Exercice A.2.4:

(vii) On rappelle que n! est le factoriel de n et correspond au produit des n premiers entiers (en commençant par 1 biensûr) :

$$n! = 1 \times 2 \times 3 \times \cdots \times n$$
.

On réécrit alors u_n comme un produit de n fractions :

$$u_n = \frac{1 \times 2 \times 3 \times \dots \times n}{n \times n \times n \times \dots \times n} = \frac{1}{n} \times \frac{2}{n} \times \frac{3}{n} \times \dots \times \frac{n-1}{n} \times \frac{n}{n}.$$

On remarque alors que les numérateurs sont toujours inférieurs ou égaux au dénominateurs puisqu'il s'agit des entiers plus petit que n. On a donc

$$u_n = \frac{1}{n} \times \underbrace{\frac{2}{n} \times \frac{3}{n} \times \dots \times \frac{n-1}{n} \times \frac{n}{n}}_{\leq 1}$$

On conclut avec le théorème des gendarmes : comme $\forall n \geq 1, 0 \leq u_n \leq \frac{1}{n}$, on a

$$\frac{1}{n} \underset{\to \infty}{\to} 0 \quad \Rightarrow \quad u_n \underset{\to \infty}{\to} 0.$$

(viii) On procède comme au (vi). On réécrit u_n comme un produit de n fractions :

$$u_n = \frac{2^n}{n!} = \frac{2 \times 2 \times 2 \times \cdots \times 2}{1 \times 2 \times 3 \times \cdots \times n} = \frac{2}{1} \times \frac{2}{2} \times \frac{2}{3} \times \cdots \times \frac{2}{n-1} \times \frac{2}{n}.$$

Exceptée la première fraction, les dénominateurs sont toujours supérieurs ou égaux au numénateurs puisqu'il s'agit des entiers compris entre 2 et n. On a donc

$$u_n = \frac{2}{1} \times \underbrace{\frac{2}{2} \times \frac{2}{3} \times \dots \times \frac{2}{n-1}}_{<1} \times \frac{2}{n}$$

On conclut avec le théorème des gendarmes : comme $\forall n \geq 1, 0 \leq u_n \leq \frac{4}{n}$, on a

$$\frac{4}{n} \xrightarrow[]{} 0 \quad \Rightarrow \quad u_n \xrightarrow[]{} 0.$$

(ix) Il s'agit du produit des deux précédentes suites :

$$u_n = \frac{2^n}{n^n} = \frac{n!}{n^n} \times \frac{2^n}{n!}.$$

D'après les opérations sur les limites des suites convergentes, on en déduit que $u_n \underset{n \to \infty}{\to} 0$.

Exercice A.2.5: Soit (u_n) la suite définie pour $n \geq 0$ par

$$\begin{cases} u_0 = 1 \\ u_1 = 0 \\ u_n = 1 - \frac{1}{n} \quad \text{si } n \ge 2 \text{ est pair} \\ u_n = 1 - \frac{1}{n-2} \quad \text{si } n \ge 3 \text{ est impair.} \end{cases}$$

- **1.** $u_2 = \frac{1}{2}$, $u_3 = 0$, $u_4 = \frac{3}{4}$, $u_5 = \frac{2}{3}$.
- **2.** On pose $A = \{u_n, n \in \mathbb{N}\}$. Montrons que sup A = 1.
 - (i) On a $u_0 = u_1 = 0 \le 1$. Pour $n \ge 2$ pair, on a

$$\frac{1}{n} > 0 \Rightarrow -\frac{1}{n} < 0 \Rightarrow u_n = 1 - \frac{1}{n} < 1$$

Pour $n \geq 3$ impair, on a

$$\frac{1}{n-2} > 0 \Rightarrow -\frac{1}{n-2} < 0 \Rightarrow u_n = 1 - \frac{1}{n-2} < 1$$
.

Finalement, $\forall n \in \mathbb{N}, u_n \leq 1$, donc 1 est un majorant de A.

(ii) Il reste à montrer que c'est le plus petit des majorants. Soit t < 1. On montre que le réel tne peut pas être un majorant de A. On cherche alors un terme de la suite (u_n) supérieur à t. Limitons nous aux termes d'indices pairs.

$$t < u_{2p} \Leftrightarrow t < 1 - \frac{1}{2p} \Leftrightarrow t - 1 < -\frac{1}{2p} \Leftrightarrow \frac{1}{2(t-1)} < p$$
.

La fonction partie entière fournit le plus petit entier satisfaisant cette inégalité : $p = E(\frac{1}{2(t-1)}) + 1$, puis on pose $n = 2[E(\frac{1}{2(t-1)}) + 1]$. On a montré

$$\forall t > 1, \exists n = 2[E(\frac{1}{2(t-1)}) + 1] \in \mathbb{N}, t < u_n$$
.

 $\underline{\text{Conclusion}} : \sup A = 1.$

3. On veut montrer que $\lim_{n\to\infty}u_n=1$, à l'aide de la définition avec quantificateurs. $\underline{\mathrm{but}}: \forall \, \varepsilon>0, \, \exists N\in\mathbb{N}, \, \forall n\in\mathbb{N}, \, (n>N\Rightarrow |u_n-1|<\varepsilon).$

preuve : On fixe $\varepsilon > 0$. On résoud $|u_n - 1| < \varepsilon$ en distinguant les cas $n \ge 2$ pair et $n \ge 3$ impair. On commence avec $n \ge 2$ pair : $|u_n - 1| = \frac{1}{n}$, donc

$$|u_n - 1| < \varepsilon \Leftrightarrow \frac{1}{n} < \varepsilon \Leftrightarrow n > \frac{1}{\varepsilon}$$
.

Posons, $N_1 = E(\frac{1}{\varepsilon}) + 1$.

Dans le cas $n \geq 3$ impair : $|u_n - 1| = \frac{1}{n-2}$, donc

$$|u_n-1|<\varepsilon \Leftrightarrow \frac{1}{n-2}<\varepsilon \Leftrightarrow n>\frac{1}{\varepsilon}+2$$
.

Posons, $N_2 = E(\frac{1}{\epsilon} + 2) + 1$.

<u>conclusion</u>: Pour tout $\varepsilon > 0$, $\exists N = \max(N_1, N_2) \in \mathbb{N}$, $\forall n \in \mathbb{N}$, $(n > N \Rightarrow |u_n - 1| < \varepsilon)$.

4. On procède par l'absurde. On suppose que la suite (u_n) est croissante à partir d'un certain rang ce qui se traduit par :

hypothèse : $\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n > N \Rightarrow u_n < u_{n+1}).$

Par conséquent, si on choisit n > N pair alors n + 1 est impair et on a

$$u_n < u_{n+1} \Rightarrow 1 - \frac{1}{n} < 1 - \frac{1}{n-1} \Rightarrow n < n-1 \Rightarrow 0 < -1 \text{ (absurde)}$$
.

conclusion: Non, la suite n'est pas croissante à partir d'un certain rang.

Exercice A.2.11: Soit $f:]0, +\infty[\to \mathbb{R}$ définie par $f(x) = \frac{1}{2}(x + \frac{a}{x})$ avec a > 0.

1. Nous n'avons pas besoin d'étudier les variations de f.

Soit $x \neq 0$, on a $f(x) - x = \frac{1}{2} \frac{a - x^2}{x}$.

$$x > \sqrt{a} \Rightarrow x > 0$$
 et $a - x^2 < 0 \Rightarrow f(x) - x < 0 \Rightarrow f(x) < x$.

On a aussi $f(x) - \sqrt{a} = \frac{1}{2} \frac{x^2 - 2x\sqrt{a} + a}{x} = \frac{1}{2} \frac{(x - \sqrt{a})^2}{x}$ donc

$$x > \sqrt{a} \Rightarrow (x - \sqrt{a} > 0 \text{ et } x > 0) \Rightarrow f(x) - \sqrt{a} > 0 \Rightarrow f(x) > \sqrt{a}$$
.

conclusion: Pour tout $x > \sqrt{a}$, on a $\sqrt{a} < f(x) < x$.

2. On considère la suite (u_n) définie pour $n \in \mathbb{N}^*$ par

$$u_1 > \sqrt{a}$$
 et $u_{n+1} = f(u_n)$.

Montrons que (u_n) est décroissante et minorée par \sqrt{a} .

(i) Montrons par récurrence que $\forall n \in \mathbb{N}^*, u_n > \sqrt{a}$.

<u>Initialisation</u>: par définition de la suite (u_n) , on a $u_1 > \sqrt{a}$.

<u>Hérédité</u>: D'après la question 1. $u_n > \sqrt{a} \Rightarrow f(u_n) > \sqrt{a} \Rightarrow u_{n+1} > \sqrt{a}$.

Conclusion: $\forall n \in \mathbb{N}^*, u_n > \sqrt{a}$.

(ii) D'après la question 1., puisque $x > \sqrt{a} \Rightarrow f(x) < x$ on a

$$u_{n+1} - u_n = f(u_n) - u_n < 0,$$

donc (u_n) est décroissante.

(iii) La suite (u_n) est décroissante et minorée donc elle converge vers une limite $\ell = \inf\{u_n, n \in \mathbb{N}^*\} \ge \sqrt{a}$. Sachant que $(u_n \underset{n \to \infty}{\to} \ell \Rightarrow u_{n+1} \underset{n \to \infty}{\to} \ell)$, on en déduit que ℓ vérifie l'égalité suivante (d'après les opérations sur les limites)

$$\ell = \frac{1}{2} \left(\ell + \frac{a}{\ell} \right) \Rightarrow \ell^2 = a \Rightarrow \ell = \sqrt{a}$$
.

3. On pose $\varepsilon_n = u_n - \sqrt{a}$. Alors

$$\varepsilon_{n+1} = u_{n+1} - \sqrt{a} = f(u_n) - \sqrt{a} = \frac{1}{2} \frac{(u_n - \sqrt{a})^2}{u_n} = \frac{\varepsilon_n^2}{2u_n}.$$

$$u_n > \sqrt{a} \Rightarrow \frac{1}{u_n} < \frac{1}{\sqrt{a}} \Rightarrow \frac{\varepsilon_n^2}{2u_n} < \frac{\varepsilon_n^2}{2\sqrt{a}}.$$

4. On pose $b = 2\sqrt{a}$. Montrons par récurrence que $\forall n \in \mathbb{N}, \ \varepsilon_{n+1} \leq b \left(\frac{\varepsilon_1}{b}\right)^{2^n}$.

<u>Initialisation</u>: pour n=0 on a $\varepsilon_{n+1}=\varepsilon_1$ et $b\left(\frac{\varepsilon_1}{h}\right)^{2^n}=\varepsilon_1$.

Conclusion: $\forall n \in \mathbb{N}, \, \varepsilon_{n+1} \leq b \left(\frac{\varepsilon_1}{b}\right)^{2^n}$.

5. On peut calculer les premiers termes : $u_1 = 2$, $u_2 = \frac{7}{4}$, $u_3 = \frac{97}{56}$, $u_4 = \frac{18\,817}{10\,864}$ et $u_5 = \frac{708\,156\,977}{408\,855\,776}$. On a $\frac{\varepsilon_1}{b} = \frac{2-\sqrt{3}}{2\sqrt{3}} < \frac{1}{10}$, donc

$$u_5 - \sqrt{3} = \varepsilon_5 \le 2\sqrt{3} \frac{1}{10^{2^4}} = \frac{2\sqrt{3}}{10^{16}} \le 4.10^{-16}.$$

Le nombre rationnel u_5 est une approximation à 16 chiffres après la virgule du nombre irrationnel $\sqrt{3}$.