Chapitre 2. Corrigés des exercices.

Exercice A.2.5:

On suppose que les composées sont $g \circ f$ et $h \circ g$ sont bijectives.

1. A l'aide de l'exercice A.2.4, on montre que g est bijective. En effet, on a d'après les contraposées des questions 4. et 5., en remplaçant g par h et f par g,

$$(h \circ g \text{ injective} \Rightarrow g \text{ injective})$$

 $(g \circ f \text{ surjective} \Rightarrow g \text{ surjective})$

D'après le cours

$$g$$
 injective et g surjective \Leftrightarrow g bijective.

Pour terminer on a les implications du cours suivantes :

 $g \circ f$ bijective et g bijective $\Rightarrow g \circ f$ bijective et g^{-1} bijective $\Rightarrow g^{-1} \circ (g \circ f) = id_B \circ f = f$ bijective et

 $h \circ g$ bijective et g bijective $\Rightarrow h \circ g$ bijective et g^{-1} bijective $\Rightarrow (h \circ g) \circ g^{-1} = h \circ id_C = h$ bijective

2. On utilise les formules du cours pour exprimer f_1 et h_1 en fonction de f^{-1} , g^{-1} et h^{-1} . On a

$$f_1 = (g \circ f)^{-1} = f^{-1} \circ g^{-1}$$
 et $h_1 = (h \circ g)^{-1} = g^{-1} \circ h^{-1}$.

On obtient

$$f_1 \circ g = (f^{-1} \circ g^{-1}) \circ g = f^{-1} \circ id_B = f^{-1}$$

$$f \circ f_1 = f \circ (f^{-1} \circ g^{-1}) = id_B \circ g^{-1} = g^{-1}$$

$$h_1 \circ h = (g^{-1} \circ h^{-1}) \circ h = g^{-1} \circ id_C = g^{-1}$$

$$g \circ h_1 = g \circ (g^{-1} \circ h^{-1}) = id_C \circ h^{-1} = h^{-1}$$

Exercice A.2.12 : Soient A et B deux parties non vides et bornées de \mathbb{R} telles que $A \subset B$.

1. Montrons que $\sup A$, $\sup B$, $\inf A$ et $\inf B$ existent.

D'après l'énoncé, les ensembles A et B sont non vides et bornées (\Leftrightarrow majorés et minorés) dans \mathbb{R} . D'après les axiomes des bornes inférieures et supérieures, les quatres éléments sup A, sup B, inf A et inf B existent.

2. Montrons que sup $A \leq \sup B$.

 $\underline{\text{d\'em}}$: Par définition, $\sup B$ est un majorant de B. Ce qui s'écrit $\forall x \in B, \ x \leq \sup B$. Comme $A \subset B$, on peut écrire $\forall x \in A, \ x \leq \sup B$. Autrement dit, $\sup B$ est un majorant de A. Comme $\sup A$ est le plus petit des majorants de A, on obtient $\sup A \leq \sup B$.

3. Montrons que inf $B \leq \inf A$.

 $\underline{\text{d\'em}}$: Par définition, inf B est un minorant de B. Ce qui s'écrit $\forall x \in B$, inf $B \leq x$. Comme $A \subset B$, on peut écrire $\forall x \in A$, inf $B \leq x$. Autrement dit, inf B est un minorant de A. Comme inf A est le plus grand des minorants de A, on obtient inf $B \leq \inf A$.

Exercice A.2.11: Soient A et B deux parties non vides de \mathbb{R} telles que

$$\forall (a, b) \in A \times B, \ a < b \ .$$

1. • Tout d'abord on montre que inf B existe :

L'hypothèse peut s'écrire : $\forall a \in A, \ \underline{\forall b \in B, \ a < b} \quad \Rightarrow \quad \forall a \in A, \ B \text{ est minoré par } a.$ Comme $A \neq \emptyset$, on en déduit $\exists a \in A \text{ et } B \text{ est bien un ensemble minoré par } a.$

D'après l'axiome de la borne inférieure, inf B existe.

NB: le symbole \forall n'implique pas le symbole $\exists!!!$

 \bullet On montre que $\sup A$ existe de la même façon :

On peut intervertir les quantificateurs : $\forall b \in B, \ \underbrace{\forall \, a \in A, \, a < b}_{\Leftrightarrow \, b \text{ majore } A} \implies \forall \, b \in B, \, A \text{ est majoré par } b.$

Comme $B \neq \emptyset$, on en déduit $\exists b \in B$ et A est bien un ensemble majoré par b. D'après l'axiome de la borne supérieure, sup A existe.

2. On commence la démonstration pour l'hypothèse

$$\forall b \in B, A \text{ est major\'e par } b$$

Comme sup A est le plus petit des majorants de A, on peut écrire

$$\forall b \in B, \sup A \leq b$$

Cette dernière phrase se réinterprète par : $\sup A$ est un minorant de l'ensemble B.

Comme inf B est le plus grand des minorants, on peut écrire : sup $A \leq \inf B$.

3. La réponse est NON pour des A et B quelconques. Un contre exemple est

$$A =]-\infty, 0]$$
 et $B =]0, +\infty[$.

On a bien $\forall (a, b) \in A \times B$, $a \le 0 < b$ et pourtant sup $A = 0 = \inf B$.

Exercice A.2.14: Soit $f:[0,1] \to [0,1]$ une application croissante. On pose

$$B = \{x \in [0,1]; f(x) \ge x\}$$
.

1. Par hypothèse, l'espace d'arrivée de f est [0,1]. Cela signifie que $\mathrm{Im} f \subset [0,1]$ et donc

$$\forall x \in [0,1], f(x) \in [0,1] \Rightarrow f(0) \in [0,1] \Rightarrow 0 \le f(0) \le 1.$$

On en déduit que $0 \in B$ et donc $B \neq \emptyset$.

2. Par définition de l'ensemble B, on a $B \subset [0,1]$ donc B est majoré par 1. L'ensemble B est une partie non vide et majorée de $\mathbb R$ donc d'après l'axiome de la borne supérieure, $b = \sup B$ existe.

D'après la question 1., on sait que $0 \in B$ et b est un majorant de B donc $b \ge 0$.

Sachant que 1 est un majorant de B et que b est le plus petit des majorants, on en déduit que $b \le 1$. En conclusion, $0 \le b$ et $b \le 1$ donc $b \in [0,1]$.

3. Puisque b est la borne supérieure de B on peut écrire $\forall x \in B, x \leq b$.

On applique la fonction f qui est croissante pour obtenir $\forall x \in B, f(x) \leq f(b)$.

Comme $x \in B \Rightarrow f(x) \geq x$, on en déduit que $\forall x \in B, x \leq f(b)$. Ceci signifie que f(b) est un majorant de B.

Comme b est le plus petit des majorants, on a $b \leq f(b)$.

On rappelle que $b \in [0,1]$ d'après la question 2.

En conclusion, on a $b \in B$.

4. Soit $x \in B$. Alors $x \in [0,1]$ et $x \leq f(x)$.

On applique la fonction f. D'une part $\operatorname{Im} f \subset [0,1] \Rightarrow f(x) \in [0,1]$.

D'autre part, f est croissante donc $f(x) \leq f(f(x))$.

Cela signifie que $f(x) \in B$.

5. On utilise l'antisymétrie de la relation d'ordre \leq .

Pour montrer que b = f(b), on montre que $f(b) \le b$ et $b \le f(b)$.

On a déjà montré à la question 3. que $b \leq f(b)$ et que $b \in B$.

D'après la question $\mathbf{4}$, $b \in B \Rightarrow f(b) \in B$. Comme b est la borne supérieure de B on a $f(b) \leq b$.

En conclusion b = f(b). On dit que b est un point fixe de f.

6. La réponse est non. Prendre comme contre-exemple, une fonction non continue définie par

$$f(x) = \begin{cases} 1 & 0 \text{ si } 0 \le x < \frac{1}{2} \\ 0 & \text{ si } \frac{1}{2} \le x \le 1 \end{cases}$$

La fonction f est bien une application de [0,1] dans [0,1] et décroissante. Cependant l'équation f(x) = x n'admet aucune solution.