

Uncertainty reasoning and machine learning Uncertainty, Decision and Evaluation in Machine Learning

Vu-Linh Nguyen

Chaire de Professeur Junior, Laboratoire Heudiasyc Université de technologie de Compiègne

AOS4 master courses

Who is more reliable?

An example: Assume we travel to a small village

- There are two doctors who can give suggestion on whether a patient suffers from at least one type of serious cancers.
- Either "yes (y)" or "don't know (y/n)" \longrightarrow go to the closest hospital for further diagnosis
- People ask you "who is more reliable?" given historical record on 1000 patients.

True situations	50 y	50 y	400 n	500 n
Dr. A's predictions	50 y	50 n	400 n	400 n + 100 y
Dr. B's predictions	50 y	40 y/n + 10 n	400 n	400 n + 100 y

Which model is more reliable?

Another example: Assume we travel to another village

- There are 3 pre-trained models which can give suggestion on whether a patient suffers from at least one type of serious cancers.
- Either "yes (y)" or "don't know (y/n)" → go to the closest hospital for further diagnosis
- People ask you "which model is more reliable?" given historical record on 1000 patients.

True situations	50 y	50 y	400 n	500 n
C's predictions	50 y	50 n	400 n	400 n + 100 y
D's predictions	50 y	40 y/n + 10 n	400 n	400 n + 100 y
E's predictions	50 y	40 y/n + 10 n	400 n	450 n + 50 y/n

Go beyond the predictive performance?

It might be safer to defer our answer until we know more about

- how the models were learned and make their predictions
- how robust their predictions are (under the presence of noise)
- the decision-making process (cost, consequence, etc.)

Objectives

After this lecture students should be able to

- conceptually describe the Imprecise Dirichlet model (IDM) [1]
- use IDM in K-nn classifiers with fixed windows [6]
- evaluate classifiers based on IDM and related models [2, 7]

Outline

- Inference from Multinomial Data
- Imprecise Dirichlet Model (IDM)
- Applications in Classification Tasks
- **Evaluate Classifiers**
- Summary and Outlook

Basic setup:

- Univariate discrete variable V
- A finite set of possible outcomes $v \in \mathcal{V}$
- Each possible outcome is assigned a probability value $\theta_{V} := P(V = V) = P(\{v\})$

Basic setup:

- Univariate discrete variable V
- A finite set of possible outcomes $v \in \mathcal{V}$
- Each possible outcome is assigned a probability value $\theta_{v} := P(V = v) = P(\{v\})$

Questions

- How to model and estimate θ_{ν} ?
- How to do inference?
- How to handle small data?
- How to handle missing/partial data?

Frequentist, Bayesian and Imprecise approaches

Axioms

- 1. Positive: $\theta_{\nu} \ge 0$ for all outcomes $\nu \in \mathcal{V}$
- 2. Additive: $P(S) = \sum_{v \in S} \theta_v$ for all events $S \subseteq \mathcal{V}$
- 3. Normed: $P(\mathcal{V}) = 1$

Frequentist, Bayesian and Imprecise approaches

Axioms

- 1. Positive: $\theta_{\nu} \ge 0$ for all outcomes $\nu \in \mathcal{V}$
- 2. Additive: $P(S) = \sum_{v \in S} \theta_v$ for all events $S \subseteq \mathcal{V}$
- 3. Normed: $P(\mathcal{V}) = 1$

Three approaches (discussed in this lecture):

- 4F. **Frequentist**: $\theta = \{\theta_v | v \in \mathcal{V}\}\$ is **not** a random variable (VR).
- 4B. Bayesian: $\theta = \{\theta_v | v \in \mathcal{V}\}\$ is a RV \leftarrow prior uncertainty (PU) is described by a distribution.
- 41. Imprecise: $\theta = \{\theta_v | v \in \mathcal{V}\}$ is a RV \leftarrow PU is described by **a set of** distribution $\theta \in \Theta$.

Some Inference Problems

Multinomial data:

- Given the observed data **D** where v appear n_v times, $v \in V$:
- Let $n = \sum_{v} n_{v}$ and $\mathbf{n} = \{n_{v} | v \in \mathcal{V}\}$

Multinomial likelihood:

- $L(\boldsymbol{\theta}|\boldsymbol{D}) \propto \prod_{v \in \mathcal{V}} (\theta_v)^{n_v}$.

Make inferences about

- the unknown θ
- some derived parameter of interest $g(\theta)$
- future observations D'

Multinomial data:

- Given the observed data **D** where ν appear n_{ν} times, $\nu \in \mathcal{V}$:
- Let $n = \sum_{v} n_v$ and $n = \{n_v | v \in \mathcal{V}\}$
- Multinomial likelihood: $L(\theta|\mathbf{D}) \propto \prod_{x \in \mathcal{V}} (\theta_v)^{n_v}$.

Make inferences about

- the **unknown** θ , e.g., its best estimate θ^*
- some derived parameter of interest $g(\theta)$

(Few) Potential Applications

Multinomial data:

- Given the observed data **D** where v appear n_v times, $v \in V$:
- Let $n = \sum_{v} n_v$ and $n = \{n_v | v \in \mathcal{V}\}$
- Multinomial likelihood: $L(\boldsymbol{\theta}|\boldsymbol{D}) \propto \prod_{x \in \mathcal{V}} (\theta_v)^{n_v}$.

Make inferences about

- the **unknown** θ , e.g., its best estimate θ^*
- some derived parameter of interest $g(\theta)$

You would find such a problem in

- Parzen window classifiers
- (Credal) Decision trees, Naive Bayesian/credal Classifier (Lecture 4)
- Ensembles (Trees, Neural Nets, etc.)
- Bayesian Neural Nets

Outline

- Inference from Multinomial Data
- Imprecise Dirichlet Model (IDM)
 - Frequentist and Bayesian Approaches
 - Imprecise Dirichlet Model
- Applications in Classification Tasks
- **Evaluate Classifiers**
- Summary and Outlook

Outline

- Inference from Multinomial Data
- Imprecise Dirichlet Model (IDM)
 - Frequentist and Bayesian Approaches
 - Imprecise Dirichlet Model
- Applications in Classification Tasks
- **Evaluate Classifiers**
- Summary and Outlook

Frequentist (Recap)

Axioms

- 1. Positive: $\theta_{V} \ge 0$ for all outcomes $v \in \mathcal{V}$
- 2. Additive: $P(S) = \sum_{v \in V} \theta_v$ for all events $S \subseteq V$
- 3. Normed: $P(\mathcal{V}) = 1$
- 4F. **Frequentist**: $\theta = \{\theta_v | v \in \mathcal{V}\}\$ is **not** a random variable (VR).

Frequentist (Recap)

Axioms

- 1. Positive: $\theta_{V} \ge 0$ for all outcomes $v \in \mathcal{V}$
- 2. Additive: $P(S) = \sum_{v \in V} \theta_v$ for all events $S \subseteq V$
- 3. Normed: $P(\mathcal{V}) = 1$
- 4F. **Frequentist**: $\theta = \{\theta_v | v \in \mathcal{V}\}\$ is **not** a random variable (VR).

Estimate θ :

• **Frequencies**: Maximum likelihood estimation (MLE) gives $\theta_{v}^{*} = n_{v}/n$

Does not take into account the **importance of sample size** ← Sources of uncertainty!

Does not take into account the importance of sample size ←
 Sources of uncertainty!

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	50%	50%
Tails	50%	50%

For both coins, a frequentist says

$$\theta_{\mathsf{Head}}^* = \theta_{\mathsf{Tail}}^* = 1/2$$

Does not take into account the importance of sample size ←
 Sources of uncertainty!

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	50%	50%
Tails	50%	50%

• For both coins, a frequentist says $\theta^* = \theta^* = 1/2$

$$\theta_{\mathsf{Head}}^* = \theta_{\mathsf{Tail}}^* = 1/2$$

 What can you say about the reliability of the estimate for each coin?

 Does not take into account the importance of sample size ← Sources of uncertainty!

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	50%	50%
Tails	50%	50%

Coin
 Small
 Large

 Flips
 2

$$2 \cdot 10^6$$

 Heads
 0%
 0%

 Tails
 100%
 100%

For both coins, a frequentist says $\theta_{\text{Head}}^* = \theta_{\text{Tail}}^* = 1/2$

For both coins, a frequentist says $\theta_{\text{Head}}^* = 0$ and $\theta_{\text{Tail}}^* = 1$

Cain

 Does not take into account the importance of sample size ← Sources of uncertainty!

Com	Siliali	Large
Flips	2	2·10 ⁶
Heads	50%	50%
Tails	50%	50%
Coin	Small	Large
Flips	2	2·10 ⁶
Heads	0%	0%
Tails	100%	100%

Small .

Larga

For both coins, a frequentist says

$$\theta_{\mathsf{Head}}^* = \theta_{\mathsf{Tail}}^* = 1/2$$

 What can you say about the reliability of the estimate for each coin?

• For both coins, a frequentist says
$$\theta_{\text{Head}}^* = 0$$
 and $\theta_{\text{Tail}}^* = 1$

 What can you say about the reliability of the estimate for each coin?

Frequentist: Comments (Cont.)

Does not (naturally) take into account missing/partial data

Frequentist: Comments (Cont.)

Does not (naturally) take into account missing/partial data

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	[0,1]	[5, 10]
Tails	[1,2]	$[5, 2 \cdot 10^6]$

- Can we use frequencies to estimate θ_{Head}^* and θ_{Tail}^* ?
- What can you say about the reliability of the estimate for each coin?

Bayesian (Recap)

Axioms

- 1. Positive: $\theta_{\nu} \ge 0$ for all outcomes $\nu \in \mathcal{V}$
- 2. Additive: $P(S) = \sum_{v \in V} \theta_v$ for all events $S \subseteq V$
- 3. Normed: $P(\mathcal{V}) = 1$
- 4B. Bayesian: $\theta = \{\theta_v | v \in \mathcal{V}\}\$ is a RV \leftarrow prior uncertainty (PU) is described by a distribution.

Bayesian (Recap)

Axioms

- 1. Positive: $\theta_{\nu} \ge 0$ for all outcomes $\nu \in \mathcal{V}$
- 2. Additive: $P(S) = \sum_{v \in V} \theta_v$ for all events $S \subseteq V$
- 3. Normed: $P(\mathcal{V}) = 1$
- 4B. Bayesian: $\theta = \{\theta_v | v \in \mathcal{V}\}\$ is a RV \leftarrow prior uncertainty (PU) is described by a distribution.

Bayesian estimates:

- posterior mean θ_{ν}^* of θ_{ν} : $E(\theta_{\nu})$
- posterior mean $\theta_{\nu}^* | \mathbf{D}$ of $\theta_{\nu} | \mathbf{D}$: $E(\theta_{\nu} | \mathbf{D})$

Bayesian (Recap)

Axioms

- 1. Positive: $\theta_{\nu} \ge 0$ for all outcomes $\nu \in \mathcal{V}$
- 2. Additive: $P(S) = \sum_{v \in V} \theta_v$ for all events $S \subseteq V$
- 3. Normed: $P(\mathcal{V}) = 1$
- 4B. Bayesian: $\theta = \{\theta_v | v \in \mathcal{V}\}\$ is a RV \leftarrow prior uncertainty (PU) is described by a distribution.

Bayesian estimates:

- posterior mean θ_{ν}^* of θ_{ν} : $E(\theta_{\nu})$
- posterior mean $\theta_{\nu}^* | \mathbf{D}$ of $\theta_{\nu} | \mathbf{D}$: $E(\theta_{\nu} | \mathbf{D})$
- We can also use posterior mode

Dirichlet Model

Prior uncertainty: $\theta \sim \text{Diri}(\alpha) = \text{Diri}(sf)$

- Prior strengths (hyperparameter): α_{ν} , $\nu \in \mathcal{V}$
- Total strength (hyperparameter): $s := \sum_{v \in \mathcal{V}} \alpha_v$
- Prior frequencies: $\mathbf{f} := \{f_{v} | v \in \mathcal{V}\}$ with $f_{v} := \alpha_{v}/s, v \in \mathcal{V}$
- $\theta_V \sim \text{Beta}(sf_V, s\sum_{V'\neq V} f_{V'})$
- $\theta | D \sim Diri(n + \alpha) = Diri(n + sf)$
- $\theta_X | \mathbf{D} \sim \text{Beta}(n_V + sf_V, \sum_{V' \neq V} n_{V'} + s \sum_{V' \neq V} f_{V'})$

Dirichlet Model

Prior uncertainty: $\theta \sim \text{Diri}(\alpha) = \text{Diri}(sf)$

- Prior strengths (hyperparameter): α_{ν} , $\nu \in \mathcal{V}$
- Total strength (hyperparameter): $s := \sum_{v \in \mathcal{V}} \alpha_v$
- Prior frequencies: $\mathbf{f} := \{f_{v} | v \in \mathcal{V}\}$ with $f_{v} := \alpha_{v}/s, v \in \mathcal{V}$
- $\theta_V \sim \text{Beta}(sf_V, s\sum_{V'\neq V} f_{V'})$
- $\theta | D \sim Diri(n + \alpha) = Diri(n + sf)$
- $\theta_x | \mathbf{D} \sim \text{Beta}(n_v + sf_v, \sum_{v' \neq v} n_{v'} + s \sum_{v' \neq v} f_{v'})$

Bayesian estimates:

- posterior mean θ_v^* of θ_v : $E(\theta_v) = f_v$
- posterior mean $\theta_{\nu}^* | \mathbf{D}$ of $\theta_{\nu} | \mathbf{D}$:

$$E(\theta_k|\mathbf{D}) = (n_v + \alpha_v)/(n+s) = (n_v + sf_v)/(n+s)$$

Dirichlet Model: Hyperparameters

Solutions for fixed *n* are usually **symmetric Dirichlet priors**

- Prior frequencies: $f_V = 1/|\mathcal{V}|$, $V \in \mathcal{V}$
- Total strength: $s = g'(|\mathcal{V}|)$

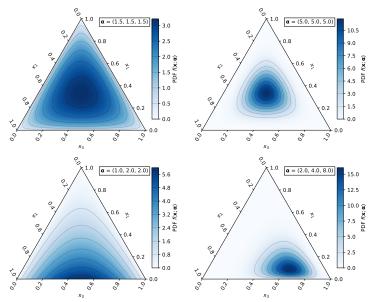
Dirichlet Model: Hyperparameters

Solutions for fixed *n* are usually **symmetric Dirichlet priors**

• Prior frequencies: $f_V = 1/|\mathcal{V}|$, $V \in \mathcal{V}$

• Total strength: $s = g'(|\mathcal{V}|)$

Advocators	α_{V}	s
Haldane (1948)	0	0
Perks (1947)	1/ 1/	1
Jeffreys (1946, 1961)	1/2	1/2
Bayes-Laplace	1	$ \mathcal{V} $



The Importance of Sample Size

Coin	Small	Large
Flips	2	2 · 10 ⁶
Heads	50%	50%
Tails	50%	50%
Coin	Small	Large
Flips	4	4 · 10 ⁶
Heads	25%	25%
Tails	75%	75%

For both coins, a frequentist says

$$p_{\text{Heads}} = p_{\text{Tails}} = 1/2$$

- Do Bayesians say the same thing? ←Yes!
- For both coins, a frequentist says

$$p_{\text{Heads}} = 0.25, p_{\text{Tails}} = 0.75$$

Do Bayesians say the same thing?

The Importance of Sample Size

Small	Large
2	2·10 ⁶
50%	50%
50%	50%
	2 50%

For both coins, a frequentist says

$$p_{\text{Heads}} = p_{\text{Tails}} = 1/2$$

 Do Bayesians say the same thing? ← Yes!

 For both coins, a frequentist says $p_{\text{Heads}} = 0.25, p_{\text{Tails}} = 0.75$

Do Bayesians say the same thing?

Advocators	α_{V}	s	p_{H}^{S}	$p_{T}^{\mathcal{S}}$	p_{H}^{L}	p_{T}^L
Haldane (1948)	0	0	0.25	0.75	0.25	0.75
Perks (1947)	1/ 1/	1	0.3	0.7	0.25	0.75
Jeffreys (1946, 1961)	1/2	$ \mathcal{V} /2$	0.3	0.7	0.25	0.75
Bayes-Laplace	1	1/	0.33	0.67	0.25	0.75

The Importance of Sample Size (Cont.)

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	0%	0%
Tails	100%	100%

For both coins, a frequentist says

$$p_{\text{Heads}} = 0, p_{\text{Tails}} = 1$$

Do Bayesians say the same thing?

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	0%	0%
Tails	100%	100%

• For both coins, a frequentist says

$$p_{\text{Heads}} = 0$$
, $p_{\text{Tails}} = 1$

Do Bayesians say the same thing?

Advocators	α_{x}	s	$p_{H}^{\mathcal{S}}$	$p_{T}^{\mathcal{S}}$	p_{H}^{L}	p_{T}^{L}
Haldane (1948)	0	0	0	1	0	1
Perks (1947)	1/ 1/	1	0.17	0.83	$3 \cdot 10^{-7}$	$1 - 3 \cdot 10^{-7}$
Jeffreys	1/ 1/	1	0.17	0.83	$3 \cdot 10^{-7}$	$1 - 3 \cdot 10^{-7}$
Bayes-Laplace	1	$\mid \mathcal{V} \mid$	0.25	0.75	$5 \cdot 10^{-7}$	$1 - 5 \cdot 10^{-7}$

Dirichlet Model (DM): Comments

Does not (naturally) take into account missing/partial data

Dirichlet Model (DM): Comments

Does not (naturally) take into account missing/partial data

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	[0,1]	[5, 10]
Tails	[1,2]	$[5, 2 \cdot 10^6]$

- Can we use DM to estimate θ_{Head}^* and θ_{Tail}^* ?
- What can you say about the reliability of the estimate for each coin?

Outline

- Inference from Multinomial Data
- Imprecise Dirichlet Model (IDM)
 - Frequentist and Bayesian Approaches
 - Imprecise Dirichlet Model
- Applications in Classification Tasks
- **Evaluate Classifiers**
- Summary and Outlook

Imprecise (Recap)

Axioms

- 1. Positive: $\theta_{\nu} \ge 0$ for all outcomes $\nu \in \mathcal{V}$
- 2. Additive: $P(S) = \sum_{v \in V} \theta_v$ for all events $S \subseteq V$
- 3. Normed: $P(\mathcal{V}) = 1$
- 41. Imprecise: $\theta = \{\theta_v | v \in \mathcal{V}\}\$ is a RV \leftarrow prior uncertainty (PU) is described by a set of distribution $\theta \in \Theta$.

Imprecise (Recap)

Axioms

- 1. Positive: $\theta_{\nu} \ge 0$ for all outcomes $\nu \in \mathcal{V}$
- 2. Additive: $P(S) = \sum_{v \in V} \theta_v$ for all events $S \subseteq V$
- 3. Normed: $P(\mathcal{V}) = 1$
- 41. Imprecise: $\theta = \{\theta_v | v \in \mathcal{V}\}\$ is a RV \leftarrow prior uncertainty (PU) is described by a set of distribution $\theta \in \Theta$.

Interval estimates:

• posterior mean θ_{ν}^* of θ_{ν} :

$$E(\theta_V) \in [\underline{E}(\theta_V), \overline{E}(\theta_V)]$$

• posterior mean $\theta_{\nu}^* | \mathbf{D}$ of $\theta_{\nu} | \mathbf{D}$:

$$E(\theta_{V}|\mathbf{D}) \in [\underline{E}(\theta_{V}|\mathbf{D}), \overline{E}(\theta_{V}|\mathbf{D})]$$

Imprecise Dirichlet Model

Prior uncertainty:
$$\Theta = \{\theta \sim \text{Diri}(\alpha) = \text{Diri}(sf) | \sum_{v \in \mathcal{V}} \alpha_v = s \}$$

- Hyperparameter: s = degree of imprecision in the inferences
- Prior frequencies: $\mathbf{f} := \{f_{v} | v \in \mathcal{V}\}$ with $f_{v} := \alpha_{v}/s, v \in \mathcal{V}$
- $\theta_V \sim \text{Beta}(sf_V, s\sum_{V'\neq V} f_{V'})$
- $\theta | D \sim Diri(n + \alpha) = Diri(n + sf)$
- $\theta_x | \mathbf{D} \sim \text{Beta}(n_v + sf_v, \sum_{v' \neq v} n_{v'} + s \sum_{v' \neq v} f_{v'})$

Imprecise Dirichlet Model

Prior uncertainty: $\Theta = \{\theta \sim \text{Diri}(\alpha) = \text{Diri}(sf) | \sum_{v \in V} \alpha_v = s \}$

- Hyperparameter: s = degree of imprecision in the inferences
- Prior frequencies: $\mathbf{f} := \{f_{v} | v \in \mathcal{V}\}$ with $f_{v} := \alpha_{v}/s, v \in \mathcal{V}$
- $\theta_V \sim \text{Beta}(sf_V, s\sum_{V'\neq V} f_{V'})$
- $\theta | D \sim Diri(n + \alpha) = Diri(n + sf)$
- $\theta_x | \mathbf{D} \sim \text{Beta}(n_v + sf_v, \sum_{v' \neq v} n_{v'} + s \sum_{v' \neq v} f_{v'})$

Posterior mean $\theta_{\nu}^* | \mathbf{D}$ of $\theta_{\nu} | \mathbf{D}$:

$$E(\theta_{V}|\mathbf{D}) \in [\underline{E}(\theta_{V}|\mathbf{D}), \overline{E}(\theta_{V}|\mathbf{D})],$$
 (1)

$$\underline{\underline{E}}(\theta_{V}|\mathbf{D}) = n_{V}/(n+s), \qquad (2)$$

$$\overline{E}(\theta_V | \mathbf{D}) = (n_V + s)/(n + s). \tag{3}$$

The Importance of Sample Size

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	50%	50%
Tails	50%	50%

$$\theta_{\mathsf{Heads}} = \theta_{\mathsf{Tails}} = 1/2$$

- Bayesians would say the same thing
- Would IDM say the same thing?

The Importance of Sample Size

Small	Large
2	2·10 ⁶
50%	50%
50%	50%
	2 50%

$$\theta_{\mathsf{Heads}} = \theta_{\mathsf{Tails}} = 1/2$$

- Bayesians would say the same thing
- Would IDM say the same thing?

	$\underline{P}_{H}^{\mathcal{S}}$	\overline{P}_{H}^{S}	\underline{P}_{H}^{L}	\overline{P}_{H}^{L}
s = 1	0.33	0.67	$0.5 - 3 \cdot 10^{-7}$	$0.5 + 3 \cdot 10^{-7}$
s=2	0.25	0.75	$0.5 - 5 \cdot 10^{-7}$	$0.5 + 5 \cdot 10^{-7}$

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	0%	0%
Tails	100%	100%

$$\theta_{\text{Heads}} = 0$$
, $\theta_{\text{Tails}} = 1$

- Bayesians would say different things
- What would IDM say?

Advocators	α_{x}	s	$p_{H}^{\mathcal{S}}$	$p_{T}^{\mathcal{S}}$	ρ_{H}^{L}	$ ho_{T}^L$
Haldane (1948)	0	0	0	1	0	1
Perks (1947)	1/ 1/	1	0.17	I I	3·10 ⁻⁷	$1 - 3 \cdot 10^{-7}$
Jeffreys	1/ 1/	1	0.17	0.83	3·10 ⁻⁷	$1 - 3 \cdot 10^{-7}$
Bayes-Laplace	1	1/	0.25	0.75	$5 \cdot 10^{-7}$	$1 - 5 \cdot 10^{-7}$

Coin Flips	Small 2	Large 2 · 10 ⁶
Heads	0%	0%
Tails	100%	100%

$$\theta_{\text{Heads}} = 0$$
, $\theta_{\text{Tails}} = 1$

- Bayesians would say different things
- What would IDM say?

Advocators	α_{x}	s	$p_{\rm H}^S$	$p_{\rm T}^{\rm S}$	p_{H}^{L}	p_{T}^{L}
Haldane (1948)	0	0	0	1	0	1
Perks (1947)	1/ 1/	1	0.17	0.83	3·10 ⁻⁷	$1 - 3 \cdot 10^{-7}$
Jeffreys	1/ 1/	1	0.17	0.83	3·10 ⁻⁷	$1 - 3 \cdot 10^{-7}$
Bayes-Laplace	1	$\mid \mathcal{V} \mid$	0.25	0.75	$5 \cdot 10^{-7}$	$1 - 5 \cdot 10^{-7}$

IDM	<u> </u>	$\overline{P}_{H}^{\mathcal{S}}$	<u> </u>	\overline{P}_{H}^{L}
s = 1	0	0.33	0	$5 \cdot 10^{-7}$
s=2	0	0.50	0	10^{-6}

The case of Partial/Missing Data

What if we only know $n_v \in \mathbf{n}_v \subset \{0, 1, ..., n\}$?

The case of Partial/Missing Data

What if we only know $n_v \in \mathbf{n}_v \subset \{0, 1, ..., n\}$?

- Imprecise approaches provide nice tools to handle such data sets [6]
- Uncertainty (due to the incompleteness) is described by a set of **possible** precise data sets $\mathcal{D} = \{ \mathbf{D} | n_v \in \mathbf{n}_v, \sum_{v \in \mathcal{V}} n_v = n \}$

The case of Partial/Missing Data

What if we only know $n_v \in \mathbf{n}_v \subset \{0, 1, ..., n\}$?

- Imprecise approaches provide nice tools to handle such data sets [6]
- Uncertainty (due to the incompleteness) is described by a set of **possible** precise data sets $\mathcal{D} = \{ \mathbf{D} | n_v \in \mathbf{n}_v, \sum_{v \in \mathcal{V}} n_v = n \}$

$$E(\theta_{V}|\mathscr{D}) \in [\underline{E}(\theta_{V}|\mathscr{D}), \overline{E}(\theta_{V}|\mathscr{D})],$$
 (4)

$$\underline{\underline{E}}(\theta_{V}|\mathcal{D}) = \min_{\mathbf{D} \in \mathcal{D}} \underline{\underline{E}}(\theta_{V}|\mathbf{D}) = \min_{\mathbf{D} \in \mathcal{D}} \frac{n_{V}}{(n+s)}, \tag{5}$$

$$\overline{E}(\theta_{V}|\mathcal{D}) = \max_{\mathbf{D} \in \mathcal{D}} \overline{E}(\theta_{V}|\mathbf{D}) = \max_{\mathbf{D} \in \mathcal{D}} (n_{V} + s)/(n + s).$$
 (6)

Determine \mathscr{D}

Coin	Small	Large
Flips	2	2·10 ⁶
Heads	[0,1]	[5, 10]
Tails	[1,2]	[5,2·10 ⁶]

• Recap:
$$\mathcal{D} = \{ \boldsymbol{D} | n_v \in \boldsymbol{n}_v, \sum_{v \in \mathcal{V}} n_v = n \}$$

- What is D^S for the first coin?
- What is \mathcal{D}^L for the second coin?

Determine \mathscr{D}

Coin
 Small
 Large

 Flips
 2

$$2 \cdot 10^6$$

 Heads
 [0,1]
 [5,10]

 Tails
 [1,2]
 [5,2 \cdot 10^6]

• Recap:
$$\mathcal{D} = \{ \boldsymbol{D} | n_v \in \boldsymbol{n}_v, \sum_{v \in \mathcal{V}} n_v = n \}$$

- What is D^S for the first coin?
- What is \mathcal{D}^L for the second coin?

Coin	Small	D_1	D_2
Flips	2	2	2
Heads	[0,1]	0	1
Tails	[1,2]	2	1

Determine \mathscr{D}

- Recap: $\mathcal{D} = \{ \boldsymbol{D} | n_v \in \boldsymbol{n}_v, \sum_{v \in \mathcal{V}} n_v = n \}$
- What is $\mathcal{D}^{\mathcal{S}}$ for the first coin?
- What is \mathcal{D}^L for the second coin?

Coin	Small	D_1	D_2
Flips	2	2	2
Heads	[0,1]	0	1
Tails	[1,2]	2	1

Coin	Large	D_1	D_2	D_3	D_4	D_5	D_6
Flips	$n = 2 \cdot 10^6$	n	n	n	n	n	n
Heads	[5, 10]	5	6	7	8	9	10
Tails	[5, <i>n</i>]	n-5	n-6	n-7	n-8	n-9	n-10

Compute Lower and Upper Expectations

$$\underline{\underline{E}}(\theta_{V}|\mathcal{D}) = \min_{\mathbf{D}\in\mathcal{D}} \underline{\underline{E}}(\theta_{V}|\mathbf{D}) = \min_{\mathbf{D}\in\mathcal{D}} \frac{n_{V}}{(n+s)}, \tag{7}$$

$$\overline{E}(\theta_{V}|\mathcal{D}) = \max_{\mathbf{D}\in\mathcal{D}} \overline{E}(\theta_{V}|\mathbf{D}) = \max_{\mathbf{D}\in\mathcal{D}} (n_{V}+s)/(n+s).$$
 (8)

Compute Lower and Upper Expectations

$$\underline{\underline{E}}(\theta_{V}|\mathcal{D}) = \min_{\mathbf{D}\in\mathcal{D}} \underline{\underline{E}}(\theta_{V}|\mathbf{D}) = \min_{\mathbf{D}\in\mathcal{D}} \frac{n_{V}}{(n+s)}, \tag{7}$$

$$\overline{\overline{E}}(\theta_{V}|\mathcal{D}) = \max_{\mathbf{D}\in\mathcal{D}} \overline{\overline{E}}(\theta_{V}|\mathbf{D}) = \max_{\mathbf{D}\in\mathcal{D}} (n_{V}+s)/(n+s).$$
 (8)

Coin	Small	D_1	D_2	$\underline{E}(\theta_{V} \mathscr{D})$	$E(\theta_{V} \mathbf{D})$
Flips	2	2	2		
Heads	[0,1]	0	1	0/(2+s)	(1+s)/(2+s)
Tails	[1,2]	2	1	1/(2+s)	(2+s)/(2+s)

Compute Lower and Upper Expectations

$$\underline{\underline{E}}(\theta_{V}|\mathcal{D}) = \min_{\mathbf{D}\in\mathcal{D}} \underline{\underline{E}}(\theta_{V}|\mathbf{D}) = \min_{\mathbf{D}\in\mathcal{D}} \frac{n_{V}}{(n+s)}, \tag{7}$$

$$\overline{E}(\theta_{V}|\mathscr{D}) = \max_{\mathbf{D}\in\mathscr{D}} \overline{E}(\theta_{V}|\mathbf{D}) = \max_{\mathbf{D}\in\mathscr{D}} \frac{(n_{V}+s)}{(n+s)}.$$
 (8)

Coin	Small	D_1	D_2	$\underline{E}(\theta_{V} \mathscr{D})$	$E(\theta_{V} \mathbf{D})$
Flips	2	2	2		
Heads	[0,1]	0	1	0/(2+s)	(1+s)/(2+s)
Tails	[1,2]	2	1	1/(2+s)	(2+s)/(2+s)

Coin	Large	D_1	 D_6	$\underline{E}(\theta_{V} \mathscr{D})$	$E(\theta_{V} m{D})$
Flips	$n = 2 \cdot 10^6$	n	 n		
Heads	[5, 10]	5	 10	5/(n+s)	(10+s)/(n+s)
Tails	[5, <i>n</i>]	n-5	 n – 10	(n-10)/(n+s)	(n-5+s)/(n+s)

Outline

- Inference from Multinomial Data
- Imprecise Dirichlet Model (IDM)
- Applications in Classification Tasks
 - Optimal decision rules
 - Pazen Window Classifiers
- **Evaluate Classifiers**
- Summary and Outlook

Outline

- Inference from Multinomial Data
- Imprecise Dirichlet Model (IDM)
- Applications in Classification Tasks
 - Optimal decision rules
 - Pazen Window Classifiers
- Evaluate Classifiers
- Summary and Outlook

Frequentist approach

Basic setup and assumption

- Given training data $\mathbf{D} \subset \mathcal{X} \times \mathcal{Y}$
- **D** is used to estimate a classifier, which predicts, for each \mathbf{x} , $\boldsymbol{\theta} | \mathbf{x}$

Frequentist approach

Basic setup and assumption

- Given training data $\mathbf{D} \subset \mathcal{X} \times \mathcal{Y}$
- **D** is used to estimate a classifier, which predicts, for each x, $\theta | x$

Optimal decision rules

- Let $\ell : \mathscr{Y} \times \mathscr{Y} \longrightarrow \mathbb{R}_+$ be any loss function.
- The Bayes-optimal prediction of ℓ on \boldsymbol{x} is

$$y_{\ell}^{\boldsymbol{\theta}} = \underset{\overline{y} \in \mathscr{Y}}{\operatorname{argmin}} \sum_{y \in \mathscr{Y}} \ell(\overline{y}, y) \theta_{y} | \boldsymbol{x}$$

Frequentist approach

Basic setup and assumption

- Given training data *D* ⊂ *X* × *Y*
- **D** is used to estimate a classifier, which predicts, for each x, $\theta | x$

Optimal decision rules

- Let $\ell: \mathscr{Y} \times \mathscr{Y} \longrightarrow \mathbb{R}_+$ be any loss function.
- The Bayes-optimal prediction of ℓ on \boldsymbol{x} is

$$y_{\ell}^{\boldsymbol{\theta}} = \underset{\overline{y} \in \mathscr{Y}}{\operatorname{argmin}} \sum_{y \in \mathscr{Y}} \ell(\overline{y}, y) \theta_{y} | \boldsymbol{x}$$

• If ℓ is 0/1 loss, i.e. $\ell(\overline{y}, y) = \mathbb{I}(\overline{y} \neq y)$, then (Check!) $y_{\ell}^{\theta} = \operatorname{argmax}_{\overline{y} = 2\ell} \theta_{\overline{y}} | \mathbf{x}$

Frequentist approach (cont.)

Basic setup and assumption

- Given training data $\mathbf{D} \subset \mathcal{X} \times \mathcal{Y}$
- **D** is used to estimate a classifier, which predicts, for each x, $\theta | x$

Frequentist approach (cont.)

Basic setup and assumption

- Given training data $\mathbf{D} \subset \mathcal{X} \times \mathcal{Y}$
- **D** is used to estimate a classifier, which predicts, for each x, $\theta | x$

Generalized optimal decision rules

- Let $\mathcal{L}: 2^{\mathcal{Y}} \setminus \{\emptyset\} \times \mathcal{Y} \longrightarrow \mathbb{R}_+$ be any loss function.
- The Bayes-optimal prediction of \mathscr{L} on \mathbf{x} is

$$Y_{\mathcal{L}}^{\theta} = \underset{\overline{Y} \subset \mathcal{Y}}{\operatorname{argmin}} \sum_{y \in \mathcal{Y}} \mathcal{L}(\overline{Y}, y) \theta_{y} | \mathbf{x}$$

Frequentist approach (cont.)

Basic setup and assumption

- Given training data D ⊂ X × Y
- **D** is used to estimate a classifier, which predicts, for each x, $\theta | x$

Generalized optimal decision rules

- Let $\mathcal{L}: 2^{\mathcal{Y}} \setminus \{\emptyset\} \times \mathcal{Y} \longrightarrow \mathbb{R}_+$ be any loss function.
- The Bayes-optimal prediction of \mathscr{L} on \mathbf{x} is

$$Y_{\mathscr{L}}^{\boldsymbol{\theta}} = \underset{\overline{Y} \subset \mathscr{Y}}{\operatorname{argmin}} \sum_{y \in \mathscr{Y}} \mathscr{L}(\overline{Y}, y) \theta_{y} | \boldsymbol{x}$$

ullet If $\mathscr L$ is the loss version of a utility-discounted accuracy

$$u_{\alpha}(\overline{Y},y) = \mathbb{I}(y \in \overline{Y})g_{\alpha}(|\overline{Y}|)$$

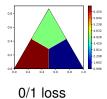
then (Check!) $Y_{\mathcal{L}}^{\theta}$ consists of the most probable outcomes $y \in \mathcal{Y}$.

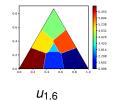
Illustrations

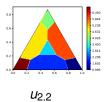
Basic setup and assumption

- Given training data $\mathbf{D} \subset \mathcal{X} \times \mathcal{Y}$
- **D** is used to estimate a classifier, which predicts, for each x, $\theta | x$

Optimal decision rules







Imprecise approach

Basic setup and assumption

- Given training data D ⊂ X × Y
- **D** is used to estimate a classifier, which predicts, for each x, $\Theta | x$

Imprecise approach

Basic setup and assumption

- Given training data D ⊂ X × Y
- **D** is used to estimate a classifier, which predicts, for each x, $\Theta | x$

E-admissibility Rule [4, 5]:

• Let $\ell: \mathscr{Y} \times \mathscr{Y} \longrightarrow \mathbb{R}_+$ be a loss. An optimal prediction is

$$Y_{\ell,\Theta|\boldsymbol{x}}^{\boldsymbol{E}} = \{ \boldsymbol{y} \in \mathcal{Y} | \exists \boldsymbol{\theta} | \boldsymbol{x} \in \boldsymbol{\Theta} | \boldsymbol{x} \text{ s.t. } \boldsymbol{y} = \boldsymbol{y}_{\ell}^{\boldsymbol{\theta}|\boldsymbol{x}} \}.$$

Computation: Solving linear programs, etc.

Imprecise approach (cont.)

Basic setup and assumption

- Given training data $\mathbf{D} \subset \mathcal{X} \times \mathcal{Y}$
- **D** is used to estimate a classifier, which predicts, for each x, $\Theta | x$

Maximality Rule [4, 5]:

• Let $\ell: \mathscr{Y} \times \mathscr{Y} \longrightarrow \mathbb{R}_+$ be a loss. An optimal prediction is

$$Y_{\ell,\Theta|\mathbf{x}}^{M} = \{ y \in \mathcal{Y} | \ \exists \ y' \text{ s.t. } y' \succ_{\ell,\Theta|\mathbf{x}} y \}.$$

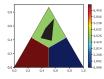
• Computation: Solving linear programs, Iterating over the extreme points of $\Theta | \mathbf{x}$.

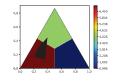
Illustrations

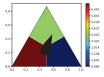
Basic setup and assumption

- Given training data $\mathbf{D} \subset \mathcal{X} \times \mathcal{Y}$
- **D** is used to estimate a classifier, which predicts, for each x, $\Theta | x$

E-admissibility Rule with 0/1 loss







Outline

- Inference from Multinomial Data
- Imprecise Dirichlet Model (IDM)
- Applications in Classification Tasks
 - Optimal decision rules
 - Pazen Window Classifiers
- **Evaluate Classifiers**
- Summary and Outlook

Pazen Window Classifiers [3]

Basic setup and assumption

- Given training data $\mathbf{D} \subset \mathcal{X} \times \mathcal{Y}$, a distance $d(\mathbf{x}, \mathbf{x}')$, and a threshold ϵ
- For each instance \boldsymbol{x} , determine $\boldsymbol{D}_{\epsilon}(\boldsymbol{x}) = \{\boldsymbol{x}' \in \boldsymbol{D} | d(\boldsymbol{x}, \boldsymbol{x}') \leq \epsilon\}$
- $D_{\epsilon}(\mathbf{x})$ can be used to estimate $\theta | \mathbf{x} := \theta | D_{\epsilon}(\mathbf{x})$

Optimal decision rules

• The Bayes-optimal prediction of any $\ell: \mathcal{Y} \times \mathcal{Y} \longmapsto \mathbb{R}_+$ on \mathbf{x} is

$$y_{\ell}^{\theta} = \underset{\overline{y} \in \mathcal{Y}}{\operatorname{argmin}} \sum_{y \in \mathcal{Y}} \ell(\overline{y}, y) \theta_{y} | \boldsymbol{x}$$

• The Bayes-optimal prediction of any $\mathcal{L}: 2^{\mathcal{Y}} \setminus \{\emptyset\} \times \mathcal{Y} \longmapsto \mathbb{R}_+$ on $\textbf{\textit{x}}$ is

$$Y_{\mathcal{L}}^{\theta} = \underset{\overline{Y} \subset \mathcal{Y}}{\operatorname{argmin}} \sum_{y \in \mathcal{Y}} \mathcal{L}(\overline{Y}, y) \theta_{y} | \mathbf{x}$$

Given $\mathbf{D}_{\epsilon}(\mathbf{x})$, we can

- Count $n = |\mathbf{D}_{\epsilon}(\mathbf{x})|$ and n_y , for any $y \in \mathcal{Y} \longleftarrow \sum_{y \in \mathcal{Y}} n_y = n$
- Estimate $\theta | x$ using MLE, DM, etc.

Given $\mathbf{D}_{\epsilon}(\mathbf{x})$, we can

- Count $n = |\mathbf{D}_{\epsilon}(\mathbf{x})|$ and n_y , for any $y \in \mathcal{Y} \longleftarrow \sum_{y \in \mathcal{Y}} n_y = n$
- Estimate θ|x using MLE, DM, etc.

Optimal decision rules (recap)

• The Bayes-optimal prediction of any $\ell: \mathscr{Y} \times \mathscr{Y} \longmapsto \mathbb{R}_+$ on \boldsymbol{x} is

$$y_{\ell}^{\boldsymbol{\theta}} = \underset{\overline{y} \in \mathscr{Y}}{\operatorname{argmin}} \sum_{y \in \mathscr{Y}} \ell(\overline{y}, y) \theta_{y} | \boldsymbol{x}$$

• The Bayes-optimal prediction of any $\mathscr{L}: 2^{\mathscr{Y}} \setminus \{\emptyset\} \times \mathscr{Y} \longmapsto \mathbb{R}_+$ on $\textbf{\textit{x}}$ is

$$Y_{\mathscr{L}}^{\boldsymbol{\theta}} = \underset{\overline{Y} \subset \mathscr{Y}}{\operatorname{argmin}} \sum_{y \in \mathscr{Y}} \mathscr{L}(\overline{Y}, y) \theta_{y} | \boldsymbol{x}$$

Given $D_{\epsilon}(x)$, we can

- Count $n = |\mathbf{D}_{\varepsilon}(\mathbf{x})|$ and n_y , for any $y \in \mathcal{Y} \longleftarrow \sum_{y \in \mathcal{Y}} n_y = n$
- Estimate $\theta | x$ using MLE, DM, etc.

What would we do if **D** contains

- a small number of instances
- and/or missing/partial data?

Given $D_{\epsilon}(x)$, we can

- Count $n = |\mathbf{D}_{\varepsilon}(\mathbf{x})|$ and n_y , for any $y \in \mathcal{Y} \longleftarrow \sum_{y \in \mathcal{Y}} n_y = n$
- Estimate $\theta | x$ using MLE, DM, etc.

What would we do if **D** contains

- a small number of instances
- and/or missing/partial data?

$oldsymbol{x}'\in oldsymbol{\mathcal{D}}_{arepsilon}(oldsymbol{x})$	$Y' \subset \mathcal{Y} = \{Apple, Banana, Tomato\}$							
X ' ₁	Apple or Banana, but not Tomato							
\mathbf{x}_2^i	Banana or Tomato, but not Apple							
x ' ₃ x ' ₄	Apple or Tomato, but not Banana							
	Tomato							
\mathbf{x}_{5}^{\prime}	Tomato							
x ' ₅ x ' ₆	Banana							
$\boldsymbol{x}_7^{\boldsymbol{\gamma}}$	Banana							

Imprecise Pazen Window Classifiers

Basic setup and assumption

- Given training data $\mathbf{D} \subset \mathcal{X} \times \mathcal{Y}$, a distance $d(\mathbf{x}, \mathbf{x}')$, and a threshold ϵ
- For each instance \boldsymbol{x} , determine $\boldsymbol{D}_{\epsilon}(\boldsymbol{x}) = \{\boldsymbol{x}' \in \boldsymbol{D} | d(\boldsymbol{x}, \boldsymbol{x}') \leq \epsilon\}$
- $D_{\epsilon}(x)$ can be used to estimate $\Theta|x := \Theta|D_{\epsilon}(x)$

E-admissibility Rule [4, 5]:

• Let $\ell: \mathcal{Y} \times \mathcal{Y} \longrightarrow \mathbb{R}_+$ be a loss. An optimal prediction is

$$Y_{\ell,\Theta|\mathbf{x}}^E = \{ y \in \mathcal{Y} | \exists \, \boldsymbol{\theta} | \mathbf{x} \in \Theta | \mathbf{x} \text{ s.t. } y = y_{\ell}^{\boldsymbol{\theta}|\mathbf{x}} \}.$$

Computation: Solving linear programs, etc.

Given $\boldsymbol{D}_{\epsilon}(\boldsymbol{x})$, we can

- Count $n = |\mathbf{D}_{\epsilon}(\mathbf{x})|$ and \mathbf{n}_{y} for $y \in \mathcal{Y}$
- Determine $\mathcal{D} = \{ \mathbf{D} | n_y \in \mathbf{n}_y, \sum_{y \in \mathcal{Y}} n_y = n \}$

Given $\mathbf{D}_{\epsilon}(\mathbf{x})$, we can

- Count $n = |\mathbf{D}_{\epsilon}(\mathbf{x})|$ and \mathbf{n}_{v} for $y \in \mathcal{Y}$
- Determine $\mathcal{D} = \{ \boldsymbol{D} | n_y \in \boldsymbol{n}_y, \sum_{y \in \mathcal{Y}} n_y = n \}$

Using IDM to estimate interval posterior mean $\theta_y^* | \mathscr{D}$ of $\theta_y | \mathscr{D}$:

$$\underline{\underline{E}}(\theta_{y}|\mathbf{x}) = \min_{\mathbf{D}\in\mathscr{D}} \underline{\underline{E}}(\theta_{y}|\mathbf{x}) = \min_{\mathbf{D}\in\mathscr{D}} \frac{n_{y}}{(n+s)}, \tag{9}$$

$$\overline{E}(\theta_y|\mathbf{x}) = \max_{\mathbf{D} \in \mathscr{D}} \overline{E}(\theta_y|\mathbf{D}) = \max_{\mathbf{D} \in \mathscr{D}} (n_y + s)/(n + s).$$
 (10)

Determine Possible Precise Data Set

$oldsymbol{x}'\in oldsymbol{D}_{arepsilon}(oldsymbol{x})$	$Y \subset \mathcal{Y} = \{Apple, Banana, Tomato\}$						
X ' ₁	Apple or Banana, but not Tomato						
\mathbf{x}_{2}^{i}	Banana or Tomato, but not Apple						
x ' ₂ x ' ₃ x ' ₄	Apple or Tomato, but not Banana						
$\boldsymbol{x}_{4}^{\prime}$	Tomato						
\mathbf{x}_{5}^{\prime}	Tomato						
x ' ₅ x ' ₆	Banana						
x ₇	Banana						

$$n = 7, \mathbf{n}_A = \{0, 1, 2\}, \mathbf{n}_B = \{2, 3, 4\}, \mathbf{n}_T = \{2, 3, 4\}$$
 (11)

Determine Possible Precise Data Set

$Y \subset \mathcal{Y} = \{Apple, Banana, Tomato\}$						
Apple or Banana, but not Tomato						
Banana or Tomato, but not Apple						
Apple or Tomato, but not Banana						
Tomato						
Tomato						
Banana						
Banana						

(11)

Compute Lower and Upper Expectations

		D_1	D_2	D_3	D_4	D_5	D_6	D_7	D 8
n_A	1	0	0	1	1	1	2	2	2
n _E	3	3	0 4 3	2	3	4	2	3	4
n_7	-	4	3	4	3	2	4	3	3

Compute Lower and Upper Expectations

	D ₁	D_2	D_3	D_4	D_5	D_6	D_7	D 8
n_A	0	0	1	1	1	2	2	2
n_B	3	0 4 3	2	3	4	2	3	4
n_T	4	3	4	3	2	4	3	3

Using IDM to estimate interval posterior mean $\theta_{\nu}^* | \mathcal{D}$ of $\theta_{\nu} | \mathcal{D}$:

$$\underline{\underline{E}}(\theta_y|\mathbf{x}) = \min_{\mathbf{D}\in\mathscr{D}} \underline{\underline{E}}(\theta_y|\mathbf{x}) = \min_{\mathbf{D}\in\mathscr{D}} \frac{n_y}{(n+s)}, \tag{12}$$

$$\overline{E}(\theta_y|\mathbf{x}) = \max_{\mathbf{D} \in \mathscr{D}} \overline{E}(\theta_y|\mathbf{D}) = \max_{\mathbf{D} \in \mathscr{D}} (n_y + s)/(n + s).$$
 (13)

$$\begin{array}{c|cccc} & \underline{E}(\theta_y|\mathbf{x}) & \overline{E}(\theta_y|\mathbf{x}) \\ \hline A & 0/(7+s) & (2+s)/(7+s) \\ B & 2/(7+s) & (4+s)/(7+s) \\ T & 2/(7+s) & (4+s)/(7+s) \\ \end{array}$$

Compute Lower and Upper Expectations (cont.)

• For any $y \in \mathcal{Y}$, let

$$\underline{n}_{y} = \sum_{\mathbf{x}' \in \mathbf{D}} \mathbb{1}(y = Y'), \tag{14}$$

$$\overline{n}_{y} = \sum_{\mathbf{x}' \in \mathbf{D}} \mathbb{1}(y \in Y'). \tag{15}$$

• Compute interval posterior mean $\theta_{\nu}^* | \mathscr{D}$ of $\theta_{\nu} | \mathscr{D}$:

$$\underline{\underline{E}}(\theta_y|\mathbf{x}) = \underline{n}_y/(n+s), \tag{16}$$

$$\overline{E}(\theta_y|\mathbf{x}) = (\overline{n}_y + s)/(n+s). \tag{17}$$

Compute Lower and Upper Bound Expectation (Again)

$oldsymbol{x}'\in oldsymbol{D}_{arepsilon}(oldsymbol{x})$	$Y \subset \mathcal{Y} = \{Apple, Banana, Tomato\}$						
X_1'	Apple or Banana, but not Tomato						
\mathbf{x}_{2}^{i}	Banana or Tomato, but not Apple						
x ' ₃ x ' ₄	Apple or Tomato, but not Banana						
\mathbf{x}_{4}^{\prime}	Tomato						
\mathbf{x}_{5}^{\prime}	Tomato						
x ₆ '	Banana						
x ₇	Banana						

Compute Lower and Upper Bound Expectation (Again)

$oldsymbol{x}' \in oldsymbol{D}_{arepsilon}(oldsymbol{x})$	$Y \subset \mathcal{Y} = \{Apple, Banana, Tomato\}$						
X_1'	Apple or Banana, but not Tomato						
x_2^i	Banana or Tomato, but not Apple						
\mathbf{x}_{3}^{7}	Apple or Tomato, but not Banana						
x ' ₃	Tomato						
x ' ₅	Tomato						
x ' ₅	Banana						
x ₇	Banana						

	\underline{n}_y	\overline{n}_y	$\underline{E}(\theta_y \mathbf{x})$	$\overline{E}(\theta_y \mathbf{x})$
Α	0	2	0/(7+s)	(2+s)/(7+s)
В	2	4	$\frac{2}{(7+s)}$	(4+s)/(7+s)
Τ	2	4	$\frac{2}{(7+s)}$	(4+s)/(7+s)

Outline

- Inference from Multinomial Data
- Imprecise Dirichlet Model (IDM)
- Applications in Classification Tasks
- **Evaluate Classifiers**
 - The cases of Singleton Prediction
 - The cases of Set-Valued Predictions
- Summary and Outlook

Outline

- Inference from Multinomial Data
- Imprecise Dirichlet Model (IDM)
- Applications in Classification Tasks
- **Evaluate Classifiers**
 - The cases of Singleton Prediction
 - The cases of Set-Valued Predictions
- Summary and Outlook

(Few) Commonly Used Criteria

Predictive ability (on a test set):

- Let $\ell: \mathscr{Y} \times \mathscr{Y} \longrightarrow \mathbb{R}_+$ be any loss function.
- Compute (average) loss on the test set

(Few) Commonly Used Criteria

Predictive ability (on a test set):

- Let $\ell: \mathcal{Y} \times \mathcal{Y} \longrightarrow \mathbb{R}_+$ be any loss function.
- Compute (average) loss on the test set

(Few) Other criteria:

- Calibration errors (See Lecture 3)
- Model complexity (Storage memory)
- Training and/or Inference time
- Robustness: Under the presence of noise
- Trustworthiness: Explainability, interpretability, etc.

Outline

- Inference from Multinomial Data
- Imprecise Dirichlet Model (IDM)
- Applications in Classification Tasks
- **Evaluate Classifiers**
 - The cases of Singleton Prediction
 - The cases of Set-Valued Predictions
- Summary and Outlook

(Few) Commonly Used Criteria

Predictive ability (on a test set):

- We can use any loss function $\ell: 2^{\mathscr{Y}} \times \mathscr{Y} \longrightarrow \mathbb{R}_+$.
- If we use utility metric $u = 1 \ell$, replacing min by max.
- Set-based utility functions [7]: $u(Y, y) = \mathbb{I}(y \in Y)g(|Y|)$
- Few commonly used utility function [2]:

$$g_{\alpha}(|Y|) = \frac{\alpha}{|Y|} + \frac{\alpha - 1}{|Y|^2},.$$

(Few) Commonly Used Criteria

Predictive ability (on a test set):

- We can use any loss function $\ell: 2^{\mathscr{Y}} \times \mathscr{Y} \longmapsto \mathbb{R}_{+}$.
- If we use utility metric $u = 1 \ell$, replacing min by max.
- Set-based utility functions [7]: $u(Y, y) = \mathbb{I}(y \in Y)g(|Y|)$
- Few commonly used utility function [2]:

$$g_{\alpha}(|Y|) = \frac{\alpha}{|Y|} + \frac{\alpha - 1}{|Y|^2},.$$

(Few) Other criteria:

- Calibration errors (See Lecture 3)
- Model complexity (Storage memory)
- Training and/or Inference time
- Robustness: Under the presence of noise
- Trustworthiness: Explainability, interpretability, etc.

Set-Based Utility Functions

Few commonly used utility functions:

$$g_{\alpha}(|Y|) = \frac{\alpha}{|Y|} - \frac{\alpha-1}{|Y|^2}.$$

Set-Based Utility Functions

Few commonly used utility functions:

$$g_{\alpha}(|Y|) = \frac{\alpha}{|Y|} - \frac{\alpha-1}{|Y|^2}.$$

Reward to cautiousness:

- u_{50} : $\alpha = 1 \leftarrow$ no reward.
- u_{65} : $\alpha = 1.6$, moderate reward.
- u_{80} : $\alpha = 2.2$, big reward.
- higher α , higher reward

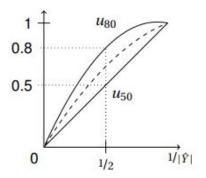
Set-Based Utility Functions

Few commonly used utility functions:

$$g_{\alpha}(|Y|) = \frac{\alpha}{|Y|} - \frac{\alpha-1}{|Y|^2}.$$

Reward to cautiousness:

- u_{50} : $\alpha = 1$ no reward.
- u_{65} : $\alpha = 1.6$, moderate reward.
- u_{80} : $\alpha = 2.2$, big reward.
- higher α, higher reward

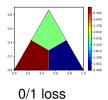


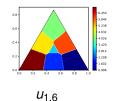
Outline

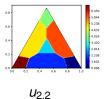
- Inference from Multinomial Data
- Imprecise Dirichlet Model (IDM)
- Applications in Classification Tasks
- **Evaluate Classifiers**
- Summary and Outlook

Optimal Decision Rules

Frequentist approaches

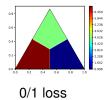


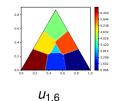


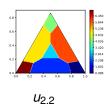


Optimal Decision Rules

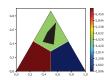
Frequentist approaches

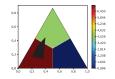


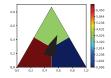




Credal approaches







Computational Aspects

Basic setup and assumption

- Given training data *D* ⊂ *X* × *Y*
- **D** is used to estimate a classifier, which predicts, for each x, $\theta | x$

Optimal decision rules

• The Bayes-optimal prediction of any $\ell: \mathcal{Y} \times \mathcal{Y} \longrightarrow \mathbb{R}_+$ on **x** is

$$y_{\ell}^{\boldsymbol{\theta}} = \underset{\overline{y} \in \mathscr{Y}}{\operatorname{argmin}} \sum_{y \in \mathscr{Y}} \ell(\overline{y}, y) \theta_{y} | \boldsymbol{x}$$

• The Bayes-optimal prediction of any $\mathcal{L}: 2^{\mathscr{Y}} \setminus \{\emptyset\} \times \mathscr{Y} \longmapsto \mathbb{R}_+$ on \boldsymbol{x} is

$$Y_{\mathcal{L}}^{\theta} = \underset{\overline{Y} \subset \mathcal{Y}}{\operatorname{argmin}} \sum_{y \in \mathcal{Y}} \mathcal{L}(\overline{Y}, y) \theta_y | \mathbf{x}$$

Computational Aspects (Cont.)

Basic setup and assumption

- Given training data *D* ⊂ *X* × *Y*
- **D** is used to estimate a classifier, which predicts, for each x, $\Theta | x$

E-admissibility Rule [4, 5]:

• Let $\ell: \mathscr{Y} \times \mathscr{Y} \longrightarrow \mathbb{R}_+$ be a loss. An optimal prediction is

$$Y_{\ell,\Theta|\boldsymbol{x}}^E = \{y \in \mathcal{Y} | \exists \boldsymbol{\theta} | \boldsymbol{x} \in \Theta | \boldsymbol{x} \text{ s.t. } \boldsymbol{y} = \boldsymbol{y}_{\ell}^{\boldsymbol{\theta}|\boldsymbol{x}} \}.$$

Computation: Solving linear programs, etc.

Beyond Multi-Class Classification

Other predictive tasks:

- Multi-Label Classification
- Multi-Dimensional Classification
- Multi-Target Prediction

Beyond Multi-Class Classification

Other predictive tasks:

- Multi-Label Classification
- Multi-Dimensional Classification
- Multi-Target Prediction

Practical Challenges:

- Mixed features (e.g., Multimodal inputs)
- Insufficient training data: Imbalance, Scarce, Incomplete, Noise
- Incomplete test inputs

References I

г	11	1	W	▭	_	rn	1	r	è

An introduction to the imprecise dirichlet model for multinomial data. International Journal of Approximate Reasoning, 39(2-3):123-150, 2005.

- [2] T. Mortier, M. Wydmuch, K. Dembczyński, E. Hüllermeier, and W. Waegeman. Efficient set-valued prediction in multi-class classification. Data Mining and Knowledge Discovery, 35(4):1435-1469, 2021.
- [3] V.-L. Nguyen, M. H. Shaker, and E. Hüllermeier. How to measure uncertainty in uncertainty sampling for active learning. Machine Learning, 111(1):89-122, 2022.
- [4] V.-L. Nguyen, H. Zhang, and S. Destercke. Credal ensembling in multi-class classification. Machine Learning, 114(1):1-62, 2025.
- [5] M. C. Troffaes.

Decision making under uncertainty using imprecise probabilities. International journal of approximate reasoning, 45(1):17–29, 2007.

- [6] L. V. Utkin and T. Augustin. Decision making under incomplete data using the imprecise dirichlet model. International Journal of Approximate Reasoning, 44(3):322–338, 2007.
- [7] M. Zaffalon, G. Corani, and D. Mauá. Evaluating credal classifiers by utility-discounted predictive accuracy. International Journal of Approximate Reasoning, 53(8):1282-1301, 2012.

