SY01 / A25 - TEST

(Durée : 45min - aucun document autorisé) Les réponses doivent être justifiées soigneusement.

Exercice I (8 points)

On lance un dé à 6 faces deux fois. On note A l'événement "la somme de deux résultats est égale à 7" et B l'évènement "obtenir au moins un 6".

- 1. Donner un espace fondamental Ω associé à cette expérience aléatoire et exprimer A, B et $A \cap B$ en fonction des évènements élémentaires de Ω .
- **2.** Soit \mathcal{F}_1 la plus petite tribu (contenant le moins d'éléments) telle que $A \in \mathcal{F}_1$. Quels sont les éléments de \mathcal{F}_1 ? L'évènement $A \cap B$ appartient-il à \mathcal{F}_1 ? Déterminer $|\mathcal{F}_1|$.
- 3. Soit \mathcal{F}_2 la plus grande tribu (contenant le plus d'éléments) telle que $A \in \mathcal{F}_2$. Quels sont les éléments de \mathcal{F}_2 ? L'évènement $A \cap B$ appartient-il à \mathcal{F}_2 ? Déterminer $|\mathcal{F}_2|$.
- **4.** Considérons l'espace de probabilité $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$ avec \mathbb{P} la probabilité uniforme sur Ω . Pour $i = 1, \ldots, 6$, on note C_i l'évènement "obtenir i lors du premier lancer". Analyser l'indépendance de chaque paire d'évènements A et C_i , pour $i = 1, \ldots, 6$.

Exercice II (4 points)

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité, et A_1, A_2, \ldots, A_n des évènements. Montrer que

$$\mathbb{P}(A_1 \cap A_2 \cap \ldots \cap A_n) \ge \sum_{i=1}^n \mathbb{P}(A_i) - (n-1).$$

En déduire que si on a $\mathbb{P}(A_i) = 1, \forall i \in \{1, \dots, n\}$, alors $\mathbb{P}(A_1 \cap \dots \cap A_n) = 1$.

Exercice III (8 points)

Une urne contient initialement a boules rouges et b boules bleues $(a, b \in \mathbb{N}^*)$. On tire une boule au hasard puis on la remet dans l'urne en ajoutant c boules de la même couleur $(c \in \mathbb{N})$; puis on recommence en tirant une boule de l'urne dans sa nouvelle composition et en ajoutant c boules de la même couleur, et ainsi de suite. On repète le processus jusqu'à obtenir deux boules de la même couleur lors de deux tirages consécutifs.

- 1. Donner un espace fondamental Ω associé à cette expérience aléatoire.
- **2.** On appelle R_i l'évènement "la boule sortie au i-ème tirage est rouge", pour $i \in \mathbb{N}^*$.
 - (a) Montrer que $\mathbb{P}(R_1) = \mathbb{P}(R_2)$. Les évènements R_1 et R_2 sont-ils indépendants ?
 - (b) On considère dans cette question a=b=c=1 et $n\in\mathbb{N}^*$. Calculer la probabilité de s'arrêter au bout de 2n tirages.