Final MT90/MA90 - P2019

Aucun document ni calculatrice n'est autorisé.

La rédaction est très importante, rédigez et justifiez clairement vos réponses ou démonstrations!

Les exercices 1 et 2 sont indépendants.

Barème approximatif (7, 8, 6).

Exercice 1 - CHANGER DE COPIE

L'exercice 1 contient 2 parties!

Partie I

Soit a > 0. On considère la fonction f définie et dérivable sur l'intervalle $\Omega =]-a$, a [par

$$f(x) = \ln\left(\frac{a+x}{a-x}\right)$$
.

- 1. Montrer que $\forall x \in \Omega$, $f'(x) = \frac{2a}{a^2 x^2}$ et indiquer le sens de variation de f sur Ω .
- 2. À l'aide d'un théorème du cours, préciser la nature de $\operatorname{Im} f = f(\Omega)$. (Soyez le plus précis possible.)
- 3. Calculer f(0), puis déterminer $\lim_{x \to -a^+} f(x)$ et $\lim_{x \to a^-} f(x)$.
- 4. Montrer que f admet une fonction réciproque g définie et dérivable sur \mathbb{R} . (On ne demande pas de déterminer l'expression algébrique de g(x).)
- 5. (a) Donner l'expression de la dérivée g' en fonction de f' et g, puis dresser le tableau de variation de g. (On précisera, dans ce tableau, les limites de g en $-\infty$ et $en +\infty$.)
 - (b) Préciser la valeur de g(0), puis déterminer $K = \max_{x \in \mathbb{R}} |g'(x)|$.
- 6. (a) Soit $(x, x') \in \mathbb{R}^2$ avec x < x'. Énoncer le théorème sur l'égalité des accroissements finis pour la fonction g sur l'intervalle [x, x'].
 - (b) Montrer que $\forall x \in \mathbb{R}, |g(x)| \leq \frac{a}{2}|x|$.

Partie II

Soit (u_n) la suite récurrente définie pour $n \ge 0$ par $\begin{cases} u_0 \in \mathbb{R} \\ u_{n+1} = g(u_n) \end{cases}$, où g est la fonction introduite à la question \mathbf{I}) 4. On définit la série S_n , de terme général u_n , comme suit

$$S_n = u_0 + \dots + u_n = \sum_{k=0}^n u_k.$$

- 1. Que peut-on dire de S_n si $u_0 = 0$?
 - Dans la suite de l'exercice, on suppose que $u_0 \neq 0$.
- 2. (a) Montrer, par récurrence sur $n \geq 0$, que la suite (u_n) est de signe constant.
 - (b) En déduire que la suite (S_n) est strictement monotone. (Indication : distinguer les cas $u_0 < 0$ et $u_0 > 0$.)

1

TSVP!

- 3. Montrer, par récurrence sur n, que $\forall n \in \mathbb{N}, |u_n| \leq \left(\frac{a}{2}\right)^n |u_0|$.
- 4. (a) Rappeler la condition nécessaire de convergence de la série S_n .
 - (b) Pour quelles valeurs de a > 0 cette condition nécessaire est-elle vérifiée, quel que soit le choix de $u_0 \in \mathbb{R}^*$?

Dans la suite de l'exercice, on considère une telle valeur de a.

5. On pose $q=\frac{a}{2}$ et on définit la série géométrique

$$G_n = 1 + q + \dots + q^n.$$

Montrer que $\forall n \in \mathbb{N}, |S_n| \leq |u_0|G_n$.

- 6. Donner une autre expression de G_n en fonction de n et en déduire que $\forall n \in \mathbb{N}, G_n \leq \frac{1}{1-q}$.
- 7. Montrer que, quel que soit le choix de $u_0 \in \mathbb{R}^*$, la série S_n converge. (On ne demande pas de déterminer sa limite.)

Exercice 2 - CHANGER DE COPIE

Les questions 1, 2 sont indépendantes.

- 1. (a) On note \mathcal{D}_f le domaine de définition d'une fonction f. Rappeler la caractérisation à l'aide des suites de la proposition "f(x) admet une limite $\ell \in \mathbb{R}$ quand x tend vers a".
 - (b) On définit la fonction $f:[-1,1] \to \mathbb{R}$ par

$$\begin{cases} f(x) = 1, & \text{si } x \in A = \{\frac{1}{n}, n \in \mathbb{N}^*\}, \\ f(x) = 0, & \text{si } x \notin A. \end{cases}$$

La fonction f admet-elle une limite finie quand $x \to 0$?

2. Soient $\alpha, \beta \in \mathbb{R}$. On définit la fonction g sur \mathbb{R} de la façon suivante

$$\begin{cases} g(x) = \alpha x + \beta \sin x + x^2 \operatorname{Arctan} \frac{1}{x}, & \text{si } x \neq 0, \\ g(0) = 0. \end{cases}$$

- (a) Montrer que la fonction g est continue sur \mathbb{R} . (On ne demande pas d'utiliser la définition avec quantificateurs.)
- (b) Montrer que la fonction g est dérivable en x=0. On précisera la valeur de g'(0).
- (c) Justifier que la fonction g est dérivable sur \mathbb{R} et calculer g'(x) pour $x \neq 0$.
- (d) La fonction dérivée g' est-elle continue sur \mathbb{R} ?