Corrigé du Final MT02-P24

Les exercices 1, 2 et 3 sont indépendants.

Exercice 1 - (Barème approximatif : 8 points - Temps de composition : 40min)

1. (a) Déterminer la forme générale des primitives de g définie sur \mathbb{R} par $g(t) = \frac{1}{t^2 - 2t + 5}$. Correction : On met le dénominateur sous forme canonique : $t^2 - 2t + 5 = (t-1)^2 + 4$ puis on transforme la fonction g comme suit

$$g(t) = \frac{1}{4 + (t - 1)^2} = \frac{1}{4} \times \frac{1}{1 + \frac{1}{4}(t - 1)^2} = \frac{1}{4} \times \frac{1}{1 + (\frac{t - 1}{2})^2}.$$

À l'aide du changement de variable $u = \frac{t-1}{2}$, on obtient

$$\int g(t) dt = \int \frac{1}{4} \times \frac{1}{1+u^2} \times 2 du = \frac{1}{2} \operatorname{Arctan} u + C = \frac{1}{2} \operatorname{Arctan} \left(\frac{t-1}{2} \right) + C, \quad C \in \mathbb{R}$$

(b) On pose $u(t)=t^2-2t+5.$ Déterminer deux nombres réels α et β tels que

$$\frac{(t+2)^2}{t^2 - 2t + 5} = 1 + \alpha \frac{u'(t)}{u(t)} + \beta g(t).$$

Correction : On trouve $\alpha=3$ et $\beta=5$. POur ce faire on met le tout au même dénominateur :

$$(t+2)^{2} = t^{2} + 4t + 4 = 1 \times (t^{2} - 2t + 5) + \alpha(2t - 2) + \beta$$

$$\Leftrightarrow \begin{cases} 4 = -2 + 2\alpha \\ 4 = 5 - 2\alpha + \beta \end{cases} \Leftrightarrow \alpha = 3 \text{ et } \beta = 4 - 5 + 2\alpha = 5.$$

(c) En déduire $G(x) = \int_1^x \frac{(t+2)^2}{t^2 - 2t + 5} dt$. Correction :

$$G(x) = \int_{1}^{x} 1 dt + 3 \int_{1}^{x} \frac{2t - 2}{t^{2} - 2t + 5} dt + 5 \int_{1}^{x} g(t) dt$$

$$= \left[t \right]_{1}^{x} + 3 \left[\ln(t^{2} - 2t + 5) \right]_{1}^{x} + 5 \left[\frac{1}{2} \operatorname{Arctan} \left(\frac{x - 1}{2} \right) \right]_{1}^{x}$$

$$G(x) = (x - 1) + 3 \ln(x^{2} - 2x + 5) - 3 \ln(4) + \frac{5}{2} \operatorname{Arctan} \left(\frac{x - 1}{2} \right).$$

2. On considère l'équation différentielle suivante

(E)
$$(x+2)y' + 3y = \frac{4}{x^2 - 2x + 5}$$
, avec $x \in I =]-2, +\infty[$.

(a) i. Déterminer la forme générale des solutions de l'équation homogène associée à (E). Correction : On isole y'

$$y' = -\frac{3}{x+2}y + \frac{4}{(x+2)(x^2 - 2x + 5)}.$$

On pose $a(x) = -\frac{3}{(x+2)}$ et $b(x) = \frac{4}{(x+2)(x^2-2x+5)}$. Les fonctions a et b sont continues sur I. On calcule une primitive arbitraire de a:

$$A(x) = \int -\frac{3}{x+2} dx = -3\ln(x+2) = \ln\left[\frac{1}{(x+2)^3}\right].$$

La forme générale des solutions de l'équation homogène est $y_h(x) = \frac{C}{(x+2)^3}$ avec $C \in \mathbb{R}$ pouvant être choisi arbitrairement.

ii. À l'aide de la variation de la constante, déterminer une solution particulière de (E). Correction : On pose $y_p(x) = \frac{\varphi(x)}{(x+2)^3}$. On dérive

$$y'_p(x) = \varphi'(x) \times \frac{1}{(x+2)^3} - \frac{3\varphi(x)}{(x+2)^4}.$$

On remplace dans (E) pour obtenir

$$\varphi'(x) \times \frac{1}{(x+2)^3} \frac{3\varphi(x)}{(x+2)^4} = \frac{3}{(x+2)} \times \frac{\varphi(x)}{(x+2)^3} + \frac{4}{(x+2)(x^2-2x+5)}$$
$$\Leftrightarrow \varphi'(x) = \frac{4(x+2)^2}{x^2-2x+5}.$$

Une solution particulière est donc $y_p(x) = \frac{4G(x)}{(x+2)^3}$.

(b) En déduire l'unique solution de (E) satisfaisant $y(1) = -\frac{2}{3}$. Préciser la valeur de y'(1).

Correction : La forme générale des solutions de (E) est $y(x) = y_h(x) + y_p(x) = \frac{4G(x)+C}{(x+2)^3}$. La condition $y(1) = -\frac{2}{3}$ entraı̂ne C = -18 car G(1) = 0. L'unique solution est

$$y(x) = \frac{4G(x) - 18}{(x+2)^3}$$

On pose x = 1 dans (E): On a $3y'(1) + 3y(1) = 1 \Leftrightarrow y'(1) = 1$

2

(c) On considère la fonction f définie sur I par $f(x) = 1 + \int_1^x y(t) dt$. À l'aide d'une intégration par partie, compléter les pointillés

$$f(x) = \frac{9 - 2G(x)}{(x+2)^2} + \cdots$$

Correction : On pose $u'(x) = \frac{1}{(x+2)^3}$ et v(x) = 4G(x) - 18. On obtient $u(x) = -\frac{1}{2(x+2)^2}$ et v'(x) = 4G'(x).

$$f(x) = \frac{9 - 2G(x)}{(x+2)^2} + \int_1^x \frac{2G'(x)}{(x+2)^2} dx = \frac{9 - 2G(x)}{(x+2)^2} + \int_1^x \frac{2}{x^2 - 2x + 5} dx$$

$$f(x) = \frac{9-2G(x)}{(x+2)^2} + Arctan\left(\frac{x-1}{2}\right)$$

- (d) Déterminer le développement limité de f(x) à l'ordre 2 au voisinage de a=1. Correction : On utilise la formule de Taylor-Young à l'ordre $2: f(x)=f(1)+f'(1)(x-1)+\frac{f''(1)}{2}(x-1)^2+(x-1)^2\varepsilon(x-1)=1-\frac{2}{3}(x-1)+\frac{1}{2}(x-1)^2+(x-1)^2\varepsilon(x-1),$ sachant que f'(x)=y(x) et f''(x)=y'(x).
- (e) En déduire l'équation de la tangenta à \mathscr{C}_f au point d'abscisse a=1 ainsi que sa position relative par rapport à \mathscr{C}_f .

Correction: L'équation de la tangente est $y=1-\frac{2}{3}(x-1)=\frac{5-2x}{3}$. Puisqu'au voisinage de $a=1, \ f(x)-(\frac{5-2x}{3})=\frac{1}{2}(x-1)^2+(x-1)^2\varepsilon(x-1)\geq 0$, la tangente est située sous la courbe représentative de f.

Exercice 2 - (Barème approximatif : 5 points - Temps de composition : 35 min)

Soit
$$f_1(x) = \sqrt{4 - 3x^2}$$
 définie pour $x \in \left[-\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}\right]$ et $f_2(x) = \frac{1 - 3x}{1 - x + x^2}$ définie pour $x \in \mathbb{R}$.

1. A l'aide d'une division selon les puissances croissantes, déterminer le développement limité à l'ordre 2 au voisinage de 0 de f_2 .

Correction : $f_2(x) = 1 - 2x - 3x^2 + x^2 \varepsilon_1(x)$.

2. À l'aide du changement de variable x = 1 + h, montrer que le développement limité de f_1 au voisinage de 1 à l'ordre 2 est

$$f_1(1+h) = 1 - 3h - 6h^2 + h^2\varepsilon(h)$$
, avec $\varepsilon(h) \underset{h\to 0}{\longrightarrow} 0$.

Correction : Après changement de variable on a $f_1(1+h) = \sqrt{1-6h-3h^2}$. On pose $x = -3h-6h^2$ dans le DL usuel de $\sqrt{1+x}$ au voisinage de 0 :

$$f_1(1+h) = 1 + \frac{1}{2}(-6h - 3h^2) - \frac{1}{8}(-6h - 3h^2)^2 + h^2\varepsilon_2'(h)$$

$$= 1 - 3h - \frac{3}{2}h^2 - \frac{36}{8}h^2 + h^2\varepsilon_2(h)$$

$$= 1 - 3h - \frac{3}{2}h^2 - \frac{9}{2}h^2 + h^2\varepsilon_2(h)$$

$$= 1 - 3h - 6h^2 + h^2\varepsilon_2(h)$$

3. En déduire que le développement limité de la composée $f_1 \circ f_2$ au voisinage de 0 à l'ordre 2 est

$$f_1 \circ f_2(x) = 1 + 6x - 15x^2 + x^2 \tilde{\varepsilon}(x)$$
, avec $\tilde{\varepsilon}(x) \underset{x \to 0}{\longrightarrow} 0$.

Correction : On pose $h = -2x - 3x^2$ dans le DL de f_1 :

$$f_1 \circ f_2(x) = 1 - 3(-2x - 3x^2) - 6(-2x - 3x^2)^2 + x^2 \varepsilon_2(x)$$

= 1 + 6x + 9x^2 - 24x^2 + x^2 \varepsilon_3(x)
= 1 + 6x - 15x^2 + x^2 \varepsilon_3(x)

4. Soit $\alpha \in \mathbb{R}$ un paramètre. Indiquer pour quelle valeur de α la fonction g définie au voisinage de 0 par $g(x) = f_1 \circ f_2(x) - \ln(1 + \alpha x)$ admet-elle un extremum local en a = 0? Préciser sa nature.

Correction:

$$\ln(1 + \alpha x) = \alpha x - \frac{\alpha^2 x^2}{2} + x^2 \varepsilon_4(x)$$

La fonction v admet un extremum local en a=0 si v'(0)=0 soit $6-\alpha=0 \Leftrightarrow \alpha=6$. Pour cette valeur de α , on a

$$v(x) = 1 - 15x^2 + \frac{\alpha^2 x^2}{2} + x^2 \varepsilon_5(x) = 1 + 3x^2 + x^2 \varepsilon_5(x)$$

On en déduit a = 0 réalise un minimum local.

Exercice 3 - (Barème approximatif: 7 points - Temps de composition: 50 min)

On définit la suite de fonctions $(f_n)_{n\geq 1}$ sur $D=[0,+\infty[$ par $f_n(x)=\frac{x}{x^{n+1}-x+n}]$.

On pose
$$I_n = \int_0^1 f_n(x) dx$$
, $S_n = \sum_{k=1}^n \int_0^1 f_k(x) dx$ et $S'_n = \sum_{k=1}^n \int_0^{\frac{1}{k}} f_k(x) dx$.

1. Pour tout $n \in \mathbb{N}$ avec $n \ge 1$, on pose $u_n = \max_{x \in D} |f_n(x)|$. Montrer que $u_n = f_n(1)$. Correction : On dresse le tableau de variation des fonctions f_n :

$$f'_n(x) = \frac{x^{n+1} - x + n - x((n+1)x^n - 1)}{(x^{n+1} - x + n)^2} = \frac{n(1 - x^{n+1})}{(x^{n+1} - x + n)^2}.$$

Par conséquent, sur \mathbb{R}_+ , $f'_n(x) = 0 \Leftrightarrow x = 1$.

x	0		1		$+\infty$
$f_n'(x)$		+	0	_	
$f_n(x)$	0		$u_n = \frac{1}{n}$		· 0

2. En déduire que la suite de fonctions $(f_n)_{n\geq 1}$ converge uniformément sur D vers la fonction identiquement nulle.

Correction : On a $u_n = \frac{1}{n} \underset{n \to +\infty}{\longrightarrow} 0$, on en déduit que la suite de fonctions (f_n) converge uniformément vers la fonction identiquement nulle sur $D = [0, +\infty[$.

3. Montrer que $\lim_{n\to+\infty} I_n = 0$.

Correction: On utilise le théorème des gendarmes:

$$\forall x \in [0, 1], |f_n(x)| \le u_n \quad \Rightarrow \quad \forall x \in [0, 1], -u_n \le f_n(x) \le u_n$$

$$\Rightarrow \quad \int_0^1 -u_n \, dt \le \int_0^1 f_n(t) \, dt \le \int_0^1 u_n \, dt$$

$$\Rightarrow \quad -u_n \le \int_a^b f_n(t) \, dt \le u_n$$

Comme $u_n \underset{n \to +\infty}{\to} 0$, on en déduit que $\lim_{n \to +\infty} \int_a^b f_n(t) dt = 0$ d'après le théorème des gendarmes.

4. (a) Justifier que $\forall n \in \mathbb{N}^*, \forall x \in [0,1], f_n(x) \geq \frac{x}{n}$.

Correction:

$$\forall n \in \mathbb{N}^*, \forall x \in [0,1], \ x^{n+1} \le x \Rightarrow x^{n+1} - x + n \le n \Rightarrow f_n(x) \ge \frac{x}{n}.$$

(b) En déduire que la série $(S_n)_{n\geq 1}$ diverge.

Correction: L'intégration et la sommation conservent les inégalités (tant que la borne inférieure est plus petite que la borne suppérieure):

$$S_n \ge \sum_{k=1}^n \int_0^1 \frac{x}{n} dx = \sum_{k=0}^n \frac{1}{2n}$$

D'après les règles de Riemann $\sum_{k=0}^{n} \frac{1}{2n}$ diverge donc S_n aussi.

5. (a) Justifier que $\forall n \in \mathbb{N}^*, \forall x \ge 0, f_n(x) \le \frac{x}{n-x}$.

Correction:

$$\forall n \in \mathbb{N}^*, \forall x \ge 0, \ x^n n + 1 \ge 0 \Rightarrow x^{n+1} - x + n \ge n - x \Rightarrow f_n(x) \le \frac{x}{n-x}.$$

(b) Montrer que $J_n = \int_0^{\frac{1}{n}} \frac{x}{n-x} dx = -n \ln\left(1 - \frac{1}{n^2}\right) - \frac{1}{n}$. Correction : On écrit $\frac{x}{n-x} = \frac{n}{n-x} - 1$.

$$J_n = \int_0^{\frac{1}{n}} \left(\frac{n}{n-x} - 1 \right) dx = \left[-n \ln(n-x) - x \right]_0^{\frac{1}{n}}$$
$$= -n \ln(n - \frac{1}{n}) + n \ln n - \frac{1}{n}$$
$$= -n \ln\left(1 - \frac{1}{n^2}\right) - \frac{1}{n}$$

(c) À l'aide d'un développement limité à l'ordre 2 au voisinage de 0 de $\ln(1-x)$, déterminer un équivalent de J_n sous la forme $\frac{A}{n^{\alpha}}$ où $A \in \mathbb{R}$ et $\alpha \in \mathbb{N}$.

Correction: $\ln(1-x) = -x - \frac{x^2}{2} + x^2 \varepsilon(x)$ et on pose $x = \frac{1}{n^2}$

$$J_n = -n\left(-\frac{1}{n^2} - \frac{1}{2n^4}\right) - \frac{1}{n} + \frac{1}{n^3}\varepsilon\left(\frac{1}{n^3}\right) = \frac{1}{2n^3} + \frac{1}{n^3}\varepsilon\left(\frac{1}{n^3}\right).$$

(d) En déduire que la série $(S'_n)_{n\geq 1}$ converge. Correction : D'après le tableau de variation, les fonctions f_n sont positives donc « $\frac{1}{n} \geq 0 \Rightarrow (S'_n)$ est une suite croissante ». On a

$$\forall n \ge 1, 0 \le S'_n \le \sum_{k=1}^n \frac{1}{2n^3}.$$

D'après les règles de Riemann, la série $\sum_{k=1}^{n} \frac{1}{2n^3}$ converge. La suite (S'_n) est croissante et majorée donc converge.