Final MT02 - P2023 Durée : 2h

La rédaction est très importante, rédigez et justifiez clairement vos réponses ou démonstrations!

Les exercices 1, 2 et 3 sont indépendants.

Exercice 1 - (Barème approximatif : 8 points - Temps de composition : 50 min)

- 1. Soit G la fonction définie sur $I = [0, \frac{\pi}{2}[\text{ par } G(x)] = \int_0^x \frac{\tan t}{2 + \cos^2 t} dt$.
 - (a) Déterminer deux nombres réels α et β tels que

$$\frac{1}{u(2+u^2)} = \alpha \times \frac{1}{u} + \beta \times \frac{u}{2+u^2}.$$

Correction : On met le membre de droite au même dénominateur

$$\frac{1}{u(2+u^2)} = \frac{\alpha(2+u^2) + \beta u^2}{u(2+u^2)} = \frac{(\alpha+\beta)u^2 + 2\alpha}{u(2+u^2)}$$

On a donc $1 = (\alpha + \beta)u^2 + 2\alpha \Leftrightarrow \alpha = \frac{1}{2}$ et $\beta = -\alpha = -\frac{1}{2}$

(b) En déduire que pour tout $x \in]0, +\infty[$, $\int_1^x \frac{1}{u(2+u^2)} du = \frac{1}{4} \ln\left(\frac{3x^2}{2+x^2}\right)$. Correction: On utilise la décomposition précédente pour déterminer une primitive de

Correction : On utilise la décomposition précédente pour déterminer une primitive de $\frac{1}{u(2+u^2)}$:

$$\int_{1}^{x} \frac{1}{u(2+u^{2})} du = \int_{1}^{x} \frac{1}{2u} - \frac{1}{2 \times 2} \times \frac{2 \times u}{(2+u^{2})} du = \left[\frac{1}{2} \ln u - \frac{1}{4} \ln(2+u^{2})\right]_{1}^{x}$$

$$= \frac{1}{2} \ln x - \frac{1}{4} \ln(2+x^{2}) + \frac{1}{4} \ln 3$$

$$= \frac{1}{4} \ln x^{2} - \frac{1}{4} \ln(2+x^{2}) + \frac{1}{4} \ln 3$$

$$= \frac{1}{4} \ln \left(\frac{3x^{2}}{2+x^{2}}\right).$$

(c) À l'aide du changement de variable $u = \cos t$, montrer que $G(x) = -\int_1^{\cos x} \frac{1}{u(2+u^2)} du$. Puis, donner l'expressions algébrique de G(x).

Correction: On pose $u = \cos t$ dans la définition de G(x). Les nouvelles bornes sont

$$t = x \Leftrightarrow u = \cos x$$

$$t = 0 \Leftrightarrow u = \cos 0 = 1$$

TSVP!

On a $\frac{du}{dt} = -\sin t \Rightarrow du = -\sin t \, dt$, donc on peut réécrire l'intégrand comme suit

$$\frac{\tan t}{2 + \cos^2 t} dt = \frac{\sin t}{\cos t (2 + \cos^2 t)} dt = -\frac{1}{u(2 + u^2)} du.$$

D'où l'égalité

$$\int_0^x \frac{\tan t}{2 + \cos^2 t} \, dt = -\int_1^{\cos x} \frac{1}{u(2 + u^2)} \, du = -\frac{1}{4} \ln \left(\frac{3\cos^2 x}{(2 + \cos^2 x)} \right).$$

- 2. On se propose de déterminer une primitive F de la fonction f définie par $f(x) = \frac{(1-x)^2}{x^3(1+x^2)}$.
 - (a) Effectuer la division selon les puissances croissantes de $A(x) = (1-x)^2$ par $B(x) = 1 + x^2$ avec un reste de valuation 3.

Correction: On trouve le quotient Q(x) = 1 - 2x et le reste $R(x) = 2x^3$

(b) En déduire qu'une expression algébrique de F est

$$F(x) = -\frac{1}{2x^2} + \frac{2}{x} + 2\operatorname{Arctan} x.$$

Correction: On a

$$f(x) = \frac{A(x)}{x^3 B(x)} = \frac{B(x) \times Q(x) + R(x)}{x^3 B(x)} = \frac{Q(x)}{x^3} + \frac{2}{B(x)}$$
$$f(x) = \frac{1 - 2x}{x^3} + \frac{2}{1 + x^2} = \frac{1}{x^3} - \frac{2}{x^2} + 2 \times \frac{1}{1 + x^2}$$

D'où une primitve de f s'écrit

$$F(x) = \int \frac{1}{x^3} dx - 2 \int \frac{1}{x^2} + 2 \int \frac{1}{1+x^2} dx = -\frac{1}{2x^2} + \frac{2}{x} + 2\operatorname{Arctan} x.$$

3. On considère l'équation différentielle suivante

(E)
$$(2 + \cos^2 x)y' + 4\tan(x)y = f(x+1)\cos^2 x$$
, avec $x \in I$.

(a) Déterminer la forme générale des solutions de l'équation homogène associée à (E). Correction : Pour $x \in I$, on peut écrire

$$y' = -4\frac{\tan x}{(2 + \cos^2 x)}y + f(x+1)\frac{\cos^2 x}{2 + \cos^2 x}.$$

Avec les notations, du cours, le coefficient a est défini par $a(x) = -4\frac{\tan x}{(2+\cos^2 x)}$ donc une primitive est $A(x) = -4G(x) = \ln\left(\frac{3\cos^2 x}{(2+\cos^2 x)}\right)$. La forme générale des solutions de l'équation homogène est

$$y_h(x) = Ce^{A(x)} = \frac{3C\cos^2 x}{(2+\cos^2 x)}, \quad C \in \mathbb{R} \text{ choisi arbitrairemnt.}$$

On peut inclure le facteur 3 dans la constante C et considérer la forme $y_h(x) = \frac{C\cos^2 x}{(2+\cos^2 x)}$

(b) À l'aide de la variation de la constante, montrer qu'une solution particulière de (E) est (Indication: utiliser les questions 1. et 2.)

$$\frac{\cos^2 x}{2 + \cos^2 x} \times F(x+1).$$

Correction: On pose $y_p(x) = \varphi(x) \times \frac{\cos^2 x}{(2+\cos^2 x)}$.

$$y_p'(x) = \varphi'(x) \times \frac{\cos^2 x}{(2 + \cos^2 x)} + \varphi(x) \times \left(-\frac{4\sin(x)\cos(x)}{(2 + \cos^2 x)^2}\right).$$

On obtient donc

$$\varphi'(x) \times \frac{\cos^2 x}{(2 + \cos^2 x)} \quad -\varphi(x) \times \frac{4\sin(x)\cos(x)}{(2 + \cos^2 x)^2} \quad = \quad -\frac{4\tan(x)}{2 + \cos^2 x} \times \varphi(x) \times \frac{\cos^2 x}{(2 + \cos^2 x)} + f(x+1)\frac{\cos^2 x}{2 + \cos^2 x}$$

On trouve tout d'abord

$$\varphi'(x) = f(x+1)$$

dont une primitive est $\varphi(x) = F(x+1)$. Une solution particulière de (E) est

$$y_p(x) = \frac{\cos^2 x}{(2 + \cos^2 x)} \times F(x+1)$$

(c) En déduire l'unique solution de (E) satisfaisant y(0) = 0.

Correction : Le principe de superposition des solutions nous donne la forme générale suivante des solutions de l'équation (E)

$$y(x) = y_h(x) + y_p(x) = \frac{\cos^2 x}{(2 + \cos^2 x)} \times (C + F(x+1))$$

La condition y(0) = 0 entraı̂ne

$$C + F(1) = 0 \Leftrightarrow C = -F(1) = -\left(-\frac{1}{2} + 2 + 2\operatorname{Arctan}(1)\right) = -\left(\frac{3}{2} + 2 \times \frac{\pi}{4}\right).$$

L'unique solution est définie par

$$y(x) = \frac{\cos^2 x}{(2 + \cos^2 x)} \times \left(F(x+1) - \frac{3+\pi}{2} \right)$$

Exercice 2 - (Barème approximatif: 7 points - Temps de composition: 35 min)

On définit deux applications sur $[-1, +\infty[$ par $f_1(x) = 4\sqrt{1+x} - 3e^x$ et $f_2(y) = \frac{2+y}{2-y}$.

1. Déterminer le développement limité de f_1 au voisinage de 0 à l'ordre 3.

Correction: Il existe une fonction ε_1 telle que

$$\forall x \ge 1, \quad f_1(x) = 4\left(1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16}\right) - 3\left(1 + x + \frac{x^2}{2} + \frac{x^3}{6}\right) + x^3 \varepsilon_1(x), \text{ avec } \varepsilon_1(x) \xrightarrow[x \to 0]{} 0.$$

$$\Rightarrow f_1(x) = 1 - x - 2x^2 - \frac{x^3}{4} + x^3 \varepsilon_1(x)$$

2. En déduire que $\lim_{x\to 0} \frac{f_1(x) - 1 + x + 2x^2}{x - \sin x} = -\frac{3}{2}$. Correction: Il s'agit d'un quotient d'infiniment petit au voisinage de 0, on doit utiliser les parties principales des DLs du numérateur et du dénminateur pour calculer la limite :

$$f_1(x) - 1 + x + 2x^2 = -\frac{x^3}{4} + x^3 \varepsilon_1(x)$$

et la partie principale de $x - \sin x$ est $\frac{x^3}{6}$. On obtient

$$\lim_{x \to 0} \frac{f_1(x) - 1 + x + 2x^2}{x - \sin x} = \lim_{x \to 0} \frac{-\frac{x^3}{4}}{\frac{x^3}{6}} = -\frac{6}{4} = -\frac{3}{2}.$$

3. Déterminer le développement limité de f_2 au voisinage de 1 à l'ordre 3. (Indication : effectuer le changement de variable y = 1 + h.)

Correction : Avec le changement de variable indiqué, on a $f_2(1+h) = \frac{3+h}{1-h} = (3+h) \times \frac{1}{1-h}$. On effectue le produit de (3+h) avec le DL usuel au voisinage de 0 de $\frac{1}{1-h}$

$$f_2(1+h) = (3+h)(1+h+h^2+h^3) + h^3\varepsilon_2(h) = 3+4h+4h^2+4h^3+h^3\varepsilon_3(h).$$

4. En déduire que le développement limité de $g=f_2\circ f_1$ au voisinage de 0 à l'ordre 3 est

$$g(x) = 3 - 4x - 4x^2 + 11x^3 + x^3 \varepsilon(x)$$
, avec $\varepsilon(x) \underset{x \to 0}{\longrightarrow} 0$.

Correction : On pose $h=-x-2x^2-\frac{x^3}{4}$ dans le DL précédent :

$$g(x) = 3 + 4\left(-x - 2x^2 - \frac{x^3}{4}\right) + 4\left(-x - 2x^2 - \frac{x^3}{4}\right)^2 + 4\left(-x - 2x^2 - \frac{x^3}{4}\right)^3 + x^3\varepsilon_3(x)$$

$$= 3 - 4x - 8x^2 - x^3 + 4x^2 + 16x^3 - 4x^3 + x^3\varepsilon_3(x)$$

$$= 3 - 4x - 4x^2 + 11x^3 + x^3\varepsilon_3(x).$$

- 5. Soit g la fonction définie sur \mathbb{R}^* par $f(x) = (2x-1)g(\frac{1}{2x})$ et on note \mathscr{C}_f sa courbe représentative.
 - (a) Déterminer le développement limité de f(x) au voisinage de $+\infty$ et $-\infty$ sous la forme

$$f(x) = 6x + a + \frac{b}{x^2} + \frac{1}{x^2} \widetilde{\varepsilon} \left(\frac{1}{x}\right), \text{ avec } \widetilde{\varepsilon}(t) \underset{t \to 0}{\to} 0,$$

où les valeurs de $a \neq 0$ et $b \neq 0$ sont à préciser.

Correction: On a

$$f(x) = (2x - 1)\left(3 - \frac{2}{x} - \frac{1}{x^2} + \frac{11}{8x^3}\right) + \frac{1}{x^2}\varepsilon_4\left(\frac{1}{x}\right)$$
$$= 6x - 4 - 3 - \frac{2}{x} + \frac{2}{x} + \frac{11}{4x^2} + \frac{1}{x^2} + \frac{1}{x^2}\varepsilon_5\left(\frac{1}{x}\right)$$
$$= 6x - 7 + \frac{15}{4x^2} + \frac{1}{x^2}\varepsilon_5\left(\frac{1}{x}\right).$$

- (b) i. Donner l'équation de la droite asymptote à \mathscr{C}_f au voisinage de $+\infty$ et $-\infty$. Correction : L'équation de la droite asymptote à à \mathscr{C}_f au voisinage de $\pm \infty$ est y=
 - ii. Indiquer la position relative de la courbe \mathscr{C}_f par rapport à son asymptote en $+\infty$ et $-\infty$. Correction: Puisqu'au voisinage de $\pm \infty$, on a

$$f(x) - [6x - 7] = +\frac{15}{4x^2} + \frac{1}{x^2} \varepsilon_5 \left(\frac{1}{x}\right) > 0,$$

On en déduit que \mathscr{C}_f est située au dessus de son asymptote.

Exercice 3 - (Barème approximatif : 5 points - Temps de composition : 30 min)

On définit la suite de fonctions $(f_n)_{n\geq 0}$ sur $D=[0,+\infty[$ par $f_n(x)=nx^2e^{-nx}.$

1. Justifier que la suite de fonctions $(f_n)_{n\geq 0}$ converge simplement vers la fonction identiquement

Correction: \bullet Pour x=0, on a $\forall n \in \mathbb{N}$, $f_n(0)=0$. La suite $(f_n(0))$ est constante égale à 0 donc $\lim_{n \to +\infty} f_n(0) = 0.$

 \bullet Pour $x\in \]0,+\infty[,$ par croissance comparée polynôme/exponentielle, on a

$$\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} x^2 \times ne^{-nx} = \lim_{n \to +\infty} x^2 \times \frac{n}{e^{nx}} = 0.$$

2. Pour tout $n \in \mathbb{N}$, on pose $u_n = \max_{x \in D} |f_n(x)|$. Montrer que $u_n = f_n(\frac{2}{n})$. Correction: On calcule $u_n = \max_{x \in [0,+\infty[} |f_n(x)|$:

$$f'_n(x) = ne^{-nx}(2x - nx^2) = ne^{-nx} \times x(2 - nx).$$

x	0		$\frac{2}{n}$		$+\infty$
$f_n'(x)$	0	+	0	_	
$f_n(x)$	0		$u_n = \frac{4}{ne^2}$		~ ₀

3. En déduire que la suite de fonctions $(f_n)_{n\geq 0}$ converge uniformément sur D vers la fonction identiquement nulle.

Correction: On a $u_n = \frac{4}{ne^2} \underset{n \to +\infty}{\to} 0$, on en déduit que la suite de fonctions (f_n) converge uniformément vers la fonction identiquement nulle sur $D = [0, +\infty[$.

4. On pose $I_n = \int_0^1 f_n(x) dx$. Sans calculer I_n , montrer que $\lim_{n \to +\infty} I_n = 0$. Correction: On utilise le théorème des gendarmes:

$$\forall x \in [0,1], |f_n(x)| \le u_n \quad \Rightarrow \quad \forall x \in [0,1], -u_n \le f_n(x) \le u_n$$

$$\Rightarrow \quad \int_0^1 -u_n \, dt \le \int_0^1 f_n(t) \, dt \le \int_0^1 u_n \, dt$$

$$\Rightarrow \quad -u_n \le \int_0^b f_n(t) \, dt \le u_n$$

Comme $u_n \underset{n \to +\infty}{\to} 0$, on en déduit que $\lim_{n \to +\infty} \int_a^b f_n(t) dt = 0$ d'après le théorème des gendarmes.

5. À l'aide d'une ou plusieurs intégrations par parties, montrer que

$$n^2I_n = 2 - (n^2 + 2n + 2)e^{-n}$$
.

Correction:

$$n^{2}I_{n} = \int_{0}^{1} n^{3}x^{2}e^{-nx}dx = \left[-n^{2}x^{2}e^{-nx}\right]_{0}^{1} + n^{2}\int_{0}^{1} 2xe^{-nx}dx$$

$$= -n^{2}e^{-n} + \left[-2nxe^{-nx}\right]_{0}^{1} + \int_{0}^{1} 2ne^{-nx}dx$$

$$= -n^{2}e^{-n} - 2ne^{-n} + \left[-2e^{-nx}\right]_{0}^{1}$$

$$= -n^{2}e^{-n} - 2ne^{-n} - 2e^{-n} + 2.$$

6. A l'aide des règles de Riemann, en déduire que $\sum_{n\geq 0} I_n$ est une série convergente (Indication : proposer une suite équivalente à $(I_n)_{n\geq 0}$.)

Correction : D'après l'échelle de comparaison exponentielle/polynôme au voisinage de $+\infty$, on sait que

$$(n^2 + 2n + 2)e^{-n} = \frac{(n^2 + 2n + 2)}{e^n} \underset{n \to +\infty}{\to} 0.$$

Par conséquent, $n^2I_n \underset{n \to +\infty}{\to} 2$ et I_n est équivalent à $\frac{2}{n^2}$. D'après la règle de Riemann, $\sum_{n \geq 0} I_n$ est une série convergente.