TD MT12

ANTOINE ZUREK

Table des matières

1.	Chapitre 1	1
2.	Chapitre 2	Ę
3.	Chapitre 3	δ
4.	Chapitre 4	11
5.	Chapitre 5	13
6.	Chapitre 6	16

1. Chapitre 1

Exercice 1.

(1) En utilisant des IPP calculer les intégrales suivantes

$$\int_0^{\pi} x \cos(x) \, dx, \quad \int_0^1 x \arctan(x) \, dx, \quad \int_0^1 \ln(1+x^2) \, dx.$$

(2) En utilisant un changement de variable calculer les intégrales suivantes

$$\int_{-1}^{1} \sqrt{1 - x^2} \, dx, \quad \int_{0}^{1} \frac{dx}{\operatorname{ch}(x)}, \quad \int_{1}^{4} \frac{dx}{x + \sqrt{x}}.$$

Exercice 2. Soit f une fonction continue. On cherche à calculer une valeur approchée de l'intégrale de f sur l'intervalle [0,a] (avec a>0). Pour ce faire on utilise dans un premier temps la méthode des rectangles à gauche puis la méthode des trapèzes. Dans les deux cas, on considère un entier naturel $N \geq 1$ et une suite équi-répartie de points $x_0 = 0 < x_1 < \ldots < x_{N-1} < x_N = a$ avec $x_k = ka/N$ pour $k = 0, \ldots, N$. Alors la méthode des rectangles à gauche donne la formule suivante d'approximation

$$I = \int_0^a f(x) \, dx = \sum_{k=0}^{N-1} \int_{x_k}^{x_{k+1}} f(x) \, dx \approx \frac{a}{N} \sum_{k=0}^{N-1} f(x_k) = I_{N,\text{rectangle}},$$

et la méthode des trapèzes

$$I \approx \frac{a}{N} \sum_{k=0}^{N-1} \frac{f(x_k) + f(x_{k+1})}{2} = I_{N,\text{trapeze}}.$$

Date: 12 mars 2025.

- (1) Commençons par étudier la méthode des rectangles à gauche.
 - (a) Représenter géométriquement la méthode des rectangles à gauche.
 - (b) Si f est C^1 monter l'estimation d'erreur suivante :

$$|I - I_{N,\text{rectangle}}| \le \frac{a^2}{2N} \max_{x \in [0,a]} |f'(x)|.$$

Pour rappel, comme f est supposée C^1 alors f' est continue sur l'intervalle [0, a]. Ainsi d'après le théorème des valeurs intermédiaires alors f' est une fonction bornée et atteint ses bornes (autrement dit le max de l'inégalité précédente est bien défini).

- (2) Etudions à présent la méthode des trapèzes.
 - (a) Représenter géométriquement la méthode des trapèzes.
 - (b) Montrer que si f est C^2 alors la formule, dite de Maclaurin, suivante

$$\int_{x_k}^{x_{k+1}} f(x) \, dx = \frac{(x_{k+1} - x_k)}{2} \left(f(x_{k+1}) + f(x_k) \right) + \frac{1}{2} \int_{x_k}^{x_{k+1}} (x - x_k) (x - x_{k+1}) f''(x) \, dx,$$

est vérifiée pour tout $k \in \{0, ..., N-1\}$ (indication : IPP).

(c) en déduire que si f est C^2 alors on a l'estimation d'erreur suivante :

$$|I - I_{N,\text{trapeze}}| \le \frac{a^3}{12N^2} \max_{x \in [0,a]} |f''(x)|.$$

Même rappel que pour la question (1)(b) sur le max de f''.

Exercice 3. Dans cet exercice on considère plusieurs normes et ps.

- (1) Soit $E = \mathbb{R}^n \ (n \ge 1)$.
 - (a) Montrer que

$$||x||_1 = \sum_{i=1}^n |x_i|, \quad \forall x \in E,$$

est une norme. Pour n=2, représenter l'ensemble des points $x\in E$ vérifiant $\|x\|_1=1$.

(b) Montrer que

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|, \quad \forall x \in E,$$

est une norme. Toujours dans le cas n=2, représenter l'ensemble des points $x\in E$ vérifiant $\|x\|_{\infty}=1$.

(2) On considère à présent $n \in \mathbb{N}$, $a \in \mathbb{R}$ et $E = \mathbb{R}_n[X]$. Soit l'application $\langle \cdot, \cdot \rangle$: $E \times E \to \mathbb{R}$ où

$$\langle P, Q \rangle = \sum_{k=0}^{n} \frac{P^{(k)}(a) Q^{(k)}(a)}{(k!)^2}, \quad \forall P, Q \in E.$$

- (a) Montrer que l'application est un produit scalaire sur E.
- (b) Donner la définition de la norme associée à ce produit scalaire.

Exercice 4. Dans cet exercice on (re)travaille la notion d'orthogonalité dans un espace euclidien.

(1) Soit $n \in \mathbb{N}$ $(n \geq 1)$ quelconque. On considère l'espace $E = \mathbb{R}^n$ muni du produit scalaire usuel (ou canonique) et (x_1, \ldots, x_n) une famille orthogonale. Montrer que

$$||x_1 + \ldots + x_n||^2 = ||x_1||^2 + \ldots + ||x_n||^2.$$

Ce résultat vous fait-il penser à un théorème célèbre?

(2) Montrer que la famille (P_0, P_1, P_2) avec

$$P_0 = \frac{1}{\sqrt{2}}, \quad P_1 = \sqrt{\frac{3}{2}}X, \quad P_2 = \sqrt{\frac{5}{8}}(3X^2 - 1),$$

est une base orthonormale de $\mathbb{R}_2[X]$ muni du produit scalaire suivant :

$$\langle P, Q \rangle = \int_{-1}^{1} P(x) Q(x) dx, \quad \forall P, Q \in \mathbb{R}_{2}[X].$$

Exercice 5. Le but de cet exercice est de démontrer (partiellement) le théorème dit de Fréchet-Von Neumann-Jordan. Voici son énoncé :

Soit E un \mathbb{R} espace vectoriel muni d'une norme N. La norme N découle d'un produit scalaire si et seulement si N vérifie

(1)
$$N(x+y)^2 + N(x-y)^2 = 2N(x)^2 + 2N(y)^2, \quad \forall x, y \in E.$$

L'identité (1) est appelée identité du parallélogramme.

- (1) Démontrer dans un premier temps que si pour tout $x \in E$ on a $N(x)^2 = \langle x, x \rangle$, où $\langle \cdot, \cdot \rangle$ est un produit scalaire sur E, alors N vérifie (1).
- (2) On veut à présent démontrer l'implication inverse, i.e., que si N vérifie (1) alors N découle d'un produit scalaire. Pour ce faire on considère l'application $\varphi: E \times E \to \mathbb{R}$ avec

$$\varphi(x,y) = \frac{N(x+y)^2 - N(x-y)^2}{4}, \quad \forall x, y \in E.$$

Dans la suite on **admet** que φ vérifie

$$\varphi(\lambda x,y) = \lambda \varphi(x,y), \quad \forall \lambda \in \mathbb{R}, \, \forall x,y \in E.$$

- (a) Montrer que $\varphi(x,x) = N(x)^2$ (ainsi si φ est un produit scalaire sur E on a bien $N(x) = \sqrt{\varphi(x,x)}$). Il reste à montrer que φ est un produit scalaire.
- (b) Montrer que φ est définie positive, i.e., $\varphi(x,x) \geq 0$ pour tout $x \in E$ et si $\varphi(x,x) = 0$ alors x = 0.
- (c) Montrer que φ est symétrique, i.e., $\varphi(x,y) = \varphi(y,x)$ pour tout $x,y \in E$.

(d) Pour montrer la bilinéarité de φ , on **admet** que N vérifie pour tout x, y et $z \in E$ l'identité suivante

$$N(x+y+z)^2 = N(x+y)^2 + N(x+z)^2 + N(y+z)^2 - N(x)^2 - N(y)^2 - N(z)^2.$$

En déduire que $\varphi(x+y,z)=\varphi(x,z)+\varphi(y,z)$ pour tout $x,\,y,\,z\in E$ et que φ est bilinéaire.

- (e) En déduire que φ est un produit scalaire sur E.
- (3) Est-ce que la norme $\|\cdot\|_1$ (ou $\|\cdot\|_{\infty}$) découle d'un produit scalaire?

2. Chapitre 2

Exercice 1.

(1) Soit f une fonction a-périodique et continue par morceaux. On note f_N (pour $N \ge 1$) la somme partielle d'ordre N de la série de Fourier de f, i.e.,

$$f_N(x) = \sum_{n=-N}^{N} c_n(f) \exp\left(2i\pi n \frac{t}{a}\right), \quad \forall t \in \mathbb{R}.$$

Monter que f_N peut également s'écrire, pour tout $t \in \mathbb{R}$, sous la forme

$$f_N(t) = \frac{a_0(f)}{2} + \sum_{n=1}^{N} \left(a_n(f) \cos\left(2\pi n \frac{t}{a}\right) + b_n(f) \sin\left(2\pi n \frac{t}{a}\right) \right),$$

avec

$$a_0(f) = 2c_0(f) = \frac{2}{a} \int_0^a f(t) dt,$$

$$a_n(f) = c_n(f) + c_{-n}(f) = \frac{2}{a} \int_0^a f(t) \cos\left(2\pi n \frac{t}{a}\right) dt,$$

$$b_n(f) = i(c_n(f) - c_{-n}(f)) = \frac{2}{a} \int_0^a f(t) \sin\left(2\pi n \frac{t}{a}\right) dt.$$

Pour $n \geq 1$, montrer également les formules :

$$c_n(f) = \frac{a_n(f) - ib_n(f)}{2},$$

 $c_{-n}(f) = \frac{a_n(f) + ib_n(f)}{2}.$

(2) Soit f une fonction a-périodique et continue par morceaux. Montrer que

$$\int_{\alpha}^{a+\alpha} f(t) dt = \int_{0}^{a} f(t) dt \quad \forall \alpha \in \mathbb{R}.$$

- (3) Soit f une fonction a-périodique et continue par morceaux. Montrer que
 - si f est paire alors $b_n(f) = 0$ pour tout $n \ge 1$,
 - si f est impaire alors $a_n(f) = 0$ pour tout $n \in \mathbb{N}$.

Exercice 2.

- (1) Calculer les sommes partielles d'ordre $N \geq 1$, notées f_N , des séries de Fourier des fonctions suivantes :
 - (a) f est 2-périodique avec f(t) = |t| si |t| < 1,
 - (b) f est 1-périodique avec f(t) = t si $t \in [0, 1]$,
 - (c) f est 2π -périodique avec $f(t) = 1 \frac{t^2}{\pi^2}$ si $t \in [-\pi, \pi]$,
 - (d) $f(t) = |\sin(t)|$ (période de f?),

- (e) $f(t) = \sin^3(t)$ (période de f?).
- (2) Appliquer l'égalité de Parseval aux différentes fonctions f de la question précédente. En utilisant les fonctions des questions (1)(b) et (1)(c), en déduire que

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}, \quad \sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}.$$

Exercice 3.

- (1) Soit f une fonction a-périodique et continue par morceaux. Soit $\alpha \in \mathbb{R}$ fixé et soit g la fonction a-périodique avec $g(t) = f(t \alpha)$. Quelle relation existe entre $c_n(g)$ et $c_n(f)$?
- (2) Soit f une fonction a-périodique de classe C^1 . Monter que pour tout $n \in \mathbb{Z}$

$$c_n(f') = \frac{2i\pi n}{a} c_n(f).$$

En déduire l'existence d'une constante M > 0 telle que

$$|c_n(f)| \le \frac{M}{|n|}, \quad \forall n \in \mathbb{Z} \setminus \{0\}.$$

On suppose à présent f de classe C^2 . Monter l'existence d'une constante K > 0 telle que

$$|c_n(f)| \le \frac{K}{n^2}, \quad \forall n \in \mathbb{Z} \setminus \{0\}.$$

Que pouvez-vous en déduire sur la convergence de la série $\sum |c_n(f)|$ si f est C^2 ?

Exercice 4. On considère les fonctions de l'exercice 2 question (1). Les séries de Fourier de ces fonctions convergent elles simplement vers f sur \mathbb{R} ? Si oui pourquoi? Si ce n'est pas le cas préciser vers quelle valeur tend $(f_N(x))_{N\geq 1}$. Enfin quelles séries de Fourier convergent normalement vers la fonction initiale sur \mathbb{R} ?

Exercice 5 (Exercice de synthèse 1). Soit f la fonction 2-périodique avec

$$f(x) = x(1-x), \quad \forall x \in [0,1],$$

que l'on prolonge par imparité sur [-1,0].

- (1) Représenter le graphe de f.
- (2) Calculer les coefficients de Fourier $a_n(f)$ et $b_n(f)$.
- (3) Est-ce que la suite des sommes partielles des séries de Fourier de f, notée $(f_N)_{N\geq 1}$, converge ponctuellement (ou simplement) vers f sur \mathbb{R} .
- (4) Justifier la relation suivante:

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)^3} = \frac{\pi^3}{32}.$$

(5) Est-ce que la série de Fourier de f converge normalement vers f sur \mathbb{R} .

Exercice 6 (Exercice de synthèse 2). Soit f la fonction 2π -périodique et impaire avec

$$f(x) = \begin{cases} 1 & \text{si } x \in]0, \pi[, \\ 0 & \text{si } x = 0 \text{ et } x = \pi. \end{cases}$$

- (1) Représenter le graphe de f.
- (2) Calculer les coefficients de Fourier $a_n(f)$ et $b_n(f)$.
- (3) Est-ce que la suite des sommes partielles des séries de Fourier de f, notée $(f_N)_{N\geq 1}$, converge ponctuellement (ou simplement) vers f sur \mathbb{R} .
- (4) Est-ce que la série de Fourier de f converge normalement vers f sur \mathbb{R} ?

Exercice 7. Développer en séries de Fourier la fonction f de période 2, définie sur [-1, 1[par

$$f(t) = \cos(\pi z t) \quad z \in \mathbb{C} \setminus \mathbb{Z}.$$

En déduire les égalités :

$$\pi \cot(\pi z) = \frac{1}{z} + 2z \sum_{n=1}^{+\infty} \frac{1}{z^2 - n^2},$$

$$\frac{\pi}{\sin(\pi z)} = \frac{1}{z} + 2z \sum_{n=1}^{+\infty} \frac{(-1)^n}{z^2 - n^2}.$$

Exercice 8. Soient x un paramètre réel strictement positif donné et f une fonction périodique définie par

$$f(t) = e^{xe^{it}}.$$

(1) Période de f? En admettant que $c_0(f) = 1$, montrer que

$$c_n(f) = \begin{cases} 0 & \text{si } n < 0, \\ \frac{x^n}{n!} & \text{si } n \ge 0. \end{cases}$$

(2) En déduire que

$$\int_0^{2\pi} e^{2x\cos(t)} dt = 2\pi \sum_{n=0}^{+\infty} \frac{x^{2n}}{(n!)^2}.$$

Exercice 9 (Développement en série de cosinus et sinus). Soit f la définie sur]0,1[par

$$f(x) = x \quad \forall x \in]0,1[.$$

- (1) Prolongez la fonction f sur]-1,1[par imparité, puis prolongez f sur $\mathbb R$ par 2 périodicité. On note f_1 la prolongation de f sur $\mathbb R$. Représentez le graphe de f_1 . Développer en séries de Fourier f_1
- (2) Comparez les résultats obtenus avec les résultats obtenus pour les fonctions (a) et (b) de l'exercice 2. Que constatez-vous?

3. Chapitre 3

Exercice 1 (TFD).

- (1) Soit le vecteur x avec $x = (1, 2, 4, 3)^{\mathsf{T}}$. Calculer la TFD du vecteur x.
- (2) Soit le vecteur y avec $y = (10, (-3 i), 0, (-3 + i))^{\top}$. Calculer et commenter la TFD du vecteur y.
- (3) Soit le vecteur $x \in \mathbb{C}^{10}$ dont les 5 premiers coefficients valent 1 et les 5 autres 0. Calculer la TFD de x.

Exercice 2 (TFD et TFDI). On considère le vecteur x de taille $N \ge 1$ avec

$$x_k = e^{\frac{2\pi i k}{N}} \quad k = 0, \cdots, N - 1.$$

- (1) Calculer la TFD, le vecteur noté X, de x.
- (2) Calculer la TFDI de X.

Exercice 3 (Égalité de Plancherel discrète)

(1) Montrer que l'application suivante définie un produit scalaire hermitien sur \mathbb{C}^N :

$$\langle x, y \rangle = \sum_{n=0}^{N-1} x_n \overline{y_n} \quad \text{pour} \quad x = (x_0, \dots, x_{N-1})^\top, y = (y_0, \dots, y_{N-1})^\top \in \mathbb{C}^N.$$

(2) Soient X et $Y \in \mathbb{C}^N$ les vecteurs obtenus à partir de deux vecteurs x et $y \in \mathbb{C}^N$ par DFT. Justifier la relation suivante

$$\frac{1}{N}\langle x, y \rangle = \langle X, Y \rangle.$$

Exercice 4 (vecteurs périodiques, convolution et TFD). Pour rappel, un vecteur $x \in \mathbb{C}^{\mathbb{Z}}$ est N périodique $(N \ge 1)$ si

$$x_{k+\ell N} = x_k \quad \forall \ell \in \mathbb{Z}, \ k \in \{0, \dots, N-1\}.$$

Par ailleurs, pour deux vecteurs x et y étant N périodiques on définit la convolution périodique d'ordre N de x et y par

$$(x *_N y)_k = \sum_{\ell=0}^{N-1} x_{k-\ell} y_\ell, \quad \forall k \in \{0, \dots, N-1\}.$$

Enfin pour un vecteur $x \in \mathbb{C}^{\mathbb{Z}}$ supposé N périodique on appelle Transformée de Fourier du signal périodique à temps discret de x le vecteur noté X avec

(2)
$$X_n = \frac{1}{N} \sum_{k=0}^{N-1} x_k \, \omega_N^{-nk}, \quad \forall n \in \mathbb{Z}.$$

Si la définition précédente n'est pas exactement la TFD on continuera tout de même (par abus de langage) à appeler X la TFD de x. Cet abus est justifié par le résultat démontré dans la première question de l'exercice.

- (1) Soit $x \in \mathbb{C}^{\mathbb{Z}}$ un vecteur N périodique. Justifier que le vecteur $X \in \mathbb{C}^{\mathbb{Z}}$ obtenu via (2) est N périodique.
- (2) Soient x et $y \in \mathbb{C}^{\mathbb{Z}}$ deux vecteurs N périodiques. Justifier que $x *_N y$ est N périodique.
- (3) Soient x et y deux vecteurs 2 périodiques avec $(x_0, x_1) = (1, 2)$ et $(y_0, y_1) = (1, -1)$.
 - (a) Déterminer le vecteur 2 périodique $x *_2 y$ par un calcul direct.
 - (b) Calculer les TFD, notées X et Y, des vecteurs x et y.
 - (c) En déduire l'expression du vecteur $x *_2 y$ en utilisant X et Y.

4. Chapitre 4

Exercice 1. Dire si les propriétés suivantes sont vraies partout sur \mathbb{R} ou presque partout sur \mathbb{R} .

- (1) Les fonctions $x \mapsto |x|$ et $x \mapsto \sqrt{x^2}$ sont égales ... sur \mathbb{R} .
- (2) Les fonctions $x \mapsto x^2$ et $x \mapsto -x^2$ ne sont pas égales ... sur \mathbb{R} .
- (3) La fonction $x \mapsto 1/(1+x)^2$ est continue ... sur \mathbb{R} .
- (4) La fonction $x \mapsto 1/x$ est continue ... sur \mathbb{R} .
- (5) La fonction $x \mapsto |x|$ est dérivable ... sur \mathbb{R} .
- (6) Soit f la fonction 2π -périodique et paire avec

$$f(x) = x^2 \quad \text{si } x \in [0, \pi]$$

est continue \dots sur $\mathbb R$ et dérivable \dots sur $\mathbb R$.

(7) Soient $A = \{1, 2, 3, 4\}$ et $f = \mathbf{1}_A$. La quantité f(x) est plus petite ou égale à $1 \ldots$ dans \mathbb{R} . La quantité f(x) est strictement plus petite que $1 \ldots$ dans \mathbb{R} .

Exercice 2.

- (1) Soit f une fonction constante sur \mathbb{R} , est-ce que $f \in L^1(\mathbb{R})$, $L^1(0,+\infty)$ ou $L^1(0,1)$?
- (2) Soit $\alpha > 1$, montrer que la fonction $x \mapsto x^{-\alpha}$ appartient à l'espace $L^1(a, +\infty)$ pour a > 0. Est-ce que cette fonction appartient à $L^1(0, a)$ (a > 0)?
- (3) Soit $0 < \alpha < 1$, montrer que la fonction $x \mapsto x^{-\alpha}$ appartient à l'espace $L^1(0,b)$ pour b > 0. Est-ce que cette fonction appartient à $L^1(b,+\infty)$ (b > 0)?
- (4) Montrer que la fonction $x \mapsto 1/x$ n'appartient ni à $L^1(0,1)$ ni à $L^1(1,+\infty)$.
- (5) Est-ce que la fonction $x \mapsto \frac{x^2}{1+x^2}$ appartient à $L^1(-1,1)$.
- (6) Démonter que la fonction $x \mapsto \sin(x)/x$ n'appartient pas à $L^1(0,+\infty)$.
- (7) Soit f une fonction continue définie sur un intervalle [a,b] fermé et borné de \mathbb{R} . Montrer que $f \in L^1(a,b)$.
- (8) Soit f une fonction a-périodique non nulle et continue. Monter que $f \notin L^1(\mathbb{R})$.

Exercice 3. Dans cet exercice on veut étudier la convergence ou la non convergence des séries de Riemann.

- (1) Montrer que si $\alpha > 1$ la série de Riemann $\sum \frac{1}{n^{\alpha}}$ converge.
- (2) Montrer que si $0 < \alpha \le 1$ la série de Riemann $\sum \frac{1}{n^{\alpha}}$ ne converge pas.

Exercice 4. Dans cet exercice le but est de manipuler le théorème de convergence dominée de Lebesgue.

- (1) Calculer la limite quand $n \to +\infty$ de $\int_0^{\pi/4} \tan^n(x) dx$.
- (2) Calculer la limite quand $n \to +\infty$ de $\int_0^{+\infty} \frac{e^{-x/n}}{(1+x^2)} dx$.
- (3) Soit $f_n(x) = \frac{1}{1+|x|^{2+1/n}}$ pour tout $x \in \mathbb{R}$ et $n \ge 1$.

- (a) Calculer $\lim_{n\to+\infty} \int_{\mathbb{R}} f_n(t) dt$.
- (b) Soit $g_n(t) = n f_n(nt)$. Calculer $\lim_{n \to +\infty} \int_{-a}^a g_n(t) dt$, pour a > 0.
- (4) Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions avec

$$f_n(x) = \begin{cases} \frac{\sin(x)}{1+x^{2n}} & \text{si } 0 < x < \frac{\pi}{3}, \\ 0 & \text{sinon,} \end{cases}$$

calculer

$$\lim_{n \to +\infty} \int_0^{\pi/3} f_n(x) \, dx.$$

- (5) Soit $f_n(x) = \left(1 + \frac{x}{n}\right)^n$ pour tout $x \ge 0$ et $n \ge 1$.
 - (a) Démontrer que, pour tout $x \geq 0$, $\lim_{n \to +\infty} f_n(x) = e^x$ et que $f_n(x) \leq e^x$ $(n \geq 1)$.
 - (b) En déduire la limite de $\int_0^{+\infty} \left(1 + \frac{x}{n}\right)^n e^{-3x} dx$.

5. Chapitre 5

Exercice 1.(Transformée de Fourier) Justifier que les fonctions suivantes sont dans $L^1(\mathbb{R})$ puis calculer leurs transformée de Fourier.

- (1) Soit f_1 la fonction définie par $f_1(x) = \mathbf{1}_{[-a,a]}$ avec a un réel strictement positif.
- (2) Soit f_2 la fonction triangle définie par

$$f_2(x) = \begin{cases} 1 + x & \text{si } -1 \le x \le 0, \\ 1 - x & \text{si } 0 \le x \le 1, \\ 0 & \text{sinon.} \end{cases}$$

(3) Soit f_3 la fonction exponentielle causale définie par

$$f_3(x) = H(x) e^{-ax}, \quad a > 0,$$

où H désigne la fonction de Heaviside.

(4) Soit f_4 la fonction exponentielle causale définie par

$$f_4(x) = H(-x) e^{ax}, \quad a > 0.$$

(5) Soit f_5 la fonction définie par

$$f_5(x) = \frac{x^k}{k!} e^{-ax} H(x), \quad k \ge 1, \ a > 0.$$

(6) Soit f_6 la fonction définie par

$$f_6(x) = e^{-a|x|}, \quad a > 0.$$

(7) Soit f_7 la fonction définie par

$$f_7(x) = \text{sign}(x)e^{-a|x|}, \quad a > 0,$$

où sign est la fonction signe donnée par

$$sign(x) = \begin{cases} 1 & \text{si } x > 0, \\ -1 & \text{si } x < 0. \end{cases}$$

(8) Soit f_8 la fonction sinusoïdale amortie et causale définie par

$$f_8(x) = \sin(2\pi x) e^{-ax} H(x), \quad a > 0.$$

(9) Soit f_9 la fonction gaussienne définie par

$$f_9(x) = e^{-ax^2}, \quad a > 0.$$

Ici pour calculer \widehat{f}_9 il faut dans un premier temps établir une équation différentielle d'ordre un vérifiée par f_9 . Par ailleurs pour obtenir l'expression de \widehat{f}_9 on admettra que

$$\int_{\mathbb{R}} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}}, \quad a > 0.$$

Exercice 2. (Utilisation de l'inverse de la transformée de Fourier dans $L^1(\mathbb{R})$) En utilisant la formule d'inversion de Fourier (en la justifiant) et l'exercice 1 calculer les transformées de Fourier des fonctions suivantes.

(1) Soit g_1 la fonction définie par

$$g_1(x) = \frac{1}{(a+2i\pi x)^{k+1}}, \quad a > 0, \ k \ge 1.$$

(2) Soit g_2 la fonction définie par

$$g_2(x) = \frac{1}{1+x^2}.$$

(3) Soit g_3 la fonction définie par

$$g_3(x) = \sqrt{\pi} \, e^{-\pi^2 x^2}.$$

Exercice 3. (Convolution et transformée de Fourier) Le but de cet exercice est de manipuler le produit de convolution.

- (1) Soit h_1 la fonction définie sur \mathbb{R} par $h_1(t) = (\sin * \mathbf{1}_{[-a,a]})(t)$ avec a > 0. Justifier que h_1 est bien définie sur \mathbb{R} est calculer explicitement h_1 .
- (2) Soit $h_2 = f * g$ où f et g sont nulles respectivement hors de l'intervalle [a, b] et hors de [c, d]. Justifier que h_2 est nulle hors de [a + c, b + d]. En déduire que si f et g sont causales (nulles sur \mathbb{R}_-) alors h_2 est causale.
- (3) Soit h_3 la fonction définie sur \mathbb{R} comme le produit de convolution de deux fonctions exponentielles décroissantes causales, i.e.,

$$h_3(t) = \int_{\mathbb{R}} H(x)e^{-ax} H(t-x)e^{-b(t-x)} dx,$$

avec a et b > 0. Justifier que h_3 est bien définie et calculer explicitement h_3 (on utilisera la question précédente).

(4) Soit h_4 la fonction définie sur \mathbb{R} par

$$h_4(t) = \frac{1}{2\pi ab} \int_{\mathbb{R}} e^{-\frac{x^2}{2a^2}} e^{-\frac{(t-x)^2}{2b^2}} dx,$$

avec a et b > 0. Justifier que h_4 est bien définie et calculer explicitement h_4 (utiliser le lien entre convolution et transformée de Fourier ainsi que l'exercice 1).

Exercice 4.(Transformée de Fourier dans $L^2(\mathbb{R})$)

- (1) Montrer que la convolution de deux fonctions ayant la même parité est paire.
- (2) Démontrer que la transformée de Fourier et la transformée de Fourier conjuguée d'une fonction paire coïncident.

(3) Soit f la fonction définie sur \mathbb{R} comme le produit de convolution de deux fonctions sinus cardinal, i.e.,

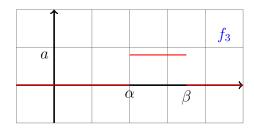
$$f(x) = \int_{\mathbb{R}} \frac{\sin(\pi at)}{\pi t} \frac{\sin(\pi b(x-t))}{\pi(x-t)} dt,$$

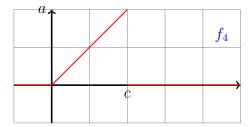
avec a et b>0. Justifier que f est bien définie et calculer f explicitement en utilisant l'exercice 1 et la Proposition 25 du cours.

6. Chapitre 6

Exercice 1.(Transformée de Laplace)

(1) En exprimant les différentes fonctions f_1 , f_2 , f_3 et f_4 en fonction de la fonction de Heaviside, calculer la transformée de Laplace des fonctions suivantes :





Exercice 2.(Transformée de Laplace et EDO) Déterminer les solutions des EDO cidessous par la méthode de Laplace. Pour ce faire on utilisera les formules d'inversion suivantes :

$$\frac{1}{p+a} \xrightarrow{\mathcal{L}^{-1}} e^{-at},$$

$$\frac{1}{(p+a)^2} \xrightarrow{\mathcal{L}^{-1}} te^{-at},$$

$$\frac{p}{p^2+a^2} \xrightarrow{\mathcal{L}^{-1}} \cos(at),$$

$$\frac{1}{p^2+a^2} \xrightarrow{\mathcal{L}^{-1}} \frac{1}{a}\sin(at),$$

$$\frac{1}{(p+b)^2+a^2} \xrightarrow{\mathcal{L}^{-1}} \frac{1}{a}e^{-bt}\sin(at),$$

$$\frac{p+b}{(p+b)^2+a^2} \xrightarrow{\mathcal{L}^{-1}} e^{-bt}\cos(at).$$

(1) On considère l'équation du premier ordre :

$$x'(t) + x(t) = e^t, \quad t > 0,$$

avec
$$x(0) = 1$$
.

(2) On considère l'équation du deuxième ordre :

$$x''(t) - 3x'(t) + 2x(t) = e^{3t}, \quad t > 0,$$

avec
$$x(0) = 1$$
 et $x'(0) = 0$.

(3) Déterminer la transformée de Laplace de la fonction $t \mapsto \sin(t)H(t)$ puis déterminer la solution de l'équation

$$x''(t) + 2x'(t) + x(t) = \sin(t), \quad t > 0,$$

avec
$$x(0) = 1$$
 et $x'(0) = 0$.

(4) Déterminer la transformée de Laplace de la fonction $t \mapsto H(t)$ puis déterminer les solutions de l'équation différentielle

$$x''(t) + x(t) = 1, \quad \forall t > 0,$$

avec
$$x(0) = x'(0) = 0$$
.

(5) Déterminer la transformée de Laplace de la fonction $t \mapsto \cos(t)$ puis déterminer les solutions de l'équation différentielle

$$x''(t) + 2x'(t) + 2x(t) = \cos(t), \quad \forall t > 0,$$

avec
$$x(0) = 1$$
 et $x'(0) = 0$.

(6) On considère le système d'équations différentielles :

$$\left\{ \begin{array}{ll} x'(t)+x(t)-y(t) &= e^t, \\ y'(t)-x(t)+y(t) &= e^t, \end{array} \right.$$

pour
$$t > 0$$
 et avec $x(0) = 1$ et $y(0) = 1$.

 $\left(7\right)$ On considère l'équation différentielle d'ordre 3 linéaire suivante :

$$x^{(3)}(t) + x(t) = 0, \quad t > 0,$$

avec
$$x(0) = 1$$
, $x'(0) = 3$ et $x''(0) = 8$.

UNIVERSITÉ DE TECHNOLOGIE DE COMPIÈGNE, LMAC, 60200 COMPIÈGNE, FRANCE *Email address*: antoine.zurek@utc.fr