Chapitre 4. Exercice A.2.6 Soient a > 0 et b > 0.

1. On utilise la caractérisation de la fonction partie entière :

$$\forall X \in \mathbb{R}, \ X - 1 < E(X) \le X.$$

Pour $x \neq 0$ et $X = \frac{b}{x}$, on obtient $\frac{b}{x} - 1 < E\left(\frac{b}{x}\right) \le \frac{b}{x}$.

$$x > 0 \Rightarrow \frac{x}{a} \times \left(\frac{b}{x} - 1\right) < \frac{x}{a} \times E\left(\frac{b}{x}\right) \le \frac{x}{a} \times \frac{b}{x} \Rightarrow \frac{b}{a} - \frac{x}{a} < f_1(x) \le \frac{b}{a}$$

$$x < 0 \Rightarrow \frac{x}{a} \times \left(\frac{b}{x} - 1\right) > \frac{x}{a} \times E\left(\frac{b}{x}\right) \ge \frac{x}{a} \times \frac{b}{x} \Rightarrow \frac{b}{a} - \frac{x}{a} > f_1(x) \ge \frac{b}{a}$$

Puisque $\frac{b}{a} - \frac{x}{a} \underset{x \to 0}{\longrightarrow} \frac{b}{a}$, on en déduit grâce au théorème des gendarmes que $f_1(x) \underset{x \to 0}{\longrightarrow} \frac{b}{a}$.

- **2.** Il faut étudier la fonction f_2 sur les intervalles]-a,0[et]0,a[.
- Si $x \in]0, a[$, alors $\frac{x}{a} \in]0, 1[$ et $E(\frac{x}{a}) = 0$. Par conséquent $\forall x \in]0, a[$, $f_2(x) = 0$ et

$$\lim_{x \to 0^+} f_2(x) = 0 \ .$$

 \bullet Si $x\in]-a\,,0[,$ alors $\frac{x}{a}\in]-1\,,0[$ et $E(\frac{x}{a})=-1.$ Par conséquent

$$\lim_{x \to 0^{-}} f_2(x) = \lim_{x \to 0^{-}} -\frac{b}{x} = +\infty.$$

 $\underline{\text{conclusion}}$: la limite à droite existe mais la limite à gauche n'existe pas donc la fonction f_2 n'admet pas de limite en 0.

Chapitre 4. Exercise A.2.4
1.
$$\frac{x^2 \sin \frac{1}{x}}{\sin x} = \frac{x}{\sin x} \times x \sin \frac{1}{x}.$$

On a $\frac{x}{\sin x} \to 1$. De plus $\sin \frac{1}{x}$ est borné sur \mathbb{R}^* donc $x \sin \frac{1}{x} \to 0$.

On en déduit que
$$\frac{x}{\sin x} \times x \sin \frac{1}{x} \underset{x \to 0}{\longrightarrow} 1 \times 0 = 0$$
.

3. • La limite est indéterminée en $+\infty$, on utilise la méthode du conjugué :

$$x + 2 - \sqrt{x^2 + 4x} = \frac{(x + 2 - \sqrt{x^2 + 4x})(x + 2 + \sqrt{x^2 + 4x})}{x + 2 + \sqrt{x^2 + 4x}} = \frac{(x + 2)^2 - (x^2 + 4x)}{x + 2 + \sqrt{x^2 + 4x}} = \frac{4}{x + 2 + \sqrt{x^2 + 4x}} \xrightarrow[x \to +\infty]{} 0.$$

• En $-\infty$ on obtient directement le résultat

$$x+2-\sqrt{x^2+4x} \underset{x\to-\infty}{\to} -\infty.$$

5. Il faut écrire pour x > 0 : $x - 2 = (\sqrt{x} - \sqrt{2})(\sqrt{x} + \sqrt{2})$. On obtient

$$\frac{x - \sqrt{2x}}{x - 2} = \frac{\sqrt{x}(\sqrt{x} - \sqrt{2})}{(\sqrt{x} - \sqrt{2})(\sqrt{x} + \sqrt{2})} = \frac{\sqrt{x}}{\sqrt{x} + \sqrt{2}} \underset{x \to 2}{\longrightarrow} \frac{\sqrt{2}}{2\sqrt{2}} = \frac{1}{2}.$$

7. On utilise le résultat $\frac{\sin X}{X} \underset{X \to 0}{\to} 1$ pour X = 2x et X = 3x.

$$\begin{aligned} \frac{\sin 2x}{\tan 3x} &= \sin 2x \times \cos 3x \times \frac{1}{\sin 3x} = \frac{\sin 2x}{2x} \times 2x \times \cos 3x \times \frac{3x}{\sin 3x} \times \frac{1}{3x} \\ &= \frac{\sin 2x}{2x} \times \cos 3x \times \frac{3x}{\sin 3x} \times \frac{2}{3} \underset{x \to 0}{\rightarrow} 1 \times 1 \times 1 \times \frac{2}{3} = \frac{2}{3} \; . \end{aligned}$$

Exercice supplémentaire. Démontrer, à l'aide de la définition avec quantificateurs, que la fonction définie sur $]0, +\infty[$ par

$$f(x) = \begin{cases} \frac{1}{x} & \text{si } 0 < x < 1\\ \sqrt{x} & \text{si } x \ge 1 \end{cases}$$

admet une limite finie quand $x \to 1$.

1. Représenter graphiquement cette fonction. On rappelle la définition de la limite.

$$\forall \varepsilon > 0, \exists \eta > 0, \ \forall x \in]0, +\infty[, \ (|x-1| < \eta \Rightarrow |f(x) - 1| < \varepsilon).$$

- 2. Soit $\varepsilon > 0$ fixé. On doit commencer par résoudre l'inégalité $|f(x) 1| < \varepsilon$. Ici on doit le faire deux fois :
- À gauche de a=1:

$$\left|\frac{1}{x}-1\right|<\varepsilon\quad\Leftrightarrow\quad 1-\varepsilon<\frac{1}{x}<1+\varepsilon\quad\Leftrightarrow\quad \left\{\begin{array}{ll}\frac{1}{1-\varepsilon}>x>\frac{1}{1+\varepsilon}&\text{si }0\varepsilon<1\\x>\frac{1}{1+\varepsilon}&\text{si }\varepsilon\geq1.\end{array}\right.$$

L'application de la fonction inverse change le sens des symboles <. L'ensemble des solutions situées dans l'intervalle]0,1[est $S_g:=]\frac{1}{1+\varepsilon},1[$.

• À droite de a = 1:

$$|\sqrt{x} - 1| < \varepsilon \quad \Leftrightarrow \quad 1 - \varepsilon < \sqrt{x} < 1 + \varepsilon \quad \Leftrightarrow \quad \left\{ \begin{array}{l} (1 - \varepsilon)^2 < x < (1 + \varepsilon)^2 & \text{si } 0 < \varepsilon < 1 \\ 0 \le x < (1 + \varepsilon)^2 & \text{si } \varepsilon \ge 1. \end{array} \right.$$

(Représenter graphiquement $\sqrt{\cdot}$ pour mieux comprendre la distinction de cas.) Dans tous les cas, l'ensemble des solutions situées dans l'intervalle $[1, +\infty[$ est $S_d := [1, (1+\varepsilon)^2[$.

3. On conclut en proposant un intervalle centré en a=1 situé dans l'ensemble des solution

$$S = S_g \cup S_d = \left[\frac{1}{1+\varepsilon}, (1+\varepsilon)^2\right]$$
.

On propose la condition $x \in]1 - \eta, 1 + \eta[$ avec $\eta = \min(1 - \frac{1}{1+\varepsilon}, (1+\varepsilon)^2 - 1).$

$$x \in]1 - \eta, 1 + \eta[\Rightarrow |x - 1| < \eta \Rightarrow x \in S \Rightarrow |f(x) - 1| < \varepsilon$$

Chapitre 4. Exercice A.2.8

1. Soit f une fonction définie sur **D**. Par hypothèse f admet une limite $\ell \in \mathbb{R}$ en x_0 , ce qui signifie

$$\forall \varepsilon > 0, \exists \eta_1 > 0, \forall x \in \mathbf{D} \setminus \{x_0\} \Big(|x - x_0| < \eta_1 \Rightarrow |f(x) - \ell| < \varepsilon \Big).$$

On devine assez aisément que dans ce cas, la fonction $|f|: x \mapsto |f(x)|$ admet une limite en x_0 égale à $|\ell|$. Nous devons donc montrer que :

$$\forall \varepsilon > 0, \exists \eta_2 > 0, \forall x \in \mathbf{D} \setminus \{x_0\} \Big(|x - x_0| < \eta_2 \Rightarrow \big| |f(x)| - |\ell| \big| < \varepsilon \Big).$$

• Pour cela, il suffit de démontrer l'inégalité suivante : $\forall (a,b) \in \mathbb{R}^2$, $\big| |a| - |b| \big| \leq \big| a - b \big|$. Pour ce faire, on démontre plutôt $\forall (a,b) \in \mathbb{R}^2$, $\big| |a| - |b| \big|^2 \leq \big| a - b \big|^2$, puis on applique la fonction $\sqrt{\cdot}$ qui est croissante.

preuve : Soient $(a, b) \in \mathbb{R}^2$. Comme $|a|^2 = a^2$, on obtient

$$||a| - |b||^2 = (|a| - |b|)^2 = |a|^2 - 2|a||b| + |b|^2 = a^2 - 2|ab| + b^2$$

 $|a - b|^2 = (a - b)^2 = a^2 - 2ab + b^2.$

Comme $\forall x \in \mathbb{R}, x \leq |x|$, on peut écrire avec x = ab

$$ab \leq |ab| \Rightarrow -|ab| \leq -ab \Rightarrow -2|ab| \leq -2ab \Rightarrow a^2 - 2|ab| + b^2 \leq a^2 - 2ab + b^2$$
.

On a bien

$$||a| - |b||^2 \le |a - b|^2 \Rightarrow \sqrt{(|a| - |b|)^2} \le \sqrt{(a - b)^2} \Rightarrow ||a| - |b|| \le |a - b|.$$

• Conclusion : Soit $\varepsilon > 0$. Par hypothèse, $\exists \eta_1 > 0$, $\forall x \in \mathbf{D} \setminus \{x_0\} \Big(|x - x_0| < \eta_1 \Rightarrow |f(x) - \ell| < \varepsilon \Big)$. En choisissant $\eta_2 = \eta_1$ on obtient

$$|x - x_0| < \eta_2 \Rightarrow |x - x_0| < \eta_1 \Rightarrow ||f(x)| - |\ell|| \le |f(x) - \ell| < \varepsilon.$$

2. La réciproque est fausse.

 $\underline{\text{Contre-exemple}} : \text{on peut prendre la fonction } f \text{ définie sur } \mathbb{R} \setminus \{0\} \text{ par } f(x) = \begin{cases} -1 & \text{si } x < 0 \\ 1 & \text{si } x > 0 \end{cases}$

La fonction |f| est la fonction constante égale à 1 sur $\mathbb{R}\setminus\{0\}$ donc elle admet une limite en tout point $x_0 \in \mathbb{R}$ alors que la fonction f n'admet pas de limite en $x_0 = 0$ (les limites à gauche et à droite sont différentes).

Chapitre 4. Exercice A.2.10

1. Le sens $\ll \Rightarrow \gg$ est trivial : $\forall \varepsilon > 0, |a| = 0 < \varepsilon$.

Pour démontrer l'autre sens « \Leftarrow », on peut démontrer la contraposée :

$$a \neq 0 \Rightarrow \exists \varepsilon > 0, |a| \geq \varepsilon$$
.

<u>preuve</u>: soit $a \in \mathbb{R} \setminus \{0\}$, on pose $\varepsilon = |a|$. Alors, $\varepsilon > 0$ (car $a \neq 0$) et $|a| = \varepsilon \Rightarrow |a| \geq \varepsilon$. **2.** On dit que f est une fonction périodique si

$$\exists T > 0, \forall n \in \mathbb{Z}, \forall x \in \mathbb{R}, f(x + nT) = f(x).$$

Soit $\ell \in \mathbb{R}$. On doit montrer que « f est périodique et $\lim_{x \to +\infty} f(x) = \ell$ \Rightarrow $\forall x \in \mathbb{R}, f(x) = \ell$ ». preuve : • On sait que

$$\forall \varepsilon > 0, \exists A > 0, \forall x \in \mathbb{R} \ (x > A \Rightarrow |f(x) - \ell| < \varepsilon)$$
.

Ceci se réécrit $\forall \varepsilon > 0, \, \exists \, A > 0, \, \forall x \in]A \, , + \infty[\, , \, |f(x) - \ell| < \varepsilon.$

• Soit $x \in]-\infty, A]$ et soit T > 0 la période de la fonction f. On pose $X = \frac{A-x}{T}$. D'après la propriété d'Archimède, il existe $n \in \mathbb{N}$ tel que n > X. On obtient

$$n > \frac{A-x}{T} \quad \Rightarrow \quad x+nT > A \quad \Rightarrow \quad |f(x+nT)-\ell| < \varepsilon \quad \Rightarrow \quad |f(x)-\ell| < \varepsilon .$$

On en déduit que $\forall x \in]-\infty, A], |f(x)-\ell| < \varepsilon.$

• Finalement, $\forall \varepsilon > 0, \forall x \in \mathbb{R}, |f(x) - \ell| < \varepsilon$. D'après la question **1**., on en déduit que $\forall x \in \mathbb{R}, |f(x) - \ell| = 0$ et donc $\forall x \in \mathbb{R}, f(x) = \ell$. La fonction f est constante.

Chapitre 4. Exercice A.2.1

Les fonctions sont définies sur $\mathbb{R}\setminus\{0\}$. On a la CNS suivante

f admet une limite
$$\ell$$
 en $0 \Leftrightarrow \forall (x_n), \left(x_n \underset{n \to \infty}{\to} 0 \text{ et } x_n \in \mathbb{R} \setminus \{0\} \Rightarrow f(x_n) \underset{n \to \infty}{\to} \ell\right)$

1. La contraposée devient

f n'admet pas de limite en
$$0 \Leftrightarrow \exists (x_n), \left(x_n \underset{n \to \infty}{\longrightarrow} 0 \text{ et } x_n \in \mathbb{R} \setminus \{0\} \text{ et } (f(x_n)) \text{ diverge } \right)$$

- Pour $f_1(x) = \sin \frac{1}{x}$ on prend la suite (x_n) définie par $x_n = \frac{1}{n\pi + \frac{\pi}{2}}$ pour $n \ge 0$. On a bien $x_n \to 0$ et $x_n \in \mathbb{R} \setminus \{0\}$ et $f(x_n) = (-1)^n$. La suite $(f(x_n))$ diverge.
- Pour $f_2(x) = \cos \frac{1}{x}$, on prend la suite (x_n) définie par $x_n = \frac{1}{n\pi}$ pour $n \ge 1$. On a bien $x_n \underset{n \to \infty}{\to} 0$ et $x_n \in \mathbb{R} \setminus \{0\}$ et $f(x_n) = (-1)^n$. La suite $(f(x_n))$ diverge.
- Pour $f_3(x) = \frac{x}{|x|} \cos x$, on prend la suite (x_n) définie par $x_n = \frac{(-1)^n}{n}$ pour $n \ge 1$.

On a bien $x_n \underset{n \to \infty}{\to} 0$ et $x_n \in \mathbb{R} \setminus \{0\}$ et $f(x_n) = (-1)^n \cos \frac{1}{n}$ (cos est paire). Il y a deux méthodes pour montrer la divergence de $(f(x_n))$:

methode 1 : On raisonne par l'absurde :

On suppose que $(f(x_n))$ converge vers une limite $\ell \in \mathbb{R}$. Dans ce cas les suites $(f(x_{2n}))$ et $(f(x_{2n+1}))$ convergent vers la même limite ℓ également. Comme $f(x_{2n}) = \cos \frac{1}{2n}$ et $f(x_{2n+1}) = -\cos \frac{1}{2n+1}$ on en déduit que $(f(x_{2n}))$ et $(f(x_{2n+1}))$ convergent vers 1 et -1 respectivement, contradiction.

methode 2: On pose $u_n = (-1)^n$. On étudie la convergence de $f(x_n) - u_n = (-1)^n (\cos \frac{1}{n} - 1)$. La suite de terme général $(-1)^n$ est bornée et $\cos \frac{1}{n} - 1 \underset{n \to \infty}{\to} 0$. Donc d'après le corollaire 2 du Théorème des gendarmes, on en déduit que $f(x_n) - u_n \underset{n \to \infty}{\to} 0$. Maintenant, on raisonne par l'absurde : on suppose que $(f(x_n))$ converge et on écrit $(-1)^n = f(x_n) - (-1)^n (\cos \frac{1}{n} - 1)$. D'après les opérations sur les suites convergentes, on en déduit que $(-1)^n$ converge ce qui est faux. Donc la suite $(f(x_n))$ diverge.