— Médian P17 : Durée : 1 heure—

Date: 3 Juin 2017

Rendez une copie par exercice (même si elle est blanche)

(Changer de copie)

Exercice I (12 points)—

Les parties I, II et III sont indépendantes

- I (a) Ecrire le développement de Taylor-Young des fonctions $\cos(x)$ et $\operatorname{ch}(x)$ à l'ordre 2 en $x_0 = 0$. (On rappelle que la fonction $\operatorname{ch}(x) = \frac{\operatorname{e}^x + \operatorname{e}^{-x}}{2}$)
 - (b) Ecrire le développement limité de la fonction $f(x) = e^{\cos(x)} e^{\cosh(x)}$ à l'ordre 2 en $x_0 = 0$. La fonction f est elle un infiniment petit au voisinage de 0 ? Si oui préciser l'ordre et sa partie principale.
 - (c) Ecrire le développement limité de la fonction $g(x) = \cos(x) \operatorname{ch}(x)$ à l'ordre 2 en $x_0 = 0$. La fonction g est elle un infiniment petit au voisinage de 0 ? Si oui préciser l'ordre et sa partie principale.
 - (d) En déduire que :

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = e$$

- II (a) Rappeler, en vérifiant ses hypothèses, la formule de Taylor-Lagrange en 0 à l'ordre 2 de la fonction $\ln(1+x)$.
 - (b) Prouver que si $\theta > 0$ et si x > 0 alors $0 < \frac{1}{(1+\theta x)^3} < 1$. En déduire que pour x > 0

$$x - \frac{x^2}{2} < \ln(1+x) < x - \frac{x^2}{2} + \frac{x^3}{3}.$$

- (c) Pour quelles valeurs de x cette inégalité permet-elle d'affirmer que $x \frac{x^2}{2}$ est une valeur approchée de $\ln(1+x)$ à 10^{-3} près ? Application: Donner une valeur approchée de $\ln(1.1)$.
- III (a) Dans cette question on définit la fonction $h(x) = x^2 \ln(1+x) x^2 \ln(x)$ pour tout x > 0. En procédant éventuellement au changement de variable $t = \frac{1}{x}$, montrer que h admet un développement asymtotique au voisinage de $+\infty$:

$$h(x) = ax + b + \frac{c}{x} + o(\frac{1}{x}),$$

où a, b et c sont des réels à déterminer.

(b) En déduire que le graphe de h admet une asymptote au voisinage de $+\infty$ dont on donnera l'equation. On étudiera sa position par rapport au graphe de h.

(Changer de copie)

Exercice II (5 points)—

1. (a) Démontrer que, $\tan h = h + \frac{h^3}{3} + o(h^3)$ au voisinage de 0.

- (b) Rappeler le développement limité de $\ln(1+h)$ à l'ordre 3 en 0.
- (c) Calculer le développement limité de $\ln(1 + \tan h) \ln(1 \tan h)$ à l'ordre 3 en 0.
- 2. On rappelle que

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}.$$

- (a) Déduire des questions précédentes le développement limité à l'ordre 3 en $\frac{\pi}{4}$ de la fonction $f(x) = \ln(\tan x)$.
- (b) En déduire que le graphe de f admet une tangente T au point d'abcisse $\frac{\pi}{4}$. Donner une équation cartésienne de T et préciser la position du graphe de f par rapport à cette tangente.

(Changer de copie)

Exercice III (6 points)—

Soit f la fonction définie par f(x) = 1 - x. Soit n un entier strictement positif, on considère la subdivision de [0,1] donnée par $x_i = \frac{i}{n}, \ 0 \le i \le n$.

1. (a) On définit la fonction étagée

$$u_n(x) = 1 - x_{i+1}, \ \forall x \in [x_i, x_{i+1}[, \ 0 \le i \le n-1]]$$

Calculer

$$\int_0^1 u_n(x) \ dx.$$

(b) On définit la fonction étagée

$$U_n(x) = 1 - x_i, \ \forall x \in [x_i, x_{i+1}], \ 0 \le i \le n-1$$

Calculer

$$\int_0^1 U_n(x) \ dx.$$

2. (a) Montrer que $\forall x \in [0,1], \ u_n(x) \leq f(x) \leq U_n(x)$.

(b) Calculer $\int_0^1 (U_n(x) - u_n(x)) dx$. En déduire que f est intégrable sur [0,1].

2

(c) Calculer les limites

$$l_1 = \lim_{n \to +\infty} \int_0^1 u_n(x) \ dx$$
 et $l_2 = \lim_{n \to +\infty} \int_0^1 U_n(x) \ dx$

En déduire la valeur de $\int_0^1 f(x) dx$.