AOS4 : Exercise involving weighted average, value
functions and Python - Solution

Hugo Martin

January 7, 2023

(a)

import numpy as np
class WeightedAvgModel:

def __init__(self, weights=None):
self.weights = weights

def predict(self, offers, weights=None):
if weights is None:
if self.weights is None:
raise ("No weights provided.")
weights = self.weights

weighted_avgs = offers@weights.T
print (weighted_avgs)

results = np.argsort(weighted_avgs)
return results[::-1]

(b)

offers = np.array([
[1.2, 3, 4],
[2.5, 2, 217,

[5, 2, 17,

[7, 3, 111

weights = np.array([0.5, 0.25, 0.25])

model = WeightedAvgModel (weights)

print (model.predict (offers))

[3, 2, 0, 1] (the indexes are shifted by 1 unit)

(c) There is nothing to do, it can be easily shown that a weighted average model will always favor
O’ over O, since by definition O’ is element-wise superior to O and for one element strictly
superior, thus the weighted average of O’ is always higher than that of O.

(d)
offers = np.array([
[1.2, 3, 47,
[2.5, 2, 27,
[5, 2, 17,
[7, 3, 111D

weights = np.array([0.5, 0.25, 0.25])
model = WeightedAvgModel (weights)
print (model.predict (offers))

[4, 3, 2, 0, 1]

2.

(e

)

€]

(a)

Let w; be the weights such that w/’s value is maximal under the condition : Ji s.t. G(0O;) >
G(Os). We define ¢ to be the difference between wy and w}. Then : w| = w; — ¢ and
w’2 = w’3 = wy + %. We just have to compute the minimum value 6 for which O; becomes
better than Os for i € {1,2,3,4}, and pick the lowest value. The minimum is obtained for
i = 1, which has the minimum value ¢ :

G'(01) > G'(Os)
))))
= 1.2(0.5-06) +3(0.25 + 5) +4(0.25 + 5) > 12(0.5-06) +1(0.25 + 5) +1(0.25 + 5)
2354236 >65-116 < ¢ > 0.31203007...

We thus choose the value 6 = 0.3121.

w_l=0.5 - 0.3121

w_23 = (1 - w_1) / 2

weights = np.array([w_1l, w_23, w_23])
model = WeightedAvgModel (weights)
print (model.predict(offers))

[0, 4, 3, 2, 1]

offers = np.array([
[1.2, 3, 47,
[2.5, 2, 27,
[5, 2, 17,
[z, 3, 11,
[12,1,17],
[0,5,5]11)

print (model.predict(offers))
[5, 0, 3, 1, 4, 2]

If we decrease w1, Os will obviously stay at the top, since with a 0 salary it is already the best
option. If we increase w1, the best option will necessarily be O4 again, as shown in a previous
question (or O5 since we only showed it for O, O,, O3, but it leads to the same problem).

This is the law of diminishing marginal returns. 10$ to a poor person holds much more utility
than the same 10$ to a rich person.
This function should be concave (also not linear).

1

(b) x,a > 0soe ™ € [0, 1]. From this we see that ;—=z € [0.5, 1]. By adding that extra linear

transformation, we have that vi(x) € [0,5]Vx € R*,a € R*.

To check that v concave, we can use the second-order necessary and sufficient condition for
concavity; namely that the second derivative of the function has to be strictly inferior to 0 on
the domain studied. After some computation, we find :

ae—ax

Vll (X) = 10(1_{_6——61)6)2

The direct computation of v} plus a factorisation of the numerator yields :

Ze—ax(l +e—ax)(_1 +e—ax)

” _ a
vi(x) =10 (T4 ooy

Every factor in this expression is positive on R*, except for —1 + ¢™%*, which is non-positive
since e”** € (0, 1] withx > 0 and @ > 0. We then know that v{(x) < 0 when x > 0, thus this
function is concave on the domain where x > 0.

()
def modified_sigmoid(x, a):
return 10*(C (1 / (1 + np.exp(-a*x))) - 0.5)

import matplotlib.pyplot as plt

fig, ax = plt.subplots()

space = np.arange(0,10,0.001)

v = [[modified_sigmoid(x,a) for x in space] for a in [0.1,0.4,1.4,10]]
plt.plot(space, v[0], color="r’)

plt.plot(space, v[1l], color="g’)

plt.plot(space, v[2], color="b’)

plt.plot(space, v[3], color="y’)

plt.x1im([0,10])

plt.show()

Figure 1: Plot of the modified sigmoid for a = 0.1 (red), a = 0.4 (green), a = 1.4 (blue), a = 10 (yellow)

a controls the initial steepness of the function, that is how fast it reaches saturation.
(d) 1.4 seems to be a good value for a in this case.

offers = np.array([
[1.2, 3, 47,
[2.5, 2, 27,
[5, 2, 17,
[z, 3, 11,
[12,1,17],
[0,5,5]11)

weights = np.array([0.5, 0.25, 0.25])
model = WeightedAvgModel (weights)

offers_modified = np.copy(offers)

offers_modified[:,0] = modified_sigmoid(offers[:,0], 1.4)
print (model.predict(offers_modified))

[3, 0, 1, 2, 4, 5]

