— Final P17 : Durée : 2 heures—

Date: 5 Mai 2017

(Changer de copie)

Exercice I (6 points)— (Les questions I. et II. sont indépendantes.)

- I- (a) Question de cours. Soit [a, b] un segment de \mathbb{R} (avec a < b). Enoncer le théorème de Rolle pour une fonction $f : [a, b] \longrightarrow \mathbb{R}$.
 - (b) Soit I un intervalle ouvert non vide de \mathbb{R} et $f:I \longrightarrow \mathbb{R}$ une fonction deux fois dérivable en tout point de I et s'annulant en trois points distincts $\alpha < \beta < \gamma$ de I. Montrer que la fonction dérivée seconde (notée f'') s'annule au mois une fois dans I.
- II- (a) Question de cours. Enoncer le théorème des accroissements finis.
 - (b) Soient deux réels a et b (avec a < b) et soit f une fonction dérivable sur l'intervalle ouvert]a,b[telle que f' soit bornée. (C'est à dire il existe un réel $M \ge 0$ telle que $\sup_{t \in]a,b[} |f'(t)| = M)$.

Montrer que pour tout x, y dans a, b on a f(x) - f(y) < M|x - y|.

(c) Déduire que pour tout x, y dans a, b on a

$$\forall \varepsilon > 0, \ \exists \ \eta > 0, \ (|x - y| < \eta) \Longrightarrow (|f(x) - f(y)| < \varepsilon).$$

(On distingera le cas où M=0 et M>0.)

- (d) Montrer que f est bornée sur]a, b[. (Indication: pour tout x_0 fixé dans]a, b[on a $\forall x \in]a, b[$, $||f(x)| |f(x_0)|| < |f(x) f(x_0)|$.)
- (e) On suppose qu'il existe deux réels l_a et l_b tels que pour toutes suites $(a_n)_n$ et $(b_n)_n$ à valeurs dans]a,b[l'on a :

$$(\lim_{n \to +\infty} a_n = a) \Longrightarrow (\lim_{n \to +\infty} f(a_n) = l_a) \text{ et } (\lim_{n \to +\infty} b_n = b) \Longrightarrow (\lim_{n \to +\infty} f(b_n) = l_b).$$

Justifier que f est prolongeable par continuité sur tout le segment [a, b].

(Changer de copie)

Exercice II (6 points)—

Soit [a,b] (a < b) un segment de \mathbb{R} et f une fonction continue de [a,b] dans [a,b].

- 1. En utilisant le théorème des valeurs intermédiaires, montrer qu'il existe au moins un nombre l dans [a, b] tel que f(l) = l, c'est à dire, que f admet un point fixe.
- 2. On suppose de plus, à partir de cette question, que f vérifie cette condition

$$\forall x \in [a, b], \forall y \in [a, b], (x = y) \text{ ou } (|f(x) - f(y)| < |x - y|).$$

Montrer alors que le point fixe l de f est unique.

- 3. Soit $x \in [a, b]$. Montrer que l'on a aussi $\frac{x + f(x)}{2} \in [a, b]$.
- 4. On introduit la suite $(u_n)_n$ pour tout $n \geq 0$ définie par

$$\begin{cases} u_0 = \alpha \in [a, b] \\ u_{n+1} = \frac{u_n + f(u_n)}{2}, \quad \forall n \in \mathbb{N} \end{cases}$$

- (a) Justifier (en utilisant le résultat établi à la question (3.)) que pour tout $n \ge 0, u_n \in [a, b].$
- (b) Montrer que pour tout $n \in \mathbb{N}^*$, $(u_{n+1} u_n)$ est du même signe que $(u_n u_{n-1})$. En déduire que la suite $(u_n)_n$ est monotone (croissante ou décroissante).
- (c) Montrer que la suite $(u_n)_n$ converge vers l'unique point fixe l de f.

(Changer de copie)

Exercice III (6 points)—

On définit la fonction f suivante sur \mathbb{R}^* par :

$$f(x) = x\sin(x)\sin(\frac{1}{x}).$$

- 1. Vérifier que f est continue sur \mathbb{R}^* .
- 2. En calculant la limite $\lim_{x\to 0} f(x)$, montrer que f est prolongeable par continuité sur tout \mathbb{R} . On notera la fonction g son prolongement par continuité.
- 3. Vérifier que g est dérivable en tout point $x \in \mathbb{R}^*$ et calculer le nombre dérivé g'(x).
- 4. Montrer que la fonction g est aussi dérivable en 0 et calculer g'(0).
- 5. La fonction g est-elle de classe C^1 sur \mathbb{R} ?

(Changer de copie)

Exercice IV (7 points)—

Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = \begin{cases} \sqrt{-x} & \text{si } x < 0\\ 0 & \text{si } x = 0\\ x \ln(x) & \text{si } x > 0 \end{cases}$$

- 1. Montrer que f est continue sur \mathbb{R} (en particulier en 0).
- 2. Etudier la dérivabilité de f pour tout réel non nul et calculer f'(x) quand x < 0 et quand x > 0.
- 3. La fonction f est-elle dérivable en 0? On précisera l'allure de la tangente en x=0.
- 4. Dresser le tableau de variation de f et tracer son graphe (on tracera les tangentes remarquables).
- 5. Montrer que f est une bijection de $[e^{-1}, +\infty[$ sur $[-e^{-1}, +\infty[$.
- 6. Justifier que la fonction réciproque, qu'on note par f^{-1} , est dérivable sur $]-e^{-1}, +\infty[$. Calculer $(f^{-1})'(0)$.