cet exercice, les parties I, II et III sont indépendantes.

On définit la fonction f sur $[0, \pi]$ par $f(x) = \sqrt{1 + \cos x}$.

On admet que la fonction f est dérivable sur $[0,\pi]$ et que $\forall x \in [0,\pi], f'(x) = -\frac{1}{2}f(\pi-x)$.

Partie I - CHANGER DE COPIE

- 1. Quelle est la nature de Im f? (soyez le plus précis possible).
- 2. Déterminer $\operatorname{Im} f$.
- 3. Déterminer $K = \max_{x \in [0,\pi]} |f'(x)|$.

- 4. Montrer que la fonction f est bijective de $[0, \pi]$ vers $\operatorname{Im} f$.

 On ne demande pas de déterminer l'expression algébrique de $f^{-1}(x)$.
- 5. Sur quel intervalle la fonction f^{-1} est-elle dérivable?
- 6. Pour $b = \sqrt{\frac{3}{2}}$, calculer $f^{-1}(b)$, puis $(f^{-1})'(b)$.

Partie II - CHANGER DE COPIE

On rappelle que, pour $n \in \mathbb{N}$, la notation $f^{(n)}$ désigne la dérivée n-ième de la fonction f et $f^{(0)} = f$.

1. (QUESTION BONUS) Montrer par récurrence sur $n \ge 1$ que, pour tout $n \in \mathbb{N}^*$, la fonction f est (2n) fois dérivable et que pour tout $x \in [0, \pi]$ on a

$$f^{(2n-1)}(x) = 2(-\frac{1}{4})^n f(\pi - x)$$
 et $f^{(2n)}(x) = (-\frac{1}{4})^n f(x)$.

2. Soit $a \in [0, \pi]$. Pour $n \in \mathbb{N}^*$, on définit la série

$$S_n = f'(a) + f''(a) + f^{(3)}(a) + \dots + f^{(2n-1)}(a) + f^{(2n)}(a) = \sum_{k=1}^{2n} f^{(k)}(a).$$

- (a) Donner une condition nécessaire sur $f^{(n)}(a)$ pour que la série S_n converge.
- (b) Démontrer cette condition nécessaire.
- (c) Montrer que

$$S_n = (2f(\pi - a) + f(a)) \sum_{k=1}^{n} (-\frac{1}{4})^k.$$

(d) En déduire que la série S_n converge vers une limite à préciser.

Partie III - CHANGER DE COPIE

- 1. (a) Montrer que la fonction f admet au moins un point fixe $\ell \in]0, \pi[$. (Utiliser la fonction g définie par g(x) = f(x) x.)
 - (b) En utilisant les variations de f, démontrer par l'absurde que f admet un unique point fixe.

On rappelle que le réel K est défini à la question Partie I - 3. Dans la suite de l'exercice on admet que 0 < K < 1.

2. Soit (u_n) la suite récurrente définie par

$$\begin{cases} u_0 \in [0, \pi], \\ u_{n+1} = f(u_n), \forall n \in \mathbb{N}. \end{cases}$$

- (a) Justifier que la suite (u_n) est bien définie.
- (b) Énoncer le théorème des accroissements finis.
- (c) Montrer que

$$\forall (x, x') \in [0, \pi]^2, |f(x) - f(x')| \le K|x - x'|.$$

- (d) Montrer, par récurrence sur n, que $\forall n \in \mathbb{N}$, $|u_n \ell| \le K^n |u_0 \ell|$.
- (e) En déduire que la suite (u_n) converge vers ℓ .