
AOS4 : Exercise involving weighted average, value
functions and Python - Solution

Hugo Martin

January 7, 2023

1. (a)
import numpy as np

class WeightedAvgModel:

def __init__(self, weights=None):
self.weights = weights

def predict(self, offers, weights=None):
if weights is None:

if self.weights is None:
raise Exception("No weights provided.")

weights = self.weights

weighted_avgs = offers@weights.T

print(weighted_avgs)
results = np.argsort(weighted_avgs)

return results[::-1]

(b)
offers = np.array([

[1.2, 3, 4],

[2.5, 2, 2],

[5, 2, 1],

[7, 3, 1]])

weights = np.array([0.5, 0.25, 0.25])

model = WeightedAvgModel(weights)

print(model.predict(offers))
[3, 2, 0, 1] (the indexes are shifted by 1 unit)

(c) There is nothing to do, it can be easily shown that a weighted average model will always favor
𝑂′ over 𝑂, since by definition 𝑂′ is element-wise superior to 𝑂 and for one element strictly
superior, thus the weighted average of 𝑂′ is always higher than that of 𝑂.

(d)
offers = np.array([

[1.2, 3, 4],

[2.5, 2, 2],

[5, 2, 1],

[7, 3, 1]])

weights = np.array([0.5, 0.25, 0.25])

model = WeightedAvgModel(weights)

print(model.predict(offers))
[4, 3, 2, 0, 1]

1

(e) Let 𝑤′
𝑖

be the weights such that 𝑤′
1’s value is maximal under the condition : ∃𝑖 s.t. 𝐺 (𝑂𝑖) >

𝐺 (𝑂5). We define 𝛿 to be the difference between 𝑤1 and 𝑤′
1. Then : 𝑤′

1 = 𝑤1 − 𝛿 and
𝑤′

2 = 𝑤′
3 = 𝑤2 + 𝛿

2 . We just have to compute the minimum value 𝛿 for which 𝑂𝑖 becomes
better than 𝑂5 for 𝑖 ∈ {1, 2, 3, 4}, and pick the lowest value. The minimum is obtained for
𝑖 = 1, which has the minimum value 𝛿 :

𝐺′(𝑂1) > 𝐺′(𝑂5)

⇐⇒ 1.2(0.5 − 𝛿) + 3(0.25 + 𝛿

2
) + 4(0.25 + 𝛿

2
) > 12(0.5 − 𝛿) + 1(0.25 + 𝛿

2
) + 1(0.25 + 𝛿

2
)

⇐⇒ 2.35 + 2.3𝛿 > 6.5 − 11𝛿 ⇐⇒ 𝛿 > 0.31203007...

We thus choose the value 𝛿 = 0.3121.
w_1 = 0.5 - 0.3121

w_23 = (1 - w_1) / 2

weights = np.array([w_1, w_23, w_23])

model = WeightedAvgModel(weights)

print(model.predict(offers))
[0, 4, 3, 2, 1]

(f)
offers = np.array([

[1.2, 3, 4],

[2.5, 2, 2],

[5, 2, 1],

[7, 3, 1],

[12,1,1],

[0,5,5]])

print(model.predict(offers))
[5, 0, 3, 1, 4, 2]

(g) If we decrease 𝑤1, 𝑂5 will obviously stay at the top, since with a 0 salary it is already the best
option. If we increase 𝑤1, the best option will necessarily be 𝑂4 again, as shown in a previous
question (or 𝑂5 since we only showed it for 𝑂1, 𝑂2, 𝑂3, but it leads to the same problem).

2. (a) This is the law of diminishing marginal returns. 10$ to a poor person holds much more utility
than the same 10$ to a rich person.
This function should be concave (also not linear).

(b) 𝑥, 𝑎 ≥ 0 so 𝑒−𝑎𝑥 ∈ [0, 1]. From this we see that 1
1+𝑒−𝑥𝑎 ∈ [0.5, 1]. By adding that extra linear

transformation, we have that 𝑣1(𝑥) ∈ [0, 5]∀𝑥 ∈ R+, 𝑎 ∈ R+.
To check that 𝑣1 concave, we can use the second-order necessary and sufficient condition for
concavity; namely that the second derivative of the function has to be strictly inferior to 0 on
the domain studied. After some computation, we find :

𝑣′1(𝑥) = 10
𝑎𝑒−𝑎𝑥

(1 + 𝑒−𝑎𝑥)2

The direct computation of 𝑣′′1 plus a factorisation of the numerator yields :

2

𝑣′′1 (𝑥) = 10
𝑎2𝑒−𝑎𝑥 (1 + 𝑒−𝑎𝑥) (−1 + 𝑒−𝑎𝑥)

(1 + 𝑒−𝑎𝑥)4

Every factor in this expression is positive on R+, except for −1 + 𝑒−𝑎𝑥 , which is non-positive
since 𝑒−𝑎𝑥 ∈ (0, 1] with 𝑥 ≥ 0 and 𝑎 > 0. We then know that 𝑣′′1 (𝑥) ≤ 0 when 𝑥 ≥ 0, thus this
function is concave on the domain where 𝑥 ≥ 0.

(c)
def modified_sigmoid(x, a):

return 10*((1 / (1 + np.exp(-a*x))) - 0.5)

import matplotlib.pyplot as plt
fig, ax = plt.subplots()

space = np.arange(0,10,0.001)

v = [[modified_sigmoid(x,a) for x in space] for a in [0.1,0.4,1.4,10]]
plt.plot(space, v[0], color=’r’)

plt.plot(space, v[1], color=’g’)

plt.plot(space, v[2], color=’b’)

plt.plot(space, v[3], color=’y’)

plt.xlim([0,10])

plt.show()

Figure 1: Plot of the modified sigmoid for 𝑎 = 0.1 (red), 𝑎 = 0.4 (green), 𝑎 = 1.4 (blue), 𝑎 = 10 (yellow)

𝑎 controls the initial steepness of the function, that is how fast it reaches saturation.
(d) 1.4 seems to be a good value for 𝑎 in this case.

offers = np.array([

[1.2, 3, 4],

[2.5, 2, 2],

[5, 2, 1],

[7, 3, 1],

[12,1,1],

[0,5,5]])

weights = np.array([0.5, 0.25, 0.25])

model = WeightedAvgModel(weights)

3

offers_modified = np.copy(offers)

offers_modified[:,0] = modified_sigmoid(offers[:,0], 1.4)

print(model.predict(offers_modified))
[3, 0, 1, 2, 4, 5]

4

