SY01 / A22 - TEST

(Durée : 45min - fiche recto-verso A4 autorisée) Les réponses doivent être justifiées soigneusement.

Exercice I (5 points)

Soit un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ et soient A, B, C trois événements de \mathcal{F} . On suppose que chacun d'eux est non négligeable et non certain.

- **1.** Montrer que si A est indépendant de $B \cap C$ et de $B \cap \overline{C}$ alors A est indépendant de B.
- **2.** Montrer que A et B ne peuvent pas être simultanément incompatibles ($\mathbb{P}(A \cap B) = 0$) et indépendants.
- **3.** Si $\Omega = A \cup B$, A et B peuvent-ils être indépendants ?

Exercice II (8 points)

On considère deux urnes U_1 et U_2 . Nous avons $n \ge 1$ boules noires identiques et $b \ge 1$ boules blanches identiques.

1. Combien y a-t-il de façons différentes de placer ces boules dans les deux urnes?

Soient $n_1, n_2, b_1, b_2 \in \mathbb{N}^*$, tels que $n = n_1 + n_2$, $b = b_1 + b_2$. On suppose désormais que U_1 (respectivement U_2) contient n_1 boules noires et b_1 boules blanches (resp. n_2 boules noires et b_2 boules blanches). On choisit de façon équiprobable une des deux urnes puis on y effectue deux tirages successifs d'une boule avec remise. Soit N_1 (resp. N_2) l'événement "tirer une boule noire au premier (resp. au second) tirage".

- **2.** Quelle est la probabilité de N_1 ? Quelle est la probabilité de N_2 ?
- **3.** Quelle est la probabilité de tirer une boule noire au second tirage sachant que l'on a tiré une boule noire au premier tirage ?
- **4.** Pour quelles valeurs de n_1, n_2, b_1, b_2 les événements N_1 et N_2 sont indépendants ?

Exercice III (7 points)

On lance un dé (juste) de manière indépendante jusqu'à obtenir un résultat multiple de 3.

- 1. Donner un espace de probabilité pour cette expérience aléatoire.
- **2.** Quelle est la probabilité d'obtenir un résultat multiple de 3 au bout d'un nombre $k \in \mathbb{N}^*$ de lancers?
- **3.** Quelle est la probabilité d'obtenir un résultat multiple de 3 au bout d'un nombre impair de lancers?